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Abstract 
 
Here we report experiments on particle cluster settling at high Reynolds number in quiescent 

fluid contained in a vessel. The particles were observed to settle in a near-circular shape 

irrespective of the shape of the vessel cross-section and particle shape, size, and types. Effect 

of different parameters such as mass, type and aspect ratio of the particles, height, and viscosity 

of liquid was investigated. Formation of the hemispherical bottom cap of the cluster that 

bounces upon hitting the vessel bottom surface was found to be responsible for the final circular 

shape of the settled structure. Particle leakage from the cluster was seen in the form of a tail. 

In the liquid having viscosity beyond 100 cP, cluster breakage was observed that resulted in 

hindered settling and asymmetric shapes of finally settled particles. The observations are useful 

to understand the overall area over which settling of such clusters can be observed.  

 
Keywords: particle cluster, temporal evolution, settling, spreading  
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1. Introduction 

The motion of single particles or particle assemblies in a liquid in a constant gravity 

field has been studied extensively over the last 170 years.1-5 Several processes involving the 

motion of particle clusters in liquids are found in nature. Such systems are pertinent to the 

dynamics of particulate gravity currents which have applications in oceanographic (turbidity 

currents and study of carbon fluxes to the sediments in the ocean, lakes and reservoirs), 

geological (debris flows, pyroclastic density currents; lava flows from volcanic eruptions), and 

environmental (pollutant-laden wastewater treatment) scenarios. Moreover, the settling study 

of such particle-fluid systems has significant commercial applications in fields as diverse as 

effluent dispersal, food processing, dredging waste removal, and mine tailings.6-10 

Understanding the nature of settling and spreading of such clusters in water is also important 

for undesired situations like airborne accidents of flights over the sea as rapid settling can 

restrict the area of investigation. This work performed using controlled experiments gives some 

insights in cluster sedimentation and settling in liquids. 

When a swarm of particles is allowed to settle in quiescent fluids, it forms a cohesive 

entity called as cluster (also referred as blob or drop). 1, 11-14 The motion of the cluster is often 

considered to be analogous to the settling of a drop of a viscous fluid in a comparatively lighter 

liquid where a jump in the value of the particle concentration is related to the liquid-liquid 

interface. 1, 4, 12, 14 The ambient flow within such a settling cluster geometry was reported to be 

similar to the toroidal circulation observed in a settling liquid drop. 15 The behavior of a cluster 

of particles is different from a single particle in such scenarios, mostly because of the relative 

motion of particles in the cluster and the relative motion of clusters. The liquid motion at any 

point in the cluster is dependent on the relative velocity of the constituent particles and how 

distant the particles are from the point. Each constituent particle carried some amount of fluid 

along with it and convected by the velocity fields produced by the other constituent particles. 

This results in velocity enhancement of constituent particles and of the whole cluster as well. 1 

The fall velocity of the cluster was observed to be higher at all times than the individual 

particles, and the enhancement in the falling rate increased when the particles were more 

closely packed3. Settling velocities of particle aggregates were found to be 4 to 8.3 times higher 

than the stokes law model. As the cluster takes a macroscopic identity, cluster Reynolds 

number (Rec) based on the macroscopic scales, i.e., cluster radius and velocity, was often used 

for flow characterization instead of the particle Reynolds number. 1, 12, 14 Moreover, the added 

mass force plays an important role in the overall force balance. 
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At very low/zero Re, a cluster would maintain spherical shape while with increasing Re 

significant temporal evolution of the cluster is observed. For a certain time, depending on the 

specific system, the particles recirculate and stay together within a single almost spherical 

cluster/blob, after which the cluster forms a torus, then a ring-like structure and then eventually 

disintegrates. This phenomena has been reported by several authors in different settling systems 

over a range of Reynolds number (i.e. 1x10-4 to 10) for particle sizes over a range of few 

microns to millimetres. 1, 4, 14 The particles were observed to move with respect to each other 

inside the cluster, and the cluster significantly changed its shape 12 while responding to the 

various forces acting on it. Machu et al. 14 reported the lower part of the cluster takes the shape 

of a roughly hemispherical cap, while the upper part resembles the conical shape of the laminar 

jet formed during the injection process. At comparatively higher Re, i.e., 93 to 425, Daniel et 

al. 6 observed that the variance of the cluster diameter grows quadratically at the beginning and 

attain a slower sublinear regime after some time. The temporal evolution of cluster was 

reported to be significantly dependent on the cluster Re and the initial number of particles in 

the cluster.  

During the past few decades, there have been several notable experimental as well as 

theoretical advances in the understanding of the dynamics of motion of cluster/blob made of 

particles made of micron to milli meter ranges. 1, 3, 12  These investigations were focused on Re 

≤ 1.0 in the creeping flow regime, where the inertia of particles and fluid and hydrodynamic 

interactions can be neglected. For Re > 10), both viscous, inertial, and buoyancy effects become 

significant and relative motion of the particles increases.3 Wake mediated interactions  starts 

becoming dominant with increasing Rec of the system. 6, 16 It can be said on the basis of the 

reported literature that beyond the creeping flow regime, the hydrodynamic interactions 

between particles mediated by the fluid become non-linear and demonstrate complex 

dynamics, for which our understanding of such systems is still rudimentary.  

In the recent years, considerable attention has been focused on understanding the 

motion and evolution of fluid-particle systems such as a spherical settling cluster at low 

Reynolds numbers 1, 4, 6, 12-15, 17 but the spreading behavior of particle cluster upon hitting the 

bottom surface of the vessel apparently received little attention. Daniels et al. 6 only reported 

that even a localized release of particles into a quiescent fluid might give rise to sediment 

spreading on a greater section of the vessel bottom surface due to radial cluster expansion 

resulting from the source-flow interactions of the particles.  To the best of our knowledge, to 

date, a detailed study of the corresponding observations of particle spreading from the clusters 

is not reported. Instead of settling at the centre of the vessel, particle clusters were observed to 
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form a ring-like structure around the vessel centre in our experiments. Therefore the goal of 

this paper is to perform a detailed experimental analysis of settling at short time scales and 

spreading nature of the solid particle clusters in quiescent fluids in confined vessels. The focus 

is to investigate the solid deposition patterns at the vessel bottom surface. The effect of different 

parameters such as vessel geometries, wall interactions, and fluid properties over the settled 

geometry was studied experimentally. This is a purely experimental work, and in-depth 

theoretical understanding by means of numerical simulations is out of the scope of this study. 

 In view of this detailed introduction, the manuscript is organized as follows: the next 

section details out the experimental methods and the implemented data processing techniques 

in this work. Subsequently, a description of cluster settling and spreading phenomena and 

effects of different parameters on the spreading behaviour were discussed in detail. Finally, 

important findings are summarized.  

 

 
2. Experimental 

 
2.1.  Experimental setup  

 
Particles filled in a small cylindrical cavity were released instantaneously at the center 

of the vessel filled with a quiescent Newtonian liquid from a certain elevation and were allowed 

to settle. The particle trajectory and settling pattern at the vessel bottom surface were 

monitored. Glass vessels of different sizes and shapes were used for performing the 

experiments. An in-house developed motorized system was used for the release of particles to 

eliminate manual variations in particle release. Particles were loaded into a cylindrical 

reservoir, and a thin plastic sheet holding the particles was slid instantaneously using a servo-

controlled motor to release all the particles so that the cluster descents in the vessel. Schematic 

of the experimental setup is shown in Figure 1. The particles travel about 5 cm in the air before 

entering the liquid. The time needed to release the particles was less than 50 ms. Due to the 

rapid movement of the sheet, no lateral movement of particles was observed, and this technique 

significantly reduced the entrainment of air bubbles inside the cluster. Particle trajectory inside 

the liquid phase after feeding during its settling and the final settling pattern formed was 

monitored using a high-resolution Sony camera. The evolution of the settling cluster was 

observed via an angled mirror placed directly below the cluster’s path of travel. The mirror was 

kept at 45 angle at the bottom of the vessel to observe the side-view and bottom-view of the 

glass vessels. Visualization of settling and spreading time and pattern of the solid particles in 
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water was performed by video processing (Virtual Dub and iMovie software), and image 

analysis was performed using Image J and Matlab softwares.  

 

 

Fig. 1. Schematic illustration of the experimental setup used for settling of solid clusters. Particle 
settling and spreading was acquired as video in a mirror.  
 

Most of the experiments were carried out in a 15 cm x15 cm x 20 cm square cross-section 

glass vessel using cubical sugar particles of 2.4 mm average size. The effect of different 

parameters was studied. These include: (i) initial mass of particles (6 gm to 16 gm), (ii) liquid 

height in the vessel (6 cm to 14 cm), (iii) particle size and type (sugar, glass and rice particles 

of different size and aspect ratio, see fig. 2), and (iv) viscosity of the liquid (1 cP to 700 cP). 

Vessels of different shape cross-sections viz. square, triangle, hexagon, cylinder in two 

different sizes were also used for performing experiments while other parameters were kept 

constant. Solutions of UCON (lubricant from Dow Chemicals) in water in different ratios were 

used for varying viscosity of the fluid without changing the density. The fluid viscosities were 

measured by a cone and plate viscometer. 
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Fig. 2: Particle types and particle sizes used for settling experiments 

 
 
 

2.2.  Analysis 
 

Settling time, spreading time, average spreading size (viz. diameters of the inner and 

outer circles, for the cases where it forms a circular shape) were measured as a response. 

Settling time was defined as the time needed for the cluster to reach the bottom of the vessel 

from the time it enters the liquid phase and spread time was defined as the time required to 

form the final settled shape after the cluster reaches the bottom surface. The time-averaged 

cluster settling velocity was determined as the total vertical displacement of the cluster divided 

by the settling time. The average diameter and roundness of the settled structure were 

determined by the minimum circumscribed circle (MCC), defined as the smallest circle, which 

encloses the whole of the roundness profile and the maximum inscribed circle (MIC), defined 

as the largest circle that can be inscribed inside the roundness profile. A schematic 

representation of the same has been shown in fig. 3. The average diameter and roundness were 

charecterised as the mean and ratio of the MCC and MIC, respectively.  The diameters are 

presented in a dimensionless form throughout the manuscript by dividing it with the hydraulic 

diameter of the vessel cross-section.  
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Fig. 3. Schematic representation of minimum circumscribed circle (MCC) and maximum inscribed 
circle (MIC) 
 

As different types of particles having a wide range of aspect ratios were used for the 

experiments, the equivalent diameter of the particles 18 was used to characterize the particle 

length scale instead of particle size. The cluster Reynolds number (Rec) was estimated as   

𝜌 𝑉 𝐷 µ . 

 
3. Results and Discussion 
 
3.1.  Settling of clusters  

 
While falling under gravity in a quiescent fluid, the group of particles is found to form 

a compact cluster under a wide range of conditions. The cluster of particles was seen to rapidly 

evolve into a nearly spherical shape. It is known from the literature that the motion and velocity 

of a settling particle cluster are different from the individual particles in the creeping flow 

regime. 1, 12, 14, 19 In our experiments, the settling velocity of the cluster never reaches terminal 

settling velocities of the individual particles (0.33 to 0.93 times the terminal settling velocity 

for different particle size, shape, and types) or the terminal settling velocities of the clusters 

(assumed spherical and treated as single particles) (0.28-0.5 times). In the experiments by 

Daniels et al.6 performed outside the creeping flow regime, the settling velocity of the cluster 

and individual particles are reported to be a similar order of magnitude. However, in the present 

work, the cluster traveling time in the liquid was significantly lesser (settling distance is 1.71 
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to 5 times the cluster diameter compared to a minimum of 9.38 times in Daniels et al.6). This 

explains the significantly lower cluster velocities in comparison to the respective terminal 

settling velocities.  

All the experimental data was carefully analysed using the images obtained from a high-

speed camera (Kronos, Canada) at 1000 fps. to monitor the transient variation in the velocity 

of cluster during its settling. Since the impact of the cluster on the air-liquid interface followed 

by continuous displacement of water actually helped in generating a vortex with transient 

variation in the fluid velocity.  Typical variation in the transient cluster velocity is shown in 

Fig. 4, which includes the settling velocity of the cluster from the time it touches the air-liquid 

interface, followed by its motion through the liquid and finally the collision with the bottom 

wall. Three different regimes are evident in the travel path of the cluster. Initially, the velocity 

continues to increase due to inertia until a hemispherical cap gets formed in the lower half of 

the cluster. Then velocity gradually decreases due to loss of energy while crossing the interface 

as well as due to viscous dissipation of cluster momentum. When the cluster while still in 

suspended form reaches close to the bottom surface some particles come apart from the cluster 

which momentarily increases the velocity of the cluster. Finally, a sudden drop in velocity is 

observed due to the buoyancy of the liquid coming from the bottom wall surface that leads to 

disintegration of cluster eventually subjecting individual particles to the motion. The time 

needed for the viscous dissipation region until the cluster was intact was the maximum among 

the three regimes. The time scale for the initial rise in the velocity was seen to be a function of 

the mass of cluster, while the time scale for viscous dissipation of cluster energy was seen to 

depend primarily on the liquid level. The time scale for the regime of cluster fragmentation 

was always the smallest among all. This particular trend was observed for all the experiments. 

The gradient of the velocity with time was seen to be a typical quadratic polynomial having 

two points of inflection and no symmetry.  
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Fig. 4. Variation in cluster velocity as it travels through the liquid. Slope of different regimes - (R1-
0.142857, R2 -0.52632, R3 0.14, R4 -20) 

 

The cluster diameter in our experiments was in the range of 2 cm to 4.6 cm. The 

recirculation of particles was observed in the cluster, which also provided a macroscopic 

identity to it. We have explored this feature by observing uniformly mixed distribution of 

settled particles of different colors when the reservoir was filled up in layers with different 

colored particles. While settling in the liquid, the lower part of the particle cluster forms a 

roughly hemispherical cap. While most of the particles were retained together, a few particles 

tend to leave the cluster during settling and remain in the tail portion, which is known as particle 

leakage (see fig. 5a). 1, 15 Particle leakage from the cluster primarily occurs because of the 

instabilities in the cluster when interacting particles undergo transient variation in the velocity, 

trajectories, and waves generated in the fluid due to entry of the cluster. The particles which 

are located in the outer layer of the toroidal circulation, tend to escape from the toroidal 

circulation and are dragged by the outside flow to form a tail of particles at the rear section of 

the cluster (see Fig. 5b). With the increasing initial mass of the particles, the tendency for 

particle leakage is observed to decrease and the clusters move downward with lesser deviation 

to its initial configuration. This is due to the lesser departure from closed streamlines of the 
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toroidal circulation with increasing number of particles.4 An important quantity which 

characterizes the near-spherical cluster formation is a critical mass (or number of particles) 

required to form a coherent spherical cluster. We had observed that when the mass of cluster 

was lower than the critical mass, the clusters were having a distorted/asymmetric shape and 

tended to disintegrate significantly and rather rapidly before reaching the vessel bottom.  

 

    

(a)                                                                 (b) 

Fig. 5. (a) Settling cluster with tail formation at the back; (b) Schematic of open and closed-loop 
streamlines of toroidal circulation - reason behind Particle leakage and tail formation (Reprinted from 
Nitsche et al. 1997 13 with permission from Cambridge University Press)  

 

 

3.2 Spreading of clusters at vessel bottom 
 

The entrance of the cluster in the liquid created ripples on the water surface, and as it 

travels towards the vessel bottom, the displacement of liquid in the downward direction along 

with the cluster helps generate a temporary circulation in the liquid.  A strong interaction 

between sediment transport and the fluid dynamics due to the spatiotemporal displacement of 

water was observed during the spreading and settlement of the cluster particles. As the cluster 

hits the vessel bottom, the constituent solid particles spread out almost symmetrically under 

the influence of particle driven gravity currents under the balance of inertial and buoyancy 

forces. Particle driven gravity currents are generated by the release of a swarm of particles 

along with the interstitial liquid into a lighter ambient fluid. In such a scenario, the flow is driven 

by the difference between the bulk density of the particle current and the density of the ambient 

fluid in the vessel. The length of the particle gravity current is determined by the balance of 
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buoyancy and inertial forces. The current length is very much higher than its thickness. Though 

it is reported that a propagating gravity current without particles shows a uniform velocity 

profile for Re  1, when particles drive the flow in addition to the advective effects, they fall 

out of the flow losing some of the energy to viscous dissipation, and the buoyancy force 

continually decreases.10 First, the particulate current propagates through an inertia dominant 

regime, then as the current reaches a certain length, the velocity and height at the tip of the 

current decreases. As a result, the viscous forces acting along the vessel bottom surface become 

more important, and the carried particles are tended to settle from the current there.20 Fig. 6 

shows the sequences of the cluster before it settles at the bottom wall surface. In the following 

section, effects of different parameters viz. initial cluster mass, vessel liquid level, liquid 

viscosity, vessel shape and size, particle size, shape, and type on the spreading behavior has 

been presented and discussed in detail.  

 

 

Fig. 6. Sequence of cluster spreading after collision with the vessel bottom wall. The zero time scale 
starts from the instant when the cluster touches the bottom of the vessel. A cluster comprising of 10 gm 
of 2.45 mm sized sugar particles was allowed to settle in a 15 cm X 15cm X 20cm square cross-section 
vessel filled with water (14 cm height). 

 

 
3.2.1 Effect of the mass of particles    
 

Due to the interparticle interaction in water and due to viscous effects, solid particles 

come near to each other and form a nearly spherical shape. A variation in the mass/number of 

solid particles affects the settling and spreading time. Increasing the mass of the solid particles 

resulted in a decrease in the settling time and an increase in the settling velocity due to higher 

inertia. Here the effects of added mass come become critical, which is the additional mass that 

an object appears to have when it is accelerated relative to a surrounding fluid.21 With an 

increasing number of particles the added mass increases and adds to the effective inertia.  
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Fig. 7. Effect of the total initial mass of particles on (a) Settling and spread time in big square vessel; 
(b) Dimensionless diameter of the settled shape in small and big square shape vessels (B- big square 
vessel, S- Small square vessel) 

 

The spreading time, as well as the average inner and outer diameter of the final shape 

of settled particles, were found to increase with increasing mass of solid particles irrespective 

of different vessel sizes (see fig. 7b). With an increasing number of particles and the size of the 

cluster, the bulk density of the resulting particulate current increases. This increases buoyancy, 

which is the driving force for the spreading of particles. With the increasing initial mass of 

particles, the roundness of the settled structure decreases, i.e., the settled shape becomes closer 

to a circle. 

 
3.2.2   Effect of vessel liquid level  
 
The settling and spreading time were observed to increase with the increasing liquid level. This 

is due to the increased hindrance provided by the liquid on the motion of particles. This 

hindrance is due to pressure force and also the viscous force. Though Bonnecaze et al. 20 found 

that lengths of the particulate currents in shallow surroundings were greater than compared to 

deep surroundings, Fig. 8 shows that the variation in liquid level has no significant effect on 

the inner and outer diameter of the settled shape. The roundness value of the settled shape tends 

closer to unity with an increasingly fluid level, which represents that the settled shape becomes 

more symmetric. Higher settling time provides more time to recirculate and forms a cluster of 

symmetric shapes. When the cluster shape is closer to a perfect sphere, with an impact on the 

bottom surface, the particles settle more symmetrically to form a near circle geometry.   
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(a) 

 

(b) 
Fig. 8. (a) Effect of the vessel fluid level on the settled pattern in the big square-shaped vessel, (b) Outer 
diameter of the settled shape for different vessel fluid levels.  

 
 
3.2.3 Effect of Vessel shape and size 
 
Vessels of different geometries in two different sizes were used to carry out particle settling 

experiments. It was interesting to observe that the settled shape is found to be close to a circle 

despite different shapes of the used vessels (see fig. 9). As the water level was kept constant in 

all the experiments, the liquid volume in the vessel was dependent on the size and shape of the 

bottom surface. As discussed in section 3.2.1, the threshold value for the mass of particles to 

form a symmetrical settled shape is dependent on the size of the vessel bottom surface area or 

the proximity of the vessel wall.  Since it was observed that the dimensionless diameter 

increases linearly with increasing mass of particles (see section 3.2.1), in order to understand 

the effect of vessel shape and size, the outer diameter used in the following analysis was  
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normalized by the mass of particles used for the experiments. Fig. 10a shows an interesting 

observation that irrespective of the vessel shape, the normalized diameter decreases with 

increasing vessel volume. It is also evident from the fig. 10b that the square shape vessel results 

in enhanced spreading of the particles in comparison to other vessel shapes.  

 

 
 

Fig. 9. Effect of vessel shape on the settled pattern 
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(a)                                                                         (b) 

 
Fig. 10.  Effect of vessel shape and size on the dimensionless diameters of the settled pattern.   

 
 
3.2.4 Effect of particle size, shape, type  

 
To understand the effect of particle type, size, and shape on the settling phenomena, different 

particle types of various sizes and aspect ratios were used for the settling experiments when 

other parameters were kept constant. Fig 11a shows no significant deviation was observed in 

the dimensionless outer diameter of the settled shape for particles of various diameters (ranging 

from 492 m to 3643 m average equivalent diameter). In general, at ambient conditions, the 

settling velocity of a particle decreases if the shape of a single particle deviates from a sphere. 
22. The drag force on the individual particles would change with a significant variation in the 

aspect ratio. However, despite these facts on the settling behavior of individual particles, it was 

interesting to observe that the spreading behaviour is not being affected by the varying particle 

type, size and aspect ratio. Despite using round shaped glass particles and elongated rice grains 

(1.0  Aspect Ratio  4.4), the  dimensionless outer diameter of the settled shape only varied 

over a close-range of 0.742  0.035 (4.7 % deviation; see fig. 11b). We can speculate that the 

macroscopic identity of the cluster was the reason why the dimensionless diameter of the 

settled cluster was independent of the shape, size, and types of the constituent particles. Though 

the temporal evolution of the cluster was affected to some extent with different sized and 

shaped particle used for settling, the hemispherical bottom shape of the cluster (which is the 
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crucial criteria for the symmetric shape formation) was not affected, despite using particles of 

different shape, size, and type. 

 

 
(a)                                                                            (b) 

Fig. 11. Effect of (a) equivalent particle diameter and (b) aspect ratio of different particle types on the 
dimensionless outer diameter of the settled pattern 

   
 
3.5 Effect of fluid viscosity 
 
Cluster settling experiments were performed with ambient liquids of increasing viscosity. The 

settling velocity of the cluster was found to decrease significantly with increasing viscosity of 

the liquid, and even the spreading time was observed to increase. This is due to higher friction/ 

resistance provided by the liquid to the particle cluster. The Rec was also found to decrease 

significantly as the viscosity of the ambient liquid was increased. The dimensionless diameter 

of the settled shape also decreased with increased viscosity until a certain viscosity value, and 

then it was found to increase. The existence of a limiting viscosity (∼100 cP) was witnessed 

beyond which no near-spherical cluster formation was observed. When the fluid viscosity is 

increased over the limiting viscosity value, destabilization of the cluster was found to occur, 

and the cluster was not able to maintain spherical shape (see fig. 12a).  
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(a)                                                                       (b) 

Fig. 12.  (a) Breakage of particle cluster; (b) asymmetric spreading of the particles 

 

As the hemispherical bottom cap of the cluster was not formed, when hitting the vessel bottom 

surface, the constituent particles of the cluster spread in an asymmetric manner (see fig. 12b). 

A significant deviation from a circular settled structure was observed. The initial decrease in 

the dimensionless diameter was due to a lesser density/intensity of the particulate gravity 

current, but after a limiting viscosity value, due to asymmetric spreading, the roundness and 

the dimensionless diameter of the settled shape, both increased (see fig. 14a). The limiting 

viscosity value (≈100 cP) of the ambient liquid was required for the fluid in order to form a 

cluster with a hemispherical cap, which resulted in a uniform settled structure. This is probably 

due to a regime change of cluster motion has occurred around the cluster Re of 60 (see fig. 

14b).  
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Fig. 13. Effect of fluid viscosity on the settling time, spread time and cluster settling velocity  
 

  
Fig. 14. (a) Effect of fluid viscosity on the dimensionless diameter of the settled pattern; (b) Effect of 

Rec on the dimensionless diameter of the settled pattern 

 
 

4. Conclusion   
 
By performing experimental investigations, we have examined the nature of settling of a cluster 

of particles falling in a quiescent liquid at high Rec conditions, and it’s spreading at the vessel 

bottom surface. The significant finding is that a cluster having an initially hemispherical bottom 

cap settles in an axisymmetric shape upon hitting the vessel bottom surface. The formation of 

the hemispherical cap and the subsequent axisymmetric shape formation is found to be a robust 

feature of the system as it is found to nearly independent of the particle shape, size, and types. 

With the increasing initial mass of the particles, the cluster size was found to increase, the 
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tendency for tail formation was reduced, and the settled shape became closer to a circle and of 

higher dimensionless diameter. Despite using vessels of different sizes, the settled shape was 

close to a circle. However, the square shape vessels resulted in enhanced spreading behavior. 

It is worth noting that a limiting viscosity of the ambient liquid of 100 cP was observed beyond 

which the cluster shape was deformed, and the particles spread in an asymmetric manner. The 

experimental analysis presented here should be taken as a step towards understanding the effect 

of high Reynolds number hydrodynamic interactions between settling particle clusters on its 

spreading behaviour upon hitting the bottom surface. 
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