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One sentence summary:

Single-cell RNA sequencing analyses combined with a novel model for cell transplantation in
human livers reveal that intra- and extra-hepatic cholangiocytes are interchangeable for

regenerative medicine applications.
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Abstract:

Organoid technology holds great promise for regenerative medicine but has not yet been
applied to humans. Here, we address this challenge in the context of cholangiocyte organoids
and cholangiopathies, which represent a leading indication for liver transplantation. Using
single-cell RNA sequencing we show that primary human cholangiocytes display
transcriptional diversity which is lost in organoid culture. However, cholangiocyte organoids
remain plastic and resume their in vivo signatures when transplanted back in the biliary tree.
We then utilize a new model of cell engraftment in human livers undergoing ex vivo
normothermic perfusion to demonstrate that this property allows extrahepatic organoids to
repair human intrahepatic ducts after transplantation. Our results provide proof-of-principle

that cholangiocyte organoids can be used to repair human biliary epithelium.
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Main text:

Organoids have a unique potential for tissue repair as they retain key functions and
characteristics of their tissue of origin. Nevertheless, their ability to repair native epithelia and
restore their complexity has not been established in humans, while organoid engraftment and
survival in vivo has only been demonstrated in a limited number of animal studies (1). The bile
duct epithelium presents an archetypal and clinically important system for addressing this
challenge and for developing proof-of-concept studies in human. Indeed, disorders of the
biliary system, which transfers bile from the liver to the duodenum, account for 70% of
paediatric and up to a third of adult liver transplantation (2). This results in a pressing need for
therapeutic alternatives, such as cell-based therapy. Furthermore, organoids suitable for
regenerative medicine applications can be easily derived from biliary epithelial cells, known
as cholangiocytes (3). Finally, the bile ducts also recapitulate the epithelial diversity found in
other hollow-lumen organs (4). Indeed, different regions along the biliary tree display distinct
transcriptional profiles and functional properties, such as the chemical modification of bile (5,
6), as well as variation in disease susceptibility between the intrahepatic ducts, extrahepatic
ducts and the gallbladder. Nevertheless, the impact of this regional variation on the
characteristics and regenerative potential of the organoids derived from different regions of
the biliary tree remains to be characterized. To address these questions and demonstrate the
value of organoids for regenerative medicine in humans, we first characterize cholangiocyte
diversity in vivo using single-cell transcriptomics and confirm that different regions of the
human biliary tree contain cells with distinct transcriptional profiles. We then show that
cholangiocytes lose these differences in organoid culture and become interchangeable, but
their regional identity can be restored in vitro by environmental stimuli. We subsequently use
a biliary injury mouse model and a novel model for cell transplantation in human organs
undergoing ex vivo normothermic perfusion to prove that this plasticity allows cholangiocytes
from one region to repair a different region of the biliary tree paving the way for cell-based

therapy using organoids.



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

To characterize the cellular composition of the human biliary epithelium, cholangiocytes from
different regions (Intrahepatic Bile Ducts (IHD): 5 patients, 7295 cells; Common Bile Duct
(CBD): 3 patients, 3006 cells; Gallbladder (GB): 3 patients, 3702 cells) were isolated using
magnetic bead sorting and their transcriptome was determined using droplet encapsulation
single-cell RNA sequencing (scRNAseq) (Fig. 1A-B, Fig. S1A-C). The isolated cells
expressed key cholangiocyte markers, including KRT7, KRT19, SOX9, and GGT (Fig. S2A).
The transcriptomes of all three biliary cell populations shared a core transcriptional profile,
illustrated by their proximity in UMAP space and high connectivity in Partition-based Graph
Abstraction (PAGA) analysis when compared to different liver cell types, such as stellate cells
and liver sinusoidal endothelial cells (LSECs, Fig. S2B-S2E). However, more detailed analysis
after sub-clustering of cholangiocytes revealed non-overlapping expression modules of the
three populations (Fig. 1B). This suggests that, despite their similarities, cholangiocytes from
different regions exhibit unique gene expression signatures (6). Accordingly, Differentially
Expressed Genes (DEG) analysis (Data S1) identified known region-specific markers,
including aquaporins (7), mucins (8), FGF19 (9), SOX17 (10) in the extrahepatic biliary tree,
JAGL1 (11), TACSTD2 (12) and YAP target genes in intrahepatic cholangiocytes (13, 14), as
well as novel markers including DCDC2, TFF1-3, SLC15A1 (Fig. 1C-1D, Fig. S3A-S3D). Most
of these genes correspond to functional markers such as bile acid receptors or channels
modifying bile composition (Fig. S3C). Thus, the transcriptional divergence among
cholangiocytes from different regions could reflect adaptation to their microenvironment, such
as variation in bile properties along the biliary tree (15). Accordingly, cholangiocytes from
anatomically adjacent and hence environmentally similar regions (e.g. intrahepatic and
common bile duct vs. gallbladder) displayed higher transcriptional similarity. This was
illustrated by PAGA analysis (Fig. S3E-S3F), in agreement with results from diffusion
pseudotime (DPT) and single-cell consensus clustering (SC3) analyses (Fig. S4-S5). These
results point towards a progressive change in the expression of region-specific markers (Fig.
1E, Data S2), and a gradual transition in the transcriptional signature of cholangiocytes from

adjacent regions (Fig. S4A-S4C) rather than distinct subpopulations (Fig. 1E, S4-S5). This
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gradient in gene expression is likely to support adjustment of the cells to environmental
conditions, such as the gradual change in bile composition from the intrahepatic ducts to the
gallbladder. In conclusion, our results show that the human biliary epithelium is comprised of
cholangiocytes displaying a gradual shift in their transcriptional profile along the biliary tree,

which is likely imposed by region-specific microenvironments.

We subsequently used this single-cell map of the human biliary tree as a framework to
characterise cholangiocyte organoids. To this end, a fraction of the primary cholangiocytes
isolated for scRNAseq from each region (IHD, CDB, GB) were propagated as organoids using
our established conditions (3, 16). The resulting organoids expressed cholangiocyte markers
(KRT7, KRT19, SOX9, HNF1B, CFTR; Fig. S6A-S6B); displayed comparable functionality
(ALP, GGT activity; Fig. S6C-S6D) and similar expansion potential regardless of their region
of origin (Fig. S6E). To further explore these similarities, we performed scRNAseq on these
organoids (2 lines per region; GB: 5859 cells; CBD 5321 cells; IHD 6641 cells; Fig. S1A-C).
UMAP and PCA analyses demonstrated that organoids exhibited overlapping transcriptomic
profiles (Fig. 2A, Fig. S7A-S7D) indicating that cholangiocytes grown in vitro assume a similar
transcriptional signature independent of their region of origin. Of note, regressing cell cycle-
related genes did not change these observations excluding that a common “proliferation”
signature could mask differences between organoids of different spatial origins (Fig. S7A-
S7C, S7E). Furthermore, we did not detect any cells co-expressing known somatic stem cell
markers (LGR5, PROM1, TACSTD2, NCAM), excluding the possibility that organoid

similarities reflect a common progenitor/stem cell identity (Fig. S7F).

We then compared organoids from different regions with primary cholangiocytes to explore if
these similarities corresponded to loss of their original regional identity in vitro (Fig. 2A).
Organoids and primary cells following cell cycle regression shared a core transcriptional profile
reflecting their common cholangiocyte nature, which was illustrated by their proximity in UMAP
space and high PAGA connectivity when compared to different liver cell types, such as stellate

cells and LSECs (Fig. S7C-D). However, DEG analyses highlighted downregulation of region-
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specific markers, such as SLC13A1 and SLC26A3 (Fig. 2B, Fig. S7G); while Gene Ontology
(GO) and Gene Set Enrichment Analyses (GSEA) identified these DEGs as factors facilitating
the adaptation of cholangiocytes to their respective microenvironments, e.g. bile acid vs.
culture medium processing genes (Fig. S8A-S8C). Furthermore, we confirmed upregulation
of YAP target genes (Data S3) in organoids, in accordance with previous reports (14).
Consequently, primary cholangiocytes propagated as organoids adapt to their new
microenvironment by maintaining their core transcriptional signature, while losing the

expression of markers specific to their region of origin.

To explore the mechanisms controlling cholangiocyte identity, we decided to add bile in our
culture conditions as the principal determinant of the cholangiocyte microenvironment.
Different organoids (IHD, CBD, GB) were treated with human gallbladder bile for 72 hours and
then characterized using scRNAseq (Fig. 2A, S1A-S1C) (GB: 3815 cells; CBD 3224 cells;
IHD 3653 cells). UMAP and PCA revealed that treated organoids assumed a new overlapping
gene expression profile (Fig. 2A, S9A) confirming a shared capacity to adapt to exposure to
bile. Importantly, PAGA and DEG analyses showed that this transcriptional profile was shifted
towards a gallbladder identity (Fig. 2B, Fig. S9B-S9C). To characterise the factors controlling
this transition, we interrogated differentially expressed genes in bile-treated organoids. GO,
GSEA and UMAP analyses (Fig. S9D-S9F) confirmed the induction of region-specific markers
(SOX17, MUC13, FGF19; Fig. 2B, S9F) and revealed upregulation of bile acid receptor
pathways and downstream targets (NR1H4/FXR, NR1I2, NROB2, SLC51A, FGF19, ABCA1,
PPARG; Fig. 2B, S9D-S9F). Of note, these results were validated through activation and
inhibition of the Farnesoid X receptor (FXR), using chenodeoxycholic acid and z-
guggulsterone respectively (Fig. 2C-2D), thereby confirming that regardless of their origin,
cholangiocytes grown in vitro can respond and adapt to environmental stimuli. Together, these
results suggest that cholangiocyte organoids could assume different regional identities when

instructed by the appropriate niche factors.
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To validate cholangiocyte plasticity and explore its functional implications, we decided to
assess if organoids from one region of the biliary tree could repair a different region following
transplantation. For this, we induced cholangiopathy in immunodeficient mice using 4,4’-
methylenedianiline (MDA) (17) (Fig. 3A-3B, S10, S11) and attempted to rescue the phenotype
with intraductal delivery (18) of human gallbladder organoids expressing Red Fluorescent
Protein-expressing (RFP). Control animals receiving carrier medium without cells lost weight
(Fig. S10A) and died within 3 weeks (Fig. 3B, Table S1), developing cholestasis (Fig. S10B)
and cholangiopathy demonstrated by IF (Fig. S10C), histology (Fig. S10D) and Magnetic
Resonance Cholangio-Pancreatography (MRCP) (Fig. 3C, S11A-S11C, Movie S1-S6). On
the contrary, animals receiving organoids were electively culled at the end of the experiment
and survived for up to 3 months with resolution of cholangiopathy and normal serum
biochemistry (Fig. 3B-3C, S10A-S10B, S11B-S11C, Movie S3-S4, S6). The transplanted
gallbladder cholangiocytes engrafted in various size intrahepatic ducts (Fig. 3D, S12A-C,
Movie S7-S9) corresponding to ~25-55% of the regenerated biliary epithelium (Fig. S12C),
and assumed an intrahepatic identity by losing gallbladder (SOX17) and expressing
intrahepatic markers (SOX4, DCDC2, BICC1) (Fig. 3D, Fig. S12A-S12B). Core biliary
markers (KRT7, KRT19, CFTR) were also expressed (Fig. S12A), while we observed YAP
activation both in engrafted and native cells (Fig. S12B, S12E) in accordance with previous
reports (13). Of note, we never observed expression of other hepatic lineage markers such as
albumin indicating that cholangiocyte organoid plasticity is likely to be limited to their biliary
lineage (Fig. S12A). Furthermore, the engrafted cells expressed proliferation markers (Fig.
S12B, S12D) at similar levels to native mouse cholangiocytes; while abnormal growth or
tumour formation was never noticed in all the analyses performed (Fig. 3C, 3D, S10D, S12A-
S12B), including T1 weighed body MR imaging at the end of the experiment (Movie S1, S3).
Thus, organoid transplantation provides the healthy cells required to repair the damaged

epithelium and rescue acute injury.
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To ensure that animal rescue and resolution of cholangiopathy was specific to cholangiocyte
organoids, we repeated the experiment using Mesenchymal Stem Cells (MSCs), as a different
cell type known to provide anti-inflammatory effects following transplantation through
paracrine signalling (Fig. S13A-S13C). This experiment allowed us to explore if organoids are
essential for duct regeneration and animal rescue; and if some of the observed effects could
be attributed to paracrine signals which are not unique to our cells. In sum, MSCs failed to
engraft (Fig. S13C) and rescue the transplanted animals, which exhibited no difference in
survival compared to controls (P>0.05; Fig. S13A) and no resolution of cholestasis on serum
biochemistry (Fig. S13B). Consequently, cholangiopathy resolution is specific to the
engraftment of cholangiocyte organoids; and although additional therapeutic effects of our
cells through growth factor and cytokine secretion cannot be completely excluded, these

effects are unique to cholangiocyte organoids.

We then explored if organoid culture is required to ‘unlock’ the cells’ plasticity or if this reflects
an inherent property of primary cholangiocytes. To achieve this, we transplanted primary
gallbladder cholangiocytes (Fig. S13A-S13C) directly post isolation without in vitro culture.
Under these conditions very few primary cholangiocytes engrafted in the mouse bile ducts
(Fig. S13C) most likely due to the cumulative stress of isolation and transplantation; and failed
to rescue the animals or resolve cholestasis (Fig. S13A, S13B). Nonetheless, the engrafted
cells expressed intrahepatic markers and lost expression of gallbladder markers (Fig. S13C).
In conclusion, cholangiocyte plasticity is not limited to organoids grown in vitro; however,
organoid culture is necessary for the cholangiocytes to recover from the stress of isolation and
for large scale expansion providing the cell numbers required for engraftment and biliary

repair.

Finally, to ensure that our results are not specific to the intrahepatic compartment or
gallbladder organoids, we used our established methodology (3) to transplant common bile
duct-derived cholangiocyte organoids in the gallbladder of immunocompromised mice. The

engrafted cells exhibited loss of common bile duct makers and upregulation of gallbladder
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markers (Fig. S14), confirming that our previous findings apply to different compartments of
the biliary tree and to organoids of different origin. Taken together, these results establish that
cholangiocytes from different regions of the biliary tree are interchangeable and suggest that

extrahepatic cells can be used to repair acute intrahepatic duct injury.

Cell transplantation experiments in mouse models are extremely useful but are not always
predictive of therapeutic outcome (19). Furthermore, the mouse liver microenvironment is
different to human, raising the possibility that our results may not translate between species.
To address these challenges, we developed a new model for cell-based therapy in human
utilizing ex vivo organ perfusion (20). Ex-vivo Normothermic Perfusion (NMP) was developed
to improve organ preservation and reduce ischaemia-reperfusion injury by circulating warm
oxygenated blood through liver grafts prior to transplantation. Importantly, the biliary tree is
particularly susceptible to ischaemia which results in duct damage (21, 22). Low bile pH (<

7.5) during NMP is used as a predictor of this type of cholangiopathy (23).

To assess the therapeutic potential of our cells for repairing human bile ducts, RFP gallbladder
organoids were injected in the intrahepatic ducts of deceased transplant donor livers (n=3)
with a bile pH<7.5 at the start of the experiment, signifying ischaemic duct injury. The organs
were perfused with oxygenated blood and nutrients at normal body temperature (20); Fig. 4A-
4B, S15A) for up to 100 hours in order to maintain a near-physiological microenvironment.
Importantly, the organoids were delivered in a terminal branch of the intrahepatic ducts under
fluoroscopic guidance to minimize the area of distribution of the cells and maximize cell density
(Fig. S15B). At the end of the experiment, ultrasound imaging revealed no evidence of duct
dilatation or obstruction (Fig. S15C), while RFP-expressing cells were not detected in the
perfusate by flow cytometry, confirming that the injected cells remained in the biliary
compartment (Fig. 4C). More importantly, the transplanted organoids engrafted in the
intrahepatic biliary tree (Fig. 4D, S16A), with RFP cells regenerating ~40-85% of the injected
ducts (Fig. 16B); and expressing key biliary markers (KRT7, KRT19, CFTR, GGT).

Furthermore, engrafted gallbladder organoids exhibited loss of gallbladder (SOX17) and

11
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upregulation of intrahepatic (SOX4, BICC1, DCDC2) markers without differentiation to other
hepatic lineages (Fig. 4D, S15D, S16A-S16B). Thus, at the end of the experiment, the injected
ducts consisted of a mixture of native and transplanted cholangiocytes (Fig. S16A-S16B), with
multiple transition points between donor and recipient cells and no evidence of cholangiopathy

(Fig 4D, S15D, S16A).

Conversely, control ducts not receiving cells demonstrated evidence of ischaemic injury with
loss of epithelial continuity and sloughing of cells in the duct lumen (Fig. 4D). We
subsequently characterised the impact of engraftment on organ function. Physiologically,
cholangiocytes modify the composition and pH of bile through water transfer and bicarbonate
secretion (6). Therefore, we compared the bile from organoid-injected vs. carrier-injected
ducts. Accordingly, bile aspirated from ducts injected with cells exhibited higher pH and
volume (Fig. 4E) confirming that transplanted cholangiocytes retain their function to modify
bile composition. Together, these results provide the first proof-of-principle that perfused
organs can be used to ascertain functional engraftment of human cells and validate our mouse

data by showing that cholangiocytes are interchangeable for transplantation in human organs.

Our results show that the biliary epithelium is composed of cholangiocytes with diverse
transcriptional profiles which are determined by their local environment. This diversity is lost
in organoid culture due to the lack of niche stimuli. However, organoids can adapt
appropriately to local environmental cues both in vitro and following transplantation, restore
the expression of region-specific markers and assume different regional identities. Thus,
organoids from a single region could potentially repair the entirety of the biliary tree. This
plasticity could have significant implications for regenerative medicine. Indeed, although
autologous cell-based therapy potentially avoids the need for immunosuppression its
application for primary organoids is limited by the impact of disease on the epithelium.
However, cholangiopathies belong to a family of localising diseases, affecting predominantly
specific regions of an organ (24). Consequently, our results provide proof-of-concept that

cholangiocytes from spared regions, such as the gallbladder, could be used for autologous
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cell-based therapy to repair human intrahepatic bile ducts, which constitute the most common
site of injury in cholangiopathies. Moreover, our novel model for cell engraftment in human
perfused organs paves the road for the use of ex vivo cell-based therapy to improve graft
function prior to transplantation, which could ultimately increase the number of useable organs
and reduce pressure on the transplant waiting list. In this context, quality controlled and readily
available allogeneic cholangiocyte organoids from a cell bank could be used routinely in the
future to prevent ischaemic cholangiopathy in organs at risk of biliary injury (e.g. low bile pH),
since the organ recipients will receive immunosuppression as part of their standard care.
Importantly, our results provide proof-of-principle for the transplantation of organoids in human
organs which could expedite regulatory approval and fast-tack first-in-man trials. Ultimately,
the same approach could also be applied to a variety of ex vivo perfused organs and cell types
to validate functional cell engraftment, demonstrate safety, improve cell transplantation

technique and efficacy and accelerate clinical translation of new cell-based therapies.
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Fig. 1. Transcriptional profiling of primary cholangiocytes. (A) Schematic representation
of the methodology used for single cell RNA sequencing (scRNAseq). (B) UMAP plot (7295
primary cells, n=10 individuals) illustrating distinct primary cholangiocyte populations in

different regions of the biliary tree. (C-D) Immunofluorescence images (C) and UMAP
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representation of normalized gene expression (D) of primary cholangiocytes illustrating
differential expression of representative region markers. Scale bars: 50um. (E) Heatmap of
top 100 differentially expressed genes (DEGS) in pseudotime (Data S2) demonstrating a
gradual transition in the transcriptional profile of cholangiocytes between different regions of
the biliary tree. PRI, Primary; IHD, IntraHepatic Ducts; CBD, Common Bile Duct; GB,

Gallbladder; P, Pangreas; D, Duodenum.
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Fig. 2. Cholangiocyte Organoid (CO) identity is controlled by niche stimuli. (A) UMAP
(35,603 cells) of primary cholangiocytes and their corresponding organoids before and after
gallbladder bile treatment, illustrating similarities between different region organoids and
changes in their signature in response to bile. PRI, Primary; IHD, IntraHepatic Ducts; CBD,
Common Bile Duct; GB, Gallbladder; ORG, Organoids; BTO, Bile-Treated Organoids. (B)
Heatmap of top 100 Differentially Expressed Genes (DEGs) between primary regions,
organoids and BTOs (Data S1-S2), illustrating that organoids lose regional differences and
upregulate culture-related genes, but re-acquire gallbladder markers following bile treatment.
(C-D) QPCR (C) (n=4 samples per group; center line, median; box, interquartile range (IQR);

whiskers, range; housekeeping gene, HMBS; #P>0.05, **P<0.01, ***P<0.001, ****P<0.0001);
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N

and immunofluorescence (D) demonstrating upregulation of gallbladder markers and bile acid
target genes following treatment with chenodeoxycholic acid (CDA), in the absence of the FXR

inhibitor Z-GS. Z-GS, Z-guggulsterone. Scale bars, 50um.
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Fig. 3. Cholangiocyte organoids (COs) rescue cholangiopathy following transplantation
and assume an identity corresponding to the site of engraftment. (A) Experimental

outline schematic. (B) Kaplan-Meier curve (Table S1: number of animals at risk)
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demonstrating animal rescue following gallbladder organoids injection; P=0.0018(**), log-rank
test. (C) Magnetic Resonance Cholangiopancreatography (MRCP) demonstrating rescue of
cholangiopathy following organoid injection. (D) Immunofluorescence demonstrating
engraftment of Red Fluorescent Protein (RFP)-expressing gallbladder organoids in portal
triads, with upregulation of intrahepatic (SOX4) markers. Scale bars; yellow, 50um; white,

100um. PV, portal vein.
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Figure 4
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Fig. 4. Cholangiocyte organoids (COs) engraft in a human liver receiving Normothermic
Perfusion (NMP) and improve bile properties. (A) Schematic representation of the
technique for organoid injection and (B) photograph of the NMP circuit used. BD, Bile Duct;
GB, Gallbladder; HA, Hepatic Artery; PV, Portal Vein; IVC, Inferior Vena Cava,; L, Liver RFP,
Red Fluorescent Protein; P, pump; O, oxygenator; PRC, Packed Red Cells. (C) Flow
cytometry revealing absence of RFP cells in the perfusate. (D) Immunofluorescence revealing
engraftment of RFP gallbladder organoids with upregulation of intrahepatic (SOX4) and loss
of gallbladder (SOX17) markers. Scale bars, 50um. (E) Organoid injection improves bile pH
and choleresis. ***P<0.001. N=3 NMP livers. Each measurement is represented by a different

data point, each organ is represented by a different symbol.
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Materials and Methods

Ethical approval

Gallbladder, bile duct, liver biopsy and bile samples were obtained from deceased organ
donors (National Research Ethics Committee East of England — Cambridge South
15/EE/0152). Human livers retrieved for transplantation but subsequently declined were used
for ex vivo administration of cholangiocytes (National Research Ethics Committee East of
England — Cambridge East 14/EE/0137). All human tissue was used after obtaining informed
consent for use in research.

Tissue collection

Gallbladder, bile duct, liver biopsies and bile were obtained under sterile conditions from
deceased transplant organ donors as rapidly as possible after cessation of circulation. Tissue
samples, and liver retrieved for transplantation but subsequently declined, were transferred to
the laboratory at 4°C in University of Wisconsin (UW®) organ presentation solution.

Tissue dissociation

Resected tissue (gallbladder, extrahepatic ducts and liver) was transferred to the lab as
described above and processed immediately after resection. Gallbladder and extrahepatic bile
duct samples were drained of bile and the organ lumen was exposed through a longitudinal
incision. Liver samples were divided into 1cm? cubes prior to processing. All samples were
washed twice with warm PBS with Ca?>*Mg?* +EDTA (0.5mM), followed by enzymatic
digestion with using Liberase (0.2 Wiinsch/ml) in an incubated shaker at 37°C and 200 RPM
for 30 minutes. DNAse | (2000 U/ml) was added to the solution to prevent cell clumping and
increase viability. Liver samples were dissociated further using the Miltenyi Biotec
GentleMACS tissue dissociator and GentleMacs Tissue Dissociation C Tubes. For the
gallbladder and extrahepatic duct samples, gentle mechanical scrapping of the lumen was
adequate to release the epithelial cells following enzymatic digestion. All cell suspensions were
filtered through 70um filters to remove debris and remaining tissue, washed with PBS
containing 1% BSA (W/V) and centrifuged at 400g, for 5mins in a refrigerated centrifuge
maintaining a temperature of 4°C. The cells were resuspended in Miltenyi Biotec red blood cell
(RBC) lysis and incubated for 10 minutes at room temperature (RT). The Miltenyi Biotec
Debris Removal solution kit was used according to the manufacturer’s instructions to remove
remaining debris and dead cells. For liver samples, the resulting cell suspensions were
centrifuged at 50g for 5 minutes (4°C) to pellet the hepatocyte fraction, the supernatant was
collected and cholangiocytes were isolated as described below.

Cell isolation

Following tissue dissociation to single cells, cholangiocytes were isolated with Magnetic
Associated Cell Sorting (MACS) using the Miltenyi Biotech autoMACS Pro separator and
CD326 (EpCAM) MicroBeads according to the manufacturer’s instructions. The resulting cells
were counted, centrifuged at 444g for 5 minutes, resuspended to a concentration of 1000 cells/
pL and stored on ice.

10x Single Cell Library Making Process

GEM-RTs (Gel-beads-in-emulsion which barcode the ploy adenylated mRNAs, followed
by Reverse Transcription) were broken and Silane magnetic beads are used to purify first stand
cDNA from the GEM-RT mixture and the cDNA was then amplified via PCR. Enzymatic
fragmentation, end-repair and A-tailing were followed by size selection (using SPRISelect
reagent). An adapter was ligated to the fragments and following a clean-up step, index PCR
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took place. After a further round of size selection with SRISelect, completed libraries were
quantified, (Agilent Bioanalyser and qPCR) and diluted for running on an Illumina sequencing
instrument (HS4000).

Processing and normalization of 10X data

The results from the sequencing runs were checked manually to confirm that the overall
yield and quality were as expected. The data from the instrument were converted to fastq
format, the input format required by the 10X software cellranger, and aligned using the human
reference GRCh36-1.2.0 available from 10X. The dataset was augmented by integrating counts
of a cluster of cholangiocytes from a published dataset (cluster 17 in MacParland SA et al,
2018) (17). Cells were annotated as part of different origins, these being primary tissue (PRI),
untreated organoids (ORG), treated organoids (ORGT). Each origin comprises three regions:
intrahepatic duct (IHD), common bile duct (CBD), gallbladder (GB). The number of cells in
each origin and region are reported in Figure S1C. Genes with read counts > 0 in at least 3
cells from each batch in at least one origin were maintained for downstream analysis. Low
quality cells were removed based on the percentage of UMI mapping to the mitochondrial
genome and the number of genes detected by determining outliers (3 median-absolute-
deviations) with the routine isOutlier in the package scater (18). Cholangiocytes were isolated
by retaining cells expressing at least one of the biliary markers EPCAM, KRT7, KRT19 (with
number of counts > 3). Normalization, identification of highly variable genes and cell cycle
regression (regressing out the difference between the G2M and S phase scores) were performed
with the Seurat package (19). We employed the routine fastMNN in scran for batch correction
(20). Batch corrected samples are shown in figure 2A. Small clusters derived by applying the
Louvain method for community detection and characterized by cells which were outliers in the
percentage of UMI mapping to the mitochondrial genome and the number of genes detected
were filtered out.

Analysis of normalized 10X data

The normalized data were clustered using the Louvain method in the Scanpy package (21)
by selecting a resolution which generated 3 clusters and with 10 random initialisations.
Similarity between Louvain clusters and origin annotations was assessed using the Adjusted
Rand Index (ARI) and the Adjusted Mutual Information (AMI). Both measures lie in the
interval [0,1], where a value close to 0 indicates random labelling and exactly 1 means that the
two partitions are identical. The average value calculated on the different partitions obtained
by random initializations was > 0.95 for both measures, indicating a high correspondence
between origins and clusters (Fig. S5A). The same analysis performed on regions showed poor
matching between regions and clusters, suggesting similarity in the transcriptional profile of
cells located in different regions (Fig. S5A-B). Transcriptional similarity was quantified at
origin and region resolution by estimating the connectivity of data manifold partitions within
the partition-based graph abstraction (PAGA) framework. At the origin resolution, this analysis
notably highlighted higher transcriptional similarity between treated organoids and primary
tissue than between untreated organoids and primary tissue (Fig. S9B). Interestingly, at the
region resolution we identified higher transcriptional similarity between adjacent locations in
primary tissues, with intrahepatic duct and gallbladder having the lowest connectivity value.
This association between connectivity and anatomical location, together with the similarity of
cells located in different regions, suggested a gradual variation in the transcriptional profile of
cells in primary tissue that could be represented as a pseudo-spatial dimension. In this view,
we analyzed the primary tissue by applying two methods for pseudo-temporal (or pseudo-
spatial) ordering: diffusion pseudo-time (22) and Monocle 2 (23). In Monocle 2 differential
expression in pseudotime was calculated using the differential GeneTest routine. Both methods
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confirmed an association between transcriptional similarity and anatomical location, as
highlighted by the density plot in Figure S4B and allowed the representation of regional
markers along a pseudo-spatial dimension (Fig. S4C). Since the majority of cells had a
diffusion pseudotime value >0.65 the density plot if figure S4B is shown in the range [0.65,0.9]
to improve visualization and avoid overcrowding. We then analyzed each region individually
in organoids (treated and untreated) and primary tissue to identify potential subpopulations of
cells. Due to the relatively small sample sizes, we applied the clustering method SC3, whose
high accuracy and robustness is derived combining multiple clustering solutions through a
consensus approach (24). SC3 allows the user to pre-define the number of clusters. Because of
the arbitrariness of this choice we varied the number of clusters between 1 and 10, calculated
the stability of clusters across resolutions (SC3 stability index) and built a clustering tree
showing how cells move as the clustering resolution is increased (package clustree), (25). As
shown in Figure S5C, no stable sub-trees were formed within each region, indicating absence
of stable clusters defining subpopulations of cells.

Regional markers and differentially expressed genes were identified by applying the
Wilcoxon-Rank-Sum test (p-value<0.01, |log2 fold change| > 1) in Scanpy. Gene set, gene
ontology and pathway enrichment were performed using the packages GSEA (26) and Enrichr
(27).

Data availability
10X raw data (fastq files) have been deposited in the repository ArrayExpress with the
accession number E-MTAB-8495

Organoid derivation and culture

A portion of the cells isolated for scRNAseq was cultured and propagated as organoids
using our established methodology (11, 12). Cells were cultured under the same conditions
irrespective of their region of origin.

Immunofluorescence, RNA extraction and Quantitative Real Time PCR

IF, RNA extraction and QPCR were performed as previously described (11, 12, 28, 29).
A complete list of the primary and secondary antibodies used is provided in table S2. A
complete list of the primers used is provided in table S3.

All QPCR data are presented as the median, interquartile range (IQR) and range
(minimum to maximum) of four independent lines unless otherwise stated. Values are relative
to the housekeeping gene Hydroxymethylbilane Synthase (HMBS).

All IF images were acquired using a Zeiss Axiovert 200M inverted microscope or a Zeiss
LSM 700 confocal microscope. Imagej 1.48k software (Wayne Rasband, NIHR, USA,
http://imagej.nih.gov/ij) was used for image processing. IF images are representative of 3
different experiments.

GGT activity
GGT activity was measured in triplicate using the MaxDiscovery™ gamma-Glutamyl

Transferase (GGT) Enzymatic Assay Kit (Bioo scientific) based on the manufacturer’s
instructions. Error bars represent SD.

Alkaline Phosphatase staining

Alkaline phosphatase was carried out using the BCIP/NBT Color Development Substrate
(5-bromo-4-chloro-3-indolyl-phosphate/nitro blue tetrazolium) (Promega) according to the
manufacturer’s instructions.
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Flow cytometry analyses
Flow cytometry analyses were performed as previously described (11, 12, 28, 29).

Bile acid treatment
Organoids were incubated for 72 hours with 10uM CDA (Sigma, C9377-5G) in the
presence or absence of 10uM Z-GS (Santa Cruz, sc-204414).

Animal experiments

All animal experiments were performed in accordance with UK Home Office regulations
(UK Home Office Project License number PPL 70/8702). Immunodeficient NSG mice
(NOD.Cg-Prkdcscid H2rgtm1Wijl/SzJ), which lack B, T and NK lymphocytes, were bred in
house, and food and water were available ad libitum before and after procedures. Male animals
aged 4-8 weeks were used. Animals were assigned randomly to treatment and control groups.
Experiments were performed blinded, and where this was not possible (e.g., due to performance
of a surgical procedure), data were analysed blinded to the identity of the experimental groups.
Littermate animals were used as controls.

Cell delivery
Cholangiocytes were delivered into the liver retrogradely through the extrahepatic biliary

tree (14). In brief, a fine bore cannula was placed and secured in the gallbladder. To divert the
infusion into the liver, the distal common bile duct was occluded with a clamp. The cells were
infused through the cannula in the gallbladder in a total volume of 1ul/g of total body weight,
at a maximum speed of 1ul/second.

MDA administration

Cholangiopathy was induced through intraperitoneal (IP) administration of 4,4'-
methylene dianiline (MDA) on 3 occasions 7, 5, and 3 days prior to cell delivery at a
concentration of 50 pg/g of total body weight. An additional dose of MDA was administered
directly into the extrahepatic biliary tree prior to cell delivery as described above.

Blood sample collection

Blood was taken using a 23g needle directly from the inferior vena cava under terminal
anesthesia at the time the animals were electively culled and transferred into 1.5ml Eppendorf
tubes for further processing.

Blood sample processing

The blood samples were routinely processed by the University of Cambridge Core
biochemical assay laboratory (CBAL). All of the sample analysis was performed on a Siemens
Dimension EXL analyzer using reagents and assay protocols supplied by Siemens.

Tissue collection

Tissue for sectioning and staining was collected at the end of all animal experiments when
the animals were culled, unless otherwise stated. The animals were culled due to due to animal
welfare reasons (weight loss, jaundice and clinical deterioration) or electively 3 months after
transplantation. Timepoints are indicated on the relevant Kaplan-Meier curves (Fig. 3B; Fig.
S13A).

Cryosectioning
Excised tissue was fixed in 4% PFA, immersed in sucrose solution overnight, mounted in
optimal cutting temperature (OCT) compound and stored at -80°C until sectioning. Sections
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were cut to a thickness of 6-10um using a cryostat microtome and mounted on microscopy
slides for further analysis.

Haematoxylin and Eosin (H&E) Staining

H&E staining was performed by the histology service of Addenbrooke’s hospital or using
Sigma-Aldrich reagents according to the manufacturer’s instructions. Briefly, tissue sections
were hydrated, treated with Meyer’s Haematoxylin solution for 5 minutes (Sigma-Aldrich),
washed with warm tap water for 15 minutes, placed in distilled water for 30-60 seconds and
treated with eosin solution (Sigma-Aldrich) for 30-60 seconds. The sections were subsequently
dehydrated and mounted using the Eukitt® quick-hardening mounting medium (Sigma-
Aldrich).

Histology
Histology sections were reviewed by an independent histopathologist with a special

interest in hepatobiliary histology (SD).

Quantification of transplanted cells in mouse liver
For each animal 3 random sections were analyzed, with different lobes being assessed. A
total of 49,846 cells were analyzed, approximately 10,000 cells per animal.

MR imaging

Magnetic resonance cholangio-pancreatography was performed after sacrifice of the
animals. MRCP was performed at 9.4T using a Bruker BioSpec 94/20 system (Bruker,
Ettlingen, Germany). For higher signal to noise ratio to give improved visualisation of the
biliary ducts a two-dimensional sequence was used with slightly varied parameters (24 spaced
echoes at 11ms intervals to give an effective echo time of 110ms; repetition time 5741ms;
matrix size of 256x256; field of view of 4.33x5.35cm2 yielding a planar resolution of
170x200pum2). Slices were acquired coronally through the liver and gall bladder with a
thickness of 0.6mm. For this acquisition, a volume coil was used to reduce the impact of
radiofrequency inhomogeneity.

To examine the biliary tree, images were prepared by maximum intensity projections.
Structural imaging to rule out neoplastic growths was performed using a T1-weighted 3D
FLASH (fast low-angle shot) sequence with a flip angle of 25°, repetition time of 14ms and an
echo time of 7ms. The matrix was 512x256x256 with a field of view of 5.12x2.56x2.56cm3
for a final isotropic resolution of 100 pm.

Volume rendered images of the biliary tree were generated from source data using Osirix
software. The region of interest was segmented from the remaining data manually.

The MRCP images were reviewed by 2 independent radiologists with a special interest in
hepatobiliary radiology (EMG, SU).

Ex vivo normothermic perfusion of donor livers

The metra (OrganOx, Oxford, UK) normothermic liver perfusion device was used for ex
vivo perfusion of human livers as previously described (15, 30). The machine, which is
clinically used for preservation of livers for transplantation (15) enables prolonged automated
organ preservation by perfusing it with ABO-blood group-compatible normothermic
oxygenated blood. The perfusion device incorporates online blood gas measurement, as well
as software-controlled algorithms to maintain pH, PO2 and PCO2 (within physiological limits),
temperature and mean arterial pressure within physiological normal limits. In brief, the hepatic
artery, portal vein, inferior vena cava and bile duct were cannulated, connected to the device
and perfusion commenced.
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Bile duct cannulation

Cannulation of the bile duct was achieved by inserting two 4 Fr sheaths into the common
bile duct under fluoroscopy guidance, followed by cannulation of the left and right hepatic
ducts and subsequently segment 3 and segment 5 ducts respectively, using two 2.7 Fr
microcatheters via the sheaths. Peripheral placement of the microcatheters was confirmed by
cholangiogram with small amount of ionic contrast medium. Cells were injected into segment
3 and carrier was injected into segment 5.

Cell delivery
RFP-expressing organoids were mechanically dissociated to a mixture of small clumps

and single cells and approximately 10x106 RFP-expressing cells were administered in a
peripheral duct of segment 3 with a distribution area of ~2cm?3, which was cannulated under
fluoroscopic guidance to maximize cell delivery (see Bile duct cannulation section) (Fig.
S15B). Carrier medium was delivered in a peripheral branch of segment 5 using the same
technique and the organ was maintained on NMP for up to 100 hours.

Quantification of transplanted cells in human livers

3 human livers injected with RFP-labelled gallbladder organoids were analysed. Sections
were obtained from the area of the distribution of the cells (~2cm?3). 5 sections per liver and a
total of 4,463 cells were analysed.

Bile aspiration
Bile duct cannulation was performed as described in the relevant section. Following

cannulation, 2 microfluidic catheters (CMA Microdialysis Catheter, Harvard Biosience Inc,
USA) were placed into the respective segmental ducts using a guide wire exchange technique.
The inner and outer shaft of the catheter and the inlet and outlet tubing are made of
polyurethane and the membrane composed of polyarylethersulphone with a membrane pore
size of 100kDa and outer diameter of 0.4mm. The inlet tubing for each catheter was connected
to a portable battery driven CMA 107 Microdialysis Pump (Harvard Biosience Inc, USA) and
the pump was set to aspirate at a rate of 1pl/min.

Bile volume and pH measurements

Measurements were performed in n=3 different livers. A minimum of 2 repeat
measurements were performed for each liver increasing to 3 where possible, as previously
described (27). Bile volume was normalised over the volume of the bile ducts producing it,
which corresponds to the volume of distribution of the cells or the carrier in the control arm.
This was calculated using the volume of the contrast medium required to delineate these ducts
on cholangiogram. Please note all catheters were primed prior to volume measurements.

Ultrasound imaging

The liver was imaged ex-vivo in a normothermic perfusion device using a Hitachi Aloka
Arrieta V70 and a 10Mhz hand-held probe. Images were obtained in axial and sagittal planes
and assessment of the portal vein, hepatic veins and their major branches was carried out. The
intrahepatic bile ducts were also assessed, with particular attention to segment 3 where the
organoids had been instilled, and a control area in segment 5 receiving carrier.

Statistical analysis
All statistical analyses were performed using GraphPad Prism 6. For small sample sizes
where descriptive statistics are not appropriate, individual data points were plotted. For
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comparison between 2 mean values a 2-sided Student’s t-test was used to calculate statistical
significance. The normal distribution of our values was confirmed using the D'Agostino &
Pearson omnibus normality test where appropriate. Variance between samples was tested using
the Brown-Forsythe test. For comparing multiple groups to a reference group one-way
ANOVA followed by Dunnett’s test was used between groups with equal variance, while the
Kruskal-Wallis test followed by Dunn’s test was applied for groups with unequal variance.
Survival was compared using log-rank (Mantel-Cox) tests. Where the number of replicates (n)
is given this refers to organoid lines or number of different animals unless otherwise stated.

For animal experiments, group sizes were estimated based on previous study variance.
Final animal group sizes were chosen to allow elective culling at different time point while
maintaining n > 4 animals surviving past 30 days to ensure reproducibility. No statistical
methods were used to calculate sample size. No formal randomization method was used to
assign animals to study groups. However, littermate animals from a cage were randomly
assigned to experimental or control groups by a technician not involved in the study. No
animals were excluded from the analysis. Blinding was used for radiology imaging.
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Characteristics and quality control of single cell RNA sequencing samples. (A) UMAP
plot of all sequenced samples and 1 publicly available intrahepatic cholangiocyte dataset (PRI
IHD 5; from MacParland SA et al, 2018, cluster 17). Each patient and cell line are distinguished
by a unique color and marker combination. (B) Number of genes and percentage of
mitochondrial genes detected per cell. (C) Number of cells isolated from each region PRI,
Primary; IHD, IntraHepatic Ducts; CBD, Common Bile Duct; GB, Gallbladder; ORG,
Organoids; BTO, Bile-treated organoids.
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Supplementary Figure 3
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Fig. S3.

Characterization of the transcriptional signature of cholangiocytes from different regions
of the biliary tree. (A) Heatmap of top 100 Differentially Expressed Genes (DEGS) in
cholangiocytes isolated from distinct regions of the biliary tree revealing transcriptional
diversity in the primary biliary epithelium. IHD, IntraHepatic Ducts; CBD, Common Bile Duct;
GB, Gallbladder (Data S1). (B) UMAP plots confirming the expression of previously
described markers in IHDs. (C) Gene Ontology (GO) analysis on DEGs between biliary tree
regions using EnrichR illustrating enrichment of cholangiocyte-to-niche interaction markers,
such as bile processing and modifying genes. (D) Gene Set Enrichment Analyses on DEGs
between biliary tree regions identifying differences in the expression of YAP target genes,
P<0.001. (E-F) PAGA connectivity plot (E) and corresponding connectivity values (F)
demonstrating a higher degree of transcriptional similarity between adjacent regions of the
biliary tree. Connectivity values illustrated in (E) are multiplied by 100.

43



Supplementary Figure 4
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Fig. S4.

Pseudotime analysis of primary cholangiocytes. (A) Cell trajectory in pseudotime using
Monocle; (B) Density plot of pseudo-time coordinates and (C) Gene expression in pseudotime
of representative region markers indicating a gradual transition in transcriptional profile
between cholangiocyte populations from adjacent regions. IHD: Intrahepatic Ducts, CBD:
Common Bile Duct, GB: Gallbladder
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Fig. Sb.

Characterization of cluster stability. (A) Adjusted Rand Index (ARI) and the Adjusted
Mutual Information (AMI) confirming that primary cholangiocytes, organoids, and bile-treated
organoids constitute distinct populations by illustrating a high correspondence between
Louvain clusters and cell type (primary, organoids, bile-treated organoids) annotations
(average value > 0.95 for both measures) vs. poor correspondence between Louvain clusters
and region (intrahepatic ducts, common bile duct, gallbladder) annotations (average value<0.3
for both measures). (B) UMAP plot of Louvain clusters demonstrating poor matching between
regions and clusters. The plot corresponds to the UMAP plot in Fig. 1B illustrating different
regions. (C-D) Clustering trees derived from SC3 clusters by varying the pre-defined number
of clusters k from 1 to 10 (see Methods) for a positive control comprising of stellate cells and
LSECs (C) vs. cholangiocytes from different regions and corresponding cholangiocyte
organoids (D). Cluster stability across different clustering resolutions confirms the presence of
different populations (stellate vs. LSECs) in the positive control (C); while the absence of well-
defined cholangiocyte subpopulations in each anatomical region or between organoids from
different regions is demonstrated by the lack of stable clusters in (D).
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Supplementary Figure 6
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Fig. S6.

Characterization of cholangiocyte organoids from different regions of the biliary tree. (A)
Immunofluorescence and (B) QPCR analysis of cholangiocyte organoids derived from
different regions of the biliary tree demonstrating uniform expression of key biliary markers.
n=4 samples per group; center line, median; box, interquartile range (IQR); whiskers, range;
housekeeping gene, HMBS; #P>0.05#; scale bars, 50um. (C-D) Organoids from different
regions demonstrate Alkaline Phosphatase (ALP) (C) and GGT (Gamma-glutamyltransferase)
(D) function. Scale bars, 100um. (E) Growth curves illustrating comparable expansion
potential between organoids from different regions. #, P>0.05. IHD, IntraHepatic Ducts; CBD,
Common Bile Duct; GB, Gallbladder; ORG, Organoids; Primary, Primary CBD
cholangiocytes.
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Supplementary Figure 7
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2 Fig. S7.
3 Single-cell RNA sequencing characterization of cholangiocyte organoids from different
4  regions of the biliary tree. (A) PCA (unregressed, 24.8%; cell cycle regression, 21.8% of
5 variance) and (B) UMAP representation demonstrating overlap in the transcriptional profile of
6  different region organoids before and after cell cycle regression, confirming that cell cycle
7 genes are not responsible for these similarities. (C) UMAP plot demonstrating that organoids
8 and primary cholangiocytes irrespective of region occupy adjacent and overlapping spaces
9 when compared to different cell types, illustrating a shared cholangiocyte transcriptional
10  signature between biliary cells in vivo and in vitro. (D) PAGA connectivity plot demonstrating
11 ahigher degree of transcriptional similarity between cholangiocytes in vivo (PRI, Primary) and
12 in vitro (ORG, organoids) compared to different cell types, confirming the shared core
13 transcriptional signature of the cells. Respective connectivity values multiplied by 100 are
14  illustrated on the plot. IHD, IntraHepatic Ducts; CBD, Common Bile Duct; GB, Gallbladder;
15  LSECs, Liver Sinusoidal Endothelial Cells. (E) UMAP representation following regression of

49




Nou s, WwWwN -

cell cycle genes illustrating that the similarities between cholangiocyte organoids are preserved
despite cell-cycle regression and therefore they are not attributable to a common ‘proliferation’
signature. (F) UMAP representation of cells co-expressing somatic stem cell markers
(normalized expression>1), illustrating that similarities between organoids are not attributable
to a common ‘stem cell’ signature. (G) UMAP representation of normalized gene expression
values showing that organoids lose differences in the expression of region marks in culture.
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Supplementary Figure 8
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Fig. S8.

Gene ontology (GO) analyses on cholangiocyte organoids. (A-B) GO analysis on
differentially expressed genes between primary cholangiocytes and organoids using EnrichR
demonstrating that genes upregulated in primary tissue (A) are related to cholangiocyte-to-
niche interaction, such as bile processing genes; while genes upregulated in organoids (B)
reflect adaptation to cell culture conditions such as insulin, pyruvate and cytokine processing
genes. (C) Gene Set Enrichment Analyses on DEGs between primary cells and organoids
identifying differences in the expression of bile acid processing genes, P= 0.035. IHD,
IntraHepatic Ducts; CBD, Common Bile Duct; GB, Gallbladder; ORG, Organoids.
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Supplementary Figure 9
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Fig. S9.

Characterization of bile-treated organoids. (A) PCA analysis (16.8% of variance) showing
overlap between organoids, primary cholangiocytes and bile-treated organoids irrespective of
region suggesting a shared core transcriptional profile between all cells. (B) PAGA
connectivity plot demonstrating that bile-treated organoids (BTO) shift their transcriptional
profile towards primary gallbladder cholangiocytes. (C) Connectivity values corresponding to
the PAGA connectivity plot in panel (B) IHD, IntraHepatic Ducts; CBD, Common Bile Duct;
GB, Gallbladder; ORG, Organoids; BTO, Bile-treated organoids; PRI, Primary. (D-E) GSEA
(D) and GO analysis using EnrichR (E) on differentially expressed genes in organoids before
and after treatment with bile showing enrichment in bile processing genes and in particular bile
acid nuclear receptors and their downstream targets. P=0.012. (F) UMAP representation of
normalized gene expression values illustrating upregulation of gallbladder markers and bile
acid downstream targets following treatment of organoids with gallbladder bile.
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Supplementary Figure 10
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Fig. S10.

Gallbladder organoids rescue an acute cholangiopathy mouse model following
transplantation. (A) Weight curve of animals treated with MDA (not transplanted) vs. animals
injected with organoids following toxin treatment, demonstrating that injected animals recover
and gain weight; n=5 animals in each arm. (B) Serum biochemistry demonstrating resolution
of cholestasis following organoid injection; *P<0.05, #P>0.05, Kruskal-Wallis test. (C)
Immunofluorescence images of MDA treated animals not transplanted with cells (toxin
injection) vs. untreated controls (no injection) illustrating biliary injury following MDA
administration. The images are complementary to Fig. 3D. (D) Histology (Heamatoxylin &
Eosin and Elastic Picro Sirius Red) illustrating resolution of cholangiopathy following
organoid injection. Asterisks: Bile ducts.
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Supplementary Figure 11
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Fig. S11.

Gallbladder organoids regenerate the biliary tree of an acute cholangiopathy mouse
model following transplantation. (A) Magnetic Resonance Cholangiopancreatography
(MRCP) demonstrating biliary injury with loss of bile duct signal (white), immediately after
toxin injection. The white dashed line outlines the liver margins. The image is complementary
to Fig. 3C. Scale bars, 5mm. (B) 3D reconstruction of MRCP images demonstrating biliary
injury with loss of bile duct signal in MDA-treated animals receiving carrier (not transplanted);
vs. duct reconstruction in MDA-treated animals receiving organoid injections; vs. healthy
animals. Scale bars, 5mm. (C) Quantification of bile duct signal on MRCP normalized over
total liver volume in not transplanted vs. transplanted vs. healthy animals, demonstrating
resolution of cholangiopathy following organoid injection; #, P>0.05; *, P<0.05; **, P<0.01;
one-way ANOVA.
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Fig. S12.

Gallbladder organoids regenerate the biliary epithelium of an acute cholangiopathy
mouse model following transplantation. (A-B) Immunofluorescence analysis demonstrating
engraftment, expression of key biliary markers, loss of gallbladder markers, expression of
intrahepatic markers, absence of markers of other hepatic lineages (A); and expression of
human specific markers, proliferation markers and active YAP (B) in human Red Fluorescent
Protein (RFP) expressing cells following transplantation in immunocompromised mice with
cholangiopathy. Scale bars; (A), 50um; (B), 50um (yellow), 100um (white). The images are
complementary to Fig. 3. (C) Quantification of human gallbladder-derived RFP-expressing
cells in the bile ducts of transplanted vs. not transplanted animals; ** P<0.01; Mann-Whitney
test. The data corresponds to 5 different animals and 3 random sections per animal. Each
section is represented by a data point, while each animal is represented by a different symbol.
(D-E) Quantification of the ratio of cells expressing proliferation markers (Ki67, D) and YAP
downstream targets (CYR61, E) in ducts regenerated from engrafted human RFP-expressing
cells vs. native mouse bile ducts in the same animals; # P>0.05; Mann-Whitney test.
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Supplementary Figure 13
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Fig. S13.

Primary human cholangiocytes and mesenchymal stem cells fail to rescue mice with acute
cholangiopathy following transplantation. (A) Kaplan-Meier curve of mice with MDA-
induced cholangiopathy receiving directly isolated human primary gallbladder cholangiocytes
and human mesenchymal stem cells (MSCs) vs. carrier medium (carrier) demonstrating no
statistically significant difference in survival between the three groups; P>0.05, log-rank test.
(B) Serum biochemistry at the end of the experiment demonstrating persistent cholestasis in
animals receiving primary gallbladder cholangiocytes, MSCs or carrier medium compared to
healthy controls; *P<0.05, ***P<0.001, #P>0.05, one-way ANOVA. (C) Staining for human
markers following cell transplantation reveals lack of engraftment of MSCs; while primary
gallbladder cholangiocytes exhibit low level engraftment, which was not adequate to repair the
damaged bile duct epithelium (white arrowheads). Engrafted primary gallbladder
cholangiocytes lose gallbladder markers and upregulate intrahepatic markers. Scale bars;
white, 100pm; yellow, 10 um.
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Supplementary Figure 14

Fig. S14.

Transplantation of human common bile duct organoids in mouse gallbladder.
Immunofluorescence analysis demonstrating expression of gallbladder markers and loss of
common bile duct markers following transplantation of cholangiocyte organoids derived from
human common bile duct in the gallbladder of immunocompromised mice. Scale bars; white,
100um; yellow, 10um.
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Supplementary Figure 15

A B Fluoroscopy c Ultrasound
C
o
,‘5
(o]
Q
3 o
L [}
® (6]
O
£
o
()]
o
D
5 5
© =
L ©
(@) O
D
Core cholangiocyte markers Lineage markers
KRT7/ RFP / BICC1/ RFP / CFTR/ RFP / DCDC2/ RFP / KRT19/ RFP /
GGT /DAPI 7 / DAPI FGF19 / DAPI SOX4 / DAPI hALB / DAPI

61



OO NOOTULLE WN -

R R R R R R R R R R
O ooONOODUD WNRERO

Fig. S15.

Administration of gallbladder organoids in human livers receiving Normothermic
Perfusion (NMP). (A) Photograph of a human liver on NMP demonstrating anatomical
landmarks, as well as the bile duct catheter used for administration of the Red Fluorescent
Protein (RFP) expressing organoids. PV, portal vein; IVC, inferior vena cava;, HA, hepatic
artery; BD, Bile duct; GB, gallbladder; L, Liver. (B) Fluoroscopic images of peripheral duct
cannulation. The position of the biliary catheters used for the injection of cells or carrier in the
peripheral ducts of liver segments 3 and 5 respectively is shown in the top image. A
cholangiogram of segment 3 following catheter placement, illustrating the peripheral position
of the catheter and the area of distribution of injected the cells is shown in the bottom image.
A magnified and contrast enhanced image is provided in the insert. Black arrow, sheath; red
arrow, catheter tip; white arrow, cholangiogram. (C) Ultrasound imaging of the injected area
of the liver revealing no duct dilation or any other abnormality at the end of the experiment.
(D) Immunofluorescence analysis demonstrating engraftment, expression of key biliary
markers, loss of gallbladder markers, expression of intrahepatic markers and loss of markers
of other lineages in human Red Fluorescent Protein (RFP) expressing cells following
transplantation in NMP human livers. Scale bars, 50um. The images are complementary to Fig.
4.
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Supplementary Figure 16
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Fig. S16

Engraftment of gallbladder organoids in human livers receiving Normothermic
Perfusion (NMP). (A) Immunofluorescence analysis demonstrating engraftment of human
Red Fluorescent Protein (RFP) expressing cells following transplantation in NMP human
livers. Scale bars, 100um. The images are complementary to Fig. 4, S15. (B) Quantification of
gallbladder-derived RFP-expressing cells in injected vs. not injected human bile ducts; ****
P<0.0001, Mann-Whitney test. The data corresponds to 3 different livers and 5 random sections
per liver. Each section is represented by a data point, while each organ is represented by a
different symbol.
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Table S1.
Table of the number of animals at risk corresponding to the Kaplan-Meier curve in Fig. 3B.

Number of animals at
risk
Days Organoids Carrier
0 5 5
5 5 5
8 5 4
16 5 3
17 5 2
18 5 1
59 5 0
92 4 0
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Table S2.
Table of antibodies used.

Antibody
Anti-FGF19
Anti-FGF19

Anti-TFF2
Anti-DCDC2

Anti-human albumin
Anti-SOX4

Anti-SOX17
Anti-RFP
Anti-RFP
Anti-KRT19
Anti-KRT19
Anti-KRT19
Anti-KRT7
Anti-KRT7
Anti-aSMA

HNF1B (c-20)
GAMMA-GLUTAMYL TRANSPEPTIDASE
(GGT)

CYSTIC FIBROSIS TRANSMEMBRANE
CONDUCTANCE REGULATOR (CFTR)

ALEXA FLUOR DONKEY ANTI-Rabbit 568
ALEXA FLUOR DONKEY ANTI-Rabbit 488
ALEXA FLUOR DONKEY ANTI-Rabbit 647
ALEXA FLUOR DONKEY ANTI-goat 568
ALEXA FLUOR DONKEY ANTI-goat 488
ALEXA FLUOR DONKEY ANTI-goat 647
ALEXA FLUOR DONKEY ANTI-mouse 568
ALEXA FLUOR DONKEY ANTI-mouse 488
ALEXA FLUOR DONKEY ANTI-mouse 647

Provider
Santa Cruz
Abcam
R&D
systems
Santa Cruz
R&D
systems
Abcam
R&D
systems
Abcam
Rockland
DSHB
Abcam
Abcam
DAKO
Abcam
DAKO
SANTA
CRUZ

Abcam

SANTA
CRUZ
A10042
A21206
A31573
A11057
A11055
A21447
A10037
A21202
A31571

Catalogue
number

sc-390621
ab225942

MAB4077
sc-166051

MAB1455
ab86809

AF1924
ab62341
200-101-379
TROMA 1l
ab7754
ab52625
GA61961-2
ab68459
GA61161-2

sc-7411
ab55138

sc-10747

INVITROGEN
INVITROGEN
INVITROGEN
INVITROGEN
INVITROGEN
INVITROGEN
INVITROGEN
INVITROGEN
INVITROGEN

Dilution
1:100
1:100

1:50
1:100

1:50
1:50

1:100
1:100
1:200
1:100
1:100
1:100
1:100
1:100
1:100

1:100

1:100

1:100

1:1000
1:1000
1:1000
1:1000
1:1000
1:1000
1:1000
1:1000
1:1000

Species
Mouse
Rabbit

Mouse
Mouse

Mouse
Rabbit

Goat
Rabbit
Goat
Rat
Mouse
Rabbit
Mouse
Rabbit
Mouse

Goat

Mouse

Rabbit

Donkey
Donkey
Donkey
Donkey
Donkey
Donkey
Donkey
Donkey
Donkey
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Table S3

Table of QPCR primers used.

Gene
HNF1B

PBGD

SOX9

CK19

CK7

GGT

CFTR

SOX4

TFF2

SOX17

FGF19

Primer sequence (5’ a 3’)
TCACAGATACCAGCAGCATCAGT
GGGCATCACCAGGCTTGTA
GGAGCCATGTCTGGTAACGG
CCACGCGAATCACTCTCATCT
CTCTGGAGACTTCTGAACGAGAG
CCTTGAAGATGGCGTTGGGG
ACGACCATCCAGGACCTGCGG
TCCCACTTGGCCCCTCAGCGTA
GATTGCTGGCCTTCGGGGT
TCATCACAGAGATATTCACGGCTC
GTGAGAGCAGTTGGCTGTGC
GTTGAACTCTGCTGTGGGGC
AGTTGCAGATGAGGTTGGGC
AAAGAGCTTCACCCTGTCGG
AGCGACAAGATCCCTTTCATTC
CGTTGCCGGACTTCACCTT
CCCATAACAGGACGAACTGC
GCACTGATCCGACTCTTGCT

CGCACGGAATTTGAACAGTA
GGATCAGGGACCTGTCACAC
ATGCAGGGGCTGCTTCAGTA
AGCCATCTGGGCGGATCT

D T QP M O MO MO TMAIOTTMOTDTTAOTDT=>I T O T O
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Movie S1.

T1 weighted Magnetic Resonance Imaging (MRI) of a control mouse, receiving MDA followed
by injection of carrier medium without organoids in the biliary tree.

Movie S2.

T2 weighted MRI/ Magnetic Resonance CholangioPancreatography (MRCP) of a control
mouse receiving MDA followed by injection of carrier medium without organoids in the biliary
tree demonstrating the presence of cholangiopathy. The MRCP sequence corresponds to the
reconstructed MRCP image in Fig. 3C (not transplanted panel).

Movie S3.

T1 weighted Magnetic Resonance Imaging (MRI) of a mouse receiving MDA followed by
injection of organoids in the biliary tree. The images were acquired 90 days after the injection
of organoids demonstrating normal liver anatomy with no formation of tumors.

Movie S4.

T2 weighted MRI/ Magnetic Resonance CholangioPancreatography (MRCP) of a mouse
receiving MDA followed by injection of organoids in the biliary tree demonstrating resolution
of cholangiopathy. The MRCP sequence corresponds to the reconstructed MRCP image in Fig.
3C (transplanted panel).

Movie S5

MRI-based 3D reconstruction of the biliary tree of a control mouse receiving MDA followed
by injection of carrier medium without organoids in the biliary tree demonstrating the presence
of cholangiopathy with loss of bile duct signal. The bile ducts were reconstructed from T2
weighted MR images.

Movie S6

MRI-based 3D reconstruction of the biliary tree of a mouse receiving MDA followed by
injection of organoids in the biliary tree demonstrating resolution of cholangiopathy. The bile
ducts were reconstructed from T2 weighted MR images.

Movie S7

Z-stack of native and regenerated RFP-expressing bile ducts in the liver of an animal receiving
MDA followed by injection of RFP-expressing human gallbladder organoids in the biliary tree.
KRT19 is shown in green. RFP is shown in red. The movie is complementary to movies S8
and S9.

Movie S8

3D reconstruction illustrating native and regenerated bile ducts in the liver of an animal
receiving MDA followed by injection of RFP-expressing human gallbladder organoids in the
biliary tree. Native ducts, KRT19 positive/ RFP negative; regenerated ducts, KRT19 positive/
RFP positive. The bile ducts were reconstructed from the RFP and KRT19
immunofluorescence images used to generate movie S7. KRT19 is shown in green, RFP is
shown in red. The movie is complementary to movies S7 and S9.

Movie S9
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3D rendering illustrating native and regenerated bile ducts in the liver of an animal receiving
MDA followed by injection of RFP-expressing human gallbladder organoids in the biliary tree.
Native ducts, KRT19 positive/ RFP negative; regenerated ducts, KRT19 positive/ RFP
positive. The bile ducts were reconstructed from the RFP and KRT19 immunofluorescence
images used to generate movie S7 and S8. KRT19 is shown in green, RFP is shown in red. The
movie is complementary to movies S7 and S8.

Data S1. (separate file)

Table of differentially expressed genes between different regions of the biliary tree. IHD,
Intrahepatic ducts; CBD, Common Bile Duct; GB, Gallbladder. The table corresponds to genes
with a log2 fold change > 1 and an adjusted P value < 0.001.

Data S2. (separate file)

Table of differentially expressed genes in pseudotime in primary cholangiocytes with an
adjusted P value<0.001.

Data S3. (separate file)

Table of differentially expressed genes upregulated in organoids or organoids treated with bile
versus primary cholangiocytes. ORG, organoids; ORGT, Bile treated organoids. The table
corresponds to genes with a log2 fold change > 1 and an adjusted P value < 0.001.
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