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One sentence summary: 5 

Single-cell RNA sequencing analyses combined with a novel model for cell transplantation in 6 

human livers reveal that intra- and extra-hepatic cholangiocytes are interchangeable for 7 

regenerative medicine applications. 8 
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Abstract: 1 

Organoid technology holds great promise for regenerative medicine but has not yet been 2 

applied to humans. Here, we address this challenge in the context of cholangiocyte organoids 3 

and cholangiopathies, which represent a leading indication for liver transplantation. Using 4 

single-cell RNA sequencing we show that primary human cholangiocytes display 5 

transcriptional diversity which is lost in organoid culture. However, cholangiocyte organoids 6 

remain plastic and resume their in vivo signatures when transplanted back in the biliary tree. 7 

We then utilize a new model of cell engraftment in human livers undergoing ex vivo 8 

normothermic perfusion to demonstrate that this property allows extrahepatic organoids to 9 

repair human intrahepatic ducts after transplantation. Our results provide proof-of-principle 10 

that cholangiocyte organoids can be used to repair human biliary epithelium. 11 

  12 
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Main text: 1 

Organoids have a unique potential for tissue repair as they retain key functions and 2 

characteristics of their tissue of origin. Nevertheless, their ability to repair native epithelia and 3 

restore their complexity has not been established in humans, while organoid engraftment and 4 

survival in vivo has only been demonstrated in a limited number of animal studies (1). The bile 5 

duct epithelium presents an archetypal and clinically important system for addressing this 6 

challenge and for developing proof-of-concept studies in human. Indeed, disorders of the 7 

biliary system, which transfers bile from the liver to the duodenum, account for 70% of 8 

paediatric and up to a third of adult liver transplantation (2). This results in a pressing need for 9 

therapeutic alternatives, such as cell-based therapy. Furthermore, organoids suitable for 10 

regenerative medicine applications can be easily derived from biliary epithelial cells, known 11 

as cholangiocytes (3). Finally, the bile ducts also recapitulate the epithelial diversity found in 12 

other hollow-lumen organs (4). Indeed, different regions along the biliary tree display distinct 13 

transcriptional profiles and functional properties, such as the chemical modification of bile (5, 14 

6), as well as variation in disease susceptibility between the intrahepatic ducts, extrahepatic 15 

ducts and the gallbladder. Nevertheless, the impact of this regional variation on the 16 

characteristics and regenerative potential of the organoids derived from different regions of 17 

the biliary tree remains to be characterized. To address these questions and demonstrate the 18 

value of organoids for regenerative medicine in humans, we first characterize cholangiocyte 19 

diversity in vivo using single-cell transcriptomics and confirm that different regions of the 20 

human biliary tree contain cells with distinct transcriptional profiles. We then show that 21 

cholangiocytes lose these differences in organoid culture and become interchangeable, but 22 

their regional identity can be restored in vitro by environmental stimuli. We subsequently use 23 

a biliary injury mouse model and a novel model for cell transplantation in human organs 24 

undergoing ex vivo normothermic perfusion to prove that this plasticity allows cholangiocytes 25 

from one region to repair a different region of the biliary tree paving the way for cell-based 26 

therapy using organoids. 27 
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To characterize the cellular composition of the human biliary epithelium, cholangiocytes from 1 

different regions (Intrahepatic Bile Ducts (IHD): 5 patients, 7295 cells; Common Bile Duct 2 

(CBD): 3 patients, 3006 cells; Gallbladder (GB): 3 patients, 3702 cells) were isolated using 3 

magnetic bead sorting and their transcriptome was determined using droplet encapsulation 4 

single-cell RNA sequencing (scRNAseq) (Fig. 1A-B, Fig. S1A-C). The isolated cells 5 

expressed key cholangiocyte markers, including KRT7, KRT19, SOX9, and GGT (Fig. S2A). 6 

The transcriptomes of all three biliary cell populations shared a core transcriptional profile, 7 

illustrated by their proximity in UMAP space and high connectivity in Partition-based Graph 8 

Abstraction (PAGA) analysis when compared to different liver cell types, such as stellate cells 9 

and liver sinusoidal endothelial cells (LSECs, Fig. S2B-S2E). However, more detailed analysis 10 

after sub-clustering of cholangiocytes revealed non-overlapping expression modules of the 11 

three populations (Fig. 1B). This suggests that, despite their similarities, cholangiocytes from 12 

different regions exhibit unique gene expression signatures (6). Accordingly, Differentially 13 

Expressed Genes (DEG) analysis (Data S1) identified known region-specific markers, 14 

including aquaporins (7), mucins (8), FGF19 (9), SOX17 (10) in the extrahepatic biliary tree, 15 

JAG1 (11), TACSTD2 (12) and YAP target genes in intrahepatic cholangiocytes (13, 14), as 16 

well as novel markers including DCDC2, TFF1-3, SLC15A1 (Fig. 1C-1D, Fig. S3A-S3D). Most 17 

of these genes correspond to functional markers such as bile acid receptors or channels 18 

modifying bile composition (Fig. S3C). Thus, the transcriptional divergence among 19 

cholangiocytes from different regions could reflect adaptation to their microenvironment, such 20 

as variation in bile properties along the biliary tree (15). Accordingly, cholangiocytes from 21 

anatomically adjacent and hence environmentally similar regions (e.g. intrahepatic and 22 

common bile duct vs. gallbladder) displayed higher transcriptional similarity. This was 23 

illustrated by PAGA analysis (Fig. S3E-S3F), in agreement with results from diffusion 24 

pseudotime (DPT) and single-cell consensus clustering (SC3) analyses (Fig. S4-S5). These 25 

results point towards a progressive change in the expression of region-specific markers (Fig. 26 

1E, Data S2), and a gradual transition in the transcriptional signature of cholangiocytes from 27 

adjacent regions (Fig. S4A-S4C) rather than distinct subpopulations (Fig. 1E, S4-S5). This 28 
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gradient in gene expression is likely to support adjustment of the cells to environmental 1 

conditions, such as the gradual change in bile composition from the intrahepatic ducts to the 2 

gallbladder. In conclusion, our results show that the human biliary epithelium is comprised of 3 

cholangiocytes displaying a gradual shift in their transcriptional profile along the biliary tree, 4 

which is likely imposed by region-specific microenvironments. 5 

We subsequently used this single-cell map of the human biliary tree as a framework to 6 

characterise cholangiocyte organoids. To this end, a fraction of the primary cholangiocytes 7 

isolated for scRNAseq from each region (IHD, CDB, GB) were propagated as organoids using 8 

our established conditions (3, 16). The resulting organoids expressed cholangiocyte markers 9 

(KRT7, KRT19, SOX9, HNF1B, CFTR; Fig. S6A-S6B); displayed comparable functionality 10 

(ALP, GGT activity; Fig. S6C-S6D) and similar expansion potential regardless of their region 11 

of origin (Fig. S6E). To further explore these similarities, we performed scRNAseq on these 12 

organoids (2 lines per region; GB:  5859 cells; CBD 5321 cells; IHD 6641 cells; Fig. S1A-C). 13 

UMAP and PCA analyses demonstrated that organoids exhibited overlapping transcriptomic 14 

profiles (Fig. 2A, Fig. S7A-S7D) indicating that cholangiocytes grown in vitro assume a similar 15 

transcriptional signature independent of their region of origin. Of note, regressing cell cycle-16 

related genes did not change these observations excluding that a common “proliferation” 17 

signature could mask differences between organoids of different spatial origins (Fig. S7A-18 

S7C, S7E). Furthermore, we did not detect any cells co-expressing known somatic stem cell 19 

markers (LGR5, PROM1, TACSTD2, NCAM), excluding the possibility that organoid 20 

similarities reflect a common progenitor/stem cell identity (Fig. S7F). 21 

We then compared organoids from different regions with primary cholangiocytes to explore if 22 

these similarities corresponded to loss of their original regional identity in vitro (Fig. 2A). 23 

Organoids and primary cells following cell cycle regression shared a core transcriptional profile 24 

reflecting their common cholangiocyte nature, which was illustrated by their proximity in UMAP 25 

space and high PAGA connectivity when compared to different liver cell types, such as stellate 26 

cells and LSECs (Fig. S7C-D). However, DEG analyses highlighted downregulation of region-27 
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specific markers, such as SLC13A1 and SLC26A3 (Fig. 2B, Fig. S7G); while Gene Ontology 1 

(GO) and Gene Set Enrichment Analyses (GSEA) identified these DEGs as factors facilitating 2 

the adaptation of cholangiocytes to their respective microenvironments, e.g. bile acid vs. 3 

culture medium processing genes (Fig. S8A-S8C). Furthermore, we confirmed upregulation 4 

of YAP target genes (Data S3) in organoids,  in accordance with previous reports (14). 5 

Consequently, primary cholangiocytes propagated as organoids adapt to their new 6 

microenvironment by maintaining their core transcriptional signature, while losing the 7 

expression of markers specific to their region of origin. 8 

To explore the mechanisms controlling cholangiocyte identity, we decided to add bile in our 9 

culture conditions as the principal determinant of the cholangiocyte microenvironment. 10 

Different organoids (IHD, CBD, GB) were treated with human gallbladder bile for 72 hours and 11 

then characterized using scRNAseq (Fig. 2A, S1A-S1C) (GB: 3815 cells; CBD 3224 cells; 12 

IHD 3653 cells). UMAP and PCA revealed that treated organoids assumed a new overlapping 13 

gene expression profile (Fig. 2A, S9A) confirming a shared capacity to adapt to exposure to 14 

bile. Importantly, PAGA and DEG analyses showed that this transcriptional profile was shifted 15 

towards a gallbladder identity (Fig. 2B, Fig. S9B-S9C). To characterise the factors controlling 16 

this transition, we interrogated differentially expressed genes in bile-treated organoids. GO, 17 

GSEA and UMAP analyses (Fig. S9D-S9F) confirmed the induction of region-specific markers 18 

(SOX17, MUC13, FGF19; Fig. 2B, S9F) and revealed upregulation of bile acid receptor 19 

pathways and downstream targets (NR1H4/FXR, NR1I2, NR0B2, SLC51A, FGF19, ABCA1, 20 

PPARG; Fig. 2B, S9D-S9F). Of note, these results were validated through activation and 21 

inhibition of the Farnesoid X receptor (FXR), using chenodeoxycholic acid and z-22 

guggulsterone respectively (Fig. 2C-2D), thereby confirming that regardless of their origin, 23 

cholangiocytes grown in vitro can respond and adapt to environmental stimuli. Together, these 24 

results suggest that cholangiocyte organoids could assume different regional identities when 25 

instructed by the appropriate niche factors.  26 
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To validate cholangiocyte plasticity and explore its functional implications, we decided to 1 

assess if organoids from one region of the biliary tree could repair a different region following 2 

transplantation. For this, we induced cholangiopathy in immunodeficient mice using 4,4’-3 

methylenedianiline (MDA) (17) (Fig. 3A-3B, S10, S11) and attempted to rescue the phenotype 4 

with intraductal delivery (18) of human gallbladder organoids expressing Red Fluorescent 5 

Protein-expressing (RFP). Control animals receiving carrier medium without cells lost weight 6 

(Fig. S10A) and died within 3 weeks (Fig. 3B, Table S1), developing cholestasis (Fig. S10B) 7 

and cholangiopathy demonstrated by IF (Fig. S10C), histology (Fig. S10D) and Magnetic 8 

Resonance Cholangio-Pancreatography (MRCP) (Fig. 3C, S11A-S11C, Movie S1-S6). On 9 

the contrary, animals receiving organoids were electively culled at the end of the experiment 10 

and survived for up to 3 months with resolution of cholangiopathy and normal serum 11 

biochemistry (Fig. 3B-3C, S10A-S10B, S11B-S11C, Movie S3-S4, S6). The transplanted 12 

gallbladder cholangiocytes engrafted in various size intrahepatic ducts (Fig. 3D, S12A-C, 13 

Movie S7-S9) corresponding to ~25-55% of the regenerated biliary epithelium (Fig. S12C), 14 

and assumed an intrahepatic identity by losing gallbladder (SOX17) and expressing 15 

intrahepatic markers (SOX4, DCDC2, BICC1) (Fig. 3D, Fig. S12A-S12B). Core biliary 16 

markers (KRT7, KRT19, CFTR) were also expressed (Fig. S12A), while we observed YAP 17 

activation both in engrafted and native cells (Fig. S12B, S12E) in accordance with previous 18 

reports (13). Of note, we never observed expression of other hepatic lineage markers such as 19 

albumin indicating that cholangiocyte organoid plasticity is likely to be limited to their biliary 20 

lineage (Fig. S12A). Furthermore, the engrafted cells expressed proliferation markers (Fig. 21 

S12B, S12D) at similar levels to native mouse cholangiocytes; while abnormal growth or 22 

tumour formation was never noticed in all the analyses performed (Fig. 3C, 3D, S10D, S12A-23 

S12B), including T1 weighed body MR imaging at the end of the experiment (Movie S1, S3). 24 

Thus, organoid transplantation provides the healthy cells required to repair the damaged 25 

epithelium and rescue acute injury. 26 
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To ensure that animal rescue and resolution of cholangiopathy was specific to cholangiocyte 1 

organoids, we repeated the experiment using Mesenchymal Stem Cells (MSCs), as a different 2 

cell type known to provide anti-inflammatory effects following transplantation through 3 

paracrine signalling (Fig. S13A-S13C). This experiment allowed us to explore if organoids are 4 

essential for duct regeneration and animal rescue; and if some of the observed effects could 5 

be attributed to paracrine signals which are not unique to our cells. In sum, MSCs failed to 6 

engraft (Fig. S13C) and rescue the transplanted animals, which exhibited no difference in 7 

survival compared to controls (P>0.05; Fig. S13A) and no resolution of cholestasis on serum 8 

biochemistry (Fig. S13B). Consequently, cholangiopathy resolution is specific to the 9 

engraftment of cholangiocyte organoids; and although additional therapeutic effects of our 10 

cells through growth factor and cytokine secretion cannot be completely excluded, these 11 

effects are unique to cholangiocyte organoids. 12 

We then explored if organoid culture is required to ‘unlock’ the cells’ plasticity or if this reflects 13 

an inherent property of primary cholangiocytes. To achieve this, we transplanted primary 14 

gallbladder cholangiocytes (Fig. S13A-S13C) directly post isolation without in vitro culture. 15 

Under these conditions very few primary cholangiocytes engrafted in the mouse bile ducts 16 

(Fig. S13C) most likely due to the cumulative stress of isolation and transplantation; and failed 17 

to rescue the animals or resolve cholestasis (Fig. S13A, S13B). Nonetheless, the engrafted 18 

cells expressed intrahepatic markers and lost expression of gallbladder markers (Fig. S13C). 19 

In conclusion, cholangiocyte plasticity is not limited to organoids grown in vitro; however, 20 

organoid culture is necessary for the cholangiocytes to recover from the stress of isolation and 21 

for large scale expansion providing the cell numbers required for engraftment and biliary 22 

repair. 23 

Finally, to ensure that our results are not specific to the intrahepatic compartment or 24 

gallbladder organoids, we used our established methodology (3) to transplant common bile 25 

duct-derived cholangiocyte organoids in the gallbladder of immunocompromised mice. The 26 

engrafted cells exhibited loss of common bile duct makers and upregulation of gallbladder 27 
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markers (Fig. S14), confirming that our previous findings apply to different compartments of 1 

the biliary tree and to organoids of different origin. Taken together, these results establish that 2 

cholangiocytes from different regions of the biliary tree are interchangeable and suggest that 3 

extrahepatic cells can be used to repair acute intrahepatic duct injury. 4 

Cell transplantation experiments in mouse models are extremely useful but are not always 5 

predictive of therapeutic outcome (19). Furthermore, the mouse liver microenvironment is 6 

different to human, raising the possibility that our results may not translate between species. 7 

To address these challenges, we developed a new model for cell-based therapy in human 8 

utilizing ex vivo organ perfusion (20). Ex-vivo Normothermic Perfusion (NMP) was developed 9 

to improve organ preservation and reduce ischaemia-reperfusion injury by circulating warm 10 

oxygenated blood through liver grafts prior to transplantation. Importantly, the biliary tree is 11 

particularly susceptible to ischaemia which results in duct damage (21, 22). Low bile pH (< 12 

7.5) during NMP is used as a predictor of this type of cholangiopathy (23).  13 

To assess the therapeutic potential of our cells for repairing human bile ducts, RFP gallbladder 14 

organoids were injected in the intrahepatic ducts of deceased transplant donor livers (n=3) 15 

with a bile pH<7.5 at the start of the experiment, signifying ischaemic duct injury. The organs 16 

were perfused with oxygenated blood and nutrients at normal body temperature (20); Fig. 4A-17 

4B, S15A) for up to 100 hours in order to maintain a near-physiological microenvironment. 18 

Importantly, the organoids were delivered in a terminal branch of the intrahepatic ducts under 19 

fluoroscopic guidance to minimize the area of distribution of the cells and maximize cell density 20 

(Fig. S15B). At the end of the experiment, ultrasound imaging revealed no evidence of duct 21 

dilatation or obstruction (Fig. S15C), while RFP-expressing cells were not detected in the 22 

perfusate by flow cytometry, confirming that the injected cells remained in the biliary 23 

compartment (Fig. 4C). More importantly, the transplanted organoids engrafted in the 24 

intrahepatic biliary tree (Fig. 4D, S16A), with RFP cells regenerating ~40-85% of the injected 25 

ducts (Fig. 16B); and expressing key biliary markers (KRT7, KRT19, CFTR, GGT). 26 

Furthermore, engrafted gallbladder organoids exhibited loss of gallbladder (SOX17) and 27 
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upregulation of intrahepatic (SOX4, BICC1, DCDC2) markers without differentiation to other 1 

hepatic lineages (Fig. 4D, S15D, S16A-S16B). Thus, at the end of the experiment, the injected 2 

ducts consisted of a mixture of native and transplanted cholangiocytes (Fig. S16A-S16B), with 3 

multiple transition points between donor and recipient cells and no evidence of cholangiopathy 4 

(Fig 4D, S15D, S16A). 5 

Conversely, control ducts not receiving cells demonstrated evidence of ischaemic injury with 6 

loss of epithelial continuity and sloughing of cells in the duct lumen (Fig. 4D).  We 7 

subsequently characterised the impact of engraftment on organ function. Physiologically, 8 

cholangiocytes modify the composition and pH of bile through water transfer and bicarbonate 9 

secretion (6). Therefore, we compared the bile from organoid-injected vs. carrier-injected 10 

ducts. Accordingly, bile aspirated from ducts injected with cells exhibited higher pH and 11 

volume (Fig. 4E) confirming that transplanted cholangiocytes retain their function to modify 12 

bile composition. Together, these results provide the first proof-of-principle that perfused 13 

organs can be used to ascertain functional engraftment of human cells and validate our mouse 14 

data by showing that cholangiocytes are interchangeable for transplantation in human organs.  15 

Our results show that the biliary epithelium is composed of cholangiocytes with diverse 16 

transcriptional profiles which are determined by their local environment. This diversity is lost 17 

in organoid culture due to the lack of niche stimuli. However, organoids can adapt 18 

appropriately to local environmental cues both in vitro and following transplantation, restore 19 

the expression of region-specific markers and assume different regional identities. Thus, 20 

organoids from a single region could potentially repair the entirety of the biliary tree. This 21 

plasticity could have significant implications for regenerative medicine. Indeed, although 22 

autologous cell-based therapy potentially avoids the need for immunosuppression its 23 

application for primary organoids is limited by the impact of disease on the epithelium. 24 

However, cholangiopathies belong to a family of localising diseases, affecting predominantly 25 

specific regions of an organ (24). Consequently, our results provide proof-of-concept that 26 

cholangiocytes from spared regions, such as the gallbladder, could be used for autologous 27 
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cell-based therapy to repair human intrahepatic bile ducts, which constitute the most common 1 

site of injury in cholangiopathies. Moreover, our novel model for cell engraftment in human 2 

perfused organs paves the road for the use of ex vivo cell-based therapy to improve graft 3 

function prior to transplantation, which could ultimately increase the number of useable organs 4 

and reduce pressure on the transplant waiting list. In this context, quality controlled and readily 5 

available allogeneic cholangiocyte organoids from a cell bank could be used routinely in the 6 

future to prevent ischaemic cholangiopathy in organs at risk of biliary injury (e.g. low bile pH), 7 

since the organ recipients will receive immunosuppression as part of their standard care.  8 

Importantly, our results provide proof-of-principle for the transplantation of organoids in human 9 

organs which could expedite regulatory approval and fast-tack first-in-man trials. Ultimately, 10 

the same approach could also be applied to a variety of ex vivo perfused organs and cell types 11 

to validate functional cell engraftment, demonstrate safety, improve cell transplantation 12 

technique and efficacy and accelerate clinical translation of new cell-based therapies.  13 

  14 
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 1 

 2 

Fig. 1. Transcriptional profiling of primary cholangiocytes. (A) Schematic representation 3 

of the methodology used for single cell RNA sequencing (scRNAseq). (B) UMAP plot (7295 4 

primary cells, n=10 individuals) illustrating distinct primary cholangiocyte populations in 5 

different regions of the biliary tree. (C-D) Immunofluorescence images (C) and UMAP 6 



 24 

representation of normalized gene expression (D) of primary cholangiocytes illustrating 1 

differential expression of representative region markers. Scale bars: 50μm. (E) Heatmap of 2 

top 100 differentially expressed genes (DEGs) in pseudotime (Data S2) demonstrating a 3 

gradual transition in the transcriptional profile of cholangiocytes between different regions of 4 

the biliary tree. PRI, Primary; IHD, IntraHepatic Ducts; CBD, Common Bile Duct; GB, 5 

Gallbladder; P, Pangreas; D, Duodenum. 6 

  7 
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 1 

 2 

Fig. 2. Cholangiocyte Organoid (CO) identity is controlled by niche stimuli. (A) UMAP 3 

(35,603 cells) of primary cholangiocytes and their corresponding organoids before and after 4 

gallbladder bile treatment, illustrating similarities between different region organoids and 5 

changes in their signature in response to bile. PRI, Primary; IHD, IntraHepatic Ducts; CBD, 6 

Common Bile Duct; GB, Gallbladder; ORG, Organoids; BTO, Bile-Treated Organoids. (B) 7 

Heatmap of top 100 Differentially Expressed Genes (DEGs) between primary regions, 8 

organoids and BTOs (Data S1-S2), illustrating that organoids lose regional differences and 9 

upregulate culture-related genes, but re-acquire gallbladder markers following bile treatment. 10 

(C-D) QPCR (C) (n=4 samples per group; center line, median; box, interquartile range (IQR); 11 

whiskers, range; housekeeping gene, HMBS; #P>0.05, **P<0.01, ***P<0.001, ****P<0.0001); 12 



 26 

and immunofluorescence (D) demonstrating upregulation of gallbladder markers and bile acid 1 

target genes following treatment with chenodeoxycholic acid (CDA), in the absence of the FXR 2 

inhibitor Z-GS.  Z-GS, Z-guggulsterone. Scale bars, 50μm.  3 

  4 
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 1 

Fig. 3. Cholangiocyte organoids (COs) rescue cholangiopathy following transplantation 2 

and assume an identity corresponding to the site of engraftment. (A) Experimental 3 

outline schematic. (B) Kaplan-Meier curve (Table S1: number of animals at risk) 4 



 28 

demonstrating animal rescue following gallbladder organoids injection; P=0.0018(**), log-rank 1 

test. (C) Magnetic Resonance Cholangiopancreatography (MRCP) demonstrating rescue of 2 

cholangiopathy following organoid injection. (D) Immunofluorescence demonstrating 3 

engraftment of Red Fluorescent Protein (RFP)-expressing gallbladder organoids in portal 4 

triads, with upregulation of intrahepatic (SOX4) markers. Scale bars; yellow, 50μm; white, 5 

100μm. PV, portal vein. 6 
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 1 

Fig. 4. Cholangiocyte organoids (COs) engraft in a human liver receiving Normothermic 2 

Perfusion (NMP) and improve bile properties. (A) Schematic representation of the 3 

technique for organoid injection and (B) photograph of the NMP circuit used. BD, Bile Duct; 4 

GB, Gallbladder; HA, Hepatic Artery; PV, Portal Vein; IVC, Inferior Vena Cava; L, Liver RFP, 5 

Red Fluorescent Protein; P, pump; O, oxygenator; PRC, Packed Red Cells. (C) Flow 6 

cytometry revealing absence of RFP cells in the perfusate. (D) Immunofluorescence revealing 7 

engraftment of RFP gallbladder organoids with upregulation of intrahepatic (SOX4) and loss 8 

of gallbladder (SOX17) markers. Scale bars, 50μm. (E) Organoid injection improves bile pH 9 

and choleresis. ***P<0.001. N=3 NMP livers. Each measurement is represented by a different 10 

data point, each organ is represented by a different symbol. 11 
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Materials and Methods 1 

 2 
Ethical approval 3 

Gallbladder, bile duct, liver biopsy and bile samples were obtained from deceased organ 4 

donors (National Research Ethics Committee East of England – Cambridge South 5 
15/EE/0152). Human livers retrieved for transplantation but subsequently declined were used 6 
for ex vivo administration of cholangiocytes (National Research Ethics Committee East of 7 
England – Cambridge East 14/EE/0137). All human tissue was used after obtaining informed 8 
consent for use in research.  9 

 10 
Tissue collection 11 

Gallbladder, bile duct, liver biopsies and bile were obtained under sterile conditions from 12 
deceased transplant organ donors as rapidly as possible after cessation of circulation. Tissue 13 
samples, and liver retrieved for transplantation but subsequently declined, were transferred to 14 

the laboratory at 4°C in University of Wisconsin (UW®) organ presentation solution.  15 

 16 

Tissue dissociation 17 
Resected tissue (gallbladder, extrahepatic ducts and liver) was transferred to the lab as 18 

described above and processed immediately after resection. Gallbladder and extrahepatic bile 19 
duct samples were drained of bile and the organ lumen was exposed through a longitudinal 20 

incision. Liver samples were divided into 1cm2 cubes prior to processing. All samples were 21 
washed twice with warm PBS with Ca2+Mg2+ +EDTA (0.5mM), followed by enzymatic 22 

digestion with using Liberase (0.2 Wünsch/ml) in an incubated shaker at 37oC and 200 RPM 23 
for 30 minutes. DNAse I (2000 U/ml) was added to the solution to prevent cell clumping and 24 
increase viability. Liver samples were dissociated further using the Miltenyi Biotec 25 

GentleMACS tissue dissociator and GentleMacs Tissue Dissociation C Tubes. For the 26 
gallbladder and extrahepatic duct samples, gentle mechanical scrapping of the lumen was 27 

adequate to release the epithelial cells following enzymatic digestion. All cell suspensions were 28 

filtered through 70um filters to remove debris and remaining tissue, washed with PBS 29 

containing 1% BSA (W/V) and centrifuged at 400g, for 5mins in a refrigerated centrifuge 30 
maintaining a temperature of 4oC. The cells were resuspended in Miltenyi Biotec red blood cell 31 
(RBC) lysis and incubated for 10 minutes at room temperature (RT). The Miltenyi Biotec 32 
Debris Removal solution kit was used according to the manufacturer’s instructions to remove 33 

remaining debris and dead cells. For liver samples, the resulting cell suspensions were 34 
centrifuged at 50g for 5 minutes (4oC) to pellet the hepatocyte fraction, the supernatant was 35 
collected and cholangiocytes were isolated as described below. 36 
 37 
Cell isolation 38 

Following tissue dissociation to single cells, cholangiocytes were isolated with Magnetic 39 
Associated Cell Sorting (MACS) using the Miltenyi Biotech autoMACS Pro separator and 40 
CD326 (EpCAM) MicroBeads according to the manufacturer’s instructions. The resulting cells 41 
were counted, centrifuged at 444g for 5 minutes, resuspended to a concentration of 1000 cells/ 42 

μL and stored on ice. 43 
 44 
10x Single Cell Library Making Process 45 

GEM-RTs (Gel-beads-in-emulsion which barcode the ploy adenylated mRNAs, followed 46 
by Reverse Transcription) were broken and Silane magnetic beads are used to purify first stand 47 
cDNA from the GEM-RT mixture and the cDNA was then amplified via PCR. Enzymatic 48 
fragmentation, end-repair and A-tailing were followed by size selection (using SPRISelect 49 
reagent). An adapter was ligated to the fragments and following a clean-up step, index PCR 50 
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took place. After a further round of size selection with SRISelect, completed libraries were 1 

quantified, (Agilent Bioanalyser and qPCR) and diluted for running on an Illumina sequencing 2 
instrument (HS4000). 3 
 4 

Processing and normalization of 10X data 5 
The results from the sequencing runs were checked manually to confirm that the overall 6 

yield and quality were as expected. The data from the instrument were converted to fastq 7 
format, the input format required by the 10X software cellranger, and aligned using the human 8 
reference GRCh36-1.2.0 available from 10X. The dataset was augmented by integrating counts 9 

of a cluster of cholangiocytes from a published dataset (cluster 17 in MacParland SA et al, 10 
2018) (17). Cells were annotated as part of different origins, these being primary tissue (PRI), 11 
untreated organoids (ORG), treated organoids (ORGT). Each origin comprises three regions: 12 
intrahepatic duct (IHD), common bile duct (CBD), gallbladder (GB). The number of cells in 13 
each origin and region are reported in Figure S1C. Genes with read counts > 0 in at least 3 14 

cells from each batch in at least one origin were maintained for downstream analysis. Low 15 

quality cells were removed based on the percentage of UMI mapping to the mitochondrial 16 

genome and the number of genes detected by determining outliers (3 median-absolute-17 
deviations) with the routine isOutlier in the package scater (18). Cholangiocytes were isolated 18 
by retaining cells expressing at least one of the biliary markers EPCAM, KRT7, KRT19 (with 19 
number of counts > 3). Normalization, identification of highly variable genes and cell cycle 20 

regression (regressing out the difference between the G2M and S phase scores) were performed 21 
with the Seurat package (19). We employed the routine fastMNN in scran for batch correction 22 

(20). Batch corrected samples are shown in figure 2A. Small clusters derived by applying the 23 
Louvain method for community detection and characterized by cells which were outliers in the 24 
percentage of UMI mapping to the mitochondrial genome and the number of genes detected 25 

were filtered out. 26 
 27 

Analysis of normalized 10X data 28 
The normalized data were clustered using the Louvain method in the Scanpy package (21) 29 

by selecting a resolution which generated 3 clusters and with 10 random initialisations. 30 
Similarity between Louvain clusters and origin annotations was assessed using the Adjusted 31 
Rand Index (ARI) and the Adjusted Mutual Information (AMI). Both measures lie in the 32 
interval [0,1], where a value close to 0 indicates random labelling and exactly 1 means that the 33 

two partitions are identical. The average value calculated on the different partitions obtained 34 
by random initializations was > 0.95 for both measures, indicating a high correspondence 35 
between origins and clusters (Fig. S5A). The same analysis performed on regions showed poor 36 
matching between regions and clusters, suggesting similarity in the transcriptional profile of 37 
cells located in different regions (Fig. S5A-B). Transcriptional similarity was quantified at 38 

origin and region resolution by estimating the connectivity of data manifold partitions within 39 
the partition-based graph abstraction (PAGA) framework. At the origin resolution, this analysis 40 
notably highlighted higher transcriptional similarity between treated organoids and primary 41 
tissue than between untreated organoids and primary tissue (Fig. S9B). Interestingly, at the 42 

region resolution we identified higher transcriptional similarity between adjacent locations in 43 
primary tissues, with intrahepatic duct and gallbladder having the lowest connectivity value. 44 
This association between connectivity and anatomical location, together with the similarity of 45 

cells located in different regions, suggested a gradual variation in the transcriptional profile of 46 
cells in primary tissue that could be represented as a pseudo-spatial dimension. In this view, 47 
we analyzed the primary tissue by applying two methods for pseudo-temporal (or pseudo-48 
spatial) ordering: diffusion pseudo-time (22) and Monocle 2 (23). In Monocle 2 differential 49 
expression in pseudotime was calculated using the differential GeneTest routine. Both methods 50 
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confirmed an association between transcriptional similarity and anatomical location, as 1 

highlighted by the density plot in Figure S4B and allowed the representation of regional 2 
markers along a pseudo-spatial dimension (Fig. S4C). Since the majority of cells had a 3 
diffusion pseudotime value >0.65 the density plot if figure S4B is shown in the range [0.65,0.9] 4 

to improve visualization and avoid overcrowding. We then analyzed each region individually 5 
in organoids (treated and untreated) and primary tissue to identify potential subpopulations of 6 
cells. Due to the relatively small sample sizes, we applied the clustering method SC3, whose 7 
high accuracy and robustness is derived combining multiple clustering solutions through a 8 
consensus approach (24). SC3 allows the user to pre-define the number of clusters. Because of 9 

the arbitrariness of this choice we varied the number of clusters between 1 and 10, calculated 10 
the stability of clusters across resolutions (SC3 stability index) and built a clustering tree 11 
showing how cells move as the clustering resolution is increased (package clustree), (25). As 12 
shown in Figure S5C, no stable sub-trees were formed within each region, indicating absence 13 
of stable clusters defining subpopulations of cells.  14 

Regional markers and differentially expressed genes were identified by applying the 15 

Wilcoxon-Rank-Sum test (p-value<0.01, |log2 fold change| > 1) in Scanpy. Gene set, gene 16 

ontology and pathway enrichment were performed using the packages GSEA (26) and Enrichr 17 
(27).  18 
 19 
Data availability 20 

10X raw data (fastq files) have been deposited in the repository ArrayExpress with the 21 
accession number E-MTAB-8495 22 

 23 
Organoid derivation and culture 24 

A portion of the cells isolated for scRNAseq was cultured and propagated as organoids 25 

using our established methodology (11, 12). Cells were cultured under the same conditions 26 
irrespective of their region of origin. 27 

 28 
Immunofluorescence, RNA extraction and Quantitative Real Time PCR 29 

IF, RNA extraction and QPCR were performed as previously described (11, 12, 28, 29). 30 
A complete list of the primary and secondary antibodies used is provided in table S2. A 31 
complete list of the primers used is provided in table S3. 32 

All QPCR data are presented as the median, interquartile range (IQR) and range 33 

(minimum to maximum) of four independent lines unless otherwise stated. Values are relative 34 
to the housekeeping gene Hydroxymethylbilane Synthase (HMBS). 35 

All IF images were acquired using a Zeiss Axiovert 200M inverted microscope or a Zeiss 36 
LSM 700 confocal microscope. Imagej 1.48k software (Wayne Rasband, NIHR, USA, 37 
http://imagej.nih.gov/ij) was used for image processing. IF images are representative of 3 38 

different experiments. 39 
 40 
GGT activity 41 

GGT activity was measured in triplicate using the MaxDiscovery™ gamma-Glutamyl 42 

Transferase (GGT) Enzymatic Assay Kit (Bioo scientific) based on the manufacturer’s 43 
instructions. Error bars represent SD.  44 
 45 

Alkaline Phosphatase staining 46 
Alkaline phosphatase was carried out using the BCIP/NBT Color Development Substrate 47 

(5-bromo-4-chloro-3-indolyl-phosphate/nitro blue tetrazolium) (Promega) according to the 48 
manufacturer’s instructions. 49 
 50 
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Flow cytometry analyses 1 

Flow cytometry analyses were performed as previously described (11, 12, 28, 29). 2 
 3 
Bile acid treatment 4 

Organoids were incubated for 72 hours with 10μM CDA (Sigma, C9377-5G) in the 5 
presence or absence of 10μM Z-GS (Santa Cruz, sc-204414). 6 
 7 
Animal experiments 8 

All animal experiments were performed in accordance with UK Home Office regulations 9 

(UK Home Office Project License number PPL 70/8702). Immunodeficient NSG mice 10 
(NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ), which lack B, T and NK lymphocytes, were bred in 11 
house, and food and water were available ad libitum before and after procedures. Male animals 12 
aged 4–8 weeks were used. Animals were assigned randomly to treatment and control groups. 13 
Experiments were performed blinded, and where this was not possible (e.g., due to performance 14 

of a surgical procedure), data were analysed blinded to the identity of the experimental groups. 15 

Littermate animals were used as controls. 16 

 17 
Cell delivery  18 

Cholangiocytes were delivered into the liver retrogradely through the extrahepatic biliary 19 
tree (14). In brief, a fine bore cannula was placed and secured in the gallbladder. To divert the 20 

infusion into the liver, the distal common bile duct was occluded with a clamp. The cells were 21 
infused through the cannula in the gallbladder in a total volume of 1μl/g of total body weight, 22 

at a maximum speed of 1μl/second.  23 
 24 
MDA administration 25 

Cholangiopathy was induced through intraperitoneal (IP) administration of 4,4′-26 
methylene dianiline (MDA) on 3 occasions 7, 5, and 3 days prior to cell delivery at a 27 

concentration of 50 μg/g of total body weight. An additional dose of MDA was administered 28 
directly into the extrahepatic biliary tree prior to cell delivery as described above.  29 

 30 
Blood sample collection 31 

Blood was taken using a 23g needle directly from the inferior vena cava under terminal 32 
anesthesia at the time the animals were electively culled and transferred into 1.5ml Eppendorf 33 

tubes for further processing. 34 
 35 
Blood sample processing 36 

The blood samples were routinely processed by the University of Cambridge Core 37 
biochemical assay laboratory (CBAL). All of the sample analysis was performed on a Siemens 38 

Dimension EXL analyzer using reagents and assay protocols supplied by Siemens. 39 
 40 
Tissue collection 41 

Tissue for sectioning and staining was collected at the end of all animal experiments when 42 

the animals were culled, unless otherwise stated. The animals were culled due to due to animal 43 
welfare reasons (weight loss, jaundice and clinical deterioration) or electively 3 months after 44 
transplantation. Timepoints are indicated on the relevant Kaplan-Meier curves (Fig. 3B; Fig. 45 

S13A). 46 
 47 
Cryosectioning 48 

Excised tissue was fixed in 4% PFA, immersed in sucrose solution overnight, mounted in 49 
optimal cutting temperature (OCT) compound and stored at -80°C until sectioning. Sections 50 
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were cut to a thickness of 6-10µm using a cryostat microtome and mounted on microscopy 1 

slides for further analysis. 2 
 3 
Haematoxylin and Eosin (H&E) Staining 4 

H&E staining was performed by the histology service of Addenbrooke’s hospital or using 5 
Sigma-Aldrich reagents according to the manufacturer’s instructions. Briefly, tissue sections 6 
were hydrated, treated with Meyer’s Haematoxylin solution for 5 minutes (Sigma-Aldrich), 7 
washed with warm tap water for 15 minutes, placed in distilled water for 30-60 seconds and 8 
treated with eosin solution (Sigma-Aldrich) for 30-60 seconds. The sections were subsequently 9 

dehydrated and mounted using the Eukitt® quick-hardening mounting medium (Sigma-10 
Aldrich).  11 
 12 
Histology 13 

Histology sections were reviewed by an independent histopathologist with a special 14 

interest in hepatobiliary histology (SD). 15 

 16 

Quantification of transplanted cells in mouse liver 17 
For each animal 3 random sections were analyzed, with different lobes being assessed. A 18 

total of 49,846 cells were analyzed, approximately 10,000 cells per animal. 19 
 20 

MR imaging 21 
Magnetic resonance cholangio-pancreatography was performed after sacrifice of the 22 

animals. MRCP was performed at 9.4T using a Bruker BioSpec 94/20 system (Bruker, 23 
Ettlingen, Germany). For higher signal to noise ratio to give improved visualisation of the 24 
biliary ducts a two-dimensional sequence was used with slightly varied parameters (24 spaced 25 

echoes at 11ms intervals to give an effective echo time of 110ms; repetition time 5741ms; 26 
matrix size of 256×256; field of view of 4.33×5.35cm2 yielding a planar resolution of 27 

170×200µm2). Slices were acquired coronally through the liver and gall bladder with a 28 
thickness of 0.6mm. For this acquisition, a volume coil was used to reduce the impact of 29 

radiofrequency inhomogeneity. 30 
To examine the biliary tree, images were prepared by maximum intensity projections. 31 

Structural imaging to rule out neoplastic growths was performed using a T1-weighted 3D 32 
FLASH (fast low-angle shot) sequence with a flip angle of 25°, repetition time of 14ms and an 33 

echo time of 7ms. The matrix was 512×256×256 with a field of view of 5.12×2.56×2.56cm3 34 
for a final isotropic resolution of 100 µm. 35 

Volume rendered images of the biliary tree were generated from source data using Osirix 36 
software. The region of interest was segmented from the remaining data manually. 37 

The MRCP images were reviewed by 2 independent radiologists with a special interest in 38 

hepatobiliary radiology (EMG, SU).  39 
 40 
Ex vivo normothermic perfusion of donor livers 41 

The metra (OrganOx, Oxford, UK) normothermic liver perfusion device was used for ex 42 

vivo perfusion of human livers as previously described (15, 30). The machine, which is 43 
clinically used for preservation of livers for transplantation (15) enables prolonged automated 44 
organ preservation by perfusing it with ABO-blood group-compatible normothermic 45 

oxygenated blood. The perfusion device incorporates online blood gas measurement, as well 46 
as software-controlled algorithms to maintain pH, PO2 and PCO2 (within physiological limits), 47 
temperature and mean arterial pressure within physiological normal limits. In brief, the hepatic 48 
artery, portal vein, inferior vena cava and bile duct were cannulated, connected to the device 49 
and perfusion commenced.  50 
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 1 

Bile duct cannulation 2 
Cannulation of the bile duct was achieved by inserting two 4 Fr sheaths into the common 3 

bile duct under fluoroscopy guidance, followed by cannulation of the left and right hepatic 4 

ducts and subsequently segment 3 and segment 5 ducts respectively, using two 2.7 Fr 5 
microcatheters via the sheaths. Peripheral placement of the microcatheters was confirmed by 6 
cholangiogram with small amount of ionic contrast medium. Cells were injected into segment 7 
3 and carrier was injected into segment 5.  8 
 9 

Cell delivery 10 
RFP-expressing organoids were mechanically dissociated to a mixture of small clumps 11 

and single cells and approximately 10x106 RFP-expressing cells were administered in a 12 
peripheral duct of segment 3 with a distribution area of ~2cm3, which was cannulated under 13 
fluoroscopic guidance to maximize cell delivery (see Bile duct cannulation section) (Fig. 14 

S15B). Carrier medium was delivered in a peripheral branch of segment 5 using the same 15 

technique and the organ was maintained on NMP for up to 100 hours.  16 

 17 
Quantification of transplanted cells in human livers  18 

3 human livers injected with RFP-labelled gallbladder organoids were analysed. Sections 19 
were obtained from the area of the distribution of the cells (~2cm3). 5 sections per liver and a 20 

total of 4,463 cells were analysed. 21 
 22 

Bile aspiration  23 
Bile duct cannulation was performed as described in the relevant section. Following 24 

cannulation, 2 microfluidic catheters (CMA Microdialysis Catheter, Harvard  Biosience Inc, 25 

USA) were placed into the respective segmental ducts using a guide wire exchange technique.  26 
The inner and outer shaft of the catheter and the inlet and outlet tubing are made of 27 

polyurethane and the membrane composed of polyarylethersulphone with a membrane pore 28 
size of 100kDa and outer diameter of 0.4mm. The inlet tubing for each catheter was connected 29 

to a portable battery driven CMA 107 Microdialysis Pump (Harvard Biosience Inc, USA) and 30 
the pump was set to aspirate at a rate of 1µl/min. 31 

 32 
Bile volume and pH measurements 33 

Measurements were performed in n=3 different livers. A minimum of 2 repeat 34 
measurements were performed for each liver increasing to 3 where possible, as previously 35 
described (27). Bile volume was normalised over the volume of the bile ducts producing it, 36 
which corresponds to the volume of distribution of the cells or the carrier in the control arm. 37 
This was calculated using the volume of the contrast medium required to delineate these ducts 38 

on cholangiogram. Please note all catheters were primed prior to volume measurements. 39 
 40 
Ultrasound imaging 41 

The liver was imaged ex-vivo in a normothermic perfusion device using a Hitachi Aloka 42 

Arrieta V70 and a 10Mhz hand-held probe. Images were obtained in axial and sagittal planes 43 
and assessment of the portal vein, hepatic veins and their major branches was carried out. The 44 
intrahepatic bile ducts were also assessed, with particular attention to segment 3 where the 45 

organoids had been instilled, and a control area in segment 5 receiving carrier. 46 
 47 
Statistical analysis 48 

All statistical analyses were performed using GraphPad Prism 6. For small sample sizes 49 
where descriptive statistics are not appropriate, individual data points were plotted. For 50 
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comparison between 2 mean values a 2-sided Student’s t-test was used to calculate statistical 1 

significance. The normal distribution of our values was confirmed using the D'Agostino & 2 
Pearson omnibus normality test where appropriate. Variance between samples was tested using 3 
the Brown-Forsythe test. For comparing multiple groups to a reference group one-way 4 

ANOVA followed by Dunnett’s test was used between groups with equal variance, while the 5 
Kruskal-Wallis test followed by Dunn’s test was applied for groups with unequal variance. 6 
Survival was compared using log-rank (Mantel-Cox) tests. Where the number of replicates (n) 7 
is given this refers to organoid lines or number of different animals unless otherwise stated.  8 

For animal experiments, group sizes were estimated based on previous study variance. 9 

Final animal group sizes were chosen to allow elective culling at different time point while 10 
maintaining n > 4 animals surviving past 30 days to ensure reproducibility. No statistical 11 
methods were used to calculate sample size. No formal randomization method was used to 12 
assign animals to study groups. However, littermate animals from a cage were randomly 13 
assigned to experimental or control groups by a technician not involved in the study. No 14 

animals were excluded from the analysis. Blinding was used for radiology imaging.  15 

 16 

 17 
  18 
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Fig. S1. 4 

Characteristics and quality control of single cell RNA sequencing samples. (A) UMAP 5 

plot of all sequenced samples and 1 publicly available intrahepatic cholangiocyte dataset (PRI 6 
IHD 5; from MacParland SA et al, 2018, cluster 17). Each patient and cell line are distinguished 7 

by a unique color and marker combination. (B) Number of genes and percentage of 8 

mitochondrial genes detected per cell. (C) Number of cells isolated from each region PRI, 9 

Primary; IHD, IntraHepatic Ducts; CBD, Common Bile Duct; GB, Gallbladder; ORG, 10 
Organoids; BTO, Bile-treated organoids. 11 
 12 
  13 
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 1 

Fig. S2. 2 

Single cell RNA sequencing characterization of primary cholangiocytes. (A) UMAP plots 3 
demonstrating the expression of key cholangiocyte markers by the isolated cells, confirming 4 
their biliary identity. (B) UMAP plot of primary cholangiocytes compared to stellate and liver 5 

sinusoidal endothelial cells (LSECs) illustrating overlap between different region 6 
cholangiocytes when compared to a different cell type, which reflects a shared core biliary 7 
signature. (C) UMAP plots illustrating the expression of LSEC and stellate cell markers, 8 

confirming the cells’ identity. (D-E) PAGA connectivity plot (D) and corresponding 9 

connectivity values (E) demonstrating a higher degree of transcriptional similarity between 10 
cholangiocytes from different regions compared to different cell types, confirming the shared 11 
core transcriptional signature of the cells. IHD, IntraHepatic Ducts; CBD, Common Bile Duct; 12 
GB, Gallbladder. 13 

 14 
  15 
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Fig. S3. 1 

Characterization of the transcriptional signature of cholangiocytes from different regions 2 
of the biliary tree. (A) Heatmap of top 100 Differentially Expressed Genes (DEGs) in 3 
cholangiocytes isolated from distinct regions of the biliary tree revealing transcriptional 4 

diversity in the primary biliary epithelium. IHD, IntraHepatic Ducts; CBD, Common Bile Duct; 5 
GB, Gallbladder (Data S1). (B) UMAP plots confirming the expression of previously 6 
described markers in IHDs. (C) Gene Ontology (GO) analysis on DEGs between biliary tree 7 
regions using EnrichR illustrating enrichment of cholangiocyte-to-niche interaction markers, 8 
such as bile processing and modifying genes. (D) Gene Set Enrichment Analyses on DEGs 9 

between biliary tree regions identifying differences in the expression of YAP target genes, 10 
P<0.001. (E-F) PAGA connectivity plot (E) and corresponding connectivity values (F) 11 
demonstrating a higher degree of transcriptional similarity between adjacent regions of the 12 
biliary tree. Connectivity values illustrated in (E) are multiplied by 100.  13 

14 
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Fig. S4. 1 

Pseudotime analysis of primary cholangiocytes. (A) Cell trajectory in pseudotime using 2 
Monocle; (B) Density plot of pseudo-time coordinates and (C) Gene expression in pseudotime 3 
of representative region markers indicating a gradual transition in transcriptional profile 4 

between cholangiocyte populations from adjacent regions. IHD: Intrahepatic Ducts, CBD: 5 
Common Bile Duct, GB: Gallbladder 6 
  7 
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Fig. S5. 1 

Characterization of cluster stability. (A) Adjusted Rand Index (ARI) and the Adjusted 2 
Mutual Information (AMI) confirming that primary cholangiocytes, organoids, and bile-treated 3 
organoids constitute distinct populations by illustrating a high correspondence between 4 

Louvain clusters and cell type (primary, organoids, bile-treated organoids) annotations 5 
(average value > 0.95 for both measures) vs. poor correspondence between Louvain clusters 6 
and region (intrahepatic ducts, common bile duct, gallbladder) annotations (average value<0.3 7 
for both measures). (B) UMAP plot of Louvain clusters demonstrating poor matching between 8 
regions and clusters. The plot corresponds to the UMAP plot in Fig. 1B illustrating different 9 

regions. (C-D) Clustering trees derived from SC3 clusters by varying the pre-defined number 10 
of clusters k from 1 to 10 (see Methods) for a positive control comprising of stellate cells and 11 
LSECs (C) vs. cholangiocytes from different regions and corresponding cholangiocyte 12 
organoids (D). Cluster stability across different clustering resolutions confirms the presence of 13 
different populations (stellate vs. LSECs) in the positive control (C); while the absence of well-14 

defined cholangiocyte subpopulations in each anatomical region or between organoids from 15 

different regions is demonstrated by the lack of stable clusters in (D). 16 

  17 
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Fig. S6. 3 

Characterization of cholangiocyte organoids from different regions of the biliary tree. (A) 4 
Immunofluorescence and (B) QPCR analysis of cholangiocyte organoids derived from 5 
different regions of the biliary tree demonstrating uniform expression of key biliary markers. 6 

n=4 samples per group; center line, median; box, interquartile range (IQR); whiskers, range; 7 
housekeeping gene, HMBS; #P>0.05#; scale bars, 50μm. (C-D) Organoids from different 8 

regions demonstrate Alkaline Phosphatase (ALP) (C) and GGT (Gamma-glutamyltransferase) 9 

(D) function. Scale bars, 100μm. (E) Growth curves illustrating comparable expansion 10 

potential between organoids from different regions. #, P>0.05. IHD, IntraHepatic Ducts; CBD, 11 
Common Bile Duct; GB, Gallbladder; ORG, Organoids; Primary, Primary CBD 12 
cholangiocytes. 13 
 14 
  15 
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Fig. S7. 2 

Single-cell RNA sequencing characterization of cholangiocyte organoids from different 3 
regions of the biliary tree. (A) PCA (unregressed, 24.8%; cell cycle regression, 21.8% of 4 

variance) and (B) UMAP representation demonstrating overlap in the transcriptional profile of 5 
different region organoids before and after cell cycle regression, confirming that cell cycle 6 
genes are not responsible for these similarities. (C) UMAP plot demonstrating that organoids 7 

and primary cholangiocytes irrespective of region occupy adjacent and overlapping spaces 8 
when compared to different cell types, illustrating a shared cholangiocyte transcriptional 9 
signature between biliary cells in vivo and in vitro. (D) PAGA connectivity plot demonstrating 10 
a higher degree of transcriptional similarity between cholangiocytes in vivo (PRI, Primary) and 11 

in vitro (ORG, organoids) compared to different cell types, confirming the shared core 12 
transcriptional signature of the cells. Respective connectivity values multiplied by 100 are 13 
illustrated on the plot. IHD, IntraHepatic Ducts; CBD, Common Bile Duct; GB, Gallbladder; 14 

LSECs, Liver Sinusoidal Endothelial Cells. (E) UMAP representation following regression of 15 
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cell cycle genes illustrating that the similarities between cholangiocyte organoids are preserved 1 

despite cell-cycle regression and therefore they are not attributable to a common ‘proliferation’ 2 
signature. (F) UMAP representation of cells co-expressing somatic stem cell markers 3 
(normalized expression>1), illustrating that similarities between organoids are not attributable 4 

to a common ‘stem cell’ signature. (G) UMAP representation of normalized gene expression 5 
values showing that organoids lose differences in the expression of region marks in culture. 6 
  7 
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Fig. S8. 4 

Gene ontology (GO) analyses on cholangiocyte organoids. (A-B) GO analysis on 5 

differentially expressed genes between primary cholangiocytes and organoids using EnrichR 6 
demonstrating that genes upregulated in primary tissue (A) are related to cholangiocyte-to-7 
niche interaction, such as bile processing genes; while genes upregulated in organoids (B) 8 
reflect adaptation to cell culture conditions such as insulin, pyruvate and cytokine processing 9 

genes. (C) Gene Set Enrichment Analyses on DEGs between primary cells and organoids 10 
identifying differences in the expression of bile acid processing genes, P= 0.035. IHD, 11 
IntraHepatic Ducts; CBD, Common Bile Duct; GB, Gallbladder; ORG, Organoids. 12 
 13 
 14 

  15 
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Fig. S9. 2 

Characterization of bile-treated organoids. (A) PCA analysis (16.8% of variance) showing 3 
overlap between organoids, primary cholangiocytes and bile-treated organoids irrespective of 4 

region suggesting a shared core transcriptional profile between all cells. (B) PAGA 5 
connectivity plot demonstrating that bile-treated organoids (BTO) shift their transcriptional 6 
profile towards primary gallbladder cholangiocytes. (C) Connectivity values corresponding to 7 
the PAGA connectivity plot in panel (B) IHD, IntraHepatic Ducts; CBD, Common Bile Duct; 8 
GB, Gallbladder; ORG, Organoids; BTO, Bile-treated organoids; PRI, Primary. (D-E) GSEA 9 

(D) and GO analysis using EnrichR (E) on differentially expressed genes in organoids before 10 
and after treatment with bile showing enrichment in bile processing genes and in particular bile 11 
acid nuclear receptors and their downstream targets. P=0.012. (F) UMAP representation of 12 
normalized gene expression values illustrating upregulation of gallbladder markers and bile 13 
acid downstream targets following treatment of organoids with gallbladder bile. 14 

 15 
  16 
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Fig. S10. 1 

Gallbladder organoids rescue an acute cholangiopathy mouse model following 2 
transplantation. (A) Weight curve of animals treated with MDA (not transplanted) vs. animals 3 
injected with organoids following toxin treatment, demonstrating that injected animals recover 4 

and gain weight; n=5 animals in each arm. (B) Serum biochemistry demonstrating resolution 5 
of cholestasis following organoid injection; *P<0.05, #P>0.05, Kruskal-Wallis test. (C) 6 
Immunofluorescence images of MDA treated animals not transplanted with cells (toxin 7 
injection) vs. untreated controls (no injection) illustrating biliary injury following MDA 8 
administration. The images are complementary to Fig. 3D. (D) Histology (Heamatoxylin & 9 

Eosin and Elastic Picro Sirius Red) illustrating resolution of cholangiopathy following 10 
organoid injection. Asterisks: Bile ducts.  11 
  12 
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Fig. S11.  2 
Gallbladder organoids regenerate the biliary tree of an acute cholangiopathy mouse 3 
model following transplantation. (A) Magnetic Resonance Cholangiopancreatography 4 

(MRCP) demonstrating biliary injury with loss of bile duct signal (white), immediately after 5 
toxin injection. The white dashed line outlines the liver margins. The image is complementary 6 

to Fig. 3C. Scale bars, 5mm. (B) 3D reconstruction of MRCP images demonstrating biliary 7 
injury with loss of bile duct signal in MDA-treated animals receiving carrier (not transplanted); 8 
vs. duct reconstruction in MDA-treated animals receiving organoid injections; vs. healthy 9 

animals. Scale bars, 5mm. (C) Quantification of bile duct signal on MRCP normalized over 10 
total liver volume in not transplanted vs. transplanted vs. healthy animals, demonstrating 11 

resolution of cholangiopathy following organoid injection; #, P>0.05; *, P<0.05; **, P<0.01; 12 
one-way ANOVA.  13 
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Fig. S12.  1 

Gallbladder organoids regenerate the biliary epithelium of an acute cholangiopathy 2 
mouse model following transplantation. (A-B) Immunofluorescence analysis demonstrating 3 
engraftment, expression of key biliary markers, loss of gallbladder markers, expression of 4 

intrahepatic markers, absence of markers of other hepatic lineages (A); and expression of 5 
human specific markers, proliferation markers and active YAP (B) in human Red Fluorescent 6 
Protein (RFP) expressing cells following transplantation in immunocompromised mice with 7 
cholangiopathy. Scale bars; (A), 50μm; (B), 50μm (yellow), 100μm (white). The images are 8 
complementary to Fig. 3. (C) Quantification of human gallbladder-derived RFP-expressing 9 

cells in the bile ducts of transplanted vs. not transplanted animals; ** P<0.01; Mann-Whitney 10 
test. The data corresponds to 5 different animals and 3 random sections per animal. Each 11 
section is represented by a data point, while each animal is represented by a different symbol. 12 
(D-E) Quantification of the ratio of cells expressing proliferation markers (Ki67, D) and YAP 13 
downstream targets (CYR61, E) in ducts regenerated from engrafted human RFP-expressing 14 

cells vs. native mouse bile ducts in the same animals; # P>0.05; Mann-Whitney test.  15 

  16 
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Fig. S13.  2 

Primary human cholangiocytes and mesenchymal stem cells fail to rescue mice with acute 3 
cholangiopathy following transplantation. (A) Kaplan-Meier curve of mice with MDA-4 

induced cholangiopathy receiving directly isolated human primary gallbladder cholangiocytes 5 
and human mesenchymal stem cells (MSCs) vs. carrier medium (carrier) demonstrating no 6 
statistically significant difference in survival between the three groups; P>0.05, log-rank test. 7 

(B) Serum biochemistry at the end of the experiment demonstrating persistent cholestasis in 8 

animals receiving primary gallbladder cholangiocytes, MSCs or carrier medium compared to 9 
healthy controls; *P<0.05, ***P<0.001, #P>0.05, one-way ANOVA. (C) Staining for human 10 
markers following cell transplantation reveals lack of engraftment of MSCs; while primary 11 

gallbladder cholangiocytes exhibit low level engraftment, which was not adequate to repair the 12 
damaged bile duct epithelium (white arrowheads). Engrafted primary gallbladder 13 
cholangiocytes lose gallbladder markers and upregulate intrahepatic markers. Scale bars; 14 
white, 100μm; yellow, 10 μm.  15 
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Fig. S14.  2 

Transplantation of human common bile duct organoids in mouse gallbladder. 3 
Immunofluorescence analysis demonstrating expression of gallbladder markers and loss of 4 

common bile duct markers following transplantation of cholangiocyte organoids derived from 5 
human common bile duct in the gallbladder of immunocompromised mice. Scale bars; white, 6 
100μm; yellow, 10μm. 7 

  8 
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Fig. S15. 1 

Administration of gallbladder organoids in human livers receiving Normothermic 2 
Perfusion (NMP). (A) Photograph of a human liver on NMP demonstrating anatomical 3 
landmarks, as well as the bile duct catheter used for administration of the Red Fluorescent 4 

Protein (RFP) expressing organoids. PV, portal vein; IVC, inferior vena cava; HA, hepatic 5 
artery; BD, Bile duct; GB, gallbladder; L, Liver. (B) Fluoroscopic images of peripheral duct 6 
cannulation. The position of the biliary catheters used for the injection of cells or carrier in the 7 
peripheral ducts of liver segments 3 and 5 respectively is shown in the top image. A 8 
cholangiogram of segment 3 following catheter placement, illustrating the peripheral position 9 

of the catheter and the area of distribution of injected the cells is shown in the bottom image. 10 
A magnified and contrast enhanced image is provided in the insert.  Black arrow, sheath; red 11 
arrow, catheter tip; white arrow, cholangiogram. (C) Ultrasound imaging of the injected area 12 
of the liver revealing no duct dilation or any other abnormality at the end of the experiment. 13 
(D) Immunofluorescence analysis demonstrating engraftment, expression of key biliary 14 

markers, loss of gallbladder markers, expression of intrahepatic markers and loss of markers 15 

of other lineages in human Red Fluorescent Protein (RFP) expressing cells following 16 

transplantation in NMP human livers. Scale bars, 50μm. The images are complementary to Fig. 17 
4. 18 
  19 
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 1 
Fig. S16 2 
Engraftment of gallbladder organoids in human livers receiving Normothermic 3 
Perfusion (NMP). (A) Immunofluorescence analysis demonstrating engraftment of human 4 

Red Fluorescent Protein (RFP) expressing cells following transplantation in NMP human 5 
livers. Scale bars, 100μm. The images are complementary to Fig. 4, S15. (B) Quantification of 6 
gallbladder-derived RFP-expressing cells in injected vs. not injected human bile ducts; **** 7 

P<0.0001, Mann-Whitney test. The data corresponds to 3 different livers and 5 random sections 8 
per liver. Each section is represented by a data point, while each organ is represented by a 9 

different symbol. 10 
  11 
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Table S1. 1 

Table of the number of animals at risk corresponding to the Kaplan-Meier curve in Fig. 3B. 2 
 3 
 4 

  Number of animals at 
risk 

Days Organoids Carrier 

0 5 5 

5 5 5 

8 5 4 

16 5 3 

17 5 2 

18 5 1 

59 5 0 

92 4 0 

 5 
  6 
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Table S2. 1 

Table of antibodies used. 2 
 3 

Antibody Provider 
Catalogue 
number Dilution Species 

Anti-FGF19 Santa Cruz sc-390621 1:100 Mouse 

Anti-FGF19 Abcam ab225942 1:100 Rabbit 

Anti-TFF2 
R&D 
systems MAB4077 1:50 Mouse 

Anti-DCDC2 Santa Cruz sc-166051 1:100 Mouse 

Anti-human albumin 
R&D 
systems MAB1455 1:50 Mouse 

Anti-SOX4 Abcam ab86809 1:50 Rabbit 

Anti-SOX17 
R&D 
systems AF1924 1:100 Goat 

Anti-RFP Abcam ab62341 1:100 Rabbit 

Anti-RFP Rockland  200-101-379 1:200 Goat 

Anti-KRT19 DSHB TROMA III 1:100 Rat 

Anti-KRT19 Abcam ab7754 1:100 Mouse 

Anti-KRT19 Abcam ab52625 1:100 Rabbit 

Anti-KRT7 DAKO GA61961-2 1:100 Mouse 

Anti-KRT7 Abcam ab68459 1:100 Rabbit 

Anti-αSMA DAKO GA61161-2 1:100 Mouse 

HNF1B (c-20) 
SANTA 
CRUZ sc-7411 1:100 Goat 

GAMMA-GLUTAMYL TRANSPEPTIDASE 
(GGT) 

Abcam ab55138 
1:100 Mouse 

CYSTIC FIBROSIS TRANSMEMBRANE 
CONDUCTANCE REGULATOR (CFTR) 

SANTA 
CRUZ sc-10747 1:100 Rabbit 

ALEXA FLUOR DONKEY ANTI-Rabbit 568 A10042 INVITROGEN 1:1000 Donkey 
ALEXA FLUOR DONKEY ANTI-Rabbit 488 A21206 INVITROGEN 1:1000 Donkey 

ALEXA FLUOR DONKEY ANTI-Rabbit 647 A31573 INVITROGEN 1:1000 Donkey 
ALEXA FLUOR DONKEY ANTI-goat 568 A11057 INVITROGEN 1:1000 Donkey 
ALEXA FLUOR DONKEY ANTI-goat 488 A11055 INVITROGEN 1:1000 Donkey 
ALEXA FLUOR DONKEY ANTI-goat 647 A21447 INVITROGEN 1:1000 Donkey 
ALEXA FLUOR DONKEY ANTI-mouse 568 A10037 INVITROGEN 1:1000 Donkey 

ALEXA FLUOR DONKEY ANTI-mouse 488 A21202 INVITROGEN 1:1000 Donkey 
ALEXA FLUOR DONKEY ANTI-mouse 647 A31571 INVITROGEN 1:1000 Donkey 

 4 
  5 
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Table S3 1 

Table of QPCR primers used.  2 
 3 
 4 

Gene  Primer sequence (5’ à 3’)  

HNF1B  F  TCACAGATACCAGCAGCATCAGT  

   R  GGGCATCACCAGGCTTGTA  

PBGD  F  GGAGCCATGTCTGGTAACGG  
 R  CCACGCGAATCACTCTCATCT  

SOX9 F CTCTGGAGACTTCTGAACGAGAG 
 R CCTTGAAGATGGCGTTGGGG 

CK19 F  ACGACCATCCAGGACCTGCGG 
 R  TCCCACTTGGCCCCTCAGCGTA 

CK7 F  GATTGCTGGCCTTCGGGGT 
 R  TCATCACAGAGATATTCACGGCTC 

GGT F  GTGAGAGCAGTTGGCTGTGC 
 R  GTTGAACTCTGCTGTGGGGC 

CFTR F  AGTTGCAGATGAGGTTGGGC 
 R  AAAGAGCTTCACCCTGTCGG 

SOX4 F AGCGACAAGATCCCTTTCATTC 

 R CGTTGCCGGACTTCACCTT 

TFF2 F CCCATAACAGGACGAACTGC 

 R GCACTGATCCGACTCTTGCT 

SOX17 F CGCACGGAATTTGAACAGTA 

 R GGATCAGGGACCTGTCACAC 

FGF19 F ATGCAGGGGCTGCTTCAGTA 

 R AGCCATCTGGGCGGATCT 

 5 

  6 
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Movie S1. 1 

T1 weighted Magnetic Resonance Imaging (MRI) of a control mouse, receiving MDA followed 2 
by injection of carrier medium without organoids in the biliary tree.  3 
 4 

Movie S2. 5 

T2 weighted MRI/ Magnetic Resonance CholangioPancreatography (MRCP) of a control 6 
mouse receiving MDA followed by injection of carrier medium without organoids in the biliary 7 
tree demonstrating the presence of cholangiopathy. The MRCP sequence corresponds to the 8 
reconstructed MRCP image in Fig. 3C (not transplanted panel). 9 

 10 

Movie S3. 11 

T1 weighted Magnetic Resonance Imaging (MRI) of a mouse receiving MDA followed by 12 
injection of organoids in the biliary tree. The images were acquired 90 days after the injection 13 

of organoids demonstrating normal liver anatomy with no formation of tumors. 14 
 15 

Movie S4. 16 

T2 weighted MRI/ Magnetic Resonance CholangioPancreatography (MRCP) of a mouse 17 

receiving MDA followed by injection of organoids in the biliary tree demonstrating resolution 18 
of cholangiopathy. The MRCP sequence corresponds to the reconstructed MRCP image in Fig. 19 
3C (transplanted panel). 20 

 21 
Movie S5 22 

MRI-based 3D reconstruction of the biliary tree of a control mouse receiving MDA followed 23 
by injection of carrier medium without organoids in the biliary tree demonstrating the presence 24 
of cholangiopathy with loss of bile duct signal. The bile ducts were reconstructed from T2 25 

weighted MR images. 26 
 27 

Movie S6 28 

MRI-based 3D reconstruction of the biliary tree of a mouse receiving MDA followed by 29 
injection of organoids in the biliary tree demonstrating resolution of cholangiopathy. The bile 30 
ducts were reconstructed from T2 weighted MR images. 31 
 32 
Movie S7 33 

Z-stack of native and regenerated RFP-expressing bile ducts in the liver of an animal receiving 34 
MDA followed by injection of RFP-expressing human gallbladder organoids in the biliary tree. 35 
KRT19 is shown in green. RFP is shown in red. The movie is complementary to movies S8 36 
and S9. 37 
 38 

Movie S8 39 

3D reconstruction illustrating native and regenerated bile ducts in the liver of an animal 40 

receiving MDA followed by injection of RFP-expressing human gallbladder organoids in the 41 
biliary tree. Native ducts, KRT19 positive/ RFP negative; regenerated ducts, KRT19 positive/ 42 
RFP positive. The bile ducts were reconstructed from the RFP and KRT19 43 
immunofluorescence images used to generate movie S7. KRT19 is shown in green, RFP is 44 
shown in red. The movie is complementary to movies S7 and S9. 45 
 46 
Movie S9 47 
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3D rendering illustrating native and regenerated bile ducts in the liver of an animal receiving 1 

MDA followed by injection of RFP-expressing human gallbladder organoids in the biliary tree. 2 
Native ducts, KRT19 positive/ RFP negative; regenerated ducts, KRT19 positive/ RFP 3 
positive.  The bile ducts were reconstructed from the RFP and KRT19 immunofluorescence 4 

images used to generate movie S7 and S8. KRT19 is shown in green, RFP is shown in red. The 5 
movie is complementary to movies S7 and S8. 6 
 7 

Data S1. (separate file) 8 

Table of differentially expressed genes between different regions of the biliary tree. IHD, 9 

Intrahepatic ducts; CBD, Common Bile Duct; GB, Gallbladder. The table corresponds to genes 10 
with a log2 fold change > 1 and an adjusted P value < 0.001. 11 
 12 

Data S2. (separate file) 13 

Table of differentially expressed genes in pseudotime in primary cholangiocytes with an 14 
adjusted P value<0.001. 15 
 16 

Data S3. (separate file) 17 

Table of differentially expressed genes upregulated in organoids or organoids treated with bile 18 
versus primary cholangiocytes. ORG, organoids; ORGT, Bile treated organoids. The table 19 
corresponds to genes with a log2 fold change > 1 and an adjusted P value < 0.001. 20 
 21 


