
1 
 

An Improved Text Mining Approach to Extract Safety Risk Factors 

from Construction Accident Reports 

XU, N a,b; MA, L c*; Liu, Q d; WANG, L e; Deng, Y f 1 
 2 
a School of Mechanics & Civil Engineering, China University of Mining and Technology, Xuzhou, China 3 
b State Key Laboratory for Geomechanics and Deep Underground Engineering, Xuzhou, China 4 
c School of Bartlett Construction and Project Management, University College London, London, UK 5 
d School of Civil Engineering, Xuzhou University of Technology, Xuzhou, China 6 
e School of Mechanics & Civil Engineering, China University of Mining and Technology, Xuzhou, China 7 
f School of Mechanics & Civil Engineering, China University of Mining and Technology, Xuzhou, China 8 

Abstract 9 

Workplace accidents in construction commonly cause fatal injury and fatality, resulting 10 

in economic loss and negative social impact. Analyzing accident description reports helps 11 

identify typical construction safety risk factors, which then becomes part of the domain 12 

knowledge to guide safety management in the future. Currently, such practice relies on 13 

domain experts' judgment, which is subjective and time-consuming. This paper 14 

developed an improved approach to identify safety risk factors from a volume of 15 

construction accident reports using text mining (TM) technology. A TM framework was 16 

devised, and a workflow for building a tailored domain lexicon was established. To 17 

reduce the impact of report length, information entropy weighted term frequency (𝑇𝐹 −18 

𝐻) was proposed for term-importance evaluation, and an accumulative 𝑇𝐹 − 𝐻  was 19 

proposed for threshold division. A case study of metro construction projects in China was 20 

conducted. A list of 37 safety risk factors was extracted from 221 metro construction 21 

accident reports. The result shows that the proposed 𝑇𝐹 − 𝐻 approach performs well to 22 

extract important factors from accident reports, solving the impact of different report 23 

lengths. Additionally, the obtained risk factors depict a portrait of critical causes 24 

contributing most to metro construction accidents in China. Decision-makers and safety 25 

experts can use these factors and their importance degree while identifying safety factors 26 

for the project to be constructed.  27 
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1. Introduction 30 

Project risk is defined as an uncertain event or condition that, if it occurs, has a positive 31 

or a negative effect on at least one project objective (PMI 2017). In the context of 32 

occupational health and safety, risk is defined as the factor that might cause accidents in 33 

a work environment (Karasan et al. 2018). Safety risk management identifies and controls 34 

the associated risks that may lead to accidents (Dallat et al. 2019), thus, benefits to 35 

minimize the possible losses and damages resulting from work-related, worksite-related, 36 

and worker-related activities (Gul and Ak 2018). As the first step of safety risk 37 

management, the identification of safety risk factors is vital for assessing risk status and 38 

planning mitigation actions (Gul 2018). In the construction industry, safety risk 39 

identification frequently relies on professional estimates to determine the possible factors. 40 

Professionals use their learning-from-past experience, an essential source of domain 41 

knowledge, to identify safety risks.  42 

Experience, as tacit knowledge, embedded in the human mind, is difficult and 43 

costly to obtain. Researchers have used tools, such as brainstorming, Delphi method, 44 

questionnaires, interview, cause-and-effect analysis, literature study and their 45 

combination (Qazi et al. 2016; Soliman 2018; Tembo-Silungwe and Khatleli 2018) to 46 

encapsulate the domain knowledge. These traditional data collection methods usually 47 

need a certain amount of experienced experts and consume extensive time and cost. While 48 

collecting data from a small number of experts may lead to an incomplete and biased risk 49 

checklist.  50 
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Text information, as explicit knowledge, codified and digitized in documents and 51 

reports, is easy to be shared (Nonaka 2008). In the construction industry, accident reports 52 

are used to record the causes, consequences, and the whole process of accidents. 53 

Hundreds of accident reports make a valuable knowledge database. Researchers have 54 

been using conventional descriptive statistics to summarize key safety risk factors from 55 

those reports (Rivas et al. 2011). However, as the information hidden in the reports is 56 

unstructured and unprocessable for computers, manual processing of the reports is time-57 

consuming and error-prone. Therefore, an automatic safety risk identification method is 58 

needed to address the challenge of processing a sizeable textual dataset.  59 

This paper proposed a workflow to use the Text mining (TM) method, referred to 60 

as text data mining, to automatically identify critical safety risk factors hidden in accident 61 

reports. TM can discover valuable information and getting insights hidden in plain texts 62 

(Cheng et al. 2012). Different domains have their unique lexicon. For example, 'Shield' 63 

is known as a type of tunneling boring machine in underground construction; while, it 64 

generally refers to objects to protect a human from dangers. This paper also established a 65 

construction domain-specific lexicon, which plays a vital role in the TM workflow. Many 66 

terms are mentioned in the reports, to achieve more efficient and effective mining result, 67 

they need to be prioritized and reduced to a manageable size. This research proposed a 68 

method to evaluate term importance, which can reduce the impact of report length. Also, 69 

a threshold for identifying the high-frequency terms was defined to extract critical safety 70 

risk factors. 71 

In summary, the core contributions of this research are: 72 

• Devised a TM framework to extract critical risk factors in construction accident 73 

reports. 74 
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• Established a workflow for building a tailored domain lexicon. 75 

• Proposed a novel method to evaluate the importance of terms in accident reports. 76 

The method integrates the Information entropy and term frequency (TF) and thus 77 

can reduce the impact of different report length. 78 

• Proposed a quantified method to define the threshold of high and low frequency 79 

terms. 80 

A case study of accident reports of metro construction projects in China is 81 

presented to illustrate the approach. 82 

2. Literature review 83 

2.1 Safety risk identification learning from past accidents 84 

Accidents that occur, irrespective of the specific domain, have a strikingly similar 85 

trajectory (Dallat et al. 2019). Learning from past accidents has gained inspiration from 86 

research initiatives over the past few years. Simulation and optimization technics for 87 

safety risk assessment have advanced in the past 20 years (Alkaissy et al. 2020), such as 88 

Failure Mode and Effects Analysis (FMEA) (Ilbahar et al. 2018). However, safety risk 89 

identification in those models was limited to experience-based methods (e.g., literature 90 

review, questionnaires, etc.). Various accident causation theories and models were 91 

proposed based on the induction analysis of accidents, such as the Swiss Cheese model, 92 

the Man-Made Disaster Theory, the System-Theoretic Accident Model and Processes 93 

(STAMP), etc. (Yang and Haugen 2018). These theories have highlighted the primary 94 

mechanisms of how risk factors might cause an accident. However, the detailed safety 95 

risk factors were not clarified in the accident causation models.  96 
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Concerning safety risk factors, two traditional approaches have been used to 97 

identify them from past accidents. The first is a statistical analysis of accident data, using 98 

a pie chart, histogram, etc. For example, XU (2016) stated the time tendency and causes 99 

based on a statistical analysis of 167 metro construction accident reports; however, only 100 

one primary cause was considered per accident due to the sizeable manual work. 101 

Similarly, Zhou C et al. (2017) revealed temporal characters and dynamics of interevent 102 

time series of near-miss accidents by mapping time series into a complex network. This 103 

approach's predominant work is to transform the accident information into structured data 104 

by manual analysis or using structured data directly. Thus, it performs well at revealing 105 

the whole occurrence laws of workplace accidents (e.g., occurrence time, location, 106 

number of fatalities, accident types), but poor at extracting accident causes.  107 

The second is a retrospective analysis of one or several accidents manually. For 108 

instance, Zhou Z and Irizarry (2016) conducted a detailed cause analysis of the foundation 109 

pit collapse accident in Hangzhou Metro. This approach provides a delicate analysis of 110 

causes but has sample limitations.  111 

Through a preliminary literature review, it has been found that study on safety 112 

risk identification has little progress since the last decades. Dedicated research on 113 

identifying safety risk factors using the intensive resource is limited; this, in turn, 114 

conditions the risk evaluation and response. To address this, content analysis was 115 

proposed to seek out more productive results for safety risk identification from intensive 116 

accident cases (Esmaeili et al. 2015a, 2015b). Also, statistical analysis was utilized to 117 

reveal the accident causes and their characteristics based on a big database. For example, 118 

BİLİR and GÜRCANLI (2018) calculated the most frequently occurred accident types 119 

and construction jobs from 623 construction accidents, and provided the accident 120 
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probabilities using activity-based accident rates and exposure values. KALE and Baradan 121 

(2020) developed a model to identify the factors that contribute to severity using a hybrid 122 

statistic technic, i.e., descriptive univariate frequency analysis, cross-tabulation, binary 123 

logistic regression. However, these methods still rely on expert’s analysis to extract risk 124 

factors from texts. People use different expressions to describe similar factors. Factors 125 

may be ignored, misclassified, or merged by mistake. Therefore, the text mining method 126 

is proposed in this study to extract risk factors objectively from a large dataset of accident 127 

cases. 128 

2.2 Risk identification using a text mining approach 129 

TM refers to the process of extracting interesting, non-trivial information and knowledge 130 

from unstructured text documents that are not previously known and not easy to be 131 

revealed (Miner 2012). Eighty percent of construction data is stored in the text format 132 

(Ur-Rahman and Harding 2012). As for risk identification, studies have been conducted 133 

to extract useful information from text documents, such as contract risks from contract 134 

conditions (Siu et al. 2018), extracting socio-technical risks from licensee event reports 135 

of nuclear power plants (Pence et al. 2020). However, TM has rarely been used to identify 136 

safety risk factors from construction accident reports. 137 

TM's primary step is to convert unstructured and semi-structured text to a 138 

structured format for further analysis (Jeehee and June-Seong 2017). Typical approaches 139 

include adaptive lexicon and natural language processing (NLP). The adaptive 140 

lexicon/dictionary method uses words predefined in a lexicon/dictionary to structuralize 141 

text. NLP transforms text into a semi-structured format with tags according to the 142 

sentence structure so that computers can understand. Machine-learning algorithms are 143 

generally used to improve the processing's effectiveness (e.g., artificial neural network) 144 
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(Ghosh and Gunning 2019). However, NLP methods usually require a large volume of 145 

domain-specific documents for training computers (Moon et al. 2019).  146 

Figure 1 shows that structured data can be used in different ways to correspond 147 

with the aims of analysis. Researchers have used clustering and classification methods to 148 

categorize safety risks and link extraction methods to identify risk factors' inter-149 

relationship. For example, Zhang F et al. (2019) proposed five baseline models: support 150 

vector machine (SVM), linear regression (LR), K-nearest neighbor (KNN), decision tree 151 

(DT), Naïve Bayes (NB), and an ensemble model to classify the causes of the accidents 152 

using the data from Occupational Safety and Health Administration (OSHA). Siu et al. 153 

(2018) proposed a classification approach to categorize the ordinary risks of the New 154 

Engineering Contract (NEC) projects to identify the critical risk factors. This paper only 155 

discusses the concept extraction methods, which aim to extract a list of risk factors - 156 

individual terms that already exist in the source documents - from the text. 157 
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  158 

Figure 1. Risk identification using TM 159 

Concept extraction methods (also called keyword extraction technology) mainly 160 

include the language-based and statistic-based approaches. The language-based approach 161 

uses semantic meanings and the rules of language structure to extract key terms. For 162 

example, Zhong et al. (2020) identified implied potential hazards comparing the 163 

annotations of construction site images with the specifications using semantic net and 164 

ontologies. This research uses a statistical approach to extract safety risk factors.  165 

The statistical approach uses numeric statistics, such as TF, document frequency 166 

(DF), and term frequency-inverse document frequency (TF-IDF), to identify documents' 167 

features. For instance, Joon-Soo and Byung-Soo (2018) collected 10,798 internet news 168 
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articles as a corpus; the most frequently occurred words (i.e., TF value) on fire-accidents 169 

were considered the most critical factors. Zhanglu et al. (2017) analyzed 41,791 hidden 170 

danger records of a coal mining enterprise, using a word cloud and TF to extract coal 171 

mine safety risks. Li et al. (2018) established a lexicon and used document frequency (i.e., 172 

DF value) and identified 15 high occurred safety risk factors and 3 participants from 156 173 

accident reports. In Jeehee and June-Seong (2017), TF-IDF was utilized to prioritize the 174 

words from the prebid request for information (RFI) documents, and the mean value of 175 

TF-IDF was used to define the threshold of high-frequency terms. The detailed analysis 176 

will be provided in section 3.3. 177 

Although some studies have made efforts to extract specific factors using high-178 

frequency words from the text document, the method still needs to be improved according 179 

to different corpus and extracting aims. Also, the threshold for identifying critical factors, 180 

i.e., high-frequency terms, was commonly defined subjectively and needed to be 181 

improved.  182 

3. Methodology 183 

Figure 2 shows the framework of extracting safety risk factors from construction accident 184 

reports.  185 
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 186 

Figure 2 Framework for safety risk identification using TM approach 187 

3.1 Text preprocessing 188 

This step aims to clean and normalize the corpus, i.e., text-type construction accident 189 

reports. Two sub-steps, data screening and spelling normalization, are designed. 190 

Stemming, lemmatization, and case normalization are not needed for Chinese text 191 

preprocessing, making the text preprocessing different from the English text.  192 
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(2) Spelling normalization. Unify misspellings, and spelling variations occurred in 195 

the corpus.  196 

3.2 Text segmentation using a tailored domain lexicon  197 

This step breaks the corpus into discrete and linguistically-meaningful terms (tokens) by 198 

locating the term boundaries, the points where one term ends and another begins (Miner 199 

2012). Due to the diversities of human language, the descriptions of safety risk factors 200 

are of significant discrepancies. For example, 'rain' and 'storm' are probably used to 201 

describe similar weather conditions in the text; 'building firm' and 'construction company' 202 

both mean the 'contractor'. Therefore, to perform a better text segmentation, the 203 

dominating work is to construct a tailored domain lexicon.  204 

Technically, the existing lexicon construction methods are mainly divided into corpus-205 

based, knowledge-based methods, and their combination (Feng et al. 2018). Many 206 

domain words in the construction industry are specific phrases composed of common 207 

words, such as ‘construction management plan’ and ‘gantry crane.' It would be much 208 

easier to build the domain lexicon based on an existing common lexicon. Therefore, a 209 

combined method integrating corpus-based (use common lexicon to establish original 210 

domain lexicon) and knowledge-based (use experts' manual analysis to update domain 211 

lexicon) is designed in this study. Figure 3 shows the workflow of domain lexicon 212 

building, including lexicon establishment and lexicon updating. 213 
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  214 

Figure 3. The workflow of domain lexicon building 215 
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(1)  Domain-specific wordlist: Although most of the common words in the 218 
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Also, a set of common words may compose a phrase with specific meanings, such 222 
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specific phrasal words need to be identified as one term instead of breaking them 224 

into meaningless single words. 225 
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(3) Stopword list: Stopword refers to the word which appears in nearly every 229 

document while meaningless, such as this and there. Generally, they have only a 230 

grammatical function. These meaningless words need to be removed in order to 231 

highlight the effect of information extraction.  232 

3.2.2 Domain lexicon updating 233 

A computer processes 85% of the reports using a common lexicon while domain experts 234 

assess the rest for cross-checking. The two sets of results are compared. New words or 235 

phrases that are identified by experts but missed by the computer will be added to the 236 

lexicon. The computer gives preference to phrases. For example, if a new phrase 237 

'construction management plan' is added to the domain lexicon, the whole phrase will be 238 

extracted when they occur together. The single word 'construction', 'management' and 239 

'plan' will be extracted separately only when they occur alone. Therefore, the critical work 240 

of the domain lexicon building is to update new specific-matter words and phrases. The 241 

lexicon building process runs iteratively until the error rate is acceptable. The calculation 242 

of the error rate is shown in Eq. (1), 243 

𝐸 = |"̅|
|"	⋃&|

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	（1）	244 

where 𝐴 refers to the set of terms tokenized by computer, 𝐵	 indicates the union set of 245 

terms identified by the domain experts, and |𝐴	⋃𝐵| means the number of elements in the 246 

union of 𝐴 and 𝐵; |�̅�| means the number of missing terms identified by experts but 247 

missed by computer. For instance, if 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝐵 = {𝑏, 𝑑, 𝑒, 𝑓}, then 𝐴( = {𝑒, 𝑓}, 248 

and 𝐸 = 2/6 = 33%. The error rate is defined as 𝐸 = 20%, referring to Esmaeili et al. 249 

(2015a, 2015b) and Li et al. (2018).  250 
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3.2.3 Generating the term-document matrix 251 

The segmented terms are vectorized into a sparse two-dimensional matrix, i.e., term-252 

document matrix (TDM). TDM is a structured representation of the corpus, as shown in 253 

Eq. (2). Each column represents a term 𝑡! , 𝑖 ∈ 𝑚; each row represents a document 𝐷" , 𝑗 ∈254 

𝑛; each cell's value represents how many times a term appears in a document called TF 255 

(𝑡𝑓!,"). After that, the unstructured accident reports are converted to structured numerical 256 

data for further analysis. 257 

𝑇𝐷𝑀 =

⎣
⎢
⎢
⎢
⎡
𝑡𝑓',' 𝑡𝑓),' 𝑡𝑓*,' ⋯ 𝑡𝑓+,'
𝑡𝑓',) 𝑡𝑓),) 𝑡𝑓*,) ⋯ 𝑡𝑓+,)
𝑡𝑓*,' 𝑡𝑓*,) 𝑡𝑓*,* ⋯ 𝑡𝑓+,*
⋯ ⋯ ⋯ ⋯ ⋯
𝑡𝑓+,' 𝑡𝑓+,) 𝑡𝑓+,* ⋯ 𝑡𝑓+,,⎦

⎥
⎥
⎥
⎤

                  (2) 258 

3.3 Calculating the information entropy weighted term frequency (TF-H) 259 

3.3.1 Traditional term-importance evaluation 260 

The frequency of a term reflects its prominence to each report, i.e., the importance of a 261 

risk factor to each occurred accident. 𝑇𝐹, 𝐷𝐹, and 𝑇𝐹 − 𝐼𝐷𝐹 are the most widely used 262 

methods to evaluate term importance. Table 1 displays the comparison of the three 263 

methods.  264 

Table 1. Traditional term-importance evaluation methods 265 

Methods Descriptions Advantages Limitations 

𝑇𝐹!," 
The frequency number 
of the term 𝑡! appears 
in document 𝐷". 

Reflects the total 
frequency count of 
a term. 

Largely impacted 
by the length of 
reports. 

𝐷   

The frequency number 
of documents that term 
𝑡! appears in the 
corpus. 

Eliminates the 
impact of report 
length. 

Lost the data of 
term frequency in 
one document. 
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𝑇𝐹 − 𝐼𝐷𝐹 
The comprehensive 
impacts of 𝑇𝐹  and 
inverse 𝐷𝐹. 

Consider the 
positive impact of 
𝑇𝐹  and the 
negative impact of 
𝐷𝐹. 

Not applicable to 
the occurrence 
features of safety 
risk factors. 

Usually, the greater a term's 𝑇𝐹 value is, the greater the term contributes to this 266 

corpus. However, it cannot be said that safety risk factor A is more critical to accident I 267 

than accident II if the 𝑇𝐹 of term A in report I is higher than the 𝑇𝐹 of term A in report 268 

II. Some exceptions could be that report I is longer and more detailed; hence, A is 269 

mentioned more times. The impact of report length should be reduced or eliminated. 270 

Some studies used 𝐷𝐹 , meaning the number of documents containing the term, to 271 

represent the importance of risk factors (Li et al. 2018). However, the 𝐷𝐹 method leaves 272 

out the occurrence frequency that a term appears in the document. To address this, 𝑇𝐹 −273 

𝐼𝐷𝐹 was proposed to balance the impact of 𝑇𝐹 and 𝐷𝐹. Inverse Document Frequency 274 

(IDF) means that the more frequently a term appears in all documents, such as ‘is’, the 275 

less it should weigh in a search (Zhang 2019). The calculation is shown in Eq. (3), 276 

  𝑇𝐹 − 𝐼𝐷𝐹 = 𝑡𝑓-,. × 𝑖𝑑𝑓-                  (3) 277 

where 𝑖𝑑𝑓! = log |%|
%&!

, |𝐷|  is the total number of documents, 𝐷𝐹!  is the document 278 

frequency containing the term 𝑡!. 𝑇𝐹 − 𝐼𝐷𝐹 value is in direct proportion to 𝑇𝐹 and 279 

inversely proportional to 𝐷𝐹. Therefore, 𝑇𝐹 − 𝐼𝐷𝐹 is often used to evaluate the critical 280 

feature of a document, i.e., a term can represent a document in the corpus in order to 281 

cluster the documents (Singh et al. 2019). 282 

However, for the occurrence of safety risk factors, the more uniformly the term 283 

distributed in the accident report corpus, the more frequently the safety risk factor appears 284 

in different accidents, and more important should the factors be. None of the above 285 
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methods has measured the document distribution of terms, which is very important for 286 

safety risk factors. Therefore, the priority of risk factors should be in direct proportion to 287 

the TF and the uniform distribution in the corpus.  288 

3.3.2 Improved term-importance evaluation: TF-H 289 

This research proposes 𝑇𝐹 − 𝐻 to evaluate the importance of a term to a document in 290 

the corpus. Information entropy (𝐻), also known as Shannon entropy, is used to weigh 291 

the disorder's extent and its effectiveness in system information (Mohsen and Fereshteh 292 

2017). Applied in risk evaluation techniques, the smaller the entropy value, the smaller 293 

the degree of dispersion of the index, and the greater the amount of information it carries, 294 

so the weight of this index in the system safety analysis is greater (Liu C et al. 2020). 295 

Therefore, the concept of information entropy reflects the occurring characteristic of risk 296 

factors. According to the information entropy formula, i.e., 𝐻 = −∑𝑝!𝑙𝑜𝑔𝑝!, the 𝑇𝐹 −297 

𝐻 is defined as Eq. (4), 298 

𝑇𝐹 − 𝐻(𝑡-) = 𝑇𝐹(𝑡-) × 𝐻(𝑡-) = −𝑡𝑓-,. ×∑𝑝-𝑙𝑜𝑔𝑝-               (4) 299 

where 𝑝!  refers to the probability distribution of term 𝑡! , 𝑝! =
'(!,#

∑ '(!,#$
#%&

; 𝐻(𝑡!) 300 

characterizes the distribution of term 𝑡! in the accident reports.  301 

The proposed 𝑇𝐹 − 𝐻  method integrates the overall impacts of 𝑇𝐹  and the 302 

distribution of the term. With the information entropy of term distribution, the impact of 303 

report length can be largely reduced. Thus, compared to the other three traditional 304 

methods, 𝑡ℎ𝑒	𝑇𝐹 − 𝐻  method is more applicable for extracting essential terms 305 

representing safety risk factors.  306 
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3.4 Selecting high-frequency terms 307 

To capture the critical safety risk factors, redundant data shall be filtered out. As the 308 

boundary between high and low-frequency terms, the adaptive threshold shall be well set. 309 

There are no given rules to define high-frequency words (Pang and Zhang 2019). One of 310 

the most popular methods is Donohue's formula 𝑇 = (−1 + P1 + 8 × 𝐼*)/2 (Donohue 311 

1973), where 𝑇 indicates the high-frequency word threshold; 𝐼* indicates the number 312 

of words that have only appeared once. 313 

The 𝑇𝐹, 𝐷𝐹, or 𝑇𝐷 − 𝐼𝐷𝐹 was generally used to evaluate the term importance 314 

(YiShan et al. 2017). For example, Joon-Soo and Byung-Soo (2018) used cumulative 𝑇𝐹 315 

to define the threshold, and terms less than 90% was removed. Pang and Zhang (2019) 316 

defined the keywords that appeared more than four times as high-frequency keywords. In 317 

this study, the accumulative 𝑇𝐹 − 𝐻 value is proffered to define the high-frequency 318 

term threshold based on the classical ABC grouping method. ABC method classifies the 319 

objects with accumulative values (Hasani and Mokhtari 2019).  320 

Figure 4 shows the division of high-frequency terms based on the accumulative 321 

𝑇𝐹 − 𝐻. The abscissa represents the segmented terms. The left ordinate represents the 322 

value of 𝑇𝐹 − 𝐻, while the right ordinate represents the accumulative 𝑇𝐹 − 𝐻 value. 323 

In order to achieve the accumulative 𝑇𝐹 − 𝐻 value, we need to convert the 𝑇𝐹 − 𝐻 324 

value into the proportion form and then sort descending and obtain the accumulative sum. 325 

The terms in the interval of 0% to 90% are considered high-frequency terms (A-class), 326 

the rest as low-frequency terms.  327 
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 328 

Figure 4. High-frequency term threshold based on accumulative TF-H value 329 

(1) High-frequency terms: With the increase of the number of segmented terms, the 330 

𝑇𝐹 − 𝐻 curve suddenly drops, and the accumulative 𝑇𝐹 − 𝐻 curve increases 331 

rapidly, indicating that the number of high-frequency terms is small, but the 332 

contribution to the overall corpus is significant, accounting for 90%; 333 

(2) Low-frequency terms: With the increase of the number of segmented terms, the 334 

𝑇𝐹 − 𝐻 curve slowly decreases, and the accumulative 𝑇𝐹 − 𝐻 curve increases 335 

slowly, indicating that the number of low-frequency terms is enormous, but the 336 

contribution to the overall corpus is small, only 10%. 337 

3.5 Knowledge discovery 338 

Contextualize the high-frequency terms in the accident reports and select the terms that 339 

indicate the safety risk factors (represented as 𝑆!). Experts' knowledge is needed to match 340 

the high-frequency terms and safety risk factors to find valuable information.  341 

4. Case study 342 

Metro construction projects are subject to high safety risks due to the unpredictable 343 

geological conditions, complex construction methods, and surrounding construction 344 
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conditions (Ding L and Zhou 2013). An incident can cause significant economic loss and 345 

massive casualties. For example, a tunnel collapse accident in the Foshan metro 346 

construction project in 2018 caused eleven deaths, one missing, and eight severely injured 347 

(MOHURD 2018; Zhou X-H et al. 2019). The process of risk identification is complex 348 

and large amounts of experts and financial resources are needed because metro 349 

construction is large-scale and specific-domain undertakings (Zhang S et al. 2019). A risk 350 

factor check list is helpful for the practitioners to identify .This study aims to find typical 351 

safety risk factors in metro construction projects based on hundreds of accident reports 352 

using the proposed framework shown in Figure 2. 353 

4.1 Extracting safety risk factors using TF-H 354 

Because metro construction has great social attention, there is much short news reporting 355 

the possible causes and injuries on websites. However, these reports are poor-quality, 356 

because they are released by non-professionals and contain little information. Therefore, 357 

we use the accident report that 1) is published by government authorities or written by 358 

professionals, and 2) has a plentiful description of the accident. Finally, two hundred 359 

twenty-one accident reports of metro construction projects were chosen as the corpus. 360 

They were acquired from: 1) websites of national and local administration of work safety, 361 

such as Ministry of Housing and Urban Rural Development of the People's Republic of 362 

China (MOHURD) and  the Ministry of Emergency Management of the People's 363 

Republic of China, and 2) published papers and books for practitioners, and 3) and 364 

internal documents from metro construction enterprises. 68, 90 and 63 reports were 365 

collected from websites, publications and enterprises, accounting for 31%, 41%, and 366 

28%. Table 2 shows the profile of data sources, and Figure 5 plots the geographic 367 

distribution of cities that accidents occurred. The accidents cover 27 cities (up to 80% of 368 
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cities that run metro lines in China) from 1999 to 2017. The geographic distribution is 369 

concentrated in the east of China, because the eastern area is more developed. All the 370 

accident reports were stored as text files in a file folder for further processing.  371 

Table 2. Profile of data sources 372 

No. City 
 Data Sources  

Sum 
Websites Publications Enterprises  

1 Guangzhou 16 10 7 33 

2 Shenzhen 13 7 10 30 

3 Beijing 7 15 5 27 

4 Shanghai 3 10 11 24 

5 Wuhan 5 16 3 24 

6 Nanjing 8 5 1 14 

7 Qingdao 2 5 4 11 

8 Xuzhou   9 9 

9 Xi’an  1 5 6 

10 Hangzhou 4 2  6 

11 Dalian 1 3 1 5 

12 Harbin 2 2 1 5 

13 Fuzhou 1 3 1 5 

14 Chengdu 1 1 1 3 

15 Chongqing  3  3 

16 Nanning 2  1 3 

17 Ningbo 1  1 2 

18 Kunming 1 1  2 

19 Changchun   1 1 

20 Shenyang  1  1 

21 Tianjin 1   1 

22 Xiamen  1  1 
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23 Zhengzhou  1  1 

24 Wuxi  1  1 

25 Lanzhou   1 1 

26 Dongguan  1  1 

27 Nanchang  1  1 

SUM 68(31%) 90(41%) 63(28%) 221 

 373 

Figure 5. Geographic distribution of cities that accident occurred 374 

Domain-specific wordlist was established based on the Dictionary of civil engineering 375 

downloaded from dictionaries in the Google Input Method and Baidu Input Method. Some 376 

words were defined with new meanings used in the specific domain, such as shield, 377 

drainage, and new phrases were added, such as tunnel boring machine and its 378 

abbreviation (TBM), soil nailing support, etc. Synonyms wordlist was established based 379 

on the Dictionary of synonyms words (extended version) developed by the Harbin 380 

Institute of Technology. For example, 'support system', 'support structure', 'bracing 381 
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system', and 'bracing structure' were all represented by 'support system'. For stopwords, 382 

most of them can be found in the Dictionary of Modern Chinese Function Words 383 

downloaded from Google Input Method and Baidu Input Method. Besides, words that 384 

repeatedly appear in all reports but have no special meaning for analysis, such as metro, 385 

accident, cause, process, and adopt, were also added to the stopword list. One hundred 386 

eighty-eight reports (85% of the corpus) were processed by the computer, and the 387 

extracted tokens were composed of the set 𝐴 in Eq. (1). Three experienced construction 388 

professionals conducted the manual tokenization to build the domain lexicon according 389 

to Figure 3. Table 3 shows the profile of the professionals. Thirty-three reports (15% of 390 

the corpus) were analyzed by them to extract the tokens, respectively. An in-depth 391 

discussion was conducted to reach an agreement on different tokens. Finally, the 392 

identified tokens composed the set 𝐵 in Eq. (1). Then, the error rate 𝐸 was calculated 393 

according to Eq. (1). The repeating process was carried out in four rounds, i.e., the terms 394 

in the domain lexicon were updated four times until the error was acceptable.  395 

Table 3. Profile of the construction professionals 396 

Code  Working years Job title Educational 
background Department 

A 20 Professor Ph.D. University 

B 13 Project manager Bachelor Construction enterprise 

C 25 Engineer Master Construction enterprise 

Two thousand nine hundred ninety terms were obtained after text segmentation 397 

using the tailored domain lexicon, forming a TDM according to Eq. (2). The size of the 398 

full matrix is 221 by 2,990. Table 4 shows part of the TDM. For example, the segmented 399 

term 𝑇* appears once in the report document 𝐷+, so 𝑡𝑓*,+ is 1;  𝑡𝑓,,- = 21 indicates 400 

that the term 𝑇, appears 21 times in the report document 𝐷-. 401 
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Table 4. Term-document matrix 402 

𝑡𝑓',(  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 … T2,990 

D1 0  0  0  0  0  0  0  0  0  0  … 0  

D2 1  0  0  0  2  0  0  0  0  0  … 0  

D3 2  1  0  0  0  0  0  1  0  0  … 0  

D4 2  1  0  0  0  0  0  1  0  0  … 0  

D5 0  0  0  0  0  0  0  0  0  0  … 2  

D6 2  2  1  0  0  0  0  0  21  0  … 0  

D7 0  0  0  4  0  0  0  0  0  1  … 0  

D8 0  0  0  0  0  0  0  0  0  1  … 4  

D9 4  1  0  0  0  0  0  0  0  1  … 0  

D10 1  1  1  1  0  0  0  0  1  2  … 0  

… … … … … … … … … … … … … 

D221 0  0  1  0  0  0  0 0 0 4 … 0 

According to Eq. (4), the value of 𝑇𝐹 − 𝐻 was achieved. Subsequently, 253 403 

high-frequency terms met the threshold (accumulative 𝑇𝐹 − 𝐻 ≥ 90% ) and were 404 

extracted. Table 5 shows the part of the high-frequency terms. The characteristics of 405 

construction workplace accidents are briefly highlighted. For example, 'foundation pit' 406 

and 'interval tunnels' indicate the section of metro construction; 'collapse' refers to the 407 

most frequent type of accidents (XU 2016); ‘construction enterprises’ implies the primary 408 

responsible party of workplace accidents. Finally, the high-frequency terms were traced 409 

back to the context in the reports; thirty-seven safety risk factors (𝑆!) were summarised, 410 

as shown in Table 6. The entire safety risk factors can be found in Table 7. 411 

Table 5. High-frequency terms (part) 412 

No. Terms TF-H No. Terms TF-H No. Terms TF-
H 

1 safety 989  11 personnel 305  21 underground 
hydrology 

156 

2 foundation pit 603  12 Inspection 295  22 facilities 152 
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No. Terms TF-H No. Terms TF-H No. Terms TF-
H 

3 collapse 408  13 process 274 23 monitor 141  

4 support system 529  14 geological 
structure 257 24 construction 

technology 134  

5 management 521  15 loose soil 236  25 operation 133  

6 safety 
consciousness 470 16 construction 

personnel 204  26 Safety 
guarding 

129 

7 operation 
against rules 421  17 rain sewer pipe 196 27 supervision 126 

8 work 373 18 safety management 
system 195  28 water and 

mud inrush 
124 

9 construction 
enterprises 336  19 construction 

project 
178 29 collapse 123 

10 interval 
tunnels 314  20 remediation 161 30 sedimentatio

n 
120 

Table 6. Safety risk factors extracted from construction workplace accident reports 413 

No. 
High-
frequenc
y terms 

TF-
H Context description in accident reports 

Safety risk 
factors 
inducted 

S1 Support 
system 

529 As advanced support is not conducted, or the already 
conducted support has deficiencies, the support (enclosure) 
system experiences instability failure. For instance, the tunnel 
face is not timely sealed, and the support is not timely 
implemented after blasting. 

Instability of 
the support 
system 

S2 Manage
ment 

521 Field safety supervision is ineffective, including ineffective 
field safety management, weak management, understaffed 
safety management, no administrators supervising 
construction operations, failing to correct potential safety 
hazards, etc.  

Disordered 
field 
management 

S3 Operatio
n against 
rules 

470 Contractors operate against rules, including violating 
construction schemes, rules, regulations, standard 
specifications, and other requirements. For instance, during 
the process of dismantling the supporting structure—bailey 
beam—of one Chongqing metro line in February 2016, 
indirect stress-bearing member bars of bailey beam are blindly 
cut, resulted in momentary instability and the collapse of 
bailey beam.  

Construction 
operations 
against rules 

… … … … … 

S37 … 6 … Improper 
selection of 
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mechanical 
equipment 

4.2 Comparative study of term-importance evaluation 414 

Table 7 compares the values of 𝑇𝐹 , 𝐷𝐹 ,	𝑇𝐹 − 𝐼𝐷𝐹 , and 𝑇𝐹 − 𝐻 of the safety risk 415 

factor 𝑆! . Take 𝑆** , 𝑆*.,  𝑆*/	as an example for comparison. Although 𝑇𝐹(𝑆**) =416 

𝑇𝐹(𝑆*/) = 105, the	𝐷𝐹 value of 𝑆** is much higher, indicating that 𝑆** caused more 417 

workplace accidents. Therefore 𝑆** shall be preferentially selected as high-risk factors. 418 

However, 𝑇𝐹 − 𝐼𝐷𝐹(𝑆**) is much lower than 𝑇𝐹 − 𝐼𝐷𝐹(𝑆*/), indicating that 𝑇𝐹 −419 

𝐼𝐷𝐹 does not apply to the extraction of safety risk factors from accident reports. Also, 420 

the 𝐷𝐹 value of 𝑆** equals that of 𝑆*., and 𝑇𝐹(𝑆*.) > 𝑇𝐹(𝑆**). It seems that 𝑆*. 421 

should be more critical. However, the information entropy value shows that 𝐻(𝑆**) =422 

1.45 > 𝐻(𝑆*.) = 1.2. This indicates that the distribution of 𝑆** in accident reports is 423 

relatively uniform; namely, it has been mentioned multiple times in multiple accident 424 

reports, but 𝑆*. are mentioned several times in an accident report while less mentioned 425 

in other accident reports. Therefore, the importance of 𝑆** is slightly higher than that of 426 

𝑆*.. The above data comparison has favorably verified TF-H's superiority in measuring 427 

risk factors compared with traditional methods. 428 

Table 7. Results of term-importance evaluation methods 429 

Si Safety risk factors TF-H(Si) TF(Si) DF(Si) 
TF-
IDF(Si) H(Si) 

S1 
Instability of the foundation pit 
support system 529.2 326 77 149.3  1.62 

S2 Disordered field management 521.1 319 79 142.5  1.63 

S3 Insufficient safety awareness 469.5 284 83 120.8  1.65 

S4 Construction operations against rules 420.6 282 81 122.9  1.49 

S5 Lack of safety inspection 294.8 184 74 87.4  1.6 
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Si Safety risk factors TF-H(Si) TF(Si) DF(Si) 
TF-
IDF(Si) H(Si) 

S6 Complicated geological conditions 259.7 160 77 73.3  1.62 

S7 
Insufficient exploration or protection 
of rain and sewage pipes 195.9 129 61 72.1  1.52 

S8 Ineffective safety management system 195.3 138 48 91.5  1.41 

S9 Insufficient remedial measures 160.6 111 52 69.8  1.45 

S10 
Unclear underground hydrological 
conditions 156.4 103 61 57.6  1.52 

S11 
Equipment and facility fault or 
inappropriate operation 152 105 52 66.0  1.45 

S12 Construction monitoring data lagging 141.1 120 55 72.5  1.18 

S13 
Deficiency of construction 
technologies 133.7 111 52 69.8  1.2 

S14 Insufficient safety guarding 128.6 92 46 62.7  1.4 

S15 Dereliction of duty of the supervisor 126.4 105 29 92.6  1.2 

S16 Improper construction plan 117.3 85 44 59.6  1.38 

S17 Structural quality defect 110.6 85 37 66.0  1.3 

S18 Insufficient safety disclosure 108.2 92 28 82.5  1.18 

S19 Natural disaster 107.6 79 42 57.0  1.36 

S20 
Insufficient exploration or protection 
of gas and power pipes 95 88 22 88.2  1.08 

S21 Lack of safety training 89.9 68 39 51.2  1.32 

S22 Lack of contingency plans and drills 87.2 64 42 46.2  1.36 

S23 
Ineffective construction organization 
and coordination 84.6 64 39 48.2  1.32 

S24 
Improper management of 
subcontractors 81 81 18 88.2  1 

S25 
Construction not satisfying design 
requirements 76.6 61 33 50.4  1.26 

S26 Insufficient geological survey 61.5 50 33 41.3  1.23 

S27 Construction command against rules 45.3 42 22 42.1  1.08 

S28 
Inappropriate crane hoisting or 
operation 44.2 41 22 41.1  1.08 

S29 
Insufficient exploration or protection 
of surrounding buildings (structures) 30 30 18 32.7  1 

S30 Design defects 20.2 26 11 33.9  0.78 
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Si Safety risk factors TF-H(Si) TF(Si) DF(Si) 
TF-
IDF(Si) H(Si) 

S31 
Inappropriate goods and material 
placing 19.9 22 15 25.7  0.9 

S32 Pressure of construction period 10.6 13 7 19.5  0.82 

S33 Improper material selection 8.6 11 8 15.9  0.78 

S34 
Defects of safety management 
organization 7.2 10 6 14.1  0.72 

S35 Form support system defects 7 10 6 15.7  0.7 

S36 Fatigue operation 6.8 9 6 14.1  0.75 

S37 
Improper selection of mechanical 
equipment 6 8 6 12.5  0.75 

4.3 Comparative study of threshold division 430 

To test the effect of threshold division, two other methods were designed for comparative 431 

analysis, Donohue's formula and accumulative term frequency. Figure 5 compares the 432 

accumulated distribution of segmented terms from the perspective of 𝑇𝐹 and 𝑇𝐹 − 𝐻.  433 

Table 6 displays the results for selecting high-frequency terms using different methods.  434 

 435 

(a) Term frequency (TF) 436 
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 437 

(b) Information entropy weighted term frequency (TF-H) 438 

Figure 6. Accumulated distribution of segmented terms 439 

Table 8. Comparison of high-frequency term selection methods 440 

Methods Threshold Number of high-frequency terms 

Donohue's formula T=41 39 

accumulative TF ≥90% 1401 

accumulative TF-H ≥90% 253 

Eight hundred sixty-one words only appeared once among all the tokens (𝐼* 	=441 

861). Thus, the threshold 𝑇 = 41, according to Donohue's formula described in Section 442 

3.4. Donohue's formula depends on 𝐼*. It can be seen from the TM distribution curve 443 

(Figure 6 (a)) that the number of terms that have appeared only once is large. Only 49 444 

terms were selected, while 2,941 terms were filtered out. Therefore, this method may lead 445 

to massive missing items.  446 

For the accumulative	 𝑇𝐹 method, almost 50% of the terms were selected as 447 

high-frequency terms, resulting in the redundancy of words. This is because the 448 
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accumulative 𝑇𝐹  curve (Figure 6 (a)) is smooth, the rise is slow, and there is no 449 

inflection point. Compared to the accumulative 𝑇𝐹 curve, the accumulative 𝑇𝐹 − 𝐻 450 

curve (Figure 6 (b)) shows a rapid upward trend with a small number of segmented terms. 451 

There is a significant inflection point. Because the larger 𝑡ℎ𝑒	𝑇𝐹 value of the term is 452 

distributed in the accident reports, the larger the information entropy will be. Therefore, 453 

the 𝑇𝐹 − 𝐻 value accelerates the rapid rise of the accumulation curve in the front part. 454 

Simultaneously, a large number of terms (including 𝑇𝐹 = 1 and part 𝑇𝐹 = 2 of the 455 

terms) in the long tail' have an information entropy of 0, so that the accumulative 𝑇𝐹 −456 

𝐻 curve tends to be straight in the latter part. Therefore, compared to the accumulated 457 

𝑇𝐹 value, the accumulative 𝑇𝐹 − 𝐻 value can better screen the high-frequency terms. 458 

4.4 Result analysis of safety risk factors and their occurrences 459 

4.4.1 Critical Safety risk factors of metro construction in China 460 

High-frequency terms represent the critical safety risk factors of metro construction in 461 

China. According to Table 5, extracted safety risk factors mainly fall into the following 462 

five categories: surrounding environment, safety management, construction technology, 463 

construction personnel, materials, and equipment. Table 5 covers the main safety risk 464 

factors that Ding LY et al. (2012) and Xing et al. (2019) had mentioned. 465 

Risk factors ‘instability of the foundation pit support system (𝑆*)’, ‘disordered 466 

field management (𝑆+)’, ‘insufficient safety awareness (𝑆.)', and 'construction operations 467 

against the rules (𝑆0)’ are the top four frequently occurred reasons leading to workplace 468 

accidents. Frequent inspection and monitoring of these factors are still necessary for the 469 

progressed metro projects to prevent similar accidents from happening.  470 
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‘Instability of the foundation pit support system (𝑆* )' is the most frequently 471 

occurred safety risk factors in metro construction projects. Most of the foundation pit 472 

support system is temporary. Thus, the construction company may take the chances to 473 

reduce the safety investment and shorten the construction time. Notably, a collapse 474 

accident may happen once 𝑆* is triggered, resulting in mass casualties. This confirms 475 

the conclusion in Liu et al. (2018) that the most significant risk factor in mechanical 476 

tunneling was improper soil reinforcement and drainage, and the main consequences 477 

included gushing water and collapse. However, in Liu et al. (2018), a large-scale 478 

questionnaire (514 responses) was conducted in five cities in China. 479 

‘Disordered field management ( 𝑆+ )’ demonstrates that ineffective safety 480 

management still widely exists in metro construction practice. According to accident 481 

causation theory, safety management is the root reason for accidents (Yang and Haugen 482 

2018). Metro construction projects are always associated with volumes of intersection 483 

construction work and need high-standard and high-efficient safety management. 484 

‘Insufficient safety awareness (𝑆.)’ is the third important factor identified in accident 485 

reports and is high referred to by academic paper (Fung et al. 2016; Maiti and Choi 2019). 486 

‘Construction operations against the rules ( 𝑆0 )’ refers to unsafe behavior on the 487 

construction site. Most construction workers in China come from migrant workers, and 488 

there is a shortage of personnel in terms of mobility, lack of professional training (Liu Q 489 

et al. 2020). Therefore, risks related to construction personnel are a big problem in metro 490 

construction projects.  491 

4.4.2 Other valuable discoveries 492 

The uncertainties of metro construction projects are largely related to the complex 493 

surrounding environment. Geological and hydrological conditions have been highly 494 
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mentioned by scholars, such as in reference (Dong et al. 2018; Li et al. 2018). As in the 495 

accident report, 'Complicated geological conditions (𝑆- )’ and ‘Unclear underground 496 

hydrological conditions (𝑆*1)' are the sixth and tenth high-frequently referred reason 497 

causing an accident. This indicates that the two factors have attracted lots of concerns, 498 

both in theory and practice. However, other underground risks, such as 'Insufficient 499 

exploration or protection of rain and sewage pipes (𝑆2 )’, ‘Natural disaster (𝑆*, )’, 500 

‘Insufficient exploration or protection of gas and power pipes (𝑆+1)’ and ‘Insufficient 501 

exploration or protection of surrounding buildings (structures) (𝑆+,)’, are less mentioned 502 

by academics. As a high-frequent reason, Factors 𝑆2 and 𝑆*, (mainly refers to rain) 503 

usually cause soil erosion around the foundation pit, resulting in severe collapse accidents. 504 

In terms of 𝑆+1 and 𝑆+,, they usually cause gas leakage, power blackout, or settlement 505 

of adjacent buildings, leading to adverse social impacts in the community. 506 

Contingency planning and emergency management need to be enhanced. Notably, 507 

factors ‘Insufficient remedial measures’ (𝑆,) and ‘Lack of contingency plans and drills’ 508 

(𝑆++) are not the causes of accidents, but they are essential to prevent the expansion of 509 

accident losses. They are often mentioned in accident investigation reports, while they 510 

are generally ignored by most of the existing risk lists. Some studies have proposed 511 

contingency risks for bidding and contracts (Turskis et al. 2012; Jeehee and June-Seong 512 

2017). However, there is still little research in the construction safety domain. 513 

Preconstruction risks are not the main reasons causing an accident, yet they need 514 

to be noticed. Several studies have claimed the importance of design risks for safety 515 

construction (Hossain et al. 2018; Yuan et al. 2019). This study shows that most safety 516 

risk factors come from the construction phase, whereas three origins in the 517 
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preconstruction phase, e.g. ‘Insufficient geological survey (𝑆+-)’ and ‘Design defects 518 

(𝑆.1)’. Both factors rank the low frequency.  519 

Equipment and facility risks need increasing attention. Not many factors are 520 

related to construction materials and equipment. This reflects that construction materials 521 

and equipment are not the main reasons for metro construction accidents. However, the 522 

factor ‘Equipment and facility fault or inappropriate operation (𝑆**)’ needs an increasing 523 

concern. With the widespread use of mechanical devices instead of man labor, the 524 

performance of mechanical equipment has become an increasing risk factor on the 525 

construction site. 526 

The factor ‘Pressure of construction period (𝑆.+)’ and ‘Fatigue operation (𝑆.-)’ 527 

reveals the fact of a tight schedule of China's current metro construction situation. This 528 

also shows that safety may be sacrificed due to workload pressure.  529 

Another discovery is that multiple causes led to construction accidents jointly. As 530 

shown in Table 7, the sum of the document frequency of the 37 safety risk factors is 1419, 531 

so the average number of risk factors causing the workplace accident is about 532 

1419/221≈6.4. This confirms the accident causation theory that although only two or three 533 

factors cause workplace accidents directly, there is a wide range of risk factors hidden 534 

during the whole period of metro construction lifecycle, causing accidents indirectly. 535 

5. Conclusion 536 

Analyzing the workplace accident reports leads to learning from what went wrong in the 537 

past to prevent future accidents. An appropriate approach for text mining reduces the 538 

effort and increases the performance to discover valuable knowledge. This paper aims to 539 

provide an improved approach to extract safety risk factors effectively and efficiently 540 
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from construction accident reports. 541 

A text mining framework for safety risk factor extraction was proposed. A domain 542 

lexicon, including domain-specific wordlist, synonyms wordlist, and stopword list, was 543 

built to achieve a better text segmentation. An improved term-importance evaluation 544 

approach, 𝑇𝐹 − 𝐻, was provided to integrate the term frequency and the distribution of 545 

risk factors in accident reports. Accumulative 𝑇𝐹 − 𝐻, which was proposed to define the 546 

threshold to select high-frequency terms. This approach's improvement is that it 547 

introduces the distribution of a term in the corpus, and thus more applicable for the 548 

characteristic of safety risk factors. Then, a case study for safety risk factor extraction 549 

from metro construction accident reports was conducted. With the comparative analysis 550 

in the case study, the proposed approach was verified a better performance. The identified 551 

safety risk factors can comprehensively reflect the critical risks that metro construction 552 

projects encountered in China. Also, many interesting discoveries were found based on 553 

the implied information in the accident reports. The result will guide the practitioners to 554 

supplyment the safety risk factors of the project to be constructed, and avoid similar 555 

workplace accidents. The improved approach can also be used in other TM tasks to 556 

extract critical terms distributed in different lengths of documents. 557 

Since the safety risk factors are extracted from accident reports, the information 558 

implied in the report determines the mining result. Many accident analysis studies have 559 

shown that risk factors can emerge outside the project, for example, local government, 560 

regulatory body, and social environment (Dallat et al. 2019; Lu et al. 2020). These latent 561 

outside risks are not included in accident reports but need to be noticed and assessed. 562 

Additionally, the mining result partly depends on experts' knowledge, including building 563 

domain lexicon and contextualizing the high-frequency terms. Manual intervention 564 
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primarily lies in the inspection of computers' analysis to achieve a better result. Also, low-565 

frequency terms were omitted as redundant data in this study because the computer 566 

extracted novel patterns by counting. Some low-frequency terms could be interesting for 567 

identifying new emerging risk factors. However, this will lead to much more redundant 568 

data and experts' knowledge to select. 569 

Several possible future improvements can be considered. Extraction of valuable 570 

information from text documents differs given different corpus and tasks (Talib et al. 571 

2016). More interesting results might be found if a broader corpus could be executed, 572 

such as journal papers, onsite documents, etc. Also, Different construction activities 573 

imply different safety risks, and different risks lead to different severities. More accident 574 

characteristics can be analyzed from the reports to reveal more mechanisms of workplace 575 

accidents, such as identifying the activity-based factors, the causal-and-effect relationship 576 

among factors, and the factor-and-severity relationship. 577 
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