New Chiral Auxiliaries For The
[3+2]-Cycloaddition Of Nonstabilised
Azomethine Ylides

Allan Rostrup Forup Jensen

A thesis submitted in partial fulfilment of the
degree of Doctor of Philosophy

Christopher Ingold Laboratories
University College London
London
20 Gordon Street
WC1H OAJ
Acknowledgements

First and foremost I wish to thank my supervisor, Professor K. J. Hale, for the constant support, encouragement and guidance he has provided throughout the duration of this project. I also wish to take this opportunity to thank my sponsor, Rhône-Poulenc-Rorer, without whom this project would not have been possible.

I also wish to thank past and present members of the Hale group for their friendship and encouragement. In particular, Dr. J. Cai was an invaluable help and inspiration. For their friendship and enormous support through good and bad times, Rukpong Tuprasoot, Neha Jogiya, Andrew Calabrese, Dr. Gurpreet Bhatia, Marc Hummersone, Rafaqat Hussain, also deserve to be mentioned.

Thanks also to some of my other friends in the department, in particular James Madden, Darren Greening, and Letitia So for making the whole experience much more enjoyable.

I also wish to thank the technical staff at the Christopher Ingold Laboratories for their services including Jill Maxwell (NMR, analytical analysis), Alan Stones (analytical analysis) and Steve Corker (low-resolution mass spectra). Thanks also to the technical staff at ULIRS Mass Spectrometry Service Centre at the London School of Pharmacy, in particular Mike Cocksedge, who performed high-resolution mass spectra.

Finally, I owe a great debt of gratitude to my parents and family for their love and support for the duration of the project.
The [3+2]-cycloaddition reaction of nonstabilised azomethine ylides to alkenes is a valuable synthetic method for the assembly of functionalised pyrrolidines. However, there are only a few examples of such cycloadditions being successfully performed with an unstabilised azomethine ylide that has been tethered to a removable chiral auxiliary. Most of the reactions studied so far have exhibited only modest levels of diastereoselectivity (ca. 60 % d.e.), and in every case, destruction of the chiral auxiliary has proven necessary before the newly fashioned chiral pyrrolidine cycloadduct could be liberated.

In the first part of this thesis, the potential utility of optically pure 1,1-dialkylhydrazines as chiral auxiliaries for nonstabilised azomethine ylide cycloadditions to alkenes has been investigated. While the preparation of several chiral 1,1-dialkylhydrazines was carried out successfully, the formation of the N-amino azomethine ylide precursors from these hydrazines failed, occasionally giving interesting unwanted and unexpected by-products.

The second part of this thesis focuses on the evaluation of several new chiral auxiliaries as stereochemical control elements for 1,3-dipolar cycloadditions of azomethine ylides to alkenes. This work failed with some auxiliaries and was partially successful with others. The successful [3+2]-cycloaddition reactions were all performed with dimethyl fumarate as the dipolarophile, but afforded little or no stereoselectivity. The cleavage of the newly-created pyrrolidine systems from these auxiliaries under various conditions also proved to be unsuccessful.

During this work a new method for the preparation of 1,1-dialkylhydrazines by the reduction of N-nitroso precursors was discovered. The potential utility of this method has been evaluated, and the results are discussed in Chapter 4.
Chapter 1
A general survey of azomethine ylide [3+2]-cycloaddition reactions in organic chemistry ... 10

1.0 Introduction .. 10
1.1 Historical aspects of azomethine ylide chemistry 13
1.2 The generation of azomethine ylides with achiral alkenes and alkynes ... 14
 1.2.1 The aziridine route to azomethine ylides 14
 1.2.2 The desilylation route to azomethine ylides 17
 1.2.3 The tautomerisation route to azomethine ylides 33
 1.2.4 The deprotonation route to azomethine ylides 34
 1.2.5 The decarboxylation route to azomethine ylides 40
 1.2.6 The N-oxide route to azomethine ylides 42
 1.2.7 The N-metallation route to azomethine ylides 44
 1.2.8 General summary of the methods for the generation of azomethine ylides for cycloaddition reactions 47
1.3 Asymmetric induction in the reactions of azomethine ylides with alkenes ... 48
1.4 Natural products via the [3+2]-cycloaddition reactions of azomethine ylides ... 88
1.5 Closing remarks .. 94
Chapter 2
Evaluation of a new chiral auxiliary for nitrogen in the asymmetric [3+2]-cycloaddition of nonstabilised azomethine ylides

2.0 Introduction ... 96
2.1 Initial preparation of cycloaddition precursor 2 98
2.2 Alternative preparation towards the cycloaddition precursor 2 . 101
 2.2.1 Preparation of hydrazine 1 101
 2.2.2 Attempted preparation of the hydrazine cycloaddition precursor 2 .. 119
2.3 Remarks ... 128

Chapter 3
An attempt at introducing new chiral auxiliaries for the [3+2]-cycloaddition reactions of nonstabilised azomethine ylides

3.1 Investigations into the use of a mannose based auxiliary for the [3+2]-cycloadditions of azomethine ylides .. 129
3.2 An attempt at the use of D-glucose as a chiral auxiliary for azomethine ylide [3+2]-cycloadditions .. 135
3.3 Evaluation of a novel camphor-derived auxiliary in the [3+2]-cycloaddition reaction of nonstabilised azomethine ylides 137
 3.3.1 [(1R)-endo-(+)-3-Bromocamphor as starting material 137
 3.3.2 The utilisation of a camphor amine 76 138
 3.3.3 Attempted removal of the pyrrolidine moiety 142
 3.3.4 Attempted introduction of a phenyl group into the auxiliary 143
3.4 Attempting the preparation of a double [3+2]-cycloaddition precursor based on (1S,2R)-(−)-1,2-diamino-1,2-diphenylethane 152
 3.4.1 Preparation of (1S,2S)-(−)-1,2-diamino-1,2-diphenylethane
 111 ... 152
 3.4.2 Attempted preparation of the cycloaddition precursors
 111/120 .. 155
3.5 Investigation into the [3+2]-cycloaddition precursor using methyl α-D-glucopyranoside as the starting material 159
Chapter 3

3.5.2 Cycloaddition of azomethine ylide precursor 133 163
3.5.3 Attempted removal of the pyrrolidine section from the
cycloadduct 134ab .. 163
3.5.4 Remarks ... 166

3.6 Utilising methyl β-D-fructopyranoside as the chiral auxiliary for
azomethine ylide [3+2]-cycloaddition reactions 167
3.6.1 The preparation of the amine 148 168
3.6.2 The preparation of the cycloaddition precursor 150 168
3.6.3 Cycloaddition of 150 ... 169
3.6.4 The attempted removal of the pyrrolidine system from the
sugar moiety ... 170

3.7 Attempting the preparation of a 1,3-azomethine ylide dipole
precursor based on (R)-5-phenyl-2-pyrrolidinone 156 171
3.7.1 Introduction .. 171
3.7.2 Preparation of the (R)-5-phenyl-2-pyrrolidinone derivative
157 ... 172
3.7.3 Conclusions ... 179

Chapter 4

Evaluation of the scope of the N-nitroso reduction with diisobutylaluminium
hydride ... 180

4.0 Introduction ... 180
4.1 Preparation of N-amino-diphenylamine 200 180
4.2 Preparation of N-amino-dibenzylation 202 181
4.3 Preparation of N-amino-dipentylamine 204 182
4.4 Attempted preparation of (S)-N-amino-O-benzylprolinol 208 183
4.5 Preparation of N-amino-O-benzyl-2-hydroxymethyl piperidine 211 .. 183
4.6 Preparation of N-amino-indoline 213 .. 184
4.7 Preparation of N-amino-carbazole 215 .. 185
4.8 Preparation of (±)-3,5-dihydro-4N-dinaphth[2,1-c:1',2'-e]-
azepinehydrazide 1 ... 186
4.9 Remarks ... 186
<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>acetate</td>
</tr>
<tr>
<td>AD</td>
<td>Asymmetric Dihydroxylation</td>
</tr>
<tr>
<td>Anal.</td>
<td>analytical</td>
</tr>
<tr>
<td>Ar</td>
<td>aromatic</td>
</tr>
<tr>
<td>approx.</td>
<td>approximately</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>Boc</td>
<td>tert-butyloxy carbonyl</td>
</tr>
<tr>
<td>b.p.</td>
<td>boiling point</td>
</tr>
<tr>
<td>Calc.</td>
<td>calculated</td>
</tr>
<tr>
<td>d</td>
<td>doublet</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>DDQ</td>
<td>2,3-dichloro-5,6-dicyano-1,4-benzoquinone</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-dimethylaminopyridine</td>
</tr>
<tr>
<td>DME</td>
<td>ethylene glycol dimethyl ether</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>DMPU</td>
<td>1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulphoxide</td>
</tr>
<tr>
<td>DIBAL-H</td>
<td>diisobutylaluminium hydride</td>
</tr>
<tr>
<td>ds</td>
<td>diastereofacial selectivity</td>
</tr>
<tr>
<td>dt</td>
<td>doublet of a triplet</td>
</tr>
<tr>
<td>e.e.</td>
<td>enantiomeric excess</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>et al.</td>
<td>et alia (Latin)</td>
</tr>
<tr>
<td>Equiv.</td>
<td>equivalents</td>
</tr>
<tr>
<td>EWG</td>
<td>electron withdrawing group</td>
</tr>
<tr>
<td>FAB-MS</td>
<td>Fast Atom Bombardment Mass Spectroscopy</td>
</tr>
<tr>
<td>FT-IR</td>
<td>Fourier Transform Infra Red</td>
</tr>
<tr>
<td>g.</td>
<td>gram(s)</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>HR-MS</td>
<td>High Resolution Mass Spectroscopy</td>
</tr>
<tr>
<td>Hünig’s base</td>
<td>N,N-diisopropyl-N-ethylamine</td>
</tr>
<tr>
<td>I.R.</td>
<td>Infra Red</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>m</td>
<td>multiplet</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>m-CPBA</td>
<td>meta-chloroperbenzoic acid</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>Ms</td>
<td>mesyl, methanesulfonyl-</td>
</tr>
<tr>
<td>mg</td>
<td>milligram(s)</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>min.</td>
<td>minutes</td>
</tr>
<tr>
<td>ml</td>
<td>millilitres</td>
</tr>
<tr>
<td>M. Pt.</td>
<td>melting point</td>
</tr>
<tr>
<td>MS</td>
<td>molecular sieves</td>
</tr>
<tr>
<td>NBS</td>
<td>N-bromosuccinimide</td>
</tr>
<tr>
<td>NMO</td>
<td>N-methylmorpholine N-oxide</td>
</tr>
<tr>
<td>n.m.r.</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>OTf</td>
<td>O-triflate</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PPTS</td>
<td>pyridinium p-toluenesulfonate</td>
</tr>
<tr>
<td>p-TsOH</td>
<td>para-toluenesulfonic acid</td>
</tr>
<tr>
<td>q</td>
<td>quartet</td>
</tr>
<tr>
<td>quat</td>
<td>quaternary</td>
</tr>
<tr>
<td>Rochelle’s salt</td>
<td>potassium sodium tartrate monohydrate</td>
</tr>
<tr>
<td>r.t.</td>
<td>room temperature</td>
</tr>
<tr>
<td>t</td>
<td>triplet</td>
</tr>
<tr>
<td>t-tert</td>
<td>tertiary</td>
</tr>
<tr>
<td>TBAF</td>
<td>tetra-n-butylammonium fluoride</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TES</td>
<td>triethylsilyl</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography/Chromatogram</td>
</tr>
<tr>
<td>TMEDA</td>
<td>tetramethylethylenediamine</td>
</tr>
<tr>
<td>Ts</td>
<td>tosylate, para-toluenesulfonyle</td>
</tr>
<tr>
<td>Wilkinson’s catalyst</td>
<td>(PPh₃)₃RhCl</td>
</tr>
<tr>
<td>Z</td>
<td>benzyloxy carbonyl</td>
</tr>
</tbody>
</table>
Chapter 1

A general survey of azomethine ylide [3+2]-cycloaddition reactions in organic chemistry

1.0 Introduction

Azomethine ylides \(^1\) are 1,3-dipoles that bear an iminium ion directly adjacent to a carbanionic centre; they are fleeting, transient intermediates of variable stability (Scheme 1).

![Scheme 1]

The [3+2]-cycloaddition reactions of azomethine ylides are \([\pi 4s+\pi 2s]\) reactions and proceed through a 6\(\pi\)-electron 'aromatic' transition state. The 4\(\pi\)-electron component, the azomethine ylide 1, contains only three atoms. Cycloaddition to a double or triple bond, termed the dipolarophile 2, leads to a five-membered heterocyclic compound 3.
There are two types of azomethine ylides: (1) stabilised azomethine ylides and, (2) nonstabilised azomethine ylides. The former contains at least one substituent capable of delocalising the negative or positive charge; the latter contains no such stabilising group (see for example Scheme 2).

Stabilised azomethine ylides

a) Carbanionic stabilisation

Example:

![Scheme 2](image)

b) Cationic stabilisation

Example:

![Scheme 2](image)

Nonstabilised azomethine ylides: contain no charge delocalising groups.

![Scheme 2](image)

Cycloaddition reactions of azomethine ylides are generally performed with olefinic or acetylenic dipolarophiles, leading respectively to the formation of pyrrolidines and 2,5-dihydropyrroles, the latter being convertible into pyrroles. However, several other dipolarophiles can also be utilised to generate a host of various cycloadducts. Azomethine ylides have been trapped in an intramolecular fashion with tethered dipolarophiles. **Scheme 3** indicates briefly some of the cycloadducts which can be formed from azomethine ylides.
When two chiral centres are created in the cycloaddition of azomethine ylides, one arising from each reactant, diastereomeric (cis and trans) products may be formed and it is not always easy to predict the stereochemical course of such reactions. Frequently mixtures of diastereomers are obtained. At most, four geometrical isomers are possible for these transient intermediates. Their cycloadditions to olefin or acetylene dipolarophiles give rise to the formation of two sets of carbon-carbon bonds in a single step.

Before we present a detailed discussion of the synthetic applications of azomethine ylides, a brief history of these transient species will be given.
1.1 Historical aspects of azomethine ylide chemistry

One of the first recorded examples of an azomethine ylide engaging in a 1,3-dipolar cycloaddition was in 1959 when an iminium ion was deprotonated with base in the presence of dimethyl fumarate. The azomethine ylides 13 and 16 were produced in equilibrium when \(N\)-\(p\)-nitrobenzyl- or \(N\)-phenacyl-3,4-dihydroisoquinolinium salts were treated with triethylamine. *In situ* cycloadditions to dimethyl fumarate afforded the cycloadducts 14 and 17 in 69% and 73% yields (Scheme 4).

Since 1,3-dipolar cycloaddition reactions were first discovered in the late 1950s, an increasing number of papers have dealt with additions of azomethine ylides. One of the first was Kröhnke's report on the formation of 18 from \(N\)-benzylisoquinolinium salt 13 and carbon disulphide in alkaline medium. This was followed by the spontaneous dehydrogenation of the initial cycloadduct to give the coppery red thiazole-type mesoionic compounds 19a-c (Scheme 5).
It was not until 1978, however, that the chemistry of azomethine ylide 1,3-dipoles was intensely and systematically studied. Ever since that time much valuable information on their reactivity has accumulated. The two pioneering works in this area are those of Vedejs \textit{et al.} and Grigg \textit{et al.} Vedejs demonstrated that nonstabilised azomethine ylides (viz. ylides bearing no ylide-stabilising substituents) could be smoothly generated if an appropriate method was employed. He also showed that in some cases such ylides can have considerable stability and be highly reactive towards a variety of dipolarophiles. On the other hand, stabilised azomethine ylides (viz. ylides bearing a stabilising substituent on the carbon or nitrogen atom) can be smoothly generated, usually by simple treatment of base. These azomethine ylides are thus stabilised through resonance and can react with a variety of dipolarophiles. In the following section, the main synthetic methods for generating both stabilised and nonstabilised azomethine ylides will be discussed.

1.2 The generation of azomethine ylides with achiral alkenes and alkynes

1.2.1 The aziridine route to azomethine ylides

The thermal ring-opening of aziridines is a convenient method for generating azomethine ylides that are stabilised by at least one electron-delocalising substituent.
The first example of such a reaction was reported by Heine and Peavy in 1965. These workers found that when 1,2,3-triphenylaziridine 20 (of unspecified stereochemistry) was heated at reflux in toluene in the presence of diethyl acetylenecarboxylate, the azomethine ylide 21 was formed and that this reactive species could be trapped to give diethyl 1,2,5-triphenyl-3-pyrroline-3,4-dicarboxylate 22 in quantitative yield (Scheme 6). Aziridine rings open particularly readily if their carbon atoms are attached to electron-delocalising substituent(s), as the electron-rich ylide centre in the azomethine ylide is stabilised by such substituents. Thus, aziridines bearing two ester moieties on the carbon form ylides 24 at only 100 °C. Aziridines with only one ester activating group on the ring require higher temperatures (200 °C) to undergo ring opening to generate azomethine ylide 26.7

![Scheme 6](image)

The aziridine route is rarely used to generate non-stabilised azomethine ylides. This mode of generation is therefore quite restricted.

The thermolysis of 1,1-bis(trifluoromethyl)aziridines provides good access to trifluoromethyl-substituted stabilised azomethine ylides 28a (See Scheme 7).8 This
The dipolarophile was then trapped as the pyrrole product 29a,b.

\[
\begin{align*}
27 & \xrightarrow{150^\circ C} \text{PhMe, EWG} & 28a, b, c \xrightarrow{\text{MeO}_2\text{CO}==\text{CO}_2\text{Me}} & \text{Ph, EWG} \\
\text{EWG} &= \text{CO}_2\text{Me or CN} & 29a: \text{EWG} = \text{CO}_2\text{Me}, \text{yield} = 68\% \\
& & 29b: \text{EWG} = \text{CN}, \text{yield} = 45\%
\end{align*}
\]

Scheme 7

The generation of azomethine ylides with a heteroatom substituent on nitrogen has been demonstrated by the thermolysis of 1-phthalimidoaziridines. This leads to the formation of stabilised N-aminoazomethine ylides 31 (Scheme 8).\(^9\)

\[
\begin{align*}
30 & \xrightarrow{\text{CH}_2\text{Cl}_2, \text{reflux, 5 h.}} \text{MeO}_2\text{C}==\text{CO}_2\text{Me} & 31 & \xrightarrow{\text{MeO}_2\text{CO}==\text{CO}_2\text{Me}} & 32 \\
& & & 85\% & 1:1 \text{ mixture of diastereomers}
\end{align*}
\]

Scheme 8

A sulfonyl substituent at the carbon of aziridines allows a stabilised ring anion to be generated with base to allow an alkyl moiety to be introduced at this carbon. As the ring is activated by the sulfonyl group, alkylated aziridines undergo a ready ring opening leading to stabilised sulfonyl-substituted azomethine ylides 35 (Scheme 9). These readily engage in cycloadditions with dimethyl acetylenedicarboxylate, the sulfonyl group eventually being eliminated to afford the pyrrole derivative 36.\(^{10}\)
1.2.2 The desilylation route to azomethine ylides

In 1979 Vedejs and Martinez \(^4\) reported a new method for forming nitrogen, sulphur and phosphorus ylides, which consisted of initial alkylation of amines, imines, sulphides and phosphines with trimethylsilylmethyl triflate, and subsequent desilylation of the resulting salts with fluoride ion. For the generation of azomethine ylides, an imine is treated with the triflate in acetonitrile at room temperature to form the corresponding iminium triflate \(37\) and the subsequent desilylation is carried out \textit{in situ} with CsF. The azomethine ylides \(38\) are also usually trapped \textit{in situ} with an appropriate
Scheme 10

\[
\begin{align*}
R^1R^2C&\equiv NR^3 \\
+ \quad \text{MeSiOSO}_2\text{CF}_3 \\
\rightarrow \quad \text{MeSiOSO}_2\text{CF}_3 \\
\quad \text{r.t.} \quad \text{MeCN} \\
\rightarrow \quad \text{CsF} \\
\rightarrow \quad \text{MeO}_2\text{CCO}_2\text{Me}
\end{align*}
\]

\[39a: R^1 = \text{Ph}, R^2 = H, R^3 = \text{Me} \]
\[39b: R^1 = \text{PhCH}_2\text{CH}_2, R^2 = H, R^3 = \text{Bu}^+ \]
\[39c: R^1 = R^2 = \text{PhCH}_2\text{CH}_2, R^3 = \text{Me} \]

\[38\]

\[N\text{-Silylmethylation can also be performed with other alkylating agents, such as trimethylsilylmethyl chloride, bromide or iodide. However, the resulting iminium salts desilylate immediately after they have formed due to attack of the silyl substituent by the halide counteranions. This leads to serious decomposition of the requisite iminium ion intermediates. The key step used to unveil the azomethine ylide is fluoride ion treatment which is selectively nucleophilic to a silicon atom.}\]

There are several other preparative methods for obtaining \(N\)-silylmethyliminium salts; the key intermediates of the Vedejs-Martinez method (Scheme 11). These include; (1): the quaternisation of \(N\)-silylmethyllimines by the addition of an electrophile (EX) to the imine nitrogen; (2): the quaternisation of \(N\)-silylmethylamides or related derivatives by the addition of an electrophile to a heteroatom other than the amide nitrogen; (3): the quaternisation of \(N\)-silylmethyl hemiacetal derivatives by the elimination of a leaving group (L) from an adjacent carbon; and (4): the quaternisation of \(N\)-silylmethyleneamines by the addition of an electrophile to the enamine unit.
The quatemisation of N-silylmethylimines, according to Eq. (1) (Scheme 11), is usually performed with electrophiles such as acid halides $^{11-14}$ and alkyl halides; $^{15-17}$ this generates N-acyl azomethine ylides 40 or N-alkyl azomethine ylides 41 respectively (Scheme 12). As the silyl moiety of the intermediary N-silylmethyliminium salts is more easily desilylated than that of the starting imines, the quatemisation and desilylation steps need not be separated. An acyl or alkyl halide is simply added to the N-silylmethylimine in the presence of a dipolarophile. Desilylation of the resultant iminium salts takes place spontaneously by the attack of counter halide anion, X^-. Thus, the quatemisation of N-silylmethylimines according to Eq. (1), can be carried out in a simple one-pot procedure.
Acid halide reactions:
40a: R = H, R¹ = Ph, R² = Ph, solvent = THF
40b: R = H, R¹ = Ph, R² = PhCH₂O, solvent = THF
40c: R = H, R¹ = Ph, R² = Me, solvent = THF

Alkyl halide reactions:
41a: R = H, R¹ = Ph, R² = Bu, solvent = HMPA
41b: R = H, R¹ = Ph, R² = PhCH₂, solvent = HMPA
41c: R = H, R¹ = Ph, R² = EtO₂CCH₂, solvent = HMPA

It is also pertinent to mention that the process of N-protonation of N-silylmethylimines and subsequent desilylation works well for generating N-unsubstituted azomethine ylides. N-Protonated iminium intermediates 42 are first formed, and desilylation by the counter ion (X') then leads to the formation of the N-unsubstituted azomethine ylide 43 (Scheme 13). This method works satisfactorily for generating nonstabilised N-unsubstituted azomethine ylides. Although N-unsubstituted azomethine ylides are capable of isomerising irreversibly to the corresponding N-methylimine tautomers, these unusual azomethine ylides show remarkable stability and can often be captured by activated dipolarophiles in high yields. Water,¹⁸⁻²⁰ TFA,¹⁶,¹⁸,²¹ and triflic acid with CsF ²⁰ are commonly used for the N-protonation and desilylation process. The remarkable stability of N-unsubstituted azomethine ylides 43, especially under the highly acidic conditions employed for desilylation, is quite surprising since acids also catalyse the irreversible conversion of ylides to their N-methylimine tautomers.
N-Silylation with catalytic trimethylsilyl triflate forms N-silylated iminium triflates 50, which are subsequently desilylated in situ with fluoride ion to generate N-silylated azomethine ylides 48.18,22,23 The mechanism of this method of azomethine ylide generation has been proposed by Achiwa et al.23 (Scheme 14).
This reaction involves the cycloaddition of an ylide 48 formed from the intermediary N-trimethylsilylmethyliminium salt 50, which was derived from 47 in the presence of a catalytic amount of trimethylsilyl triflate. The generated ylide 48 then reacted with olefinic or acetylenic dipolarophiles to form the N-trimethylsilyl-substituted pyrrolidine 51 which were transformed into N-unsubstituted cycloadducts 52. The reaction is further accelerated catalytically by the addition of CsF, which aids in the fission of the silicon-carbon bond.
Another convenient entry into N-silylmethyliminium salts entails either acylating, silylating or alkylating N-silylmethylamides or derivatives on the amide oxygen [Eq. (2) in Scheme 11]. O-Alkylation of N-silylmethylamides with methyl triflate \(^{24-26}\) or O-acylation \(^{27}\) of N-silylmethyl-enaminones leads to \(N\)-(1-silylalkyl)iminium salt intermediates respectively. Fluoride-induced desilylation can then be used to generate the azomethine ylide, for example 53 and 54 (Scheme 15).

A third variant for forming \(N\)-silylmethyliminium salts is through the expulsion of an \(\alpha\)-leaving group (L) from \(N\)-silylmethylamines [Eq. (3) in Scheme 11]. This has been reported by Padwa et al.\(^ {28}\) in 1983. It involves the silver fluoride-induced decyanation of \(N\)-benzyl-\(N\)-cyanomethyl(trimethylsilylmethyl)amine 55 to generate the \(N\)-silylmethyliminium intermediate 56 (Scheme 16). The fluoride ion then attacks the silyl moiety to bring about a spontaneous desilylation to generate the azomethine ylide 57. This method is convenient for the preparation of \(C\) unsubstituted azomethine ylides (60, \(R = H\)), although the type of \(\alpha\)-substituent \(R^1\) is rather limited (e.g. \(R^1 = \text{Me, CN}\)).\(^ {17,29-32}\) Subsequent debenzylation of the cycloadduct 58 (\(R^1 = H\)) provides compound 59, a synthetic equivalent of a completely unsubstituted azomethine ylide.
This desilylation of an α-silyl iminium salt is now the preferred method for generating azomethine ylides. The fluoride ion is thought to be the best “silaphile” for ylide generation, and CsF and AgF are usually the reagents of choice. Organic fluoride donors such as tetra-n-butylammonium fluoride are not satisfactory because they tend to contain water or the bifluoride (F$_2$H') ion, contaminants which can protonate basic ylides.$^{33-36}$ All naked fluoride sources tend to be highly hygroscopic, but CsF has the advantage that it can be vacuum-dried over a small Bunsen flame without significant decomposition.

Padwa et al.37 have also used similar conditions to convert N-[(trimethylsilyl)methyl]-thioimidates 62 into nitrile ylides 63 [see Scheme 17, eq. (a)] in experiments that are related to those of Tsuge et al.38 for amidines 65 [Scheme 17, eq. (b)].
Conceptually it would be possible to prepare N-silylmethylinuminium salts by the addition of an electrophile to the β-carbon of N-silylmethylenamines [Eq. (4) in Scheme 11]. The reaction of 1-(trimethylsilylmethyl)indoles 66 with AgF is reported to be initiated by the addition of silver cation to the 3-position to form N-silylmethylinuminium fluoride 67, whose desilylation leads to azomethine ylides 68 (Scheme 18). Not many examples of this reaction are known, and the narrow application of this method may arise from the lack of general methods for the preparation of N-silylmethylenamines.
Scheme 18

Padwa et al.30,40 have shown that the unsymmetrical azomethine ylide precursors 71a and 71b (Scheme 19) produce identical ratios of cycloaddition regioisomers with methyl propiolate, providing reasonable evidence for a common ylide intermediate. Similar conclusions were reached by Achiwa et al.41 using deuterium-labelledd ylide precursors. Overall, the evidence is reasonably firm, but not yet conclusive, that silicon-free ylides are intermediates in these experiments.
N-Alkoxymethyl(trimethylsilylmethyl)amines 74 are convenient precursors of C-unsubstituted azomethine ylides 76. These amines 74 are readily available from the reaction of N-alkylated silylmethylamines 73 with formaldehyde in alcoholic solvents (Scheme 20). Treating these amines with trimethylsilyl triflate in MeCN or THF causes elimination of the alkoxy group, R^1O^-, to produce N-silylmethyliminium triflates 75. Subsequent desilylation with CsF generates the corresponding C-unsubstituted azomethine ylides 76. It will be noted that the alkoxy elimination and the subsequent desilylation of 75 can be induced by TFA, TBAF, or LiF. N-(Alkylthiomethyl)(trimethylsilylmethyl)amines 77 also function as the precursors of C-unsubstituted azomethine ylides 76. In these cases, TFA and AgF are effective both for the elimination of alkylthio group, R_1S^-, and the desilylation.
Hosomi and Sakurai42 have shown that nonstabilised azomethine ylides can be obtained from aminals 74 after treatment with catalytic trimethylsilyl triflate or trimethylsilyl iodide (Scheme 21). Optimal results were obtained by heating the aminal precursor, the dipolarophile, and the catalyst in a dipolar aprotic solvent such as MeCN. Although CsF was not a requirement for these reactions, it did usually enhance the yields.
Scheme 21

The intramolecular cycloaddition of o-vinylbenzyl methoxy amine 81 has been investigated using ZnCl₂ as a promoter, but this afforded only the monosilylated product 82 with no traces of the intramolecular cycloadduct in the crude reaction mixture (Scheme 22).⁴⁴
This result led to the examination of zinc chloride and methoxy silyl amine 74c in the absence of a trapping agent. It was found that the reaction proceeded in an analogous fashion to that encountered with 81 and gave the monosilylated diamine 83 (Scheme 23). The identity of 83 was determined by its spectral properties and by comparison with an independently synthesised sample prepared by treating N-benzylaziridine with N-benzyl-N-[(trimethylsilyl)methyl]amine 84. An entirely different product was obtained, however, when 74c was treated with CsF. The major product was identified as the disilylated diamine 85 by comparison with an authentic sample prepared by treating 84 with formaldehyde. A control experiment showed that 85 was not converted to 83 when treated with zinc chloride. The reaction of 74c with lithium fluoride took
yet another course producing N,N'-dimethyl-N'-benzyldiaminomethane 86 and N-benzyloxazolidine 87. Compound 85 did not produce 86 upon treatment with LiF.

\[\text{Scheme 23}\]

\[\begin{align*}
\text{ZnCl}_2 & \\ \text{CsF} & \\ \text{LiF} & \\
\end{align*}\]

\[\begin{align*}
74c & \xrightarrow{\text{ZnCl}_2} 83 \\
74c & \xrightarrow{\text{CsF}} 85 \\
74c & \xrightarrow{\text{LiF}} 86, 87 \\
\end{align*}\]

\[\begin{align*}
83 & \xrightarrow{\text{ZnCl}_2} 84 \\
83 & \xrightarrow{\text{CH}_2\text{O}} 88 \\
83 & \xrightarrow{\text{LiF}} 89 \\
\end{align*}\]

\textbf{Scheme 23}

\(\alpha\)-Methoxy amines can be considered as latent forms of iminium ions due to their ability to lose the methoxy ion upon treatment with Lewis acids. Thus, the reaction of 74c with zinc chloride can most reasonably be explained by assuming initial formation of an iminium ion 88 followed by a subsequent desilylation to generate the azomethine ylide 57 (see Scheme 24). In the absence of a trapping agent, the 1,3-dipole reacts with 88 to give a new iminium ion 89, to afford the observed product 83 on hydrolytic work-up.
To rationalise the difference in product distribution when caesium fluoride was used as the desilylating agent, it was proposed that the initially formed iminium ion 88 underwent a prior hydrolysis to 84 and formaldehyde. It was believed that the caesium fluoride used contained a significant amount of water, which resulted in hydrolysis rather than desilylation of the ylide. Once the 84 was formed, it reacted with another equivalent of 88 to afford the disilylated diamine 85 (Scheme 25).

In contrast to CsF, the reaction of 74c with LiF gave no traces of the disilylated product 85. Lithium fluoride has the advantage that it is relatively anhydrous and less
in solution and thereby suppressing the hydrolysis reaction. It was believed that the formation of the azomethine ylide 57 proceeded in a concerted fashion when LiF was used (see Scheme 26). In the absence of a trapping agent, the resultant dipole would eventually react with small amounts of water still present in solution to generate benzylmethylamine and formaldehyde. Both of these compounds, in turn, reacted further to give the observed products 86 and 87.

\[
\begin{align*}
\text{Scheme 26}
\end{align*}
\]

1.2.3 The tautomerisation route to azomethine ylides

\alpha\text{-Amino acid ester imines are highly acidic because the conjugate bases resulting from deprotonation are stabilised by both the imine and the ester moieties. Clearly, if the imine nitrogen then picks up the liberated proton, this formally generates a stabilised azomethine ylide potentially capable of undergoing cycloadditions to alkenes and alkynes (Scheme 27).}

\[
\begin{align*}
\text{Scheme 27}
\end{align*}
\]
The first evidence for the existence of aconic N-unsubstituted azomethine ylides as tautomers of imines was provided by Grigg et al.45,46 When imines of α-amino acid esters were heated in benzene or toluene in the presence of a variety of dipolarophiles, pyrrolidine-2 or 3-pyrrroline-2-carboxylates were isolated. This indicates that a thermal equilibrium exists between imine esters and azomethine ylides \textit{90} (Scheme 28). This thermal method of generating N-unsubstituted azomethine ylides is frequently referred to as the \textit{tautomerisation route} to azomethine ylides.

\begin{center}
\begin{tikzpicture}
\node (n1) at (0,0) {$\overset{\Delta}{\longrightarrow}$};
\node (n2) at (2,0) {$\overset{\text{PhH or PhMe}}{\longrightarrow}$};
\node (n3) at (4,0) {dipolarophiles};
\draw (n1) -- (n2) -- (n3);
\end{tikzpicture}
\end{center}

\textbf{Scheme 28}

The imines of α-amino alkynitriles undergo thermal tautomerisation to give the corresponding N-unsubstituted azomethine ylides \textit{91} (Scheme 29).5,47-49 Although cyano-stabilised azomethine ylides \textit{91} have served as useful synthetic equivalents of the ester-stabilised azomethine ylides \textit{90}, they can also be synthetic equivalents of nonstabilised nitrile ylides through a cycloaddition and HCN elimination sequence.48,49

\begin{center}
\begin{tikzpicture}
\node (n1) at (0,0) {$\overset{\Delta}{\longrightarrow}$};
\node (n2) at (2,0) {A=B};
\node (n3) at (4,0) {-HCN};
\draw (n1) -- (n2) -- (n3);
\end{tikzpicture}
\end{center}

\textbf{Scheme 29}

1.2.4 The deprotonation route to azomethine ylides

One of the most direct, yet difficult, methods for obtaining azomethine ylide 1,3-dipoles involves the sequence of imine N-alkylation followed by α-deprotonation (Scheme 30).
This methodology was first introduced by Deyrup et al.50 (Scheme 31) for the preparation of aziridines. \textit{N}-Methylation of imines with methyl triflates affords labile \textit{N}-methyliminium triflates 93 and 97. Deprotonation of 93 is usually best performed with sodium hexamethyldisilazide to generate azomethine ylide 94, which is captured without added dipolarophile in an intramolecular fashion as a cyclised isomer, 1-\textit{tert}-butyl-2,2-diphenyl-aziridine 95. Trapping of the intermediate azomethine ylide 94 with various dipolarophiles failed to prevent the formation of 95. It should also be noted that deprotonation of 93 is usually accompanied by demethylation to provide the starting imine 92 even when a non-nucleophilic strong base is utilised.
Interestingly, when the iminium salt 97 is deprotonated, it yields a number of dimeric products 101a-c arising from the substituted azomethine ylide 100, which itself is formed from a nucleophilic addition of azomethine ylide 98 to the iminium salt 97 and subsequent deprotonation (Scheme 32).

Although the N-alkylation and deprotection sequence pioneered by Deyrup is often referred to as the deprotonation route, it has to be concluded that this sequence (Scheme 30) does not provide a synthetically useful route to azomethine ylides for cycloaddition reactions. Modifications are required to remedy this situation.

If the acidity of the α-hydrogen of iminium intermediates were to be increased, α-deprotonation could be smoothly carried out with a weak base and this would avoid the undesired alkylation. In order to do this, an electron-withdrawing group (EWG) is required on the α carbon of the iminium salt. These ideas are depicted in Scheme 33.
If anion stabilisation by an EWG is extensive, the resulting iminium salts quickly lose the α-hydrogen under the alkylation conditions, which leads to a spontaneous generation of the azomethine ylide and cycloaddition to the starting imine. For example, in the reaction of 6,7-dimethoxy-3,4-dihydroisoquinoline with chloroacetonitrile, the cycloadduct 102 was formed by such a process (Scheme 34).

![Scheme 34](image)

Alkylating agents that carry an appropriate EWG such as p-nitrobenzyl bromide \(^2\) and α-bromo-esters \(^52-54\) have successfully been employed in the preparation of iminium precursors 103 (Scheme 35). Iminium salts 103 then form the azomethine ylides 104 upon treatment with triethylamine.

![Scheme 35](image)
Another very useful tactic for generating an azomethine ylide by deprotonation is to condense N-substituted α-amino acid esters or derivatives ($\text{EWG} = \text{-CO}_2\text{R}, \text{-CN}$, etc.) with carbonyl compounds (Scheme 36). The intermediate iminium salts 105 are associated with a highly basic hydroxide counterion, which immediately deprotonates the α-hydrogen soon after 105 is formed. The stabilised azomethine ylides thus generated can then be smoothly trapped by added dipolarophiles.

![Scheme 36](image)

Confalone et al.55,56 have been advocates of the deprotonation method for the preparation of azomethine ylides. They condensed N-substituted α-amino esters with aldehydes to generate azomethine ylides (Scheme 37). Thus, 5-formylmethyldibenzo-$[a,d]$tropylium 106 was heated with ethyl sarcosinate 107 under reflux in toluene. The water formed was continuously driven off with the aid of a Dean-Stark trap. The ester-stabilised azomethine ylide 108 so generated was trapped in an intramolecular fashion.

![Scheme 37](image)
Scheme 38 shows another variation of the deprotonation route to azomethine ylides involving amines bearing an α-electron-withdrawing and an α'-leaving group (L). This method is closely related to the modified version of the aforementioned desilylation route (Scheme 11).

\[
\begin{align*}
\text{L}^* & \text{N}^* \text{EWG} \quad \xrightarrow{\text{base}} \quad \text{L}^* \text{N}^* \text{EWG} \quad \xrightarrow{-\text{L}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{EWG} \\
\ast &= \text{alpha carbon} \\
\ast' &= \text{alpha prime carbon}
\end{align*}
\]

Scheme 38

An example for the generation of stabilised azomethine ylides via the deprotonation method where the amine contains an α-electron-withdrawing and an α'-leaving group (L) has been reported by Achiwa et al. Methyl \text{N-}(\text{phenylthiomethyl})\text{sarcosinate 109} was treated with NaH (two equivalents) in DME and HMPA to generate azomethine ylide 110 (Scheme 39). A cyclic ylide 112 was generated by a similar procedure using methyl \text{N-}(\text{phenyl-thiomethyl})\text{prolinate 111} which was trapped with a dipolarophile to afford the corresponding cycloadduct 113 as a 1:1 regioisomeric mixture.

\[
\begin{align*}
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{EWG} \\
\text{PhS}^+ \text{Me}^+ \text{N}^* \text{CO}_2\text{Me} & \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \xrightarrow{\text{NaH (2 eq.)}} \quad \text{H}_2\text{C} \equiv \text{N}^* \text{CO}_2\text{Me} \\
\text{Me} & \text{H} \quad \x
During investigations on the carbonyl-assisted decarboxylation of N-alkylated α-amino acids, Rizzi 58 found that azomethine ylide intermediates are involved in the decarboxylative condensation. Heating sarcosine and benzophenone at 170 °C (or benzaldehyde at 150-170 °C) gave 3-methyl-2,2,5,5-tetraphenyloxazolidine 115, which corresponds to the cycloadduct of azomethine ylide 114 to the carbonyl compound (Scheme 40).

This sequence may involve the initial formation of iminium carboxylate 116 which then cyclises into the thermally labile 5-oxazolidinone intermediate 117. This subsequently undergoes a facile thermal decarboxylation to generate the nonstabilised azomethine ylide (Scheme 41).

The generation of nonstabilised azomethine ylides by the decarboxylation route and internal trapping has also been investigated by Grigg et al.59,60 They showed that
with N-substituted or N-unsubstituted α-amino acids in DMF for short periods of time, provided access to a variety of cis-fused cycloadducts, 118, 119 and 120 (Scheme 42).
can be prepared from the decarboxylation procedure by heating benzaldehyde or pyridine-3-carbaldehyde and α-amino acids in boiling DMF. When N-phenylmaleimide was also present, mixtures of several stereoisomeric cycloadducts were obtained (Scheme 43).

![Scheme 43]

1.2.6 The N-oxide route to azomethine ylides

The extensive study of desilylation in the azomethine ylide area can be attributed to the scarcity of viable methods for generation of the nonstabilised members of this dipole family. Work by Roussi et al.61-64 indicated that treatment of amine N-oxides with strong base can also produce nonstabilised azomethine intermediates. This method for azomethine ylide generation is commonly referred to as the \textit{N-oxide route}. In contrast to the desilylation route, this method has permitted the successful [3+2] trapping of certain unactivated olefins, apparently, because there is no iminium species present to compete in dipole trapping. However, the strongly basic reaction conditions required obviously preclude the use of sensitive trapping agents, and serve to limit the applicability of the method.
Reaching trimethylamine N-oxide 125 with a large excess of LDA in THF at -78 °C generated the C-unsubstituted nonstabilised azomethine ylide 126 (Scheme 44). This ylide intermediate underwent smooth cycloaddition reactions to nonactivated olefinic dipolarophiles, such as 1-alkenes, cyclic alkenes, styrene, (E)- and (Z)-stilbene to give a variety of pyrrolidines.\(^6\)

\[\text{Me-1-heptene} \rightarrow \text{126} \rightarrow \text{63\%}\]

\[\text{LDA (4 eq.)} \quad \text{THF, -78 °C} \quad \text{PhPh}\]

\[\text{M} \quad \text{S} \quad \text{Me} \quad \text{Me} \quad \text{125} \quad \text{M} \quad \text{S} \quad \text{Me} \quad \text{126} \]

\[\text{Me} \quad \text{N} \quad \text{Me} \quad \text{H}_2\text{C} \quad \text{Ph} \quad \text{Ph} \quad \text{72\%}\]

\[\text{Ph} \quad \text{Ph} \quad \text{Me} \quad \text{Me} \quad \text{127} \quad \text{Me} \quad \text{Me} \quad \text{128} \quad \text{d.e. = 60\%}\]

Scheme 44

Roussi \textit{et al.}\(^6\) have also harnessed this methodology for the preparation of chiral nonstabilised azomethine ylides. For example, deprotonation of amine N-oxide 127 with LDA followed by interception with (E)-stilbene, afforded a 4:1 mixture of diastereomeric adducts 128 (Scheme 45).

\[\text{Ph} \quad \text{Ph} \quad \text{Me} \quad \text{Me} \quad \text{127} \quad \text{Me} \quad \text{Me} \quad \text{128} \quad \text{d.e. = 60\%}\]

Scheme 45
The mechanism of azomethine ylide generation via the N-oxide route is illustrated in (Scheme 46). The tertiary amine N-oxide chelates to the Li$^+$ cation and the amine base then effects α-deprotonation. After elimination of LiO, an iminium ion 129 is generated. A second deprotonation of the iminium intermediate then creates the azomethine ylide 130. Evidence for this mechanism has been provided by the examination of the products of hydrolysis, 131 and 132, after base treatment.

Although the range of azomethine ylides that can be generated by the N-oxide route is quite restricted, the method does nevertheless give rise to useful pyrrolidines.

1.2.7 The N-metallation route to azomethine ylides

Another route to stabilised azomethine ylides is via the N-metallation of imines derived from α-amino acids or esters. This can be seen when N-(p-substituted benzylidene) imines of α-amino esters are converted into the o-palladated dimeric complexes 133 by treatment with palladium acetate in hot acetic acid. The complexes 133 are readily deprotonated with triethylamine in CH$_2$Cl$_2$ to generate red solutions of N-metallated azomethine ylides 134, which are captured with N-phenylmaleimide as an endo-selective dimeric cycloadduct 135 (Scheme 47).
α-Metallation of the imines bearing an electron-withdrawing α-substituent will generate the α-metallated imines. A 1,2-metal migration follows and the N-metallated azomethine ylide is generated (Scheme 48).

Scheme 47

\[
\text{Scheme 48}
\]

\[\text{M} = \text{metal}\]

\[\text{M-Base}\]

\[\text{N-Metallated azomethine ylides 136 of ester-stabilised types are tautomeric to the metal ester enolates 137 of chelate-stabilised types. The only structural difference is which heteroatom between the imine nitrogen and the ester carbonyl oxygen is connected with the metal (M) by a covalent bond. In the presence of lithium bromide in THF, the imines of α-amino esters can be deprotonated with triethylamine at room temperature to generate highly reactive 1,3-dipoles 138a,b which exist either in an N-lithiated azomethine ylide structure 138a or in a chelated lithium enolate form 138b (Scheme 49).}^{67}\]
The cycloaddition trapping of 138a,b can be carried out, without any trouble because of the weakly basic conditions, with a variety of olefins such as maleimides, maleates, fumarates, acrylates, crotonates, methacrylates and vinyl ketones. The corresponding cycloadducts 139 are obtained in a highly regio- and stereoselective fashion.

The imines of α-aminonitriles can be lithiated with LDA at -78 °C in THF. The anionic intermediates 140 generated are captured in a regio- and stereoselective, and stereospecific cycloaddition with a number of olefins to furnish 4,5-cis-1-pyrrolines 142a-e after elimination of lithium cyanide (Scheme 50).
Unlike the \(N \)-metallated species 138a and 138b derived from the imines of \(\alpha \)-amino esters or amides, the lithium is presumably sitting on the imine nitrogen so that 140 can be classified as an \(N \)-metallated azomethine ylide. In the cycloaddition step, the chelation of the lithium metal to the carbonyl oxygen of dipolarophiles is again important for the high regio- and stereoselectivities.

1.2.8 General summary of the methods for the generation of azomethine ylides for cycloaddition reactions

The various possible methods for the generation of azomethine ylides, either stabilised or nonstabilised, considered in this section are summarised briefly in Table 1 below.

<table>
<thead>
<tr>
<th>Method of generation</th>
<th>Stabilised</th>
<th>Nonstabilised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aziridine route</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Desilylation route</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Tautomerisation route</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Decarboxylation route</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(N)-oxide route</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Deprotonation route</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(N)-Metallation route</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 1 Summary of the azomethine ylides generated via various methods
1.3 Asymmetric induction in the reactions of azomethine ylides with alkenes

There are five issues which need to be considered when evaluating the utility of a general chiral auxiliary for the cycloaddition reactions of azomethine ylides in asymmetric synthesis: (1) availability of the auxiliary, (2) diastereofacial selectivity, (3) endo/exo selectivity, (4) geometry of the 1,3-disubstituted ylides, and (5) auxiliary removal/recovery. Suffice it is to say that none of the chiral systems reported so far appears to satisfy all of these requirements. Particularly noteworthy is the fact that all of the known systems require destructive removal of a chiral auxiliary attached to nitrogen.

At present, there are only a few successful examples of asymmetric 1,3-dipolar cycloadditions where an unstabilised azomethine ylide has been tethered to a removable chiral auxiliary. Most of the reactions that have so far been investigated have, at best, exhibited only modest levels of stereocontrol (ca. 60% d.e.), and in every case, destruction of the chiral auxiliary has been necessary before the newly fashioned pyrrolidine cycloadduct could be liberated (Scheme 51). One could envisage that the resultant cycloadduct could be removed via hydrogenation to afford, as in the case of Scheme 51, the amino-pyrrolidine 143.
Garner et al.69,70 have reported excellent diastereofacial selectivity in the 1,3-dipolar cycloaddition reactions of photochemically-generated achiral azomethine ylides 145/151 and chiral azomethine ylides 155/182 with various achiral and chiral dipolarophiles (Scheme 52-61). This work was initiated from previous studies where no chirality was present in the electron-withdrawing group substituted dipolarophiles for the cycloaddition reactions of azomethine ylides 145/151/155 (Scheme 52-55, Table 2, entries 1-4). In the cases indicated in Schemes 52-55 clean cycloadditions resulted, but all cycloadducts contained a 1:1 mixture of diastereomers.
Scheme 52

Scheme 53
With methyl acrylate (Schemes 52-54), the preferential formation of the \textit{exo} adducts 146/147, 152/153, and 156/157 were observed, though small amounts of the \textit{endo} adducts 148/149 could be detected in the case of the benzylic unsubstituted substrate 144.

Trapping the azomethine ylide with acrylonitrile as the dipolarophile, however, favoured the \textit{endo} adducts 160/161 over the \textit{exo} adducts 158/159. The diastereomeric
Chiral acrylates 162 and 167, derived from menthol and 10-[dicyclohexyl-(sulfonylamido)]isoborneol, respectively, were then utilised (Table 2, entries 5-6) as the dipolarophiles. They also underwent clean cycloaddition reactions to the photochemically generated azomethine ylide 145 but no facial selectivity was observed. Again the predominant products were the exo cycloadducts 163/164 and 168/169.

Scheme 56
The above results are summarised in Table 2 below.

<table>
<thead>
<tr>
<th>entry</th>
<th>aziridine</th>
<th>dipolarophile</th>
<th>exo adducts</th>
<th>% yield</th>
<th>ratio (ds)</th>
<th>endo adducts</th>
<th>% yield</th>
<th>ratio (ds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>144</td>
<td>methyl acrylate</td>
<td>146/147</td>
<td>50</td>
<td>-</td>
<td>148/149</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>(±)-150</td>
<td>methyl acrylate</td>
<td>(±)-152/(±)-153</td>
<td>73</td>
<td>1:1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>(S)-154</td>
<td>methyl acrylate</td>
<td>(S)-156/(S)-157</td>
<td>60</td>
<td>1:1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>144</td>
<td>acrylonitrile</td>
<td>158/159</td>
<td>25</td>
<td>-</td>
<td>160/161</td>
<td>40</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>144</td>
<td>(-)-162</td>
<td>163/164</td>
<td>64</td>
<td>1:1</td>
<td>165/166</td>
<td>15</td>
<td>1:1</td>
</tr>
<tr>
<td>6</td>
<td>144</td>
<td>(-)-167</td>
<td>168/169</td>
<td>57</td>
<td>1:1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2 1,3-Dipolar cycloadditions with acrylate and acrylonitrile dipolarophiles

Oppolzer's acryloyl camphorsultam (-)-170 was then used as the chiral dipolarophile (Scheme 58-61). When the photolysis of the aziridines 144/(±)-150/(S)-154/(S)-181 was conducted with solid chiral sultam added in 0.2-equivalent portions
with a load of 58 equivalents was swollen, and cycloaddition of which were observed in isolated yields in the range 42–69 % based on recovered aziridine (Schemes 58–61, Table 3).

Scheme 58
Scheme 59
Scheme 60

Scheme 61
These results are summarised in Table 3 below.

<table>
<thead>
<tr>
<th>entry</th>
<th>aziridine</th>
<th>dipolarophile</th>
<th>exo adducts</th>
<th>% yield</th>
<th>ratio (ds)</th>
<th>endo adducts</th>
<th>Yield %</th>
<th>ratio (ds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>144</td>
<td>(-)-170</td>
<td>171/172</td>
<td>42</td>
<td>>25:1</td>
<td>173/174</td>
<td>17</td>
<td>>25:1</td>
</tr>
<tr>
<td>2</td>
<td>(±)-150</td>
<td>(-)-170</td>
<td>175 + ent-176 / 177 + ent-178</td>
<td>69</td>
<td>>25:1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>(S)-154</td>
<td>(-)-170</td>
<td>(S)-179 / (S)-180c</td>
<td>65</td>
<td>>25:1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>(S)-181</td>
<td>(-)-170</td>
<td>(S)-183 / (S)-184</td>
<td>55</td>
<td>>25:1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3 1,3-Dipolar cycloaddition reactions with chiral acryloyl sultam dipolarophiles

With the benzylamine-derived aziridine 144 and (-)-170, two products identified as exo-re adduct 171 and endo-re adduct 173 were obtained in a ratio of 2.4:1. Only traces of what was believed to be the diastereomeric exo-si 172 and endo-si 174 addition products were detected in unresolved samples of 171 and 173, respectively. The dipolarophile facial selectivity associated with all cycloadditions employing (-)-170 was uniformly excellent (ds > 25:1) as determined by crude \(^1\)H n.m.r. analysis.

The cycloadducts could be converted to their corresponding ethyl esters in good yield and the chiral sultam auxiliary efficiently recovered by means of titanium(IV)-mediated alcoholysis (Scheme 62).\(^{72}\) Thus, exposure of adducts 171/(S)-183 and (S)-184 to 5-8 equivalent of Ti(O\(^{3}\)Pr)\(_4\) in refluxing ethanol led to the isolation of the corresponding ethyl esters 185/(S)-186 and (S)-188 in 61-75 % yield along with 70-90 % of the reusable sultam 187.
Garner et al.73 has also successfully utilised Oppolzer's camphor sultam in the search towards a general chiral auxiliary for the cycloaddition reactions of azomethine ylides 190ab and 200 (Schemes 63 and 64).
Scheme 63

Thermolysis of aziridines 189a/b in the presence of the dipolarophiles indicated in Table 4 afforded the 1,3-dipolar cycloadducts via the stabilised N-substituted azomethine ylides 190a/b.

<table>
<thead>
<tr>
<th>entry</th>
<th>azomethine ylide</th>
<th>dipolarophile</th>
<th>major cycloadduct(s)</th>
<th>facial selectivity</th>
<th>combined yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>190a</td>
<td>191</td>
<td>192a</td>
<td>9:1</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>190b</td>
<td>191</td>
<td>192b</td>
<td>11:1</td>
<td>82</td>
</tr>
<tr>
<td>3</td>
<td>190a</td>
<td>193</td>
<td>194/195 (1.8:1)</td>
<td>10:1</td>
<td>73<sup>c</sup></td>
</tr>
<tr>
<td>4</td>
<td>190a</td>
<td>196</td>
<td>197/198 (2:1)</td>
<td>d</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>191</td>
<td>201</td>
<td>6:1</td>
<td>57<sup>c</sup></td>
</tr>
<tr>
<td>6</td>
<td>200</td>
<td>193</td>
<td>202</td>
<td>7:1</td>
<td>84</td>
</tr>
<tr>
<td>7</td>
<td>200</td>
<td>196</td>
<td>203</td>
<td>5:1</td>
<td>53<sup>c</sup></td>
</tr>
</tbody>
</table>

Table 4 Auxiliary-controlled 1,3-dipolar cycloadditions of azomethine ylides

* Kinetic diastereomer ratios were determined from the crude ¹H n.m.r. spectrum spectra;
 ^b The combined (total) yield of cycloadducts after flash chromatography on silica gel;
 ^c Between 5 and 7 % of other minor cycloadducts were also formed;
 ^d The minor facial diastereomers could not be detected.
When dimethyl maleate 191 was used as the dipolarophile, cycloaducts 192a and 192b were obtained as the major products (entries 1 and 2, Table 4) which conforms to exclusive endo cycloaddition to the Z-ylide 190a/b. While cycloaditions to N-phenylmaleimide 193 occurred in good chemical yield, the endo selectivity was considerably eroded (194/195 = 1.8:1) with this dipolarophile (entry 3). Cycloaddition to the unsymmetrical dipolarophile, methyl acrylate 196, led to the formation of regioisomers 197 and 198 in a ratio of 2:1 (entry 4). However, the observed diastereofacial selectivity (ds = 6:1 to 11:1) was on the order of that usually associated with Oppolzer’s sultam auxiliary.

Dipolar cycloadditions of the NH azomethine ylide 200, generated via the imine tautomeration route, were also investigated by these workers (Scheme 64). Thus, the glycyl sultam 199 was condensed with benzaldehyde to give an intermediate imine (not shown) that underwent acid-catalysed tautomeration to the 3-phenyl substituted azomethine ylide 200 which could be trapped with the same dipolarophiles 191, 193 and 196 (entries 5-7, Table 4). In each case, the major product was that configuration in which all pyrrolidine substituents were cis to one another, resulting from an endo approach of the dipolarophile to the E,E-ylide 200.

![Scheme 64](image-url)
Meyers et al.74,75 have employed a chiral dipole (A) and a chiral dipolarophile (B) for the enhancement of diastereoselection in azomethine ylide cycloadditions (Scheme 65).

The preparation of these bicyclic chiral dipolarophile precursors followed two general routes (Scheme 66). When the angular substituent (R^1) on the bicyclic lactam 205 was an alkyl or aryl substituent, Route A was employed, which involved the cyclocondensation reaction between a chiral amino-alcohol76 and a keto-acid. Alternatively, Route B was used for the preparation of the lactams 205 where $R^1 = H$. In this process, condensation of an amino-alcohol ($R^2 = ^3$Pr, Ph) with succinimide gave an intermediate chiral imide 204. Partial reduction of the imide to give an intermediate hydroxy lactam, followed by acid-catalysed ring closure, afforded the desired hydrogen bicyclic lactam 205 ($R = H$).
Sequential treatment of the saturated lactams 205a-1 with base (2.0 equivalents) followed by the addition of phenylselenenyl bromide (1.0 equivalent) afforded α-selenenyl enolates that were quenched by a variety of electrophiles. The required unsaturated lactams 206a-1 were obtained in good yields after oxidation as shown in Table 5.

<table>
<thead>
<tr>
<th>lactam</th>
<th>R¹</th>
<th>R²</th>
<th>X</th>
<th>electrophile</th>
<th>% yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>206a</td>
<td>Me</td>
<td>i-Pr</td>
<td>H</td>
<td>NH₄Cl</td>
<td>82</td>
</tr>
<tr>
<td>206b</td>
<td>Me</td>
<td>Ph</td>
<td>H</td>
<td>NH₄Cl</td>
<td>82</td>
</tr>
<tr>
<td>206c</td>
<td>H</td>
<td>Ph</td>
<td>H</td>
<td>NH₄Cl</td>
<td>78</td>
</tr>
<tr>
<td>206d</td>
<td>Me</td>
<td>i-Pr</td>
<td>CO₂Me</td>
<td>ClCO₂Me</td>
<td>66</td>
</tr>
<tr>
<td>206e</td>
<td>Me</td>
<td>i-Pr</td>
<td>CO₂t-Bu</td>
<td>Boc₂O</td>
<td>43</td>
</tr>
<tr>
<td>206f</td>
<td>H</td>
<td>Ph</td>
<td>Cl</td>
<td>p-TolSO₂Cl</td>
<td>71</td>
</tr>
<tr>
<td>206g</td>
<td>H</td>
<td>Ph</td>
<td>Br</td>
<td>(BrCCl₂)₂</td>
<td>84</td>
</tr>
<tr>
<td>206h</td>
<td>H</td>
<td>Ph</td>
<td>I</td>
<td>NIS</td>
<td>55</td>
</tr>
<tr>
<td>206i</td>
<td>Me</td>
<td>Ph</td>
<td>Br</td>
<td>(BrCCl₂)₂</td>
<td>75</td>
</tr>
<tr>
<td>206j</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>NH₄Cl</td>
<td>17</td>
</tr>
<tr>
<td>206k</td>
<td>Me</td>
<td>i-Pr</td>
<td>Me</td>
<td>MeI</td>
<td>77</td>
</tr>
<tr>
<td>206l</td>
<td>Ph</td>
<td>i-Pr</td>
<td>CO₂Me</td>
<td>ClCO₂Me</td>
<td>69</td>
</tr>
</tbody>
</table>

Table 5 Preparation of chiral dipolarophiles 206a-1 from bicyclic lactams 205a-1
The achiral and chiral azomethine ylide precursors 211, (R)-212 and (S)-212, were derived from benzylamine and enantiomerically pure (R) and (S) α-methylbenzylamines according to Padwa et al.44 (Scheme 67).

The role of the substituent (R1) attached to the angular carbon is what determines the overall direction of cycloaddition. Predominant approach of the achiral dipole to the “bottom” or α-face is seen when the angular substituent is large (R1 = Me) whereas predominant approach to the β-face occurs when the angular substituent is small (R1 = H) (Scheme 68). Thus, reaction of 2 equivalents of achiral dipole precursor 211 with angular methyl lactam 206\textsubscript{b} afforded a 16:1 mixture of cycloadduct 213\textsubscript{b} along with the minor isomer 214\textsubscript{b} in quantitative yield. In contrast, reaction of precursor 211 with the angular hydrogen lactam 206\textsubscript{c} afforded only a 5:1 mixture of cycloadducts with 214\textsubscript{c} predominating as a result of preferential approach of the dipole to the “top” or β-face of 206\textsubscript{c}.

Scheme 67

\begin{center}
\includegraphics[width=\textwidth]{Scheme67.png}
\end{center}
The double asymmetric synthesis of the tricyclic cycloadducts was then explored (Scheme 69). Optimum parameters for the Meyers cycloadditions for the generation of the azomethine ylide precursors (R)-212 and (S)-212 were under the Achiwa conditions (CF₃CO₂H in CH₂Cl₂). Table 6 summarises the results of the addition to chiral lactams 206a-e,I by achiral 211 and chiral dipole precursors (R)-212 and (S)-212. In cases where the α-substituent, X, was hydrogen (entries 1-3), it was observed that the π-facial selectivities were insensitive to the configuration at the benzylic carbon of the dipole. In contrast, where X was larger than hydrogen (entries 4-6, X = CO₂Me or CO₂t-Bu), significantly enhanced selectivity was observed for cycloadditions with the dipole precursor (R)-212, compared to the ratios provided by the achiral precursor 211 and the dipole precursor (S)-212.
Scheme 69

![Diagram of molecular structures](image)

Table 6 **Effect of structure on facial selectivity**

<table>
<thead>
<tr>
<th>Entry</th>
<th>R<sup>2</sup></th>
<th>R<sup>1</sup></th>
<th>X</th>
<th>Lactam 206</th>
<th>Ylide from 211</th>
<th>Ylide from (R)-212</th>
<th>Ylide from (S)-212</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>i-Pr</td>
<td>Me</td>
<td>H</td>
<td>206a</td>
<td>91:9</td>
<td>94:6</td>
<td>91:9</td>
</tr>
<tr>
<td>2</td>
<td>Ph</td>
<td>Me</td>
<td>H</td>
<td>206b</td>
<td>94:6</td>
<td>91:9</td>
<td>92:8</td>
</tr>
<tr>
<td>3</td>
<td>Ph</td>
<td>H</td>
<td>H</td>
<td>206c</td>
<td>17:83</td>
<td>19:81</td>
<td>16:84</td>
</tr>
<tr>
<td>4</td>
<td>i-Pr</td>
<td>Me</td>
<td>CO<sub>2</sub>Me</td>
<td>206d</td>
<td>71:29</td>
<td>87:13</td>
<td>59:41</td>
</tr>
<tr>
<td>5</td>
<td>i-Pr</td>
<td>Me</td>
<td>CO<sub>2</sub>i-Bu</td>
<td>206e</td>
<td>72:28</td>
<td>92:8</td>
<td>51:49</td>
</tr>
<tr>
<td>6</td>
<td>i-Pr</td>
<td>Ph</td>
<td>CO<sub>2</sub>Me</td>
<td>206f</td>
<td>74:26</td>
<td>87:13</td>
<td>69:31</td>
</tr>
</tbody>
</table>

An example of the synthetic utility of tricyclic lactams is shown in **Scheme 70**. Compound 215 was observed to give non-racemic bicyclic hydroxylactams 216 as a consequence of benzylic proton abstraction by MeLi, followed by oxazolidine C-O bond cleavage. Conversion of 216 to a 4:1 mixture of bicyclic lactones was carried out by NaBH₄ reduction of its tautomer 217 followed by acid treatment in 51 % overall yield from 215. The major lactone 218 (R) was shown to be 93.7 % e.e. by chiral stationary HPLC analysis.
These results give an brief insight into the stereoselectivities attainable when cycloaddition reactions are performed with both chiral dipoles and chiral dipolarophiles. Choosing the correct template on which to base the cycloaddition reactions of azomethine ylides is therefore of great importance if any reasonable diastereoselectivity is to be obtained.

Jones et al.79 have also developed a very powerful methodology for controlling the facial selectivity of ylides of stabilised azomethine ylide additions. Their method is especially useful since it allows 2,4-trans-disubstituted prolines to be constructed. These are a particularly difficult class of compounds to prepare, yet the Jones method now provides easy access to them. Jones made use of the conformationally restrained auxiliary of homochiral stabilised 4-phenyl-imidazolinium ylides \textbf{219}, available as either enantiomer, by virtue of the heterocyclic ring (Scheme 71).
This work developed from earlier work in the Jones group whereby aminals were utilised as a source of azomethine ylides.80 The substrate chosen was 1-benzyl-2-imidazoline 221 which was prepared from N-benzyl-1,2-diaminoethane 220 and triethyl orthoformate (4 mol equiv.) in the presence of p-TsOH (0.05 mol equiv.) in 72\% yield. Compound 221 was then quaternised in THF with the \(\alpha\)-haloesters methyl, ethyl, and \textit{tert}-butyl bromoacetate, and ethyl 2-bromopropionate, as well as with 2-bromoacetophenone, bromoacetonitrile, and 4-nitrobenzyl bromide to furnish the salts 222a-g (Scheme 72).

\begin{center}
\textbf{Scheme 72}
\end{center}

Two methods were used for ylide formation and the subsequent cycloaddition: (A) dropwise addition of DBU to a slurry of freshly prepared 222 in excess dipolarophile; and (B) very slow (over < 4 h) addition of DBU to a solution of 222 and dipolarophile in THF at reflux. Hence, using methyl methacrylate as dipolarophile, the cycloadducts 223a-c were prepared regiospecifically; using methacrylonitrile as dipolarophile afforded 224a-d. Similarly, 222e led to 223d and 224e using methyl methacrylate and
No cycloadducts were isolated from 222f and 222g. The cycloadducts, 223 and 224, all consisted of a single diastereoisomer.

The cycloadditions were also performed with nonstabilised imidazolinium azomethine ylides prepared according to the desilylation method of Vedejs. Imidazoline 221 was converted to 225, which was added directly in diglyme to a slurry of excess CsF and dipolarophile in diglyme (Scheme 73). With methyl methacrylate and methacrylonitrile, 226a and 226b were prepared as 1:1 and 2:1 mixtures of diastereomers, respectively.

![Scheme 73](image)

All of the dipolarophiles used in Scheme 72 and Scheme 73 were substituted α- to the activating group. When dipolarophiles lacking these α-substituents were utilised, a ring-opening elimination was observed in equilibrium with the bicyclic adducts after purification by flash chromatography. Salt 222b with methyl acrylate and DBU gave a mixture of 227a and the dihydropyrrole 228a (Scheme 74). Likewise, 225 with methyl acrylate (CsF, diglyme) gave a mixture of 227b and 228b, and with but-3-en-2-one a mixture of 227c and 228c.

![Scheme 74](image)
This equilibrium could be established under acidic conditions via protonation at N-1. Thus reduction under acidic conditions using NaB(CN)H$_3$ converted the appropriate pyrroloimidazoles 223, 224, 226 and 227/228 into the substituted pyrrolidines 229a-e in high yields as single stereoisomers (Scheme 75). This ring-opening step could be avoided by using LiAlH$_4$ in Et$_2$O (Scheme 75). Treating 223c with LiAlH$_4$ afforded the diol 230a as did similar treatment of 226a to give 230b (still as a 1:1 diastereomeric mixture). Hydrogenation of 230a (1 atm., Pd/C) afforded the pyrrolidine diol 229f in 70%.

These workers then extended this work to the cycloadditions of homochiral ylides as indicated in Scheme 71 earlier. The precursors to the ylides 219 were the imidazolines 232a,b. These were prepared by the action of refluxing triethyl orthoformate (as solvent) with a catalytic amount of p-TsOH with the homochiral diamines 231a,b. These diamines 231a,b were prepared from (S)- or (R)-phenylglycine (Scheme 76).81
The quaternisation of the imidazolines 232 with various halides proved to be a very slow process. The cycloadditions of the imidazolium ylides 234a,b to various dipolarophiles were therefore performed in situ by the addition of dipolarophile (3 mol equiv.) to a solution of imidazolines 232a,b in THF. The solution was heated at reflux for 1h, after which time 1 mol equiv. of DBU was added dropwise over 4 h. The reaction mixture was then heated for a further 2 h at reflux. Isolation provided the hexahydropyrrolo[1,2-a]imidazole cycloadducts 235a,b. Using methyl bromoacetate as alkylation agent and methyl methacrylate as dipolarophile furnished cycloadducts 235a from (S)-imidazoline 232a and 235b from (R)-imidazoline 232b, both as single enantiomers (Scheme 77).
Several other cycloadducts based on this technique were also prepared using tert-butyl bromoacetate as the alkylating agent. These results are indicated in Scheme 78 (showing the use of 232a) and Table 7.

![Scheme 78](image)

<table>
<thead>
<tr>
<th>Dipolarophile</th>
<th>Adduct A</th>
<th>Adduct B</th>
</tr>
</thead>
<tbody>
<tr>
<td>R R^1 Y</td>
<td>(S) enantiomer</td>
<td>(R) enantiomer</td>
</tr>
<tr>
<td>H Me CO_2Me</td>
<td>237 (61)</td>
<td>238 (62)</td>
</tr>
<tr>
<td>H Me CN</td>
<td>239 (27)</td>
<td>240 (22)</td>
</tr>
<tr>
<td>H H CO_2Me</td>
<td>243 (65)</td>
<td>244 (63)</td>
</tr>
<tr>
<td>H H CO_2tBu</td>
<td>245 (59)</td>
<td>246 (49)</td>
</tr>
<tr>
<td>Me H CO_2Me</td>
<td>249 (46)</td>
<td>250 (26)</td>
</tr>
<tr>
<td>H H SO_2Ph</td>
<td>251 (33)</td>
<td>-</td>
</tr>
<tr>
<td>H H COMe</td>
<td>252 (71)</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 7 Cycloadducts derived from (S)/(R)-4-tert-butyl imidazolinium ylides 234a,b with various dipolarophiles

Cycloadducts 237 and 238 were produced using methyl methacrylate as dipolarophile from (S)- and (R)-imidazoline 232a,b respectively in comparative yields. Methacrylonitrile (R = H, R^1 = Me, Y = CN) afforded the corresponding adducts 239 and 240 as the major diastereoisomers from 232a and 232b, respectively. However, minor exo addition also occurred affording 241 and 242 indicating the smaller size of the CN group. Diastereomeric ratios were (endo:exo 7:1) 239 with 241 and (endo:exo 8:1) with 240 and 242. Methyl and tert-butyl acrylates furnished cycloadducts 243 and 244, and 245 and 246, respectively. With tert-butyl acrylate (R = H, R^1 = H, Y = CO_2tBu) a minor amount of the exo isomer was formed (245:247 endo:exo = 20:1, and 246:248 endo:exo 25:1). Methyl (E)-crotonate, afforded sole endo adducts 249 and 250.
Removal of the chiral template was found to be most efficiently performed by a two step reductive sequence (Scheme 79). The initial step was the cleavage of the C(7a)-N(1) bond using NaB(CN)H$_3$ in acidic media as discussed previously. This was then followed by the removal of the benzylic N-substituent by hydrogenolysis over Pearlman’s catalyst, Pd(OH)$_2$.

Thus tert-butyloxycarbonyl cycloadducts 237, 239, 243, 245 and 249 were reduced with [NaB(CN)H$_3$, 2M HCl, THF] to the N-substituted pyrrolidines A and B (Scheme 80, Table 8). These pyrrolidines could then be hydrogenated crude without the need for purification. One difficulty encountered was the partial epimerisation at C-4 for pyrroloimidazoles mono-substituted at C-7 ($R_1 = H$). Epimer ratios in favour of the 2,4-trans isomers were obtained when a large excess (10 mol equiv.) of acid followed by rapid addition of exactly one equiv. of NaB(CN)H$_3$ was used. Hence, reduction of 243 produced a 5:1 trans:cis mixture of C-4 epimers 255 and 256 respectively, whilst adduct 245 from tert-butyl acrylate afforded 257 and 258 in an isomer ratio of 3:1 in favour of trans. These epimer mixtures were used crude in the hydrogenolysis step.
Cleavage of the benzylic C-N bond in 253-259 by hydrogenolysis over Pearlman's catalyst, Pd(OH)$_2$, using H$_2$ (60 psi), MeOH and 1 mol equiv. of CF$_3$CO$_2$H, as standard conditions afforded the pyrrolidines 260-266 (Scheme 81, Table 9).

![Scheme 81](image)

Table 8 Cleavage of the C(7a)-N(1) bond using NaB(CN)H$_3$

<table>
<thead>
<tr>
<th>label</th>
<th>R</th>
<th>R'</th>
<th>Y</th>
<th>label</th>
<th>yield (%)</th>
<th>label</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>237</td>
<td>H</td>
<td>Me</td>
<td>CO$_2$Me</td>
<td>253</td>
<td>73</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>239</td>
<td>H</td>
<td>Me</td>
<td>CN</td>
<td>254</td>
<td>80</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>243</td>
<td>H</td>
<td>H</td>
<td>CO$_2$Me</td>
<td>255</td>
<td>83</td>
<td>256</td>
<td>17</td>
</tr>
<tr>
<td>245</td>
<td>H</td>
<td>H</td>
<td>CO$_2$Bu</td>
<td>257</td>
<td>72</td>
<td>258</td>
<td>24</td>
</tr>
<tr>
<td>249</td>
<td>Me</td>
<td>Me</td>
<td>CO$_2$Me</td>
<td>259</td>
<td>99</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Cleavage of the benzylic C-N bond in 253-259 by hydrogenolysis over Pearlman's catalyst, Pd(OH)$_2$, using H$_2$ (60 psi), MeOH and 1 mol equiv. of CF$_3$CO$_2$H, as standard conditions afforded the pyrrolidines 260-266 (Scheme 81, Table 9).

Hydrogenolysis of the crude epimer mixtures 255-258 afforded epimeric pyrrolidines 262-265. It is interesting to note that a considerable improvement in epimer ratio was observed in one of the products 264 and 265 when compared to the starting material. These pyrrolidine epimers could easily be separated by flash chromatography. An enantioselective route to homochiral hexahydropyrrolo[1,2-a]-imidazoles has thus been developed via the 1,3-dipolar cycloaddition of stabilised azomethine ylides. Although
the chiral template is destroyed in the removal from the newly formed pyrrolidine
cycloadducts, this method does show that homochiral pyrrolidine-containing
compounds can be easily prepared via stabilised azomethine ylide cycloaddition
reactions.

Harwood et al.82 have demonstrated that homochiral 5-phenylmorpholine-2-one
template 267 reacts with aldehydes to generate azomethine ylides capable of undergoing
intermolecular cycloadditions with electron deficient alkenes (Scheme 82).83-85
Subsequent removal of the chiral template permits the construction of proline
derivatives.

These chiral compounds can be easily prepared from readily available starting material
in a one-step procedure from phenylglycinol according to Dellaria et al.86
[phenylglycinol, \(\text{Pr}_2\text{NEt} \) (2.5 equiv.), \(\text{BrCH}_2\text{CO}_2\text{Ph} \) (1.1 equiv.), MeCN, r.t., 15-18 h].
These workers have extended this work into the intramolecular cycloaddition reaction
using aldehydes possessing appropriately positioned unsaturation. Combining ylide
generation with an intramolecular [3+2]-cycloaddition provided the diastereoccontrolled
construction of several stereocentres and rapid access to proline derivatives (Scheme 83).

\textbf{Scheme 82}
Treating (5S)-267 with 5-hexenal (2.5 equiv.) in PhH at reflux and removing the water using molecular sieves in a Soxhlet extractor furnished 268 as a single cycloadduct within 3 h in 95 % yield. Removal of the template under hydrogenolytic conditions, afforded (1R,3S,5S)-269 in 75 % recrystallised yield (Scheme 84).

Using 6-heptenal (1.1 equiv.) with (5S)-267 in refluxing PhMe for 12 h led to 270 as a single cycloadduct in 90 % yield after recrystallisation from Et₂O (Scheme 85). Similarly, using 3-thia-5-hexenal (1.1 equiv.) in PhMe at reflux for 48 h gave the single cycloadduct 271 which was isolated in 75 % recrystallised yield. Reductive cleavage of the thioether linkage in 271 was achieved by heating a solution of 271 in acetone at reflux with excess Raney nickel for 12 h to afford 272 in 40 % isolated yield. Hydrogenolytic degradation of the morpholin-2-one framework was carried out using Pearlman's catalyst as previously described to leave (1S,4R,5R)-273 in 62 % yield.
Thus, the process of generating chiral ylides capable of undergoing
diastereocontrolled dipolar cycloaddition permits rapid access to both bicyclic and
monocyclic 4-5-disubstituted derivatives of proline with high enantiocontrol over the
new asymmetric centres generated.

Kanemasa et al.87 were the first to present an example of a highly efficient
asymmetric 1,3-dipolar cycloaddition of azomethine ylides, where reactive N-metallated
azomethine ylides and an α,β-unsaturated ester with a chiral perhydropyrrolono[1,2-c]imidazol-3-yl moiety at the β-position have been employed. These workers expected
that α,β-unsaturated carbonyl compounds bearing a 2-pyrrolidinyl chiral controller, or
heteroanalog ($X =$ heteroatom) could serve effectively as chiral dipolarophiles since the
approach of dipole from one side of the olefin face would be sterically hindered by the
extruding N-substituent, R.

For example:
The reaction of methyl (benzylideneamino)acetate 275a with methyl (3R,7aS)-2-phenylperhydropyrrolo[1,2-c]imidazole-3-(E)-propenoate 274 smoothly took place at -78 °C for 5 h in THF in the presence of LiBr (1.5 equiv.) to furnish 82 % yield of cycloadduct 277a as a single diastereomer (Scheme 86, Table 10, entry 1). This proceeded through the lithiated azomethine ylide 276a and indicated the occurrence of the exclusive diastereoface-selective cycloaddition between 275a and 276a.

![Diagram showing the reaction of methyl (benzylideneamino)acetate with methyl (3R,7aS)-2-phenylperhydropyrrolo[1,2-c]imidazole-3-(E)-propenoate to form cycloadduct as a single diastereomer.]

Scheme 86

<table>
<thead>
<tr>
<th>entry</th>
<th>base</th>
<th>imine</th>
<th>ylide</th>
<th>reaction conditions</th>
<th>product</th>
<th>yield %</th>
<th>isomer ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LiBr/DBU</td>
<td>275a</td>
<td>276a</td>
<td>-78</td>
<td>277a</td>
<td>82</td>
<td>single</td>
</tr>
<tr>
<td>2</td>
<td>LiBr/Et3N</td>
<td>275a</td>
<td>276a</td>
<td>r.t.</td>
<td>277a</td>
<td>79</td>
<td>single</td>
</tr>
<tr>
<td>3</td>
<td>LiBr/Et3N</td>
<td>275a</td>
<td>276a</td>
<td>40</td>
<td>277a</td>
<td>63</td>
<td>single</td>
</tr>
<tr>
<td>4</td>
<td>LiBr/Et3N</td>
<td>275a</td>
<td>276a</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>LDA</td>
<td>275a</td>
<td>276a</td>
<td>-78</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>LiBr/DBU</td>
<td>275b</td>
<td>276b</td>
<td>-78</td>
<td>277b</td>
<td>100</td>
<td>single</td>
</tr>
<tr>
<td>7</td>
<td>LiBr/Et3N</td>
<td>275b</td>
<td>276b</td>
<td>r.t.</td>
<td>277b</td>
<td>96</td>
<td>single</td>
</tr>
<tr>
<td>8</td>
<td>t-BuMgCl</td>
<td>275a</td>
<td>276c</td>
<td>-78</td>
<td>277a</td>
<td>30</td>
<td>single</td>
</tr>
</tbody>
</table>

Table 10 Asymmetric 1,3-dipolar cycloaddition reactions of N-metallated azomethine ylides 276a-c with chiral olefin 274
The absolute diastereoselective formation of 277a was not affected in the reaction at room temperature (277a: 79 %, entry 2), where the ylide 276a (M = Li) was generated by treating 275a with LiBr and Et$_3$N. Performing the same reaction at 40 °C also had no effect in the diastereofacial selectivity (entry 3). However, the same reaction carried out at 60 °C by using LiBr /Et$_3$N (entry 4) or at -78 °C by using LDA (entry 5) led to the formation of complex mixtures. In the case of tert-butyl ester 275b, 100 % yield of the single diastereomer 277b was obtained using LiBr and DBU at -78 °C via the azomethine ylide 276b (entry 6). Similarly, 96 % yield of 277b was obtained at room temperature using LiBr and Et$_3$N (entry 7). N-Magnesioazomethine ylide 276c (M = MgCl), generated from 275a and tert-butylmagnesium chloride at -78 °C, slowly reacted with 274 at -78 °C to furnish 30 % yield of 277a as a single diastereomer (entry 8).

Removal of the heterocyclic chiral controller from 277a was performed by a sequence of N-tosylation and acetal exchange reaction (Scheme 87). Thus, cycloadduct 277a was allowed to react with p-toluenesulfonyl chloride and Et$_3$N in CHCl$_3$ at room temperature to give tosylate 278 in 66 % yield. Compound 278 was then treated with MeOH saturated with HCl at room temperature resulting in the formation of polyfunctionalised 2,4-pyrrolidinedicarboxylate 279.

Grigg et al.88 have also achieved complete asymmetric induction in the cycloaddition reactions of homochiral dipolarophiles with a range of imines of α-amino esters in the presence of metal salts. These workers initially studied the cycloaddition of 280a with 281a and 281b in the presence of silver acetate (1.5 mol) and triethylamine (1 mol) (Scheme 88). In each case, a single diastereomer of 282a and 282b was obtained in approx. 50 %.
The chiral menthyl template was easily removed from these products by reduction with LiAlH₄ as indicated in Scheme 89.

Previous work by Grigg et al.¹⁸⁹ has also shown that the lithium bromide catalysed cycloaddition of the phenylglycine imine 284 to menthyl acrylate 281a occurs
in quantitative yield. When 284 was reacted with 281a in the presence of lithium bromide (1.5 mol) and Et₃N (1 mol) clean cycloaddition occurred to give 285 as a single diastereomer (Scheme 90).

![Scheme 90](image)

Similarly, imine 286 reacts with 281a [AgOAc (1 mol), Et₃N (1 mol), 25 °C] in either MeCN (12 h) or DMSO (6 h) to give the homochiral cycloadduct 287 in 70 % yield (Scheme 91) showing that other potentially chelating imines also undergo the asymmetric cycloaddition reaction.

![Scheme 91](image)

Grigg et al.⁹⁰ has successfully utilised a combination of a 1,3-dipolar cycloaddition of an in situ generated azomethine ylide followed by a palladium catalysed cyclisation to afford four new stereocentres and two new rings in a single step. The approach developed involves the condensation of an aldehyde with a secondary α-amino ester. Facile deprotonation of the intermediate iminium ion furnishes the required azomethine ylide.⁹¹ The palladium catalysed cyclisation utilises an aryl or vinyl halide moiety and this can be located on either the aldehyde substrate or the α-amino ester. This can be seen in Scheme 92.
Scheme 92

Glycine ester 288 reacted with \(o \)-bromobenzaldehyde and \(N \)-methylmaleimide to give a 1:2:3 mixture of 289 and 290, which was readily separated by flash chromatography. Isomer 290 cyclised in MeCN at 80 °C over 40 h using a catalytic system comprising 10 mol % Pd(OAc)\(_2\), 20 mol % PPh\(_3\), Et\(_4\)NCl (1 mol) and anhydrous K\(_2\)CO\(_3\). Similarly, indole aldehyde 293 reacted with 292 and \(N \)-methylmaleimide in boiling PhMe over 15 h to give a 1:2 mixture of 294 and 295. Again these isomers were separated by flash chromatography and cyclised separately under the same conditions.
This procedure has successfully been carried out in a one-pot procedure. This was exemplified by the reaction of aldehyde 298 with 288 and N-methylmaleimide followed by addition of the catalyst system used previously, with KOAc (2 mol) replacing K2CO3 as base, raising the reaction temperature to 125 °C and continuing the heating for a further 4 h (Scheme 93). The product consisted of a 9.5:1 mixture of 300 and 301, due to both endo- and exo-cycloaddition of NMM to the stereospecifically formed trans-dipole 299.

Scheme 93

Kanemasa et al.92 have obtained complete stereoselectivity in the intramolecular cycloadditions of azomethine ylides bearing a carbonyl-activated olefinic moiety, generated from α-amino acids or esters and 5-oxo-6-heptenals. The condensation of α-amino acids or derivatives with carbonyl compounds offers one of the most direct and convenient generation methods of azomethine ylides, both stabilised and nonstabilised. This method was extended to carbonyl compounds bearing an internal dipolarophilic moiety such as olefinic aldehydes 302a,b (Scheme 94).
Heating equimolar amounts of (E)-7-phenyl-5-oxo-6-heptenal 302a and methyl sarcosinate, under reflux in PhMe with continuous removal of water by aid of a Dean-Stark trap, afforded the internal cycloadduct 303 as a single stereoisomer in 95 % yield. Similarly, cycloadducts 304a,b were obtained again as single stereoisomers in 90 % and 65 % yields, respectively, in the reactions of 302a and (E)-5-oxo-6-octenal (302b) with methyl 2-phenyl-4-thiazolidine-carboxylate under the equivalent conditions.

In contrast to the ester-stabilised ylides, the intramolecular cycloadditions of nonstabilised azomethine ylides generated by the decarboxylative condensation of \(\alpha \)-amino acids, instead of \(\alpha \)-amino esters, with olefinic aldehydes 302 selectively produced isomeric internal cycloadducts (Scheme 95).
Thus, the reaction of sarcosine with 302a under reflux in PhMe for 9 h afforded 305, the internal adduct to the carbonyl group, in 82 % yield as a single stereoisomer. Similarly, reactions of 306 with 302a,b produced 307a,b also as single stereoisomers in 84 and 70 % yields, respectively.

It was thus shown that ester-stabilised azomethine ylides undergo smooth cycloadditions at the olefinic moiety, while the nonstabilised azomethine ylides react at the carbonyl moiety, both in an exclusively selective fashion.

Grigg et al.93 have also reported the use of azomethine ylides produced by the decarboxylation of iminium species derived from cyclic secondary α-amino acids and isatin (Scheme 96).
Isatin 308a, proline 309a and methyl acrylate reacted regio- and stereospecifically in boiling MeCN to furnish a single cycloadduct 311a in good yield via the azomethine ylide 310a. Repeating the reaction with (1R,2S,5R)-menthyl acrylate as the dipolarophile afforded a 9:1 mixture of diastereomers 311b. The (1R,2S,5R)-stereochemistry of the major isomer 311b was established by a single crystal X-ray structure determination.

A series of related cycloadditions was also carried out using the dicarbonyl compounds 308a-c, α-amino acids 309a,b, 313, and menthyl acrylate. These reactions occurred in moderate to good yield with diastereomer ratios in the range 67-80% for the cyclic secondary α-amino acids. A single acyclic secondary α-amino acid 315 was also studied proceeding in 60% d.e. (Scheme 97, Table 11).
<table>
<thead>
<tr>
<th>Carbonyl compound</th>
<th>Amino acid</th>
<th>Major isomer</th>
<th>Reaction conditions</th>
<th>% d.e.</th>
</tr>
</thead>
<tbody>
<tr>
<td>308a</td>
<td>309a</td>
<td>312b</td>
<td>4.5</td>
<td>85</td>
</tr>
<tr>
<td>308a</td>
<td>309b</td>
<td>312c</td>
<td>20</td>
<td>77</td>
</tr>
<tr>
<td>309b</td>
<td>309a</td>
<td>312d</td>
<td>5.5</td>
<td>79</td>
</tr>
<tr>
<td>308b</td>
<td>309b</td>
<td>312e</td>
<td>20</td>
<td>76</td>
</tr>
<tr>
<td>308c</td>
<td>309a</td>
<td>312f</td>
<td>23</td>
<td>59</td>
</tr>
<tr>
<td>308a</td>
<td>313</td>
<td>314a</td>
<td>42</td>
<td>52</td>
</tr>
<tr>
<td>308b</td>
<td>313</td>
<td>314b</td>
<td>50</td>
<td>46</td>
</tr>
<tr>
<td>308a</td>
<td>315</td>
<td>316</td>
<td>27</td>
<td>65</td>
</tr>
</tbody>
</table>

Table 11: Chiral induction in the cycloaddition of 308a-c with secondary α-amino acids and (1R,2S,5R)-menthyl acrylate

* Combined isolated yield of both isomers;
 Based on integration of the methyl Me signals in the n.m.r. spectrum
Thus it was been shown that the cycloaddition of stabilised azomethine ylides prepared from the decarboxylation route can react with menthy acrylate in good to moderate diastereomeric ratios.

It has been shown in the above discussion that high to complete asymmetric induction can be achieve in the 1,3-dipolar cycloaddition reactions of certain stabilised and nonstabilised azomethine ylides with appropriate dipolarophiles. Various methods have been used to effect this high chiral induction into the subsequent cycloadducts, and so it is perhaps appropriate to illustrate the use of azomethine ylides for the preparation of natural products. This will be discussed briefly in the following section.
1.4 Natural products via the [3+2]-cycloaddition reactions of azomethine ylides

Pyrrolidine rings are frequently encountered structural units in many synthetically challenging alkaloids. The 1,3-dipolar cycloadditions of nonstabilised and stabilised azomethine ylides have been utilised extensively for the construction of the pyrrolidine skeleta of a number of natural products, primarily alkaloids. Some examples of how the various methods for the generation of these intermediates have been incorporated into the synthesis of some of these alkaloids are indicated in the following section.

For the synthesis of (±)-trachelanthamidine 322, Achiwa et al.94 have reported a short route that utilised the nonstabilised azomethine ylide 319 (Scheme 98). They reacted 317 with trimethylsilylmethyl triflate to obtain iminium salt 318 which underwent desilylation with F⁻ to give an ylide 319 that reacted with ethyl acrylate to produce ethyl pyrrolizidine-1-carboxylate 320 as a mixture of stereoisomers. After the epimerisation of 320 with LDA, the ester moiety of 321 was reduced with LiAlH₄ in ether to provide (±)-trachelanthamidine 322.

![Diagram of the synthesis of (±)-trachelanthamidine 322](https://example.com/diagram.png)

Scheme 98
Retronecine also belongs to the pyrrolizidine family of alkaloids. It was synthesised by Vedejs et al.26 using an azomethine ylide cycloaddition reaction as the key step for the pyrrolizidine ring construction (Scheme 99). \textit{N}-Silylmethylpyrrolidine-2-one 323 was α-deprotonated with LDA and treated with MoO$_5$:Py\textbullet HMPA (MoOPH) to give 3-hydroxy-2-pyrrolidinone 324. The 3-OH group was then protected as a photosensitive p-nitrobenzyl ether 325. The carbonyl at the 2-position was then O-methylated with methyl triflate to form the \textit{N}-silylmethyl)imidate salt 326 as the azomethine ylide precursor. Desilylation with fluoride ion and subsequent cycloaddition to methyl acrylate produced 1,7α-dehydropyrrolizidine-1-carboxylate 327 after the elimination of methanol from the initial cycloadduct. The stereoselective 1,4-reduction of 327 with DIBAL-H followed by the phenylselenylation of the aluminium enolate 328 afforded the selenide 329 in a single step. An oxidation and elimination sequence then gave rise to the 1,2-dehydropyrrolizidine-1-carboxylate 330. Reduction of the ester group in 330 with DIBAL-H and subsequent deprotection (sunlamp in MeOH) afforded (±)-retronecine 332. (±)-Indicine 334, a monoester of retronecine, was directly derived from the mono \textit{O}-protected alcohol 331 after \textit{O}-acylation with trachelanthic acid acetonide followed by photolytic deprotection.
Livinghouse et al.12,14,17 have discovered a new method for generating amidinium ylides and have applied this to the synthesis of physostigmine alkaloids 340 (Scheme 100). N-Formylation of N-methyl-2-isopropenylaniline 335 was followed by O-methylation with methyl triflate, and subsequent treatment with trimethylsilylmethylamine led to amidine 337. Amidine 337 was N-methylated with methyl triflate at 25 °C in CH\textsubscript{2}Cl\textsubscript{2} and the resulting formamidinium salt treated with CsF or TBAF to generate the azomethine ylide 339. Internal trapping by intramolecular cycloaddition of 339 gave physostigmine alkaloids such as deoxyseroline 340 (R = H) and (±)-eserethole 340 (R = OEt).
Padwa et al.26 have employed nonstabilised azomethine ylides for the synthesis of the \textit{Reniera} isoindoles 341 (Scheme 101). Treatment of the \textit{N}-methyl-\(\alpha\)-[(cyanomethyl)amino]-silane with five equivalents of AgF in the presence of the appropriately substituted quinone gave the natural product 341c directly in 68 % yield. Excess AgF was required to oxidise the intermediate cycloadduct.
This desilylation route has also been used effectively by Livinghouse et al.95 to construct the skeleton of the \textit{Erythrina} alkaloids (Scheme 102). Thus, reaction of 2-(3,4-dimethoxy-phenyl)ethylisonitrile 342 with 5-hexenoyl chloride and subsequent cyclisation in the presence of silver triflate afforded the 3,3-dihydroisoindole 343. N-Silylmethylation with trimethyl-silylmethyl triflate and desilylation with fluoride generated the azomethine ylide 344, whose intramolecular cycloaddition gave 4-oxo-15,16-dimethoxyerythrinane 345. The latter could also be obtained from the azomethine ylide 346 after catalytic hydrogenation of the cycloadduct 347.

\begin{center}
\begin{tikzpicture}
 % Scheme 102 diagram
 % (Diagram content)
\end{tikzpicture}
\end{center}

Confalone \textit{et al.}56 have successfully exploited an intramolecular azomethine ylide cycloaddition in their synthesis of the \textit{Sceletium} alkaloid A\textsubscript{4} 354 (Scheme 103). Deprotonation of 3-cyano-2-methylpyridine 348 with lithium hexamethyldisilazide and subsequent alkylation with 3-bromo-2-(3,4-dimethoxyphenyl)propene provided 349. DIBAL-H reduction of this nitrile led to aldehyde 350 which was required for azomethine ylide generation by the deprotonation route. Heating 350 and ethyl sarcosinate at 180 °C in a sealed tube generated azomethine ylide 351, whose cycloaddition gave rise to cycloadduct 352. Hydrolysis of the ester moiety to the
Acid 353 was then heated with phenyl dichlorophosphate at 100 °C and the resulting iminium product reduced with NaB(CN)H\textsubscript{3} to provide (±)-Sceletium alkaloid A\textsubscript{4} 354.

Confalone \textit{et al.}96 have synthesised lycorane skeletal by intramolecular cycloadditions of azomethine ylides generated by decarboxylation (Scheme 104). Thus 3,4-(methyleneoxy)-phenylacetonitrile was deprotonated with LDA and an alkylation performed with 5-bromo-1-pentene in HMPA/THF to afford 355. The latter was then reduced to aldehyde 356. Heating 356 with N-benzylglycine in toluene furnished a single cycloadduct 357. Debenzylation of 357 by catalytic hydrogenation followed by a cyclisation with formaldehyde provided (±)-α-lycorane 358.
1.5 Closing remarks

The chemistry of azomethine ylide 1,3-dipoles has undergone a renaissance since 1978. Methods for generating azomethine ylides, which were limited before then to the aziridine route and the deprotonation route, have since been greatly extended. Initially, it was believed that only azomethine ylides stabilised by at least one electron-withdrawing substituent could be generated smoothly, but this long-held view has now been revised. Nonstabilised azomethine ylides bearing no ylide-stabilising substituent are accessible, and they are stable enough to be utilised in cycloaddition reactions to various dipolarophiles. The desilylation route is particularly effective for this purpose. N-Unsubstituted or even N-metallated ylides and the tautomers of the corresponding imines or α-metallated imines, have been shown accessible both through the desilylation and the tautomerisation routes. Cycloadditions of these ylides has provided N-unsubstituted cycloadducts. Nonstabilised azomethine ylides generated by the N-oxide route have also been shown to be exceptionally reactive, undergoing cycloadditions to nonactivated olefin dipolarophiles. Again, this can be seen to be a
Finally, technology has now evolved for performing asymmetric azomethine ylide cycloadditions, and no doubt, this will prove useful for the future synthesis of many naturally occurring pyrrolidines in homochiral form.
Chapter 2

Evaluation of a new chiral auxiliary for nitrogen in the asymmetric [3+2]-cycloaddition of nonstabilised azomethine ylides

2.0 Introduction

The control of stereochemistry at carbon centres adjacent to nitrogen has never been an easy task. A popular strategy for this purpose, is to utilise chiral auxiliaries containing benzylic C-N bonds. These can be cleaved from the product amines by catalytic hydrogenolysis. A drawback of such auxiliaries, however, is that they cannot be recovered after cleavage, which makes their use sacrificial and prohibitively expensive on an industrial scale.

One class of chiral auxiliary for nitrogen that would have the potential for recovery after use would be chiral hydrazines. Again, these should be removable from the chiral product by hydrogenolysis, but this time, it would be the N-N bond that is suffering cleavage. After separation of the product from such a chiral auxiliary, the latter should be capable of being recycled by N-nitrosation and reduction. In this project, our aim was to design, develop and evaluate a new chiral hydrazine with a view to inducing high stereocontrol in the asymmetric [3+2]-cycloadditions between non-stabilised azomethine ylides and alkenes. Our ultimate aim was to develop a new strategy for building homochiral pyrrolidine systems. Our idea is illustrated in Scheme 1.
The chiral auxiliary we intended to prepare and investigate was compound 1 as indicated in Scheme 2.
2.1 Initial preparation of cycloaddition precursor 2

The first strategy we investigated for obtaining 1 is depicted in Scheme 3. It will now be discussed step by step.

Scheme 3

The first reaction carried out in this route was the preparation of (±)-8, as indicated in Scheme 4. For this, the procedure of Mazaleyrat et al. was followed. This used the Grignard intermediate (±)-7 for a Ni(0)-catalysed cross-coupling reaction with 1-bromo-2-methylnaphthalene. Bis[triphenylphosphine] dichloronickel was the catalyst of choice, it yielding (±)-8 as a clear oil in yields up to 94.8%. The 400 MHz 1H n.m.r. spectrum of (±)-8 in CDCl$_3$ showed the two methyl groups as a singlet at δ 2.15. These groups also gave rise to a single peak at δ 20.0 in the 100 MHz 13C n.m.r.
The mass spectrum (HRMS, FAB, MNOBA matrix) showed the correct (M+H)+ peak at m/e 283.1487 indicating an empirical formula of C_{22}H_{19}.

Dibromide (±)-9 had previously been prepared from 8 by Bestmann et al.\(^{101}\) by refluxing it with N-bromosuccinimide in carbon tetrachloride (Scheme 5). Benzoyl peroxide was used as the initiator for this reaction. The crude (±)-2,2'-bis[bromomethyl]-1,1'-binaphthyl 9 was obtained as a yellow solid in 75 % yield. It was sufficiently pure for use in subsequent reactions. The 400 MHz \(^1\)H n.m.r. spectrum of crude 9 in CDCl\(_3\) indicated that the correct compound had been prepared. Its four benzylic protons were seen as a singlet at δ 4.30. This was a shift of 2.15 ppm downfield from that of the dimethyl compound (±)-8. Such an effect would be expected for 9 due to the electron-withdrawing effect of the two bromide groups. The same effect was seen in the 100 MHz \(^13\)C n.m.r. spectrum of 9 which showed a singlet for the two methine groups at δ 32.6. These carbons had been shifted downfield by 12.6 ppm by bromination. The HRMS (FAB, NMOBA matrix) mass spectrum also backed up our assignment by showing an M+ ion at m/e 439.9598 which corresponded to a empirical formula of C_{22}H_{16}^{79}Br_2.
To prepare hydrazine derivative (±)-11, we needed to make trifluoroacetylhydrazide 10. Its synthesis had been described previously by Pilipovich and Parcell et al. and involved reacting methyl trifluoroacetate with hydrazine in methanol as indicated in Scheme 6.

\[
\begin{align*}
\text{CF}_3\text{COOCH}_3 & \quad + \quad \text{N}_2\text{H}_4 & \xrightarrow{\text{MeOH}} & \quad \text{CF}_3\text{CONHNH}_2 & \quad + \quad \text{CH}_3\text{OH} \\
\text{Methyltrifluoroacetate} & \quad \text{Hydrazine} & \quad \text{[lit. 90\%]} & \quad \text{Trifluoroacetohydrazide 10}
\end{align*}
\]

Scheme 6

The preparation of 10 was carried out under nitrogen and the purification of the resulting white solid attempted by sublimation. This was, however, unsuccessful. The crude compound was therefore recrystallised from diethyl ether to obtain a white powdery solid in 86\% yield. A small sample of this crude material was reacted with the dibromide (±)-9 and sodium hydride in DMF in an attempt to prepare the cyclised product (±)-11 as indicated in Scheme 7. 400 MHz 1H n.m.r. analysis of the product indicated that 11 could not be obtained and this route was therefore abandoned. Mass spectroscopy further indicated that the reaction for the preparation of 10 had been unsuccessful.

Scheme 7

A slightly different method for the preparation of the 1,1-substituted hydrazine derivative (±)-1 was therefore investigated as indicated in Scheme 8. This entailed reaction of the dibromide (±)-9 with hydrazine in DMF in order to give the 7-membered
However, no reaction was observed.

<table>
<thead>
<tr>
<th>Scheme 8</th>
</tr>
</thead>
</table>

2.2 Alternative preparation towards the cycloaddition precursor 2

Due to the difficulties and failures encountered in the above reactions we decided to focus upon the preparation of hydrazine 1 from 5.

2.2.1 Preparation of hydrazine 1

The approach by Hawkins et al.103 was adopted. It was decided to prepare the 7-membered cyclic amine, (±)-4-(2,2,2-trifluoroacetyl)-3,5-dihydro-4H-dinaphth[2,1-c:1',2'-e]azepine 13 according to this method, by reacting the dibromide (±)-9 with 2,2,2-trifluoroacetamide. This was then to be reacted with sodium carbonate in water to yield (±)-3,5-dihydro-4H-dinaphth[2,1-c:1',2'-e]azepine 5 which would furnish both enantiomers after resolution from dibenzoyltartaric acid monohydrate in MeOH (Scheme 9). The homochiral free amine, (S)- or (R)-5 would then be converted to the hydrazine (±)-1 via nitrosation and reduction.
The initial step, the preparation of (±)-13, was successfully carried out, but in much lower yield than that reported (max. 29.2 %). Repeated reactions did not increase the yields. However, the procedure was continued, and (±)-5 was prepared in high yield (82 %) by treatment with aqueous base. An improved preparation of amine 5 was later found, again by Hawkins et al.104 which appeared applicable to the larger scale preparation of (±)-5. This method is outlined in Scheme 10.

The initial step entailed slowly adding a solution of allylamine in acetonitrile to a stirred solution of dibromide (±)-9 in warm benzene, triethylamine, and acetonitrile under nitrogen. After work-up, a crude brown product was obtained as a foam, which was purified by flash chromatography, eluting with hexanes:EtOAc (5:1). This afforded
the propenyl compound (±)-14 as a yellow-brown solid in 73 % yield. The HRMS of (±)-14 (FAB, MNOBA matrix) contained a molecular ion at m/e 336.1752 which indicated an empirical formula of C_{25}H_{22}N. The two sets of benzylic protons resonated as doublets at δ 3.21 (J_{HH} = 12.4 Hz) and δ 3.78 (J_{HH} = 12.4 Hz). The allylic methylenes resonated as a triplet at δ 3.16 (J_{HH} = 7.0 Hz). The terminal alkene protons appeared as a multiplet at δ 5.25-5.33, while the -CH= proton resonated as a multiplet further downfield between δ 6.00-6.10.

Compound (±)-14 was then heated in 10 % aqueous ethanol to dissolve the amine and prior to reflux temperature, a catalytic amount (1 mol %) of tris(triphenylphosphine)rhodium(I) chloride (Wilkinson’s catalyst) was added. This mixture was then heated at reflux. The reaction was driven to completion by the continuous azeotropic removal of propanal. After removal of the solvents and crystallisation from toluene:hexanes, compound (±)-5 was isolated in 82 % yield. The 400 MHz ¹H n.m.r. spectrum of 5 in CDCl₃ showed the presence of the two benzylic -CH₂- groups as doublets at δ 3.53 (J_{HH} = 12.4 Hz) and δ 3.85 (J_{HH} = 12.4 Hz). The -NH- group was observed as a broad singlet at ca. δ 2.1. The 100 MHz ¹³C n.m.r. spectrum of (±)-5 in CDCl₃ also contained all the aromatic carbon peaks (four quaternary and six non-quaternary peaks), as well as the two -CH₂- groups next to the aromatic rings. The latter gave rise to a single resonance at δ 48.7.

The resolution of (±)-5 was successfully carried out according to the procedure reported by Hawkins et al. A solution of the racemic mixture of (±)-5 in MeOH was slowly added to a solution of (-)-dibenzoyl-L-tartaric acid monohydrate in MeOH at room temperature. The needles formed over approx. 3 days at -20 °. Treatment of a solution of the needles in Et₂O with a 5 % aqueous NaOH solution gave (S)-5 as a white solidified foam. The formation of Mosher amide (S)-15 was then investigated. The latter was obtained by reacting the Mosher acid, (R)-(+)-%methoxy-%α-(trifluoromethyl)phenylacetic acid, with the azepine (S)-5 and DCC in CH₂Cl₂. The 400 MHz ¹H n.m.r. spectrum of the isolated Mosher amide (S)-15 indicated an e.e. of 100 % by comparison with the 400 MHz ¹H n.m.r. spectrum Mosher amide of the racemate (±)-15 (Scheme 11). The atmospheric pressure chemical ionisation of (S)-15 also gave the required (M+H)+ mass of m/e 512.3 giving an empirical formula of C_{32}H_{24}F₃NO₂.
The corresponding (R)-5 isomer was obtained after concentrating the mother liquor and performing a similar aqueous base treatment, as for the (S)-5 isomer.

Scheme 11

Having demonstrated that the Hawkins resolution was successful, we next elected to evaluate the subsequent chemistry with racemic (±)-1. Once this chemistry had been figured out, the chiral compound would be brought forward in order to evaluate the level of stereocontrol this auxiliary could exert in the azomethine ylide cycloaddition reactions. However, at this point problems were encountered. The formation of the N-N bond when preparing (±)-1 from the azepine (±)-5 proved rather problematic. One method investigated utilised hydroxylamine-O-sulfonic acid as indicated in Scheme 12. The reaction was carried out on a moderate scale (100 mg), but afforded an extremely low yield (7 mg) of suspected product (±)-1.

Scheme 12
Another protocol evaluated for preparing the hydrazine (±)-1 utilised a method introduced by Enders et al.106 This involved preparing the crude urea derivative (±)-16 (Scheme 13). Thus, the azepine (±)-5 was dissolved in water containing a small volume of THF in order to ensure solubilization, and potassium cyanate was then added in the presence of potassium hydroxide. The resulting crude urea (±)-16 was then reacted \textit{in situ} with more potassium hydroxide and a freshly prepared solution of potassium hypochlorite 17 of known molarity.107 The resulting product was then decarboxylated by the addition of hydrochloric acid, and the product isolated as a yellow foam. Flash chromatography in hexanes and ethyl acetate afforded only 189 mg (approx. 19 % overall yield) of a white crystalline solid that was initially suspected to be (±)-1. The mass spectrum (HRMS) of this material, however, gave rise to a molecular ion that had the incorrect molecular mass. The 400 MHz 1H n.m.r. spectrum of this product also showed that the reaction had been unsuccessful. As a result, the method was abandoned at this stage.

![Scheme 13](image URL)

The optimised preparation of the aqueous potassium hypochlorite solution 17 is a modification of an Organic Synthesis procedure.108 The general reaction is shown in Scheme 14.
Scheme 14

Monochloramine has also previously been used to prepare hydrazine derivatives in reasonable to excellent yield, and it therefore seemed like a reagent worth evaluating for the N-N bond formation. An ethereal solution of monochloramine 18 was prepared by reacting sodium hypochlorite, NaOCl, with an equimolar solution of ammonia (Scheme 15).109 The product 18 was extracted into ether and the molarity of the solution determined by iodometric titration (1 ml 0.1 N Na\textsubscript{2}S\textsubscript{2}O\textsubscript{3} = 2.57 mg NH\textsubscript{2}Cl).

Scheme 15

The monochloramine solution was then reacted with the azepine (±)-5 in the presence of sodium hydride in DMF as indicated in Scheme 16.110 Flash chromatography of the crude residue obtained by aqueous work-up afforded a yellow clear oil in a mere 8\% yield. The 400 MHz 1H n.m.r. spectrum of this product showed it to be the wrong compound and this method was therefore abandoned.

Scheme 16
Another tactic for obtaining (±)-1 attempted the preparation of the N-chloro derivative (±)-20 from (±)-5; the method of Altenkirk et al.111 was followed. Compound 20 would then be reacted with ammonia to yield the required hydrazine derivative (±)-1 as indicated in Scheme 17.

![Scheme 17](image)

The initial step, the preparation of (±)-20, utilised tert-butyl hypochlorite 19 as the chlorinating agent. This was prepared according to Mintz et al.112 as shown below.

![Scheme 18](image)

The tert-butyl hypochlorite solution was reacted with (±)-5 dissolved in methanol and the crude yellow product (220 mg, 99 %) isolated. The 400 MHz 1H n.m.r. spectrum of this product indicated that the peaks for the two -CH$_2$- groups in (±)-20 were absent. As a result, this approach was not investigated further.

Another method investigated for the preparation of hydrazine 1 entailed reacting its lithio derivative with amine 24 (Scheme 19).
Scheme 19

The preparation of 24 required four steps. The initial step was the preparation of tert-butyl azidoformate 21, following a procedure reported by Carpino et al. Sodium nitrite was slowly added at 0 °C to a solution of tert-butyl carbazate in a mixture of acetic acid and water. Work-up afforded the required BocN₃ as a yellow oil in 89 % yield which was used without purification. The 400 MHz ¹H n.m.r. spectrum of the crude product showed the tert-butyl methyl protons as a singlet at δ 1.52 and the 100 MHz ¹³C n.m.r. spectrum indicated these at δ 27.6. The quaternary tert-butyl carbon appeared at δ 84.6 while the carbonyl group was found at δ 155.7. As a final proof, the I.R. spectrum revealed a characteristic -N₃ peak at 2133 cm⁻¹ as well as the C=O stretch at 1730 cm⁻¹. The next step, the preparation of tert-butyl N-hydroxycarbamate 22, also worked well. The tert-butyl azidoformate 21 was added to a cold solution of
hydroxyamine hydrochloride in water. To this mixture was then slowly added a cold solution of NaOH and the mixture stirred for 60 min. After work-up, the required compound crystallised under a vacuum in 59 % yield. The 400 MHz 1H n.m.r. spectrum indicated the correct compound had been formed with the tert-butyl methyl protons giving rise to a singlet at δ 1.37 and the -NH and -OH overlapping as a broad singlet at δ 7.58. The 100 MHz 13C n.m.r. spectrum showed the tert-butyl methyl groups were present at δ 28.0 while the quaternary tert-butyl carbon appeared at δ 81.7, with the carbonyl group being located at δ 158.8. Finally, the HRMS mass spectrum showed the correct (M+H)$^+$ ion for C$_5$H$_{12}$NO$_3$ at m/e 134.0817. The desired amine 24 had also previously been prepared by Carpino114 and the next two steps again proceeded in good yield. To a mixture of 22 and Et$_3$N in CH$_2$Cl$_2$ at 0-4 ºC was added a solution of mesitoyl chloride in CH$_2$Cl$_2$. After work-up a yellow/brown oil was obtained which crystallised after standing. Recrystallisation from hexane furnished the required secondary amine 23 as block-like yellow crystals in 79 % yield. The 400 MHz 1H n.m.r. spectrum indicated the correct compound had been formed with the tert-butyl methyl protons giving rise to a singlet at δ 1.51. The two ortho methyl groups resonated as a singlet at δ 2.35 while the para substituted methyl group appeared as a singlet at δ 2.26. The remaining two protons on the aromatic ring gave a singlet at δ 6.85. The 100 MHz 13C n.m.r. spectrum indicated the presence of two C=O groups at δ 155.6 and δ 169.1 which again corroborated the proposed structure. The I.R. spectrum also showed two sharp peaks at 1774 cm$^{-1}$ and 1728 cm$^{-1}$, corresponding to the two C=O stretching absorptions for the compound. The HRMS mass spectrum also gave the correct (M+H)$^+$ ion at m/e 280.1549 which indicated an empirical formula of C$_{15}$H$_{22}$NO$_4$. The Boc group was removed by passing a stream of anhydrous HCl through a solution of tert-butyl N-mesitylenesulfoxonycarbamate 23 in MeNO$_2$ with stirring. The solution was left to stand, and after work-up, a colourless oil was obtained in 84 % yield. This oil solidified on standing at room temperature. The 400 MHz 1H n.m.r. spectrum showed the absence of the Boc group. The two ortho methyl groups now gave rise to a singlet at δ 2.29 with the para substituted methyl group appearing at δ 2.26. The remaining protons on the aromatic ring again appeared as a singlet at δ 6.80. The 100 MHz 13C n.m.r. spectrum now only showed the presence of one C=O group at δ 176.0. The HRMS mass spectrum also contained a peak with the correct (M-ONH$_2$)$^+$ mass of C$_{10}$H$_{11}$O at m/e 147.0810. The preparation of (±)-1 was then attempted using this freshly prepared compound. To a solution of (±)-5 in THF was added dropwise n-BuLi
The solution was stirred for 15 min. before a solution of O-mesitoxyhydroxylamine 24 in THF was added. However, at -78 °C, no reaction was observed. Warming the reaction mixture to room temperature had no effect, and so the method was abandoned.

Recently, there has been a significant amount of interest in electrophilic aminations with oxaziridines. Electrophilic amination is an important synthetic process, and from a practical point of view, the development of new reagents that allow the direct transfer of a N-protected group to nucleophilic centres is of great practical interest. Thus, after it was reported that oxaziridine 25 transfers its N-Boc fragment to a variety of N- and C-nucleophiles under very mild conditions, we decided to apply this reagent to our azepine (±)-5 with the hope that the required target hydrazine (±)-1 would also be prepared in this manner (Scheme 20).

![Scheme 20](image)

The general pathway for preparing oxaziridine 25 is depicted in Scheme 21.

![Scheme 21](image)
tert-Butyl azidoformate 21 was converted (Scheme 19) into iminophosphorane 27 by the reaction with triphenylphosphine in Et2O at room temperature. A high yield (84%) of pure white crystals was obtained after 30 min. The 1H and 13C n.m.r. spectra both showed the product to be pure. This was further reinforced by the I.R. spectrum which showed the expected C=O stretch at 1621 cm⁻¹ as well as the HRMS mass spectrum which gave the required (M+H)+ mass of m/e 378.1623 corresponding to an empirical formula of C23H25NO2P. The 4-cyanophenyl-N-Boc-imine 28 was prepared by refluxing 27 with 4-cyanobenzaldehyde in toluene overnight. After removal of triphenylphosphine oxide and rapid flash chromatography in Et2O:hexanes, the required N-Boc-imine 28 was isolated in 74% yield. The 400 MHz 1H n.m.r. spectrum showed the tert-butyl methyl groups at δ 1.60 with the two aromatic protons each giving rise to a doublet - one at δ 7.77 (JHH 8.4 Hz) and the other at δ 8.01 ppm (JHH 8.4 Hz). The remaining -CH=N proton was found as a singlet at δ 8.83. The HRMS also showed the correct (M+H)+ ion at m/e 231.1134 which corresponded to an empirical formula of C13H15N2O2. The oxidation of this compound was attempted with K2CO3 and Oxone in H2O. However, the required compound was not isolated. It may have decomposed during the flash chromatography process as part of its purification or simply not have been formed in the reaction mixture. No further attempts were made to prepare this compound since we had now thought of a more expedient route to (±)-26, which involved only one reaction between (±)-9 and tert-butyl carbazate, which thereby reduced the total number of steps that would now be required.

This new method for the preparation of (±)-26 entailed reacting tert-butyl carbazate with dibromide (±)-9 in the presence of triethylamine in DMF. The resultant Boc protected hydrazine derivative (±)-26 would then be deprotected to furnish the required hydrazine (±)-1 (Scheme 22).
When a solution of tert-butyl carbazate in dry DMF containing triethylamine was stirred with \((\pm)-9\) overnight, conventional work-up afforded a pure white powder after recrystallisation from Et₂O in only 33 % yield. Repeated variations of the reaction did not increase the yield significantly. The \(^1\)H and \(^{13}\)C n.m.r. spectra showed that the pure required product had been obtained. The HRMS mass spectrum (FAB, MNOBA matrix) revealed an \((\text{M}+\text{H})^+\) ion at \(m/e\ 411.2073\). Due to the symmetry of the 7-membered ring system, the two -CH₂- groups next to the naphthalene rings were expected to be equivalent and give the two typical AB splitting. This was found to be the case (δ 3.44, \(J_{HH}\) 12.4 Hz; δ 3.96, \(J_{HH}\) 12.4 Hz). The 8-membered ring system \(29\) would not be symmetric, and had it been formed, the two -CH₂- groups would therefore be expected to show rather more complex splitting patterns. The 100 MHz \(^{13}\)C n.m.r. spectrum also showed the presence of the Boc group in \((\pm)-26\). The quaternary peak for the tert-butyl group was clearly visible at δ 80.3, as was the C=O group at δ 154.3. The remaining peaks also clearly showed the symmetry of the molecule. The two -CH₂- groups next to the aromatic rings were seen as a single peak at δ 58.9, in addition to the required four quaternary and six non-quaternary aromatic peaks. Thus we believe that we have successfully prepared our hydrazine precursor \((\pm)-26\).
The cleavage of the Boc group was easily carried out in a 1:1 mixture of CF₃CO₂H and CH₂Cl₂. Addition of (±)-26 to the mixture gave a clear yellow solution which, after work-up, and neutralisation with aqueous potassium carbonate, afforded the free hydrazine (±)-1 as a white powder in 87.0 % yield after recrystallisation from Et₂O. The 400 MHz ^1H n.m.r. spectrum showed the presence of the two -CH₂- groups next to the aromatic rings as doublets at δ 3.34 (J_HH = 12.4 Hz) and δ 3.89 (J_HH = 12.4 Hz) which are rather different to the doublets shown by the azepine (±)-5. The -NH₂ group was also found as a very broad and flat signal at ca. δ 2.96. The 100 MHz ^13C n.m.r. spectrum now showed that the two -CH₂- groups next to the aromatic rings had been shifted to δ 61.6, a shift of 12.9 ppm downfield compared to the azepine (±)-5 where they appeared at δ 48.7. The HRMS mass spectrum (FAB, MNOBA matrix) also supported our assignment, it giving the expected (M+H)^+ peak at m/e 311.1548 which was indicative of an empirical formula of C_{22}H_{19}N₂.

In order to confirm that the hydrazine had been formed, the hydrazone (±)-30 from benzaldehyde was prepared. This is shown in Scheme 23.

Benzaldehyde was added to a mixture of (±)-1 in EtOH and the reaction mixture stirred at 70 °C for 15 min. after which filtration of the mixture gave the required hydrazone in 86 % yield. The 400 MHz ^1H n.m.r. spectrum clearly showed that the hydrazone had been formed. The two -CH₂- groups next to the aromatic rings had now shifted downfield to δ 3.79 (doublet, J_HH 12.4 Hz) and δ 4.60 (doublet, J_HH 12.4 Hz) when compared with the hydrazine 1 (δ 3.34, 3.89). The =CH- group was observed as a singlet at δ 7.38 and the phenyl group as a multiplet in the range δ 7.20-7.34. The 100 MHz ^13C n.m.r. spectrum now showed the two -CH₂- groups next to the naphthyl rings at δ 56.5, which is a shift of 5.1 ppm upfield from the pure hydrazine. The remaining peaks expected were all observed. The HRMS mass spectrum (FAB, MNOBA matrix)
One problem associated with this method was that of separating the two enantiomers from one another. Fortunately, Mazaleyrat et al.100 had provided a solution for overcoming this problem (Scheme 24). These workers had prepared (±)-9 (Scheme 5) and resolved it with (L)-ephedrine. This led to the separable quaternary salts (S)-31 and (R)-31, which after reduction with LiAlH\textsubscript{4} in the presence of NiCl\textsubscript{2} afforded enantiomerically pure (S)-32 and (R)-32, as well as recovered (L)-ephedrine.

\begin{center}
\includegraphics[width=\textwidth]{scheme24.png}
\end{center}

\textbf{Scheme 24}

However, because of the low yield encountered in the preparation of the N-Boc hydrazine (±)-26 via this pathway it was decided, at this point, to attempt another method for preparing (±)-1. Hosono \textit{et al.}124 had successfully utilised isoamyl nitrite to transform a secondary amine into the corresponding \textit{N}-nitroso compound, and had then
this methodology might prove useful for the preparation of our hydrazine (±)-1 as shown in Scheme 25.

Scheme 25

The first step, the preparation of the N-nitroso-azepine (±)-33, proceeded successfully in THF with 5.2 equivalents of isoamyl nitrite in up to 98 % yields. Off white-yellow crystals were isolated after flash chromatography in a hexanes:EtOAc mixture (5:1). The 400 MHz ¹H n.m.r. spectrum did indeed indicate that the nitroso compound had been formed. Two doublets for the -CH₂- groups were found at δ 3.62 (J_HH = 14.4 Hz) and δ 4.70 (J_HH = 14.4 Hz). Due to the presence of the -N=O group, these two doublets each corresponded to a single proton only. The remaining two protons were found further downfield as a doublet of doublet at δ 5.66 (J_HH = 14.4 Hz, J_HH = 14.4 Hz). The remaining aromatic protons were found in the ranges δ 7.26-7.30 (2H, multiplet), δ 7.40 (2H, triplet, J_HH 9.4 Hz), δ 7.48-7.53 (3H, multiplet), δ 7.66 (1H, doublet, J_HH 8.0 Hz) and δ 7.95-8.01 (4H, multiplet). The 100 MHz ¹³C n.m.r. spectrum also showed the unsymmetrical character of the compound. The two -CH₂-groups now appeared as a singlet each at δ 47.1 and δ 54.3. Each aromatic carbon atom was also observed, of which eight were quaternary and 12 were non-quaternary carbon peaks. This spectral evidence was also supported by the HRMS mass spectrum (FAB, MNOBA matrix) which showed the molecular mass of (±)-33 (M⁺) at m/e 324.1263, indicating a molecular formula of C₂₂H₁₆N₂O. The elemental analysis calculated for C₂₂H₁₆N₂O also afforded the required result of C = 81.08; H = 5.03 and N = 5.49.

The reduction of the nitroso compound (±)-33 was attempted by the method of Hosono et al.¹²⁴ Unfortunately the reaction was unsuccessful. After work-up, several products were present according to TLC analysis. Several solvent systems were investigated, but separation proved impossible via both flash chromatography and
The reduction of \(N \)-nitroso groups, and the preparation of substituted hydrazines, have also been investigated in great detail by Corey et al.\(^{125} \) Other \(N \)-nitroso reductions have also been investigated in the literature. Johnstone et al.\(^{99} \) looked at the reduction of \(N \)-nitrosamines to \(N,N \)-disubstituted hydrazines by a low-valent titanium reagent. Lunn et al.\(^{126} \) also utilised aqueous TiCl\(_3\) reductions and compared the method to other reagents commonly utilised in these reductions. Not withstanding these reports it was, however, decided to attempt the reduction of (±)-33 using zinc powder following the method of Schmidt et al.\(^{127} \) (Scheme 26). The reaction was carried out in acetic acid and THF with 10 equivalent of zinc dust and appeared to proceed very cleanly over about 3 hours. The zinc salts were filtered off by suction through Celite, and flash chromatography in a CH\(_2\)Cl\(_2\):MeOH (10:1) mixture afforded the suspected hydrazine in 81 % yield.

\[
\text{Scheme 26}
\]

The 400 MHz \(^1\text{H} \) n.m.r. spectrum of the isolated product appeared to be identical to that of (±)-5 and this was further supported by the FAB mass spectrum. The zinc had thus cleaved the N-N bond and it was possible that the required hydrazine (±)-1 had been prepared, but that it had then broken down under the reaction conditions.
Since the N-nitroso derivative of the azepine could easily be prepared in high yield (98 %), we felt that the reduction of this compound deserved more attention. Lithium aluminium hydride appeared to be too powerful a reducing agent and some other reducing agent would have to be found. It was postulated that the N=O group might react like a C=O group and therefore be reduced by diisobutylaluminium hydride to afford the required hydrazine as shown in Scheme 27.

A solution of DIBAL-H in toluene was added slowly to a solution of (±)-33 in CH₂Cl₂ at -78 °C. The reaction mixture was stirred at this temperature for approx. 2 h after which it proved necessary to allow the solution to warm to room temperature for anything up to 65 h. Work-up with a 10 % aqueous Rochelle’s salt solution followed by flash chromatography using a CH₂Cl₂:MeOH, 50:1, mixture as eluent afforded the required hydrazine (±)-1 as a white solidified foam in up to 70 % yield. To the best of our knowledge, this was the first example of a N-nitroso reduction being successfully performed with diisobutylaluminium hydride to afford a 1,1-disubstituted hydrazine. The ¹H and ¹³C n.m.r. spectra showed identical spectra to those prepared via the Boc deprotection method in Scheme 22. The HRMS mass spectrum (FAB, MNOBA matrix) also backed up this evidence by giving the required (M+H)⁺ ion at m/e 311.1548 indicating a formula of C₂₂H₁₉N₂. The mechanism is believed to be as follows (Scheme 28).
Since we were able to successfully prepare hydrazine (±)-1 via this novel reduction method, it was decided to establish whether the chiral hydrazine 1 could be prepared in a similar manner. The chiral amine (S)-5 was chosen, from which the N-nitroso compound (S)-33 was prepared using isoamyl nitrite in THF (Scheme 29). This was then used crude for the reduction with DIBAL-H in CH$_2$Cl$_2$. The chiral hydrazine (S)-1 was then converted to the Mosher derivative 34 by reaction with the Mosher acid, (R)-(+)-α-methoxy-α-(trifluoromethyl)phenylacetic acid, and DCC in CH$_2$Cl$_2$ which successfully afforded chiral 34 as brown oil in 95% yield. The FAB-MS (FAB, MNOBA matrix) of chiral 34 corroborated the structure by showing the required (M+H)$^+$ ion at m/e 527 indicating an empirical formula of C$_{32}$H$_{25}$F$_3$N$_2$O$_2$. Similarly, the racemic hydrazine (±)-1 was converted to the Mosher derivative (±)-34. A comparison of the two 400 MHz 1H n.m.r. spectra and the 470 MHz 19F n.m.r. spectrum of chiral 34 quickly revealed that the 100% e.e. had been retained in the hydrazine (S)-1.
Having successfully isolated our required hydrazine (±)-1, we were now in a position to attempt the preparation of the cycloaddition precursor (±)-2. The following section will discuss the preparation of this precursor.

2.2.2 Attempted preparation of the hydrazine cycloaddition precursor 2

Our obtention of hydrazine (±)-1 now put us in a position to attempt the preparation of our ylide precursors for the cycloadditions indicated previously in Scheme 2. The reaction of (±)-1 with (chloromethyl)trimethylsilane and various strong bases failed to produce (±)-35 under a variety of conditions investigated.
For example, when a stirred solution of \((\pm)-1\) in THF at -78 °C was treated with \(n\)-BuLi for 20 min., and (chloromethyl)trimethylsilane added no reaction occurred after warming to room temperature for 24 h (Scheme 30).

Likewise when a solution of \((\pm)-1\) in DMF at room temperature was added dropwise to (chloromethyl)trimethylsilane at room temperature, again no reaction occurred even after 20 h. Heating at 90 °C for 24 h again had no beneficial effect (Scheme 31).

The use of trimethylsilylmethyl triflate as indicated in Scheme 32 was similarly unsuccessful.
In view of these failures, we decided to prepare \((\pm)-36\). The reaction of \((\pm)-1\) with chloroacetonitrile (0.83 equiv.) in DMF at room temperature, appeared to give the hydrochloride salt \((\pm)-36\) in 71 % yield as shown in Scheme 33. The 400 MHz \(^1\)H n.m.r. spectrum of the salt suggested it was pure and so it was treated with aqueous sodium bicarbonate in order to afford the free hydrazine derivative. However, numerous products were now present and no further purification was carried out.

![Scheme 33](image)

Pandey et al.\(^{128}\) have reported an efficient strategy for generating nonstabilised ylides via the sequential double desilylation method. They made use of bis\((N,N\text{-trimethylsilylmethyl)benzylamine 37}\) in MeCN with AgF as a one electron oxidant. Trapping of the resultant azomethine ylide 39 with a suitable dipolarophile afforded the required cycloadduct 40 (Scheme 34).

![Scheme 34](image)

In order to prepare compound \((\pm)-41\) it was decided to react \((\pm)-1\) with (iodomethyl)trimethylsilane in excess. (Iodomethyl)trimethylsilane was used since it was envisaged that this would give a faster reaction, I\(^-\) being a better leaving group than
The solid hydrazine (±)-1 was heated to 140-150 °C in neat (iodomethyl)trimethylsilane. At approx. 60 °C the hydrazine dissolved and the mixture turned a clear yellow. At approx. 100 °C, a white precipitate was observed which was believed to be the hydroiodide salt of the required product. Work-up gave what appeared to be compound (±)-35 as shown by 400 MHz ¹H n.m.r. spectroscopy only. No bis(Me₃Si-methyl)hydrazine (±)-41 was observed. Suspected (±)-35 was then treated with neat chloroacetonitrile and K₂CO₃ as the base. According to the n.m.r. data the correct compound (±)-2 was isolated. The cycloaddition of (±)-2 to dimethyl fumarate was then attempted to afford (±)-42 using AgF in acetonitrile. The 400 MHz ¹H n.m.r. spectrum of the product, however, indicated it was not successful. It was therefore decided to await the results of the HRMS mass spectra of the previous two compounds [suspected (±)-35 and (±)-2] before repeating any reactions and wasting
more starting materials. The HRMS mass spectra (FAB, MNOBA matrix) were a bit surprising. The treatment of (±)-1 with neat (iodomethyl)-trimethylsilane at 140 °C afforded a compound that had a (M+H)⁺ mass of m/e 382 which indicated a formula of C₂₆H₂₈NSi. This suggested that the tertiary amine (±)-43 had been formed. Furthermore, when this tertiary amine had been treated with neat chloroacetonitrile with K₂CO₃ as the base, the quaternary salt (±)-44 had been formed. This salt had a HRMS mass spectrum (FAB, MNOBA matrix) containing a peak at m/e 421.1974 which corresponded to C₂₈H₂₉N₂Si (M)+ and provided further evidence of its identity. These results are shown more clearly in Scheme 36.

<table>
<thead>
<tr>
<th>(±)-1</th>
<th>Heat</th>
<th>Me₃Si</th>
<th>(±)-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(±)-35</td>
<td>(±)-43</td>
<td>54.2</td>
<td>76.4</td>
</tr>
<tr>
<td>CN</td>
<td>CN</td>
<td>SiMe₃</td>
<td>NC</td>
</tr>
</tbody>
</table>

Scheme 36

It transpired that the 400 MHz ¹H n.m.r. spectrum of the tertiary amine (±)-43 had originally been incorrectly interpreted as the substituted hydrazine (±)-35 as it showed the Me₃Si group as a singlet at δ 0.16. Each proton of the -CH₂- group next to the Me₃Si group was observed as doublets at δ 2.05 (J_HH 14.4 Hz) and δ 2.31 (J_HH 14.4 Hz) and the two -CH₂- groups next to the aromatic rings were each seen as doublets at δ 3.28 (J_HH 12.0 Hz) and δ 3.68 (J_HH 12.0 Hz). Had (±)-35 been formed, a similar ¹H n.m.r. spectrum would have been observed and the free NH may not have been seen. The 100 MHz ¹³C n.m.r. spectrum of this tertiary amine also showed the required peaks. The Me₃Si group was found at δ -0.8 with the -CH₂- group next to the aromatic rings at δ 47.6 and the -CH₂- next to the Me₃Si group at δ 58.9. The 400 MHz ¹H n.m.r.
The spectrum for the quaternary amine salt (±)-44 indicated the non-symmetry of the molecule and the Me₃Si group was found at δ 0.49 and each non-aromatic proton as a doublet. These doublets were found at δ 3.08 (J_HH 14.4 Hz), δ 3.33 (J_HH 14.4 Hz), δ 3.64 (J_HH 12.4 Hz), δ 3.99 (J_HH 12.4 Hz), δ 4.73 (J_HH 12.4 Hz), δ 4.86 (J_HH 17.6 Hz), δ 5.84 (J_HH 12.4 Hz) and δ 6.28 (J_HH 17.6 Hz). The 100 MHz ¹³C n.m.r. spectrum also showed six peaks for the non-aromatic part of the molecule. The Me₃Si group was found at δ -0.4 and the -CN group at δ 111.8. The aromatic rings also showed the required number of eight quaternary and 12 non-quaternary carbon atoms. A possible mechanism for the formation of (±)-43 is indicated in Scheme 37 below. It is believed that the terminal -NH₂ initially reacts with two molecules of (iodomethyl)-trimethylsilane. The remaining N atom then reacts with one equivalent of (iodomethyl)-trimethylsilane to give the corresponding salt. I, which is now in excess in the reaction mixture, then attacks the silyl group of one of the terminal -N-CH₂-SiMe₃ groups. This then cleaves the N-N bond in order to afford the required tertiary amine (±)-43 with the elimination of Me₃SiCH₂N=CH₂ and Me₃Si-I.

Scheme 37
The compound prepared from the attempted cycloaddition remains unidentified. The HRMS mass spectrum (FAB, MNOBA matrix) gave what appeared to be the (M+H)+ peak at m/e 349. The other major peak appears to correspond to C_{22}H_{17} (M+H)+ at m/e 281. This is believed to be the two aromatic rings, the two -CH₂- and the N atom. The 400 MHz ¹H n.m.r. spectrum also shows the 12 aromatic protons, as well as a singlet at δ 3.64 (3 protons) which could be assigned to a CO₂Me group.

It was decided to attempt slightly ‘softer’ conditions by adding a solvent to the reactions of chloroacetonitrile or (iodomethyl)trimethylsilane with our hydrazine. The first of these methods is shown in Scheme 38.

![Scheme 38](image)

To a solution of (±)-1 in CH₂Cl₂ (2 ml) was added (iodomethyl)trimethylsilane and the reaction mixture stirred at 100 °C for 29 h in the dark. Basic work-up afforded a yellow solid which was subjected to flash chromatography (CH₂Cl₂/MeOH, 50:1) to afford the major product as a yellow solid. The n.m.r. data seemed to indicate that hydrazone (±)-45 had formed (Scheme 38). The 400 MHz ¹H n.m.r. spectrum showed the two -CH₂- next to the aromatic rings as doublets at δ 3.64 (J_{HH} 12.4 Hz) and δ 4.43 (J_{HH} 12.4 Hz). The -N=CH₂ protons appeared as two doublets in the characteristic positions of δ 6.17 (J_{HH} 10.4 Hz) and δ 6.27 (J_{HH} 10.4 Hz). This evidence was further backed up by the HRMS mass spectrum which gave a (M+H)+ peak at m/e 323.1548 corresponding to a formula of C_{23}H_{19}N₂. The mechanism for this reaction can be envisaged as indicated in
Scheme 39. The hydrazine reacts with two equivalents of (iodomethyl)-trimethylsilane, to form the bis(Me3Si)-substituted hydrazine derivative which under the acidic reaction conditions (HI) and relatively high temperature, is attacked by I− resulting in a desilylation and subsequent formation of the hydrazone by loss of Me4Si and Me3Si-I.

The second method involved reacting (±)-1 with chloroacetonitrile using K2CO3 as the base. This is indicated in Scheme 40 below.
Likewise when a solution of (±)-1 and solid K$_2$CO$_3$ in CH$_2$Cl$_2$ was added chloroacetonitrile (0.67 equiv.) and the reaction mixture stirred at room temperature for 1 h. Filtration of the salts and work-up furnished a white solid. Flash chromatography (CH$_2$Cl$_2$/MeOH, 50:1) afforded the major product as a solidified foam. The 400 MHz 1H n.m.r. spectrum gave identical results to the previous hydrazone (±)-45. This was further backed up by the high resolution mass spectrum. The mechanism is believed to be as follows (Scheme 41):

![Scheme 41]

In order to prove that the hydrazone had been formed in the last two reactions, it was decided to make this deliberately by reacting (±)-1 with para-formaldehyde following a protocol first described by Enders et al.129 This is indicated in Scheme 42.

![Scheme 42]

To a solution of (±)-1 in EtOH at room temperature was added para-formaldehyde and the solution stirred at 90 °C for 4 h. Flash chromatography (hexanes:EtOAc, 5:1) gave the required hydrazone (±)-45 as a yellow solidified foam in 86 % yield. This compound had identical properties to the two identical hydrazones prepared via the (iodomethyl)trimethylsilane and chloroacetonitrile methods.
2.3 Remarks

Due to these surprising results, it was decided to move away from the use of this chiral hydrazine as an auxiliary for the [3+2]-cycloaddition of nonstabilised azomethine ylides. Several attempts had been made to prepare the 1,3-dipole but unfortunately, all were unsuccessful. The evaluation of other auxiliaries therefore looked necessary. Some of these are discussed in Chapter 3.
Chapter 3

An attempt at introducing new chiral auxiliaries for the [3+2]-cycloaddition reactions of nonstabilised azomethine ylides

3.1 Investigations into the use of a mannose based auxiliary for the [3+2]-cycloadditions of azomethine ylides

Given all these previous disappointments, we decided to pursue an alternative method for the preparation of ylide precursors, that would make use of derivatives of D-mannose. Our general strategy is outlined in Scheme 43. Initially, D-mannose would be converted to 47, and this then transformed to amine 50, by initially converting 47 to the bromide 48, reacting this with NaN₃ and then hydrogenating the azide 49 over palladium on carbon to furnish the required amine 50. Treatment of 50 with either (chloromethyl)trimethylsilane or trimethylsilylmethyl triflate should then furnish the precursor 51 needed for the cycloaddition chemistry. Addition of silver fluoride in the presence of an appropriately substituted olefin should afford the 1,3-dipolar cycloaddition product 53. Exposure of 53 to aqueous acid was then envisaged for cleaving off the newly formed pyrrolidine cycloadduct 6 as well regenerating the starting material 47.
The conversion of D-mannose (20 g) into 47 proceeded very cleanly and in up to 81% yield. The 400 MHz 1H n.m.r. spectrum showed the four required methyl groups as singlets at δ 1.29, 1.34, 1.42 and 1.43. The C-1 proton resonated as a doublet at δ 5.33 and had a coupling constant of J_{HH} 2.8 Hz. The 100 MHz 13C n.m.r. spectrum also confirmed that the correct compound had been obtained. The four methyl groups were found at δ 24.4, 24.8, 25.8 and 26.8. The two quaternary carbons were found at δ 109.1 and δ 112.6 ppm and C-1 was observed at δ 101.1. The HRMS mass spectrum (FAB, MNOBA matrix) contained a peak for $C_{12}H_{20}O_{6}Na (M+Na)^+$ at m/e 261.1338. Finally, the I.R. spectrum gave the characteristic broad -OH band at 3437 cm$^{-1}$. Alcohol 47 was
then dissolved in distilled THF and cooled to 0 °C. Triphenylphosphine and carbon tetrabromide were added and the reaction mixture stirred for approx. 1 h at room temperature. A white precipitate of triphenylphosphine oxide was immediately observed which was removed by thorough suction filtration. Concentration of the filtrate gave the crude bromide 48, which was taken forwards to the next step without further purification. The 400 MHz 1H n.m.r. spectrum of the crude material showed the four required methyl groups as singlets at δ 1.32, 1.39, 1.47 and 1.47. The C-1 proton was now observed as a singlet at δ 5.45, a shift of 0.21 ppm downfield from the alcohol. The observation of a singlet at C-1 also indicates that only one isomer had been formed. The 100 MHz 13C n.m.r. spectrum also showed the correct compound. The four methyl groups were found at δ 24.6, 25.1, 25.9 and 26.9. The two quaternary acetal carbons could be seen at δ 109.4 and δ 113.2 and C-1 was observed at δ 95.5, a shift of 5.64 ppm upfield of the alcohol 47. The crude bromide was immediately treated with sodium azide (20 equivalents) to afford the crude azide. Flash chromatography in hexanes:EtOAc afforded the pure azide 49 as a clear yellow oil in 56 % yield. Unreacted bromide 48 was also isolated from the column. The 100 MHz 13C n.m.r. spectrum of 49 showed the four methyl groups were found at δ 24.3, 25.1, 25.2 and 26.9. The two quaternary carbons were found at δ 109.3 and δ 113.6 and C-1 was observed at δ 89.1, a further shift of 6.40 ppm upfield from bromide 48. As a final proof of structure, the I.R. spectrum of 49 indicated the characteristic -N$_3$ peak at 2123 cm$^{-1}$. The reduction of the azide with 5 mol% palladium on carbon and hydrogen in THF was then carried out. The reaction proceeded very cleanly and leaving the crude amine 50 as a clear oil which was used immediately without further purification. The amine 50 was then reacted with (chloromethyl)trimethylsilane in either DMF or THF, but both of these methods proved unsuccessful. Treating a solution of 50 in benzene with trimethylsilylmethyl triflate was likewise unfruitful.

Our attempts to modify the above chemistry to obtain the bis-Me$_3$Si sugar 55 from the reaction of 54 with bromide 48 failed (Scheme 44). TLC indicated no reaction occurred. The method was abandoned at this point.
Another strategy attempted, modified the chemistry of Roussi \textit{et al.}131 These workers have investigated the base-mediated deprotonation of amino-sugar N-oxides to obtain azomethine ylides, and used them to prepare pyrrolidines via [3+2]-cycloaddition with stilbene. It was envisaged that this method could also be utilised with our sugar-based auxiliary as indicated in Scheme 45.
Alcohol 47 was converted to bromide 48 in the same manner as previously. The bromide was this time subjected to flash chromatography (hexanes/EtOAc, 5:1) and was obtained in 63 % yield. Compound 48 was then reacted with dimethylamine in the presence of Et$_3$N in THF to furnish 58 in 45 % yield (Scheme 46). The 400 MHz 1H n.m.r. spectrum showed the four required sugar methyl groups as singlets at δ 1.32, 1.35, 1.42 and 1.46. The two newly-introduced methyl groups were observed as a singlet further downfield as expected at δ 2.22. The 100 MHz 13C n.m.r. spectrum also showed the correct compound. The four acetal methyl groups were found at δ 24.7, 25.2, 26.1 and 26.9. The two N-methyl groups were seen at δ 40.8 with C-1 being observed at δ 101.0, a shift of 5.54 ppm downfield from bromide 48. The HRMS mass spectrum also showed a peak of m/e 288.1811 which corresponded to an (M+H)$^+$ ion with empirical formula C$_{14}$H$_{26}$NO$_5$. Treating the sugar amine 58 with m-CPBA in CH$_2$Cl$_2$ afforded the N-oxide 57 in 86 % yield. The 100 MHz 13C n.m.r. spectrum showed the four methyl groups at δ 24.3, 25.2, 26.0 and 26.7. The two methyl groups next to the N atom were now seen as two different signals at δ 55.1 and δ 55.7 with C-1 being observed at δ 105.8, a shift of 4.81 ppm downfield from the tertiary amine 58. The FAB-MS mass spectrum also showed a peak for the correct mass of m/e 304.2 for an (M+H)$^+$ ion indicating an empirical formula of C$_{14}$H$_{26}$NO$_6$. The N-oxide was then treated with LDA and a suitable dipolarophile (dimethyl fumarate and trans-stilbene were both tried) in order to yield the required sugar-pyrrolidines 56 and 59. However, both methods failed. Use of n-BuLi in the same manner also met with failure and so this method was subsequently abandoned.
Due to the fact that no major progress was made in the synthesis of the azomethine ylide precursors using this method, it was decided to evaluate yet another chiral auxiliary. This was to be based on D-glucose and is discussed in the following section.
3.2 An attempt at the use of D-glucose as a chiral auxiliary for azomethine ylide [3+2]-cycloadditions

Our next plan was to establish whether the azomethine ylide 65 could be prepared (Scheme 47).

![Scheme 47](image)

Our initial effort was directed at preparing amine 63. This was synthesised according to Scheme 47 by acetylation of D-(+)-glucose followed by bromination to afford commercially available bromide 61. Treatment with sodium azide afforded...
azide 62 which was converted to amine 63 by hydrogenation. The reaction of amine 63 with (chloromethyl)trimethylsilane in DMF, was expected to yield the required secondary amine 64. However, no reaction was observed when this reaction was attempted and the amine was recovered. The reaction was repeated using trimethylsilylmethyl triflate in CH\(_2\)Cl\(_2\), but again the required compound was not formed.

The reaction of bromide 61 with trimethylsilylmethyl amine in THF was also investigated (Scheme 48). However, this method also proved unsuccessful.

![Scheme 48]

Another procedure was also attempted as indicated in Scheme 49. This was based on preparing \(N\)-cyanomethyl-\(N\)-trimethylsilylmethylamine 67, from trimethylsilylmethyl amine and chloroacetonitrile in DMF at room temperature. The product was not isolated, but was reacted further \textit{in situ} by addition of 61. However, no reaction was observed and the method was abandoned.

![Scheme 49]

Again, we were unsuccessful in the preparation of the required ylide precursors. The method was abandoned at this stage for another, more promising route based on camphor which will be discussed in the next section.
3.3 Evaluation of a novel camphor-derived auxiliary in the [3+2]-cycloaddition reaction of nonstabilised azomethine ylides

3.3.1 [(1R)]-endo-(+)-3-Bromocamphor as starting material

In this approach, commercially available [(1R)]-endo-(+)-3-bromocamphor was to be treated with sodium azide to give the exo-3-camphor azide 69 which would then be reduced to the amine 70. Treatment of amine 70 with two equivalents of (iodomethyl)trimethylsilane would then give the bis(Me₃Si methyl) camphor 71 which would be treated with a suitable dipolarophile and AgF, to form the cycloaddition product 72. Zinc dust and HCl was envisaged for cleaving off the auxiliary to obtain the pyrrolidine derivative 6 and camphor (Scheme 50).

Our initial attention focussed on replacing the bromide in [(1R)]-endo-(+)-3-bromocamphor with azide ion. NaN₃ (20 equivalents) was added to a solution of 3-bromocamphor in DMF and the mixture heated to 140 °C. After 22 h TLC showed that there was no reaction and the reaction was therefore abandoned. The reaction was repeated on two further occasions with two different solvents but in each case no reaction was observed. It is likely that the top methyl group of the camphor makes the
brine. The method was abandoned at this point.

It was also decided to react the endo-3-bromocamphor with trimethylsilylmethyl amine as shown in Scheme 51. However, again, no reaction was found to take place. Again, this indicated that the camphor framework was too bulky to allow the Me₃Si methyl group to be attached the exo side of camphor.

\[
\text{Scheme 51}
\]

3.3.2 The utilisation of a camphor-amine 76

After a further analysis of the problem it was envisaged that the endo-camphor amine 76 might be successfully used to prepare the cycloaddition precursor 77 as there was less bulk around the amine group (Scheme 52).
(+)-Camphorquinone-3-oxime 75 is commercially available but is relatively expensive. It was decided therefore to prepare this starting from the much cheaper (+)-camphor itself. (+)-Camphorquinone 74 was prepared by the oxidation of (+)-camphor with SeO₂ in acetic anhydride. This proceeded in 88 % yield and furnished 74 as light crystals. The carbonyl at position 3 was then converted to (+)-camphorquinone-3-oxime 75 in 97 % yield by treatment with hydroxylamine hydrochloride and pyridine in absolute ethanol. The 400 MHz ¹H n.m.r. spectrum showed the C-4 proton as a doublet at δ 3.20 (J_HH 4.8 Hz) and also showed that a mixture of syn:anti isomers around the N-OH bond was present in a ratio of approx. 5:1. This was further seen in the 100 MHz ¹³C n.m.r. spectrum where two peaks were observed for the carbonyl group at δ 204.3 and δ 203.5 as well as two for the oxime carbon at δ 159.4 and δ 156.0. A further 16 carbon peaks were also observed as required. The HRMS mass spectrum (FAB, MNOBA matrix) also showed an (M+H)⁺ ion at m/e 182.118 indicating an empirical formula of C₁₀H₁₆NO₂. The I.R. spectrum contained the characteristic imine C=O stretch at 1740 cm⁻¹ as well as the C=N stretch at 1642 cm⁻¹. The reduction of the
oxime using PtO₂ and HCl in EtOH under hydrogen according to Beckett et al. \(^{17}\) gave an unacceptable yield of crude product amine 76. Palladium on carbon in a mixture of HCl and EtOH has also been utilised to prepare amine 76, \(^{138}\) but it was decided to use the procedure suggested by Duden et al. \(^{139}\) This uses the fact that under basic conditions the oxime 75 is in equilibrium with the nitroso compound 79 as shown in Scheme 53. The equilibrium was shifted to the right by treating the oxime 75 with 1M aqueous NaOH solution followed by immediate addition of 10 equivalents of zinc dust in order to reduce the nitroso group to the primary amine 76. This proceeded smoothly over 4 hours in 95 % yield.

\[
\begin{align*}
\begin{array}{c}
\text{HO} \\
\text{1M NaOH} \\
\text{H₂O} \\
\end{array} & \xrightarrow{1M \text{NaOH}} \\
\begin{array}{c}
\text{NO} \\
\text{79} \\
\end{array} & \xrightarrow{\text{Zn (10 eq.)}} \\
\begin{array}{c}
\text{75} \\
\end{array} & \xrightarrow{4 \text{ h.}} \\
\begin{array}{c}
\text{NH₂} \\
\text{76} \\
\end{array}
\end{align*}
\]

Scheme 53

Amine 76 was then treated with 1.47 equivalents of (iodomethyl)trimethylsilane in the presence of 1.52 equivalents of Hüning's base in MeCN and the reaction mixture stirred at reflux for 22 h. Aqueous work-up furnished crude (1R)-endo-(+) \(-(N\text{-trimethylsilylmethyl})\text{camphor amine 80 as a clear yellow oil in 93 % crude yield. It was found that this compound could be used crude for the subsequent reaction with a yield loss of approx. 10 %. The 400 MHz \(^{1}\text{H}\) n.m.r. spectrum showed the Me₃Si group present at \(\delta\) 0.05 as well as the -CH₂- next to the Me₃Si group as two non-equivalent doublets at \(\delta\) 1.88 \((J_{\text{HH}} 13.4 \text{ Hz})\) and \(\delta\) 1.94 \((J_{\text{HH}} 13.4 \text{ Hz})\). The NH group was observed as a broad singlet at \(\delta\) 1.38. The 100 MHz \(^{13}\text{C}\) n.m.r. spectrum showed the Me₃Si group at \(\delta\) 2.7, the C=O group at \(\delta\) 219.3 and the signal from C-3 at \(\delta\) 68.5. The FAB-MS mass spectrum (MNOBA matrix) for C₁₄H₂₈NOSi further contained a correct \((\text{M}+\text{H})^+\) peak at \(m/e\) 254.3. The secondary amine 80 was treated with Hüning's base (1.64 equivalents) and chloroacetonitrile (1.63 equivalents) in MeCN to afford (1R)-endo-(+) \(-(N\text{-cyanomethy-N-trimethylsilyl methyl})\text{camphor amine 81 as a clear oil in up to 99 % yield. The 400 MHz \(^{1}\text{H}\) n.m.r. spectrum showed the two newly-introduced -CH₂- next to the -CN group as two doublets at \(\delta\) 4.38 \((J_{\text{HH}} 17.4 \text{ Hz})\) and \(\delta\) 3.44 \((J_{\text{HH}} 17.4 \text{ Hz})\). The 100 MHz \(^{13}\text{C}\) n.m.r. spectrum indicated the presence of the new -C≡N group at \(\delta\) 115.0. The HRMS mass spectrum (FAB, MNOBA matrix) also gave the correct
The cycloaddition of 81 with dimethyl fumarate (2 equivalents) and AgF (1.7 equivalents) in MeCN was then performed. The mixture was stirred in the dark for up to six days and the product purified by flash chromatography eluting with hexanes:EtOAc, 10:1. This successfully afforded the required cycloadducts 82 and 83 in up to 72 % yield based on recovered unreacted starting material. The 400 MHz 1H n.m.r. spectrum confirmed that the cycloaddition had been successful, but it showed that a 1:1 mixture of diastereoisomers had been formed. Specifically, in the 400 MHz 1H n.m.r. spectrum of 82 and 83 there were two methyl ester singlets present in similar ratio at δ 3.67 and δ 3.68. The 100 MHz 13C n.m.r. spectrum also showed three C=O groups, one from the camphor at δ 216.3, and the other two from the two methyl ester

ratio of 82:83 = 1:1
groups on the pyrrolidine ring at δ 173.9 and δ 173.8. The HRMS mass spectrum (FAB, MNOBA matrix) of 82 and 83 for (M+H)^+ contained an ion at m/e 338.1967 as one would expect for a compound of empirical formula C_{18}H_{28}NO_5. The I.R. spectrum also showed the usual ester C=O peak at 1741 cm⁻¹.

3.3.3 Attempted removal of the pyrrolidine moiety

Although our cycloaddition reaction was not stereoselective, we decided to attempt cleavage of the pyrrolidine ring. Various conditions were attempted as shown in Scheme 55. These include (a) the use of MoOPH and LDA in THF,¹⁴⁰ (b) iodomethane in MeCN, (c) zinc dust in a mixture of acetone and water, (d) amalgamated zinc ¹⁴¹ in Et₂O and HCl, (e) Sml₂ in THF and, (f) m-CPBA in CH₂Cl₂. However, none of them were successful.
Another problem encountered in the camphor strategy (Scheme 54) was the dimerisation of the amine 76 at room temperature to afford the di-imine 87 as indicated in Scheme 56 and mentioned briefly by Duden et al.139 When 87 was left at room temperature for up to 96 h an orange paste forms. Flash chromatography in hexanes:EtOAc, 12:1, affords 87 as a light yellow solid with a melting point of 106-108 °C. The 400 MHz 1H n.m.r. spectrum indicated the two -CHN= protons at δ 3.60 as a triplet (2H, J_{HH} 1.2 Hz). The 100 MHz 13C n.m.r. spectrum gave the C=N- peak at δ 187.2 as well as the two other quaternary carbon atoms at δ 54.1 and δ 47.1. The FAB-MS mass spectrum of 87 (FAB, MNOBA matrix) gave rise to an (M+H)$^+$ peak for C$_{20}$H$_{31}$N$_2$ at m/e 299.3. The I.R. spectrum also gave the imine stretch at 1650 cm$^{-1}$. Thus, the camphor amine therefore has to be used immediately if kept as the free amine.

![Scheme 56](image)

3.3.4 Attempted introduction of a phenyl group into the auxiliary

Due to the C-N bond cleavage problems we thought it might be worthwhile introducing a phenyl ring on the 3-position of the camphor. If this were possible, we would then be able to cleave off the pyrrolidine ring by hydrogenolysis. However, this would mean re-designing the procedure already found to be partially successful. The new procedure attempted is indicated in Scheme 57 below. It would start with the mono-protection of camphorquinone. The remaining ketone group in 88 would then be converted to the O-benzylated oxime 90, which in turn would be treated with phenyllithium with the presence of boron trifluoroetherate according to the method of Moody et al.142 If successful, this would yield the protected hydroxylamine 91. Due to steric hindrance provided by the top methyl group, it was envisaged that the phenyl group would add mainly to the bottom side of the oxime to afford the exo-amino-endo-phenyl-camphor derivative 91. Zinc, acetic acid and ultrasound would then be used to
cleave the N-O- bond to afford the free amine 92. Working through similar processes as previously using (iodomethyl)trimethylsilane, chloroacetonitrile and the subsequent cycloaddition should afford the required cycloadduct 93. Hydrogenation would then cleave off the pyrrolidine ring. It was also thought that the cycloaddition reaction would be more stereoselective due to steric hindrance from the top methyl group as well as the endo-phenyl group.

![Diagram of chemical reactions and structures](image)

Scheme 57

The route commenced with a protection of camphorquinone 74 using ethylene glycol and p-TsOH in benzene under Dean-Stark conditions. This successfully afforded [(1R)]-(+)-3,3-ethylenedioycamphor 88 in up to 97% based on recovered 74. The 400 MHz ¹H n.m.r. spectrum of 88 showed the three methyl groups at δ 0.80, 0.88 and 0.92. The presence of the ethylenedioxy group was observed as three multiplets at δ 3.85-3.95 and δ 4.05-4.10 and δ 4.17-4.22. The 100 MHz ¹³C n.m.r. spectrum showed one C=O signal only with the new quaternary C-3 peak at δ 106.8. The HRMS mass spectrum (FAB, MNOBA matrix) also gave the correct (M+H)+ peak at m/e 211.1334 indicating a formula of C₁₂H₁₉O₃ and the I.R. spectrum gave the C=O stretch at 1754 cm⁻¹. The 400 MHz ¹H n.m.r. for the 2,2,3,3-diethylenedioycamphor 89 by-product showed the three methyl groups at δ 0.60, 0.68 and 0.98. The diethylenedioxy group was found as multiplets in the range δ 3.55-3.79. The C-4 proton was observed as a double triplet at δ 1.15 (JHH 12.4 Hz, 1.2 Hz). The 100 MHz ¹³C n.m.r. spectrum of 89 showed the absence of any carbonyl groups as did the I.R. spectrum. The HRMS mass spectrum (FAB, MNOBA matrix) also gave the required (M+H)+ ion of m/e 255.1596 which
The next step of treating 88 with O-benzyl-hydroxylamine hydrochloride in EtOH and pyridine failed. The reaction was also attempted using free O-benzylhydroxylamine in pyridine, but this also failed. As a last attempt, the reaction was repeated with O-benzylhydroxylamine and p-TsOH in benzene set up in a Dean-Stark apparatus. Again this was unsuccessful and so the method was abandoned at this point. It is possible that the ketone was simply too sterically hindered and the formation of the oxime 90 is impossible via this method.

We then decided to attempt the reverse of the process shown above. This is indicated in Scheme 58 below. The first step would be the formation of [(1R)-(+)-O-benzylhydroxyl-camphorquinone-3-oxime 94 followed by the protection of the remaining ketone using ethylene glycol to afford 95. Again the protocol of Moody et al. would be used in order to afford what would be expected to be mainly the exo-amine 97. Working through the same procedure as described above (Scheme 57) would generate the exo-cycloadduct 98. Hydrogenation should again cleave off the pyrrolidine ring.

The initial step, the preparation of 94 was carried out as in the preparation of camphorquinone-3-oxime 75. Camphorquinone 74 was treated with pyridine and O-benzylhydroxylamine hydrochloride in absolute EtOH. This afforded the required O-benzylated oxime 94 as a clear liquid in 74 % yield. The 400 MHz 1H n.m.r. indicated a
mixture of syn and anti isomers around the N-O bond of approx. 2.8:1 as shown by the two C-4 proton doublets from the major isomer at \(\delta 3.17 \) (\(J_{HH} 4.4 \) Hz) and the minor isomer at \(\delta 2.60 \) (\(J_{HH} 4.4 \) Hz). The 100 MHz \(^{13}\)C n.m.r. spectrum also showed the presence of two isomers; it revealed two C=O groups at \(\delta 203.9 \) and \(\delta 197.9 \), two oxime \(-\text{C}=\text{N}-\) peaks at \(\delta 159.2 \) and \(\delta 156.4 \) as well as two peaks for the benzyl \(-\text{CH}_2-\) group at \(\delta 77.2 \) and \(\delta 77.2 \). In like fashion, the I.R. spectrum contained the expected C=O peak at 1748 cm\(^{-1}\) and the oxime \(-\text{C}=\text{N}-\) peak at 1634 cm\(^{-1}\). Finally, the HRMS mass spectrum (FAB, MNOBA matrix) corroborated an empirical formula of \(\text{C}_{17}\text{H}_{22}\text{NO}_2 \) for 94; it contained the correct (M+H)^+ peak at \(m/e 272.1651 \). Again, however, problems were encountered in the protection of the carbonyl group. The first method attempted used a mixture of ketone 94, ethylene glycol and p-TsOH in benzene in a Dean-Stark apparatus, but this proved to be unsuccessful. The second method used the same setup, but MeSO\(_3\)H was used in preference to p-TsOH. Since no reaction was observed, the approach was abandoned.

We then postulated that the presence of the benzyl group on the oxime 94 might be preventing us from protecting this remaining carbonyl group, and it was therefore decided to attempt the protection using camphorquinone-3-oxime 75 as indicated in Scheme 59.

The initial attempt failed using p-TsOH in neat ethane-1,2-diol in a similar manner to Lester et al.\(^{144}\) The ketone protection using ethane-1,2-diol and a catalytic amount of MeSO\(_3\)H in benzene was then attempted. To a solution of 75 in benzene was added
MeSO₃H and ethane-1,2-diol and the mixture stirred at gentle reflux for 24 h. Aqueous work-up and flash chromatography using a mixture of hexanes/EtOAc, 2:1, furnished 2,2-ethylenedioxy-camphorquinone-3-oxime 99 as a clear yellow oil in 92 % yield. The 400 MHz ¹H n.m.r. spectrum suggested that only one isomer now existed around the =N-O- bond. The expected three methyl groups were located at δ 0.92, 1.06 and 1.09. The C-4 proton was observed as a triplet at δ 2.71 (J_HH 9.6 Hz) and the -OH group as a broad singlet at δ 2.89. The ethyleneoxy group gave rise to a triplet at δ 3.66 (2H, J_HH 4.8 Hz) and a multiplet in the range of δ 4.01-4.10. The 100 MHz ¹³C n.m.r. spectrum also showed the formation of one isomer only. The oxime -C=N-OH peak was observed at δ 174.9 with no other minor peak for the other isomer in this region. The I.R. spectrum gave the usual oxime stretch at 1724 cm⁻¹ and the HRMS mass spectrum (FAB, MNOBA matrix) for 99 contained the expected (M+H)⁺ ion at m/z 226.1443 indicating an empirical formula of C₁₂H₂₀NO₃. The -OH group was then protected as the required -OBn oxime 95 using benzyl bromide and sodium hydride in DMF in 27-39 % yield. The 400 MHz ¹H n.m.r. spectrum of the product showed the benzyl -CH₂- at δ 4.53 with the C-4 proton being observed as a triplet at δ 2.79 (J_HH 9.8 Hz). The ethyleneoxy group resulted in three multiplets being present at δ 3.62-3.68, δ 4.16-4.26 and δ 4.27-4.35. Treatment of this O-benzylated oxime 95 with phenyllithium and BF₃·Et₂O in toluene gave no reaction. Treating 95 with PhLi in THF at -78 °C without BF₃·Et₂O also failed. Since Cativiela et al. had added vinyl magnesium bromide to a -C=N- double bond in an imine to afford the corresponding secondary amine, we speculated that this method might be applicable to our oxime. However, the reaction of 95 with phenyl magnesium bromide in THF was also unsuccessful.

Due to these results, it was decided to attempt the preparation of alcohol 100 as shown in Scheme 60. Converting this to the azide 101, and hydrogenation would furnish the amine 92 from which the cycloadduct 93 could be prepared. The only problem we perceived was that of steric hindrance from the top methyl group as found earlier with [(1R)-endo-(+)-3-bromocamphor (Scheme 50).

The preparation of 100 was achieved by following the protocol of Herold et al.146 Alcohol 100 was obtained in 85% yield by treating 88 with phenyl lithium in THF at -78 \(^\circ\)C and stirring at room temperature for 4 h. Aqueous work-up and flash chromatography afforded the alcohol as a clear oil. The 400 MHz \(^1\)H n.m.r. spectrum showed the three methyl groups at \(\delta\) 0.73, 0.94 and 1.33 with the ethylenedioxy group as two multiplets between \(\delta\) 3.19-3.25 (1H) and \(\delta\) 3.77-3.88 (3H). The C-4 proton appeared as a doublet at \(\delta\) 1.86 (\(J_{HH}\) 4.8 Hz) and the -OH was observed as a singlet at \(\delta\) 3.46. The 100 MHz \(^{13}\)C n.m.r. spectrum gave no C=O signal as expected and showed the required number of aromatic peaks at \(\delta\) 141.0, 129.4, 126.4 and 126.2. The quaternary C-3 peak was also found at \(\delta\) 116.8 which is a shift of 10.05 ppm downfield compared to the C-3 peak observed for [(1R)]-(-)-3,3-ethylenedioxy camphor 88. The new C-2 quaternary carbon was observed at \(\delta\) 84.5. The I.R. spectrum indicated the required -OH peak at 3516 cm\(^{-1}\). The final piece of structural evidence was supplied by the HRMS mass spectrum (FAB, MNQBA matrix) for 100 which gave rise to an (M\(^+\)) ion at \(m/e\) 288.1725 corroborating a formula of C\(_{18}\)H\(_{24}\)O\(_3\). The direct conversion of the alcohol 100 to the azide 101 was carried out according to Bose et al.147 using commercially available diphenylphosphoryl azide.148 Triphenylphosphine and diisopropyl azodicarboxylate was added to a solution of 100 in THF while stirring at room temperature. This was followed by the slow addition of diphenylphosphoryl azide. After stirring at room temperature for 3 days the mixture was concentrated, but...
TLC showed no reaction and the method was abandoned. It thus appears that the -OH group is too sterically hindered for it to be activated and displaced by the azide ion.

It was also decided to prepare (1R)-(+)\text{-}O\text{-}hydroxybenzyl\text{-}camphorquinone\text{-}2\text{-}oxime 102 and then exploit the Moody phenyllithium/oxime addition reaction as mentioned earlier (Scheme 61). Zinc dust, acetic acid and ultra sound would then give the amine 104 which could be treated with (iodomethyl)trimethylsilane, chloroacetonitrile and then AgF and a suitable dipolarophile to give the cycloadduct 105.

The preparation of 102 was successfully carried out in 99 % yield by treating (+)\text{-}camphor with O\text{-}benzylhydroxylamine hydrochloride in pyridine and ethanol. The 400 MHz 1H n.m.r. spectrum showed the formation of one isomer only. The benzyl -CH$_2$- was seen as a singlet at δ 5.15 with the three methyl groups at δ 0.82, 0.96 and 1.10. The 100 MHz 13C n.m.r. spectrum also indicated only one isomer and there was no C=O group present. The benzylic -CH$_2$- group was observed at δ 75.0, with the phenyl group carbons found at δ 138.4, 128.0, 127.6 and 127.2. The quaternary oxime C=N\text{-}OR peak was found in its characteristic place of δ 169.4. The I.R. spectrum also gave the usual weak oxime -C=N- stretch at 1664 cm$^{-1}$ and the HRMS mass spectrum (FAB, MNOBA matrix) also gave the expected (M+H)$^+$ ion at m/e 258.1858 corresponding to a formula
Treating 102 with phenyl lithium and BF$_3$·Et$_2$O in toluene gave numerous products as observed by TLC and no isolation attempts were carried out.

Another method based on [(1R)]-(+)-camphor as the starting material is indicated in Scheme 62 below. This started with the formation of the imine 108. This was then to be reacted with PhMgBr as of Cativiela et al.145 or with PhLi followed by reaction with trimethylsilylmethyl triflate to afford the bis-(N,N-trimethylsilylmethyl) amine derivative 109 on which the cycloaddition with a suitable dipolarophile would be carried out.

Trimethylsilylmethyl amine is commercially available and has been used previously in this project, but it is extremely expensive. It was therefore decided to prepare this compound. This started with the preparation of trimethylsilylmethyl azide 106 according to Anderson et al.150 The azide was then reduced to trimethylsilylmethyl amine 107 according to Letellier et al.151 The reaction of camphor with trimethylsilylmethyl amine in absolute EtOH proved to be unsuccessful. Repeating the reaction and adding Na$_2$SO$_4$ and 4Å activated molecular sieves to the mixture also proved to be unsuccessful.
Due to the problems already encountered in this camphor based sequence of reactions, we abandoned further development of this approach at this stage. It was felt more advantageous to pursue another line of investigation, namely the preparation of a precursor for the double [3+2]-cycloaddition of azomethine ylides.
3.4 Attempting the preparation of a double [3+2]-cycloaddition precursor based on (1S,2S)-(−)-1,2-diamino-1,2-diphenylethane

Another chiral auxiliary we evaluated was based on (1S,2S)-(−)-1,2-diamino-1,2-diphenylethane 111 and the strategy shown in Scheme 63. It was envisaged that the diamine 111 could be converted to 112 by addition of (iodomethyl)trimethylsilane in the presence of a suitable base. Treatment of this precursor with AgF and a suitable dipolarophile would afford the bis(pyrrolidine) cycloadduct 114. However, the di-ylide 113 may also cyclise in-situ, thus affording the bicyclo[2,2,2]-system 115 which may show great future potential as a chiral base.

![Scheme 63](image)

3.4.1 Preparation of (1S,2S)-(−)-1,2-diamino-1,2-diphenylethane 111

(1S,2S)-(−)-1,2-Diamino-1,2-diphenylethane 111 is commercially available, but is rather expensive. It was therefore decided to prepare this compound. Previous routes to optically pure stilbenediamine have entailed resolution of the racemic diamine. Salvadori et al. has developed a four-step procedure for preparing stilbenediamine using trans-stilbene as the starting material (Scheme 64).
The asymmetric catalytic cis-dihydroxylation of trans-stilbene to obtain enantiomerically pure diol (S,S)-116 has been achieved using OsO₄, acetone, NMO/H₂O and dihydroquinine p-chlorobenzoate as the ligand (Sharpless method). After conversion to the bis-p-toluenesulfonate (S,S)-117, double displacement with NaN₃ followed by reduction, provides enantiomerically pure (+)-(R,R)-stilbenediamine (R,R)-111 in 32 % overall yield. More recently, Chang has developed a route to the bishydrochloride salt (R,R)-120 of (R,R)-stilbenediamine (Scheme 65).
The last two procedures offer advantages over earlier resolution-based methods, since they use only readily available starting materials and either enantiomer can be obtained through proper choice of ligand for the AD step. In addition, the method may be adapted for the preparation of other enantiomerically pure diamines, provided the corresponding alkenes contain no functional groups which are incompatible with osmium tetroxide.

Our method for the preparation of stilbene diamine 111 combines the work of Salvadori and Chang. It is indicated below (Scheme 66).

\[
\begin{align*}
\text{trans-Stilbene} & \xrightarrow{\text{AD mix-beta}} \text{HO} \xrightarrow{\text{MsCl}} \text{MsO} \xrightarrow{\text{NaN}_3} \text{MeSCbNH}j \xrightarrow{\text{LiAlH}_4} \text{Ph} \\
(1R,2R)-116 & \xrightarrow{\text{99.7\%}} (1R,2R)-116 & \xrightarrow{\text{99.2\%}} (1R,2R)-119 & \xrightarrow{\text{62.7\%}} (1S,2S)-118 & \xrightarrow{\text{99.5\%}} (1S,2S)-118
\end{align*}
\]

The procedure started with the preparation of enantiomerically pure stilbenediol from trans-stilbene. We used the Sharpless AD method using AD-mix-β. This proceeded cleanly to give \((1R,2R)-(+)-1,2\)-diphenyl-1,2-ethanediol \((1R,2R)-116\) in quantitative yield. Reacting the diol \((1R,2R)-116\) with mesyl chloride in pyridine at room temperature for 3 h afforded \((1R,2R)-(+)-1,2\)-diphenyl-1,2-dimesyloxyethane \((1R,2R)-119\) in up to quantitative yield. Treatment with sodium azide in DMF at 90 °C for 7 h gave \((1S,2S)-(-)-1,2\)-diphenylethane-1,2-diazide \((1S,2S)-118\) in 63 % yield, which on reduction using LiAlH\(_4\) gave \((1S,2S)-(-)-1,2\)-diphenylethane-1,2-diamine \((1S,2S)-111\) in quantitative yield. The 400 MHz \(^1\text{H}\) n.m.r. spectrum of \((1S,2S)-111\) showed the two \(-\text{NH}_2\) groups as a singlet at δ 1.58 and the two methines next to the aromatic rings resonated as a singlet at δ 4.08. The 100 MHz \(^{13}\text{C}\) n.m.r. spectrum showed the methines next to the aromatic rings at δ 61.8. The HRMS mass spectrum (FAB, MNOBA matrix) of \((1S,2S)-111\) showed the correct \((M+H)^+\) peak at \(m/e\) 213.1392 indicating an empirical formula of \(C_{14}H_{17}N_2\).
3.4.2 Attempted preparation of the cycloaddition precursors 112/120

The reaction of diamine (1S,2S)-111 with four equivalents of (iodomethyl)trimethylsilane in acetonitrile with potassium carbonate as the base did not replace all four amine protons. Only two were replaced, one on each amine, as shown by the symmetry indicated in the n.m.r. data. The reaction was successfully repeated in up to 95% yield using 2.41 equivalents of (iodomethyl)trimethylsilane and 3 equivalents of base to give (1S,2S)-(-)-1,2-diphenylethane-1,2-(N',N''-bis-trimethylsilylmethyl)diamine (1S,2S)-120 as a clear yellow oil which solidified on standing at room temperature (Scheme 67).

![Scheme 67](image)

The 400 MHz 1H n.m.r. spectrum of (1S,2S)-120 showed the two Me$_3$Si groups as a singlet at δ 0.01 with each of the -CH$_2$- protons next to the Me$_3$Si group giving rise to a doublet each at δ 1.75 (J_{HH} 13.6 Hz) and δ 1.87 (J_{HH} 13.6 Hz). The two -NH- groups were observed as a broad singlet at δ 1.89 with the remaining two methine protons next to the aromatic rings being seen as a singlet at δ 3.45. This is a shift of 0.63 ppm upfield as compared to the diamine (1S,2S)-111. The 100 MHz 13C n.m.r. spectrum showed the newly-introduced Me$_3$Si groups and the -CH$_2$- groups as singlets at δ -2.6 and δ 37.7 respectively. The two methine groups were now observed in the 13C n.m.r. spectrum at δ 73.4, a shift of 11.6 ppm downfield from the same group in the diamine (1S,2S)-111. The HRMS mass spectrum (FAB, MNOBA matrix) of (1S,2S)-120 was
also correct, it showing an (M+H)⁺ ion at m/e 385.2495 corresponding to a formula of C₂₂H₃₇N₂Si₂.

The next step was then to attach the cyanomethyl group to each of the two remaining secondary amine groups. It was expected that this would be done with chloroacetonitrile with a suitable base, but what appeared to be a trivial process proved to be rather problematic. Several methods were attempted with various conditions as shown in Scheme 68. The first attempt used 2.9 equivalents of chloroacetonitrile in THF using potassium carbonate as the base. Heating the mixture to 80 °C for approx. 20 hours resulted in an unacceptable low yield of the compound where only one CH₂-CN group had been attached to the amine (1S,2S)-122. Further heating had no effect on the yield. The base was then changed to Et₃N and the solvent to DMF and the reaction mixture stirred over the weekend at 100 °C. However, this was also found to be unsuccessful. A solution of (1S,2S)-120 in MeCN was also treated with Hüning’s base and chloroacetonitrile. Again, the solution was stirred at gentle reflux for approx. 3 days after which time the reaction failed to give the required compound. Compound (1S,2S)-120 was also reacted with one equivalent of n-BuLi in THF at -78 °C to which was added (iodomethyl)trimethylsilane (2.7 equivalent). However, this also failed to provide the required compound (1S,2S)-123. As a final attempt, it was decided to utilise the method of Padwa et al.⁴⁰ This treated (1S,2S)-120 with aqueous formaldehyde, potassium cyanide and HCl in THF. However, this also failed. It is possible that the two lone pairs of electrons on the remaining amine groups are too sterically hindered for these reactions to take place. As a result, the method was abandoned at this stage.
Due to the unsuccessful efforts just described, it was decided to attempt protection of one of the amine groups, and then to work through the cycloaddition sequence again in order to possibly increase the yields and stereoselectivities.

We initially decided to attempt mono-protection with phthaloyl chloride. This is shown in Scheme 69. The reaction was carried out in THF with potassium carbonate as the base, but after 27 hours at room temperature no reaction was observed. Heating the reaction had no effect either, and the reaction was abandoned.
Again we were unfortunate not to prepare the required precursors for the [3+2]-
cycloaddition reactions. Due to the above results, it was decided to attempt another
carbohydrate-based system, with the hope that more success would be achieved. The
new method is discussed in the following section.
3.5 Investigation into the [3+2]-cycloaddition precursor using methyl α-D-glucopyranoside as the starting material

Our new plan centered around the preparation of azomethine ylide precursor 133 from methyl-α-D-glucopyranoside. This approach is detailed in Scheme 70. The 4,6-acetal 128 would be prepared from benzaldehyde dimethyl acetal and this then mono-tosylated by treatment with tosyl chloride in pyridine. The mono-tosylated compound 129 would then be converted to the epoxide 130 which would then be ring-opened with trimethylsilylmethyl amine. Protection of the hydroxyl group in 131 and chloroacetonitrile treatment was then expected to yield the cycloaddition precursor 133. Upon treatment with silver fluoride and a suitable dipolarophile it was hoped that the pyrrolidine cycloadduct 134 would result. After ammonium salt formation treatment with TBAF would cleave off the required pyrrolidine compound 135 while at the same time recovering the epoxide 130 which could be re-introduced into the same process.
Commercially available (+)-(4,6-O-benzylidene)-methyl-α-D-glucopyranoside 128 was reacted with tosyl chloride in pyridine to obtain known (+)-(4,6-O-benzylidene-2-O-p-tolylsulfonyl)-methyl-α-D-glucopyranoside 129 in 96 % yield.\(^{156}\) Taking advantage of this \textit{trans}-diequatorial arrangement between the hydroxyl group at C-3 and tosylate at C-2, 130 was successfully generated in 96 % yield by treatment of tosylate 129 with sodium hydride in THF at reflux for 23 hours (Scheme 70).\(^{157}\) The 400 MHz \(^1\)H n.m.r. spectrum displayed a multiplet at \(\delta 7.35-7.50\) which integrated to five protons. In addition to this, the singlet from the methyl group on the tosylate was absent The C-5 benzylidene proton was found as a singlet at \(\delta 5.55\) with the methoxy singlet at \(\delta 3.45\). The 100 MHz \(^1\)C n.m.r. spectrum now only showed the presence of four aromatic signals from the phenyl group; the remaining four peaks from the tosylate group were absent as was the signal from the \textit{para}-substituted methyl group. Further proof of the structure was provided by the HRMS mass spectrum (FAB, MNOBA matrix) which displayed a \((\text{M+H})^+\) peak at \(m/e 265.1076\) indicating a formula of \(\text{C}_{14}\text{H}_{17}\text{O}_5\). The I.R. spectrum also showed the absence of hydroxyl groups.

Epoxide ring opening with previously prepared trimethylsilylmethyl amine 107 in THF at gentle reflux for 4 days afforded the \textit{trans}-dixial methyl 3-(trimethylsilylmethyl)-amino-4,6-O-benzylidene-3-deoxy-α-D-altropyranoside 131 as a clear oil in 98 % yield. Treatment of this secondary amine with imidazole and \textit{tert}-butyldimethylsilyl chloride in DMF at room temperature for 4 days afforded methyl 3-(N-trimethylsilylmethyl)-amino-4,6-O-benzylidene-2-O-(\textit{tert}-butyldimethylsilyl)-deoxy-α-D-altropyranoside 132 as a clear yellow oil in 72 % yield. The 400 MHz \(^1\)H n.m.r. spectrum showed the Me\(_3\)Si group at \(\delta 0.02\) with the two TBS-methyl groups as two singlets at \(\delta 0.09\) and \(\delta 0.10\), and the \textit{tert}-butyl group at \(\delta 0.90\). The two -CH\(_2\)- protons next to the Me\(_3\)Si group were each found as doublets at \(\delta 2.11\) (\(J_{\text{HH}} 12.8 \text{ Hz}\)) and \(\delta 2.22\) (\(J_{\text{HH}} 12.8 \text{ ppm}\)) with the methoxy group at \(\delta 3.33\). The benzylidene proton was observed as a singlet at \(\delta 5.57\) while the aromatic section afforded a multiplet at \(\delta 7.32-7.48\). The 100 MHz \(^1\)C n.m.r. spectrum indicated the Me\(_3\)Si group at \(\delta -2.7\) and the new -CH\(_2\)- group at \(\delta 38.0\). Further evidence supporting the identity of amine 132 was also provided by the HRMS mass spectrum (FAB MNOBA matrix) which showed
an (M+H)$^+$ ion at m/e 482.2758 which corresponded to an empirical formula of $C_{24}H_{44}NO_5Si_2$.

One problem we felt we had to be overcome in the above synthesis, was the use of trimethylsilylmethyl amine. While the epoxide ring opening proceeded well, it required a large excess of this reagent as expected for an S_N2 reaction. Trimethylsilylmethyl amine 107 had been prepared earlier, but this required two steps, including a distillation under vacuum. It was therefore decided to open the epoxide 130 with sodium azide followed by TBS protection of the alcohol 136 formed. The azide 137 could then be reduced using palladium on carbon, and the resulting amine 138 treated with (iodomethyl)trimethylsilane. This would result in the same number of steps as the previous method (preparation of trimethylsilylmethyl azide 106 \rightarrow secondary amine 132) and is indicated in Scheme 71.

![Scheme 71](image-url)
The epoxide ring opening was initially carried out in DMF at 100 °C for 46 h, but this gave an unacceptable yield of azide 136 in 17 %. It was then discovered that this ring opening had previously been carried out using sodium azide and ammonium chloride in a mix of 2-methoxyethanol and water. Sodium azide and NH₄Cl was added to a solution of 130 in a mixture of 2-methoxyethanol and water and the solution stirred at gentle reflux for 5 h. Aqueous work-up followed by flash chromatography in hexanes/EtOAc, 5:1→3:1, gave methyl 3-azido-4,6-O-benzylidene-3-deoxy-α-D-altropyranoside 136 as a white solid in 87 % yield. The 400 MHz ¹H n.m.r. spectrum showed the methoxy group at δ 3.40 and the benzylidene proton at δ 5.59. Proof that the azide had been formed came from the I.R. spectrum which showed the characteristic -N₃ peak at 2105 cm⁻¹. The HRMS mass spectrum (FAB MNOBA matrix) gave the correct (M+Na)⁺ mass at m/e 330.1066 corresponding to a formula of C₁₄H₁₇N₃O₅Na.

The hydroxy group in 136 was then protected as the TBS- compound 137 using imidazole and TBS-Cl in DMF over 24 h. This proceeded in a virtually quantitative yield (99 %) after flash chromatography using hexanes/EtOAc, 8:1→5:1, as the eluent. The 400 MHz ¹H n.m.r. spectrum showed the newly-introduced tert-butyl group at δ 0.90 and the two TBS-methyl groups at δ 0.10 and δ 0.11. The -OMe group was observed at δ 3.39. The I.R. spectrum also showed the absence of the -OH group. The HRMS mass spectrum of 137 (FAB MNOBA matrix) indicated an empirical formula of C₂₀H₃₂N₃O₅Si since there was a (M+H)⁺ mass at m/e 422.2111. Hydrogenation of the azide group was carried out in methanol using palladium on carbon (10 % Pd/C) as a catalyst. Purification by flash chromatography (hexanes/EtOAc, 3:1→1:1) afforded methyl 3-amino-4,6-O-benzylidene-2-O-(tert-butyl-dimethylsilyl)-3-deoxy-α-D-altropyranoside 138 as a clear yellow oil in 96 % yield. The 400 MHz ¹H n.m.r. spectrum revealed the two protons corresponding to the NH₂ as a very broad singlet at approx. δ 1.62 and the -OMe group was observed at δ 3.34. The HRMS mass spectrum (FAB MNOBA matrix) for 138 showed a peak with the correct (M+H)⁺ mass of 396.2206 indicating an empirical formula of C₂₀H₃₄NO₅Si.

Amine 138 was then stirred at gentle reflux for 16 h with Hünig’s base and (iodomethyl)-trimethylsilane in acetonitrile. Flash chromatography furnished 132 as a clear yellow oil in of 97 % yield. The 400 MHz ¹H and 100 MHz ¹³C n.m.r. spectra were identical to those obtained previously using trimethylsilylmethyl amine to open up
the epoxide ring and they clearly showed that the -CH$_2$-SiMe$_3$ moiety had been introduced. The next step was the attachment of the -CH$_2$-CN group. This was done by reacting 132 with chloroacetonitrile and Hünig's base in MeCN. Stirring the reaction mixture at reflux for 3-4 days afforded the required cycloaddition precursor 133 the as a clear oil in 91% yield. The 400 MHz 1H n.m.r. spectrum indicated the presence of the -CH$_2$-CN protons as a doublet of a doublet at δ 3.97 (J_{HH} 3.9 Hz, 16.0 Hz) and the two doublets from the -CH$_2$- protons next to the Me$_3$Si group were now observed at δ 2.40 (J_{HH} 14.4 Hz) and δ 2.63 (J_{HH} 14.4 Hz). The newly-introduced -CH$_2$CN segment was also apparent in the 100 MHz 13C n.m.r. spectrum. The CN group resonated at its characteristic position of δ 116.2 while the -CH$_2$- was observed at δ 44.7. The structure was proved further by the HRMS mass spectrum (FAB, MNOBA matrix) which contained a (M+H)$^+$ peak at m/e 521.2867.

3.5.2 Cycloaddition of azomethine ylide precursor 133

We were now in a position to attempt the desired cycloaddition. Dimethyl fumarate was chosen as the initial dipolarophile. A mixture of 133, dimethyl fumarate and AgF in MeCN was stirred in the dark at room temperature for 5 days. This afforded the required cycloadduct 134 as a clear oil in 70% yield. The 400 MHz 1H n.m.r. spectrum showed two peaks corresponding to the benzylidene proton, with an approximate 2:1 integral ratio. This indicated poor stereoselectivity in the cycloaddition. The structure assigned to 134a/134b was supported by its I.R. spectrum which showed the required ester C=O peak at 1739 cm$^{-1}$. The HRMS mass spectrum of 134a/134b (FAB, MNOBA matrix) contained the required (M+H)$^+$ peak at m/e 566.2785.

3.5.3 Attempted removal of the pyrrolidine section from the cycloadduct 134ab

Although the cycloaddition appeared to show little stereoselectivity, it was decided to attempt the C-N bond cleavage to see if this was possible. While at first sight this appears to be a trivial task, it transpired that it was rather troublesome. An
initial attempt was made to form the sugar-N-oxides $139ab$ by treating the sugar-
cycloadduct $134ab$ with m-CPBA in dichloromethane. The N-oxide was successfully
formed (HRMS data only) in 84% yield. It was then thought that treatment with tetra-
n-butylammonium fluoride (TBAF) in THF would afford the pyrrolidine N-hydroxides
$140ab$ as well as recovered sugar epoxide 130 which could be reused in the synthesis as
indicated in Scheme 72. However, no reaction was observed after the TBAF stage and
the method was abandoned. Similarly, HF in MeCN and water also failed.

![Scheme 72]

Another method of C-N bond cleavage attempted was via a Cope elimination. The N-oxides $139ab$ were heated to 100 °C in DMSO, but no reaction was observed after 15 h. Raising the reaction temperature to 130 °C for a further 16 h had no effect and the method was therefore abandoned. The expected pathway is shown in Scheme 73 below.
Another method attempted utilises the protocol suggested by Roussi et al.159 and is shown in Scheme 74 below. This involves the initial formation of the benzylated salts 142ab in methanol and this could then be treated crude which TBAF to afford the required benzylated pyrrolidines 135ab as well as recovered sugar epoxide 130.

Scheme 74
To a solution of the sugar cycloadduct 134ab in MeOH at room temperature was added NaHCO₃ and benzyl bromide. The reaction mixture was stirred under nitrogen for 1h, then heated to gentle reflux for 4 h after which time TLC indicated the absence of the sugar cycloadduct and the presence of a new product suspected to be the benzylated salt. The reaction mixture was cooled to 0 °C and TBAF was added. However, after 16 h at room temperature TLC showed no formation of epoxide 130 and pyrrolidine 135 when compared to samples prepared previously. The method was abandoned at this stage.

3.5.4 Remarks

More success was achieved using this carbohydrate method. The precursor for the [3+2]-cycloadditions was successfully prepared and the cycloaddition also proceeded. Even though the cycloaddition gave a mixture of isomeric products, attempts were made to cleave off the newly formed pyrrolidine adduct. However, this proved to be unsuccessful. Having now tasted some success with the methyl-α-D-glucopyranoside-based system, it was decided to investigate the utility of the fructopyranoside-auxiliary shown in the next section.
3.6 Utilising methyl β-D-fructofuranoside as the chiral auxiliary for azomethine ylide [3+2]-cycloaddition reactions

The new chiral controller to be investigated was 150; its synthesis is indicated in Scheme 75 below.
3.6.1 The preparation of the amine 148

Methyl β-D-fructopyranoside 143 had been prepared earlier in the group as part of another project and the initial bromination step was carried out with carbon tetrabromide and triphenylphosphine in pyridine. The majority of the triphenylphosphine oxide was removed by flash chromatography and the compound 144 used as obtained. The protection of the two hydroxyl groups proceeded in 56 % yield (assuming 100 % for the bromination step). The remaining hydroxyl group was protected as the TBS group by treating a stirred solution of 145 and imidazole in DMF with TBS-Cl. Bromide 146 was then treated with 20 equivalents of sodium azide in DMF and the reaction mixture stirred under nitrogen at 130 °C for 42 h. Aqueous work-up and flash chromatography (hexanes/EtOAc, 25:1→8:1) gave methyl 5-azido-5-deoxy-4-O-tert-butyl-dimethylsilyl-1,3-O-isopropylidene-β-D-fructopyranoside 147 as a clear yellow oil in 70 % yield. The I.R. spectrum showed the characteristic -N_3 peak at 2104 cm\(^{-1}\). The azide was then hydrogenated using palladium on carbon in MeOH to afford methyl 5-amino-5-deoxy-4-O-tert-butyl-dimethylsilyl-1,3-O-isopropylidene-β-D-fructopyranoside 148 as a clear yellow oil in 96 % yield. The 400 MHz \(^1\)H n.m.r. spectrum showed the -NH_2 group as a broad singlet at δ 1.57 with the methoxy group at δ 3.24 and the two isopropylidene methyl groups at δ 1.43 and δ 1.39. The TBS group was also clearly present, with the tert-butyl group at δ 0.84 and the two methyl groups at δ 0.04 and δ 0.03. The I.R. spectrum showed the absence of the -N_3 group as required. As final evidence for the correct structure, the HRMS mass spectrum of 148 (FAB, MNOBA matrix) showed the required (M+H)^+ peak at m/e 348.2206 indicating a compound with empirical formula C_{16}H_{34}NO_{5}Si.

3.6.2 The preparation of the cycloaddition precursor 150

A solution of the amine 148 in MeCN was heated at reflux for 20 h with (iodomethyl)trimethylsilylamine and Hünig's base. Aqueous work-up and flash chromatography (hexanes/EtOAc, 8:1) afforded methyl 5-((N-trimethylsilyl)methyl)-amino-5-deoxy-4-O-tert-butyl-dimethylsilyl-1,3-O-isopropylidene-β-D-fructopyranoside 149 as a clear oil in 82 % yield. The 400 MHz \(^1\)H n.m.r. spectrum clearly showed the new -CH_2SiMe_3 group. The Me_3Si group was seen as a singlet at δ...
0.03 and the two -CH₂- protons were each observed as doublets at δ 1.61 (J_HH 12.8 Hz) and δ 2.25 (J_HH 12.8 Hz). The integral of NH group was observed at approx. δ 1.78 although the baseline appeared to be virtually flat. The 100 MHz ¹³C n.m.r. spectrum also showed the presence of the Me₃Si group at δ -2.4 with the -CH₂- group at δ 38.0.

This secondary amine 149 was treated with Hünig’s base and chloroacetonitrile in MeCN and heated at reflux for 25 h. Aqueous work-up and flash chromatography afforded methyl 5-(N-cyanomethyl-N-trimethylsilylmethyl)-amino-5-deoxy-4-O-tert-butyl-dimethylsilyl-1,3-O-iso-propylidene-β-D-fructopyranoside 150 as a clear yellow oil in 79 % yield. The 400 MHz ¹H n.m.r. spectrum showed the new -CH₂CN group buried inside a multiplet at δ 4.14-4.19. The two doublets from the -CH₂- group next to the Me₃Si group were now observed further upfield at δ 2.37 (J_HH 14.4 Hz) and δ 2.58 (J_HH 14.4 Hz) as expected due to the introduction of the electron-withdrawing -CN group. The 100 MHz ¹³C n.m.r. spectrum showed the -CN signal in its characteristic position at δ 116.3 with the new CH₂- group at δ 44.8. The I.R. spectrum of 150 showed the CN group as a weak peak at 2229 cm⁻¹ while the HRMS mass spectrum indicated an empirical formula of C₂₂H₄₅N₂O₅Si₂ by giving the required (M+H)+ ion at m/e 473.2867.

3.6.3 Cycloaddition of 150

The cycloaddition was then attempted using dimethyl fumarate as the dipolarophile. Dimethyl fumarate and AgF was added to a solution of 150 in MeCN. The reaction mixture was stirred at room temperature in the dark for approx. 9 h before it was filtered through a pad of Celite. Concentration of the filtrate followed by flash chromatography in hexanes:EtOAc, 10:1, gave the desired pyrrolidine adduct 151 as a clear oil in 69 % yield. The 400 MHz ¹H n.m.r. spectrum showed that a 1:1 mixture of isomers had formed, indicating that the reaction was non-stereospecific. The methoxy groups gave rise to two peaks of the same intensity at δ 3.31 and δ 3.21. The I.R. spectrum showed the presence of the ester groups by giving the required ester C=O stretch at 1738 cm⁻¹. The HRMS mass spectrum (FAB, MNOBA matrix) of 151ab contained an (M+H)+ ion at m/e 518.2785 as one would expect for C₂₄H₄₄NO₉Si.
C-N bond cleavage was next attempted. It was hoped that syn-elimination (Scheme 76)\(^ {162}\) would occur, to provide a route to the required \(N\)-hydroxy-pyrrolidine \(140\) as well as the glycal \(154\).

To the sugar cycloadduct \(151\text{ab}\) in \(\text{CH}_2\text{Cl}_2\) at \(-10\degree\text{C}\) was added in one portion \(m\text{-CPBA}\) (1.2 equivalents) and the mixture stirred at room temperature for 79 h after which time the TLC showed no reaction. A further 3.6 equivalents of \(m\text{-CPBA}\) was therefore added and the reaction mixture heated to gentle reflux for 1½ h. TLC again showed no reaction and the method was therefore abandoned at this stage since no stereoselectivity was shown in the cycloaddition.
3.7 Attempting the preparation of a 1,3-azomethine ylide dipole precursor based on \((R)\)-5-phenyl-2-pyrrolidinone \(156\)

3.7.1 Introduction

Due to the stereoselectivities of our cycloaddition reactions, we next elected to fashion an azomethine ylide that would not be able to undergo free rotation about the C-N axis. We favoured the creation of a dipole such as \(161\) which we envisaged we could prepare from the lactam \(156\) (Scheme 77).

![Scheme 77](image-url)
The initial step in this sequence was the preparation of (R)-5-phenyl-2-pyrrolidinone 156. We decided to attempt the preparation of chiral (R)-5-phenyl-2-pyrrolidinone 156 or its derivative 157 as indicated in Scheme 78 below.

The preparation started with commercially available D-(-)-α-phenylglycine. This was reduced to D-(-)-α-phenylglycinol 164 in 72 % yield according to the general method suggested by Meyers et al. using NaBH$_4$ and I$_2$ in THF. The amino group was then mono-protected with the benzzyloxybenzyl group (Z) using Z-Cl in NaOH and water.
in 92 % yield using a similar method to Horwell et al.163 The 400 MHz 1H n.m.r. spectrum showed rotamers were present as seen by the broadening of the peaks, but the integration was correct. The 100 MHz 13C n.m.r. spectrum showed that the benzyl -CH$_2$- group had been introduced, it showing a peak at δ 69.0 as well as the C=O group at δ 156.5. Two quaternary aromatic carbon signals were also observed at δ 139.1 and δ 136.2. The I.R. spectrum showed the presence of the C=O group at 1685 cm$^{-1}$ while the HRMS mass spectrum (FAB, MNOBA matrix) contained an (M+H)$^+$ ion at m/e 272.1287. The alcohol group of this Z-protected secondary amine 165 was then protected with triethylsilyl chloride using imidazole and DMF to afford D-(-)-α-O-triethylsilyl-N-Z-phenylglycinol 166 as a clear liquid in 99 % yield. The 100 13C n.m.r. spectrum showed the presence of the new TES group by giving rise to two signals at δ 4.1 and δ 6.5. The HRMS mass spectrum (FAB, MNOBA matrix) also contained the correct (M+H)$^+$ peak at m/e 386.2151. The preparation of D-(-)-α-O-triethylsilyl-N-(trimethylsilylmethyl)-N-Z-phenylglycinol 167 was attempted using NaH and (iodomethyl)-trimethylsilane in DMF, but failed. Repeated attempts using NaH in THF and DMSO also failed. n-BuLi in THF was attempted without success. It is possible that the amine group is too sterically hindered for the reaction to take place. Had this been successful, the TES group would have been removed using acetic acid to leave the free alcohol 168, which then would have been converted to the iodo-compound 169, and this alkylated with the enolate of methyl acetate to obtain ester 170. Removal of the Z-group would furnish (R)-N-(trimethylsilylmethyl)-5-phenyl-2-pyrrolidinone 157 in situ.

Another attempted preparation of (R)-N-(trimethylsilylmethyl)-5-phenyl-2-pyrrolidinone 157 is indicated in Scheme 79. Again, this began with 164. The hydroxyl group was protected with the TES group and the free amine 172 treated with (iodomethyl)trimethylsilane to afford the secondary amine 173. Treatment with di-tert-butyl-dicarbonate, (Boc$_2$O), followed by acetic acid then furnished the tertiary aminol 175. This was unable to be converted to either the bromide 176 or iodide 177. Hence this approach was also abandoned.
Since we could prepare the aminol 175 in high yield, we felt that its utility deserved a little further investigating (Scheme 80). Treating this alcohol 175 with TPAP, NMO and 4Å molecular sieves in CH₂Cl₂ should oxidise it to the aldehyde 179. This could then be treated with the commercially available Wittig reagent in CH₂Cl₂ to afford the alkene 180 which upon hydrogenation should furnish ester 181. Removal of the Boc group using TFA in CH₂Cl₂ should hopefully furnish 157.
The above method was unfortunately unsuccessful at the initial oxidation stage. The method was abandoned at this stage.

We next investigated the preparation of the N-Boc protected phenylglycinol 183 which was converted to the bromide 184 under the usual reaction conditions. We envisaged that this could then be subjected to the enolate chemistry described previously. Scheme 81 below shows those ideas more fully.
The preparation of 183 proceeded successfully in 87 % yield by treating alcohol 164 with Et$_3$N and di-tert-butyl-dicarbonate in MeOH at room temperature for 5 min. The I.R. spectrum showed the presence of the C=O peak at 1671 cm$^{-1}$ and the HRMS mass spectrum for (FAB, NMOBA matrix) $C_{13}H_{20}NO_3$ showed the required (M+H)$^+$ ion at m/e 238.1443. A solution of this aminol 183 in THF was then treated with triphenylphosphine followed by carbon tetrabromide. The mixture was stirred at room temperature for 5 hours, the Ph$_3$P=O removed by suction filtration and the filtrate concentrated in vacuo affording the crude bromide 184 as a brown oil. Flash chromatography (hexanes:EtOAc, 16:1→8:1) furnished 184 as a white solid in 71 % yield. Again the 400 MHz 1H n.m.r. spectrum gave rise to rotamers, but the integration proved to be correct. The structural assignment was backed up by the HRMS mass spectrum for 184 (FAB, MNOBA matrix) which gave the correct (M)$^+$ ion at m/e 300.0599. We were now in a position to attempt the enolate chemistry. To a stirred solution of LDA (1 equiv.) in THF at -78 °C was added methyl acetate and the resultant mixture stirred at -78 °C for 10 min. A solution of 184 in THF was then added and the solution stirred at -78 °C for 10 min. then room temperature for 50 min. after which time TLC indicated that no more bromide was present. Aqueous work-up followed by flash chromatography (hexanes:EtOAc, 10:1) gave the major product of which the 400 MHz 1H n.m.r. spectrum showed to be the incorrect compound. No attempt was made to identify this compound and the method was abandoned at this stage.

The next attempted preparation of 156 is shown in Scheme 82 below. Reaction of 187 with triethylamine followed by di-tert-butyl-dicarbonate afforded the Boc protected amino ester 188. Diisobutylaluminium hydride reduction then furnished aldehyde 189 which was then subjected to a Wittig reaction to obtain alkene 190. Hydrogenation of the alkene to the saturated ester 191 followed by the Me$_3$Al induced cyclisation then afforded the N-Boc-lactam 186 in 65 % yield. Deprotection was performed using trifluoroacetic acid to furnish 156.
Scheme 82

The Boc group was successfully removed by treating a solution of (R)-186 in CH$_2$Cl$_2$ with trifluoroacetic acid for 5 min. Flash chromatography (hexanes/EtOAc, 1:1) delivered (R)-156 as a light brown solid in 80 % yield. The 400 MHz 1H n.m.r. spectrum showed the absence of the Boc group. The NH group was found as a broad singlet at δ 6.42 with a triplet corresponding to one of the C-3 protons at δ 4.73 (J_{HH} 7.2 Hz). The 100 MHz 13C n.m.r. spectrum showed the ring C=O at δ 178.9 with C-5 at δ 58.1. The I.R. spectrum also showed the C=O peak at 1682 cm$^{-1}$ and the HRMS mass spectrum (FAB MNOBA matrix) showed an (M+H)$^+$ ion at m/e 162.0914.

The attachment of the trimethylsilylmethyl group to (R)-156 proved rather troublesome. Sodium hydride (100 %, washed with hexane) was found to give the best result of 50 % as shown in Scheme 83. Repeated reactions using identical conditions only afforded yields of up to 30 % of (R)-N-(trimethylsilylmethyl)-5-phenyl-2-pyrrolidinone 157. Potassium hydride (washed with hexane) and n-BuLi were also used as the base, but these did not increase the yields. The 400 MHz 1H n.m.r. spectrum clearly showed the newly-introduced trimethylsilyl methyl group. The two -CH$_2$-protons were observed as two doublets at δ 2.05 (J_{HH} 15.2 Hz) and δ 3.18 (J_{HH} 15.2 Hz) with the SiMe$_3$ group at δ 0.01. The 100 MHz 13C n.m.r. spectrum also confirmed the
structure as it showed the SiMe$_3$ group at δ -1.39 and the new -CH$_2$- group at δ 32.5.
The HRMS mass spectrum (FAB MNOBA matrix) for an empirical formula of C$_{14}$H$_{22}$NOSi gave final structure proof as it gave the required (M+H)$^+$ peak at m/e 248.1471.

\[
\begin{array}{c}
\text{Ph} \quad \text{N} \quad \text{O} \\
\text{H} \quad \text{Me}_3\text{Si} \quad \text{156} \\
\downarrow \quad \text{I} \quad \text{NaH, DMF} \\
\text{max 50.3 %} \\
\text{Ph} \quad \text{N} \quad \text{O} \\
\text{157} \quad \text{SiMe}_3
\end{array}
\]

Scheme 83

Even though these yields were not impressive it was decided to attempt the oxidation using MoOPH and LDA according to **Scheme 84**. A solution of (R)-157 in THF was added to a solution of LDA in THF at -78 °C. This was followed by the addition of solid MoOPH. However, TLC indicated no reaction, even at room temperature, and the method was abandoned. Another mild oxidation reagent investigated was benzenesulfonyl-3-phenyloxaziridine 199 (**Scheme 84**).\(^{167}\)

\[
\begin{array}{c}
\text{MoOPh, LDA} \\
\text{THF} \\
\text{Ph} \quad \text{N} \quad \text{O} \\
\text{157} \quad \text{TMS} \\
\downarrow \quad \text{KHMDS, THF} \\
\text{158} \quad \text{TMS} \\
\downarrow \quad 1) \text{KHMDS, THF} \\
\text{PhSO}_2\text{N=CHPh} \\
\text{199}
\end{array}
\]

Scheme 84

When a solution of the enolate derived from (R)-157 in THF was added to a solution of benzenesulfonyl-3-phenyloxaziridine 199 in THF at -78 °C no reaction took place at -78 °C or room temperature and the method was therefore abandoned.
3.7.3 Conclusions

Several methods have been investigated for the preparation of \((R)\)-5-phenyl-2-pyrrolidinone 156 and its derivative, \((R)\)-\(N\)-(trimethylsilylmethyl)-5-phenyl-2-pyrrolidinone 157. These two compounds were successfully prepared via the Wittig method followed by cyclisation using trimethylaluminium in acceptable yields. The attachment of the trimethylsilyl moiety proceeded in moderate to low yields only and the two oxidation methods used for the introduction of the hydroxyl group were both unsuccessful. We have, however, been successful in preparing chiral 5-phenyl-2-pyrrolidinone which may prove useful for other synthetic applications.
Chapter 4

Evaluation of the scope of the N-nitroso reduction with diisobutylaluminium hydride

4.0 Introduction

The reduction of N-nitroso compounds to hydrazines is widely known and is most frequently carried out using zinc dust or lithium aluminium hydride.168 However, in some cases these two methods are only partially successful or fail completely, as was the case with our binaphthyl system. In our case we envisaged that the -NO group could act rather like a carbonyl group and therefore be reduced with DIBAL-H. As shown previously, this was indeed found to be the case. Since there were no previous examples of this reduction in the literature, we decided to investigate the scope of this method a little further. Various other N-nitroso compounds, both aromatic and aliphatic, were prepared from the secondary amines, and their reduction with DIBAL-H investigated. Isoamyl nitrite in THF was always used for N-nitrosation, and the resultant N-nitroso compounds were then subjected to DIBAL-H reduction in CH\textsubscript{2}Cl\textsubscript{2} to give the corresponding hydrazine derivatives. In most cases, the equivalents of isoamyl nitrite and DIBAL-H was kept in the range 5-5.3. The DIBAL-H used was a 1.5M solution in toluene and was slowly added at -78 °C. The reaction mixtures usually had to be stirred at room temperature for longer periods of time, and the isolated yields were not always impressive. Our results did, however, show that the method is reasonably successful. Below are the compounds attempted.

4.1 Preparation of N-amino-diphenylamine \textbf{200}

The first example selected for study was commercially available N-nitroso-diphenylamine (Scheme 85). Approx. two equivalents of DIBAL-H were required for
this reduction. Extra reagent usually resulted in other by-products being formed in the reaction mixture. Aqueous work-up and flash chromatography (hexanes/EtOAc, 60:1→45:1) afforded the N-amino-diphenylamine 200 as a purple oil which solidified in the freezer in 53 % yield. The 400 MHz \(^1\text{H}\) n.m.r. spectrum gave the \(\text{NH}_2\) as a singlet at \(\delta 4.14\) while the 10 aromatic protons were found as a multiplet in the range \(\delta 6.96-7.31\). The 100 MHz \(^{13}\text{C}\) n.m.r. spectrum also only indicated four aromatic peaks as required and the HRMS (FAB, MNOBA matrix) for \(\text{C}_{12}\text{H}_{12}\text{N}_2\) (M\(^+\)) gave rise to a peak at \(m/e 184.1006\).

\[
\begin{array}{c}
\text{Ph} \text{N-NO} \\
\text{Ph} \\
\text{DIBAL-H} \\
\text{CH}_2\text{Cl}_2 \\
53.3 \% \\
\text{Ph} \text{N-NH}_2 \\
\text{Ph} \\
200
\end{array}
\]

Scheme 85

4.2 Preparation of \(\text{N-amino-dibenzylamine 202}\)

The second compound chosen was based on dibenzylamine as indicated in Scheme 86. To a stirred solution of dibenzylamine in THF was added isoamyl nitrite (approx. 5.1 equiv.) at room temperature and the solution stirred under nitrogen for 23 h. The solvent and excess isoamyl nitrite were removed \textit{in vacuo} leaving yellow/orange paste which was subjected to flash chromatography (hexanes:EtOAc, 8:1) to afford pure \(\text{N-nitroso-dibenzylamine 201}\) as a clear yellow oil in a quantitative yield; the latter solidified on standing at room temperature. The 400 MHz \(^1\text{H}\) n.m.r. spectrum indicated the non-symmetrical character by showing the two -CH\(_2\)- as two singlets at \(\delta 4.64\) and \(\delta 5.18\). The remaining 10 aromatic protons were observed as a multiplet in the range \(\delta 7.02-7.37\). The 100 MHz \(^{13}\text{C}\) n.m.r. spectrum also showed the two -CH\(_2\)- as two singlets at \(\delta 44.8\) and \(\delta 54.9\). Eight aromatic peaks were observed as expected of which two were quaternary signals. As final proof, the HRMS (FAB, MNOBA matrix) of 201 gave rise to a (M+H\(^+\)) ion at \(m/e 227.1189\) corresponding to \(\text{C}_{14}\text{H}_{15}\text{N}_2\text{O}\). The reduction step required 5.1 equivalents of DIBAL-H in \(\text{CH}_2\text{Cl}_2\). After being stirred at -78 °C for 2h, the reaction mixture was then allowed to stir at room temperature for approx. 74 h before being worked-up. \(\text{N-amino-dibenzylamine 202}\) was obtained as a in 66 % yield; it solidified upon standing at room temperature. The 400 MHz \(^1\text{H}\) n.m.r. spectrum now showed the \(\text{NH}_2\) group as a broad singlet at \(\delta 2.90\), with the benzyl -CH\(_2\)- appearing as a
singlet at δ 3.78. The aromatic protons were observed as a multiplet in the range δ 7.30-7.45. The 100 MHz 13C n.m.r. spectrum showed the required four phenyl signals, as well as the two benzylic -CH$_2$- groups at δ = 64.8. The HRMS (FAB, MNOBA matrix) contained an (M)$^+$ ion at m/e 212.1321 which indicated a molecular formula of C$_{14}$H$_{16}$N$_2$.

![Scheme 86](image)

4.3 Preparation of N-amino-dipentylamine 204

The third example chosen was dipentylamine (Scheme 87). To a stirred solution of dipentylamine in THF was added isoamyl nitrite (5 equivalents) at room temperature and the solution stirred under nitrogen for 20 h. The solvent and excess isoamyl nitrite was removed in vacuo leaving a clear yellow liquid. Flash chromatography (hexanes:EtOAc, 8:1) afforded pure N-nitroso-dipentylamine 203 as a clear yellow liquid in 99 % yield. The 400 MHz 1H n.m.r. spectrum showed the correct compound had been formed. The 100 Hz 13C n.m.r. spectrum also indicated the required 10 signals. The HRMS (FAB, MNOBA matrix) was also correct for C$_{10}$H$_{23}$N$_2$O (M+H)$^+$ giving rise to a peak at m/e 187.1813. The reduction also proceeded well and in a reasonable yield, but required 5.2 equivalents of DIBAL-H and a reaction time of four days at room temperature before reaction completion. N-Amino-dipentylamine 204 was obtained as a clear liquid after flash chromatography in 75 % yield. The 13C n.m.r. spectrum showed the required five signals. The HR-MS mass spectrum (FAB, MNOBA matrix) for 204 gave a (M-NH$_2$)$^+$ peak at m/e 156 indicating a formula of C$_{10}$H$_{24}$N$_2$.

![Scheme 87](image)
4.4 Attempted preparation of (S)-N-amino-O-benzylprolinol 208

*L-Prolinol 205 was reacted with isoamyl nitrite at room temperature to give pure
(L)-N-nitroso prolinol 206 as an orange oil in 68 % yield after flash chromatography
(Scheme 88). The hydroxyl group was then benzylated by treatment with NaH
and benzyl bromide according to Suzuki et al. This furnished pure (L)-O-benzyl-N-
nitroso prolinol 207 as an orange/yellow oil in 91 % yield. The reduction using
DIBAL-H was, however, unsuccessful.

\[
\begin{align*}
\text{L-Proline} & \xrightarrow{\text{NaBH}_4, \text{I}_2} \text{THF} \quad \text{Crude yield} > 100\% \\
\text{205} & \xrightarrow{\text{THF}} \text{206, 68.4\%} \\
\end{align*}
\]

Scheme 88

4.5 Preparation of N-amino-O-benzyl-2-hydroxymethyl piperidine 211

The fifth compound selected for study was based on (±)-2-piperidinemethanol
(Scheme 89). When treated with isoamyl nitrite (5.1 equivalents) at room for 65 h, pure
(±)-N-nitroso-2-piperidinemethanol 209 was isolated as a clear yellow liquid in 99 %
yield. The HRMS (FAB, MNBOA matrix) confirmed the correct structure for 209, it
containing an (M+H)^+ ion at \(m/e \) 145.0972. Again, the hydroxyl group was blocked to
afford pure (±)-O-benzyl-N-nitroso-2-piperidinemethanol 210 as a clear yellow oil in 93
% yield. As previously, the reduction step was carried out with 5.3 equivalents of
DIBAL-H and afforded N-amino-O-benzyl-2-hydroxymethyl piperidine 211 as a clear
yellow oil in 37 % yield. The 100 MHz \(^{13}\text{C}\) n.m.r. spectrum of 211 indicated four
aromatic signals of which one was a quaternary carbon. Seven other non-aromatic signals were also obtained. The HRMS mass spectrum (FAB, MNOBA matrix) showed a peak that corresponded to an (M+H)^+ ion at *m/z* 221.1654.

![Scheme 89](image)

4.6 Preparation of *N*-amino-indoline 213

The sixth amine chosen was indoline (Scheme 90). To a stirred solution of indoline in THF was added isoamyl nitrite (5.1 equivalents) at room temperature and the solution stirred under nitrogen for 50 min. Work-up and crystallisation from Et2O afforded pure *N*-nitroso-indoline 212 as flaky brown crystals in 93 % yield. The 400 MHz ^1^H n.m.r. spectrum showed the two non-aromatic -CH$_2$- groups as triplets at δ 3.20 (2H, J_{HH} 7.6 Hz, J_{HH} 8.0 Hz) and δ 3.49 (2H, J_{HH} 7.6 Hz, J_{HH} 8.0 Hz). The four aromatic protons were in turn observed as multiplets at δ 7.21-7.24, δ 7.29-7.33 and δ 7.81-7.83. The 100 MHz ^1^H n.m.r. spectrum indicated two quaternary carbon signals at δ 132.0 and δ 140.8 with the remaining four aromatic carbon signals at δ 112.1, 126.1, 127.0 and 128.2. The two non-aromatic carbon peaks were observed at δ 26.0 and δ 46.1. The HRMS (FAB, MNOBA matrix) exhibited the required (M+H)^+ ion at *m/z* 149.0720. The reduction required 4.1 equivalents of DIBAL-H at room temperature for 49 h. Flash chromatography furnished *N*-amino-indoline 213 as a brown oil in 35 % yield. The 400 MHz ^1^H n.m.r. spectrum showed the NH$_2$ as a broad singlet at δ 3.56 with the two non-aromatic -CH$_2$- groups being observable as triplets at δ 2.91 (2H, J_{HH} 8.0 Hz) and δ 3.36 (2H, J_{HH} 8.0 Hz). The four aromatic protons appeared as two multiplets between δ 6.79-6.84 (2H) and δ 7.10-7.18 (2H). The 100 MHz ^1^C n.m.r. spectrum also indicated two non-aromatic signals at δ 27.9 and δ 60.9. The six benzenoid carbon signals were also observed, of which two were quaternary at δ 128.7 and δ 154.5. Final structure proof was provided by the HRMS (FAB, MNOBA matrix) which contained an ion at *m/z* 134.0842.
4.7 Preparation of N-amino carbazole 215

Scheme 91 shows the eighth example, based on carbazole. Isoamyl nitrite (5 equivalents) was added to a solution of carbazole in THF at room temperature and the solution stirred under nitrogen for 28 h. Flash chromatography (hexanes:CH₂Cl₂, 5:1) afforded pure N-nitroso carbazole 214 as bright yellow fluffy crystals in 89 % yield. The 400 MHz ¹H n.m.r. spectrum showed the eight aromatic protons as multiplets at δ 7.41-7.55 (4H), δ 7.86-7.91 (2H), δ 8.19-8.21 (1H) and δ 8.52-8.55 (1H). Again the 100 MHz ¹³C n.m.r. spectrum indicated the non-symmetrical character of the compound. All 12 carbon signals were observed of which four were quaternary signals. The HRMS (FAB, MNOBA matrix) contained an (M+H)+ ion of the correct mass (m/e 197.0712) while the elemental analysis calculated for C₁₂H₈N₂O gave the required result of C = 73.09; H = 4.11 and N = 13.24. The reduction step used 5.3 equivalents of DIBAL-H and took 6 h at room temperature to afford N-amino carbazole 215 as a light brown crystalline solid in 46 % yield. The 400 MHz ¹H n.m.r. spectrum now showed the NH₂ group as a broad singlet at δ 4.52, and the remaining aromatic protons were observed as multiplets at δ 7.21-7.26 (2H), δ 7.45-7.52 (4H) and δ 8.04-8.06 (2H). The 100 MHz ¹³C n.m.r. spectrum showed the required six aromatic signals of which two were quaternary at δ 120.8 and 141.3. Finally, the HRMS (FAB, MNOBA matrix) for 215 indicated the correct measured mass of 182.0850 for the (M)+ ion.
The eighth and final example to be included in this DIBAL-H reduction method was based on the previously prepared azepine (±)-5 as indicated in Scheme 92. The results of these two preparative procedures have already been discussed in Chapter 2.

![Scheme 92]

4.9 Remarks

Several examples of the reduction of N-nitroso compounds with DIBAL-H have been provided. A summary of the yields is indicated in Table 12. The preparation of the N-nitroso compounds was achieved in excellent yield using excess isoamyl nitrite in THF (89 - 100 %). The subsequent DIBAL-H reductions of the N-nitroso compounds varied in yields (35 - 70 %). Our results do, however, indicate that the method is applicable to a range of substrates. Only one of our examples (the pyrrolidine derivative) failed to give a successful DIBAL-H reduction.
<table>
<thead>
<tr>
<th>Compound</th>
<th>Yield %</th>
<th>Compound</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph(\text{N-NO})Ph</td>
<td>Commercially available</td>
<td>Ph(\text{N-NH}_2)Ph</td>
<td>53</td>
</tr>
<tr>
<td>Ph(\text{N-NO})Ph</td>
<td>100</td>
<td>Ph(\text{N-NH}_2)Ph</td>
<td>66</td>
</tr>
<tr>
<td>((\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2)\text{N-NO})</td>
<td>99</td>
<td>((\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2)\text{N-NH}_2)</td>
<td>75</td>
</tr>
<tr>
<td>((\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2)\text{N-NO})</td>
<td>---</td>
<td>((\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2)\text{N-NH}_2)</td>
<td>FAILED</td>
</tr>
<tr>
<td>((\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{N-NO})</td>
<td>---</td>
<td>((\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{N-NH}_2)</td>
<td>37</td>
</tr>
<tr>
<td>((\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{NH}_2\text{N-NO})</td>
<td>93</td>
<td>((\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{NH}_2\text{N-NH}_2)</td>
<td>35</td>
</tr>
<tr>
<td>((\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{N-NO})</td>
<td>89</td>
<td>((\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{N-NH}_2)</td>
<td>46</td>
</tr>
<tr>
<td>((\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{NH}_2\text{N-NO})</td>
<td>98</td>
<td>((\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{NH}_2\text{N-NH}_2)</td>
<td>70</td>
</tr>
</tbody>
</table>

Table 12 Reduction of N-nitroso compounds using DIBAL-H
Concluding Remarks

For this project various methods for the preparation of precursors for the [3+2]-cycloaddition reactions of nonstabilised azomethine ylides have been prepared. Unfortunately, the initial objective of utilising a chiral hydrazine 1 as one such precursor was found to be unsuccessful, though this work led to the first practical synthesis of racemic and homochiral \((R)-\) and \((S)-3,5\)-dihydro-4\(N\)-dinaphth[2,1-\(c\):1',2'-\(e\)]azepinehydrazide 1 in good yield starting from inexpensive, readily available starting materials.

We hope that this chiral hydrazine may prove to be an efficient competitor to Enders’ expensive SAMP [(S)-1-amino-2-(methoxymethyl)pyrrolidine] and RAMP [(R)-1-amino-2-(methoxymethyl)pyrrolidine] hydrazines.

Enders et al.171 have successfully synthesised several optically active carbonyl compounds and amines using this SAMP-hydrazine method (Scheme 93).

\textbf{Scheme 93}
One example is the preparation of (S)-(+-)4-methyl-3-heptanone via a three-step procedure starting from the conformationally flexible, acyclic ketone 216 \rightarrow (S)-220 and this proceeded with virtually complete asymmetric induction (Scheme 94). This demonstrated complete stereochemical control of the three critical operations: metallation, alkylation, and cleavage. The SAMP-hydrazone was deprotonated using lithium diisopropylamide, and then alkylated with propyl iodide to afford (ZSS)-218. Oxidative cleavage by ozonolysis furnished the optically active carbonyl compound (S)-220 as well as the corresponding N-nitroso derivative (S)-219. The chiral auxiliary SAMP could be recycled with LiAlH$_4$-reduction of (S)-219.

![Scheme 94](image)

We envisage that our hydrazine 1 could be equally or more efficiently utilised than SAMP or RAMP (Scheme 95).
Enders et al.,129 have also investigated the formaldehyde SAMP-hydrazone A for its aza-enamine reactivity towards electrophiles (A \rightarrow B \rightarrow C) and its ability to function as a chiral equivalent of the formyl anion D (Scheme 96).

They reported their optimal conditions for the conjugate nucleophilic formylation and cyanation of nitroalkenes employing formaldehyde SAMP-hydrazone A as a chiral
formyl anion and cyanide equivalent (Scheme 97). Stirring the formaldehyde SAMP-hydrazone (S)-223 with aliphatic nitroalkenes (E)-224 under neutral conditions afforded the Michael addition products (S,S)-225 exclusively as the (E)-configured, α-substituted β-nitroaldehyde SAMP-hydrazones after flash chromatography. Oxidative transformation of the aldehyde hydrazones 225 with magnesium monoperoxyphthalate (MMPP) in MeOH led to the corresponding α-substituted β-nitro nitriles (S)-226. The corresponding α-substituted β-nitroaldehydes (S)-227 were obtained by ozonolysis followed by reductive work-up.

\[
\begin{align*}
\end{align*}
\]

\[
\text{MMPP = magnesium monoperoxyphthalate (monoperoxyphthalic acid magnesium salt hexahydrate)}
\]

Again, we believe that our chiral hydrazine 1 could also be used in a similar manner, and due to the steric bulk of the two naphthalene ring systems may give equally high enantiomeric excesses in the Michael additions reactions (Scheme 98).
During the course of the preparation of hydrazine 1, several interesting reactions were observed. The reduction of 3,5-dihydro-4N-nitroso-dinaphth[2,1-c:1′,2′-e]azepine 33 was found to be highly efficient using DIBAL-H. To our knowledge, this was the first example of a N-nitroso reduction with DIBAL-H. This led to an evaluation of the scope of this reduction method with various N-nitroso compounds, prepared in turn from the corresponding secondary amines with isoamyl nitrite.

Another potentially useful reaction was the surprising cleavage of the N-N bond using neat excess (iodomethyl)trimethylsilane (Scheme 99). This generated the tertiary amine (±)-43 which is a novel method for this kind of N-N bond cleavage and may provide an efficient way into N-methylated compounds (±)-228.
Treatment of \(\mathbf{1} \) with (iodomethyl)trimethylsilane or chloroacetonitrile in \(\text{CH}_2\text{Cl}_2 \) surprisingly afforded the hydrazone \((\pm)-\mathbf{45}\) (Scheme 100). This was proved by the deliberate preparation of \((\pm)-\mathbf{45}\) by treating \(\mathbf{1} \) with para-formaldehyde in \(\text{CH}_2\text{Cl}_2 \).

![Scheme 100](image)

The preparation of a variety of chiral auxiliaries for the [3+2]-cycloaddition reactions of azomethine ylides was also attempted with varied success. Two carbohydrate auxiliaries, mannose and D-glucose, were found to be completely unsuccessful. The remaining two carbohydrate auxiliaries, methyl-\(\alpha\)-D-glucopyranoside and methyl \(\beta\)-D-fructopyranoside, were more successful (Scheme 101). In both cases, the required cycloaddition precursors were prepared and the azomethine ylides generated. These were successfully captured with dimethyl fumarate, but unfortunately, the best stereoselectivity achieved was a mixture of 2:1. In both cases, the newly-formed pyrrolidine moiety could not be cleaved from the chiral auxiliary.
Camphor was also used as the chiral auxiliary for our attempted 1,3-dipolar cycloadditions. The azomethine ylide was successfully generated and trapped with dimethyl fumarate (Scheme 102). Again, however, the reaction was non-stereospecific. Similarly, the pyrrolidine moiety could not be removed from the camphor auxiliary. The attempted introduction of a phenyl group and the subsequent preparation of the cycloaddition precursor under various conditions also failed.
We also successfully prepared (1S,2S)-(-)-1,2-diphenylethane-1,2-diamine (1S,2S)-111 which was converted to (1S,2S)-(-)-1,2-diphenylethane-1,2-(N',N'"-bis-trimethylsilylmethyl)-diamine (1S,2S)-120. However, preparing an azomethine ylide precursor from this compound was meet with failure.

As a final attempt, we attempted the preparation of a ‘fixed’ azomethine ylide which would offer no free rotation around the C-N bond, and therefore result in poor stereoselectivity in the resulting pyrrolidine unit. This work was based on (R)-5-phenyl-2-pyrrolidinone 156 which had, to our knowledge, only been prepared in racemic form followed by resolution or separation of each enantiomer by chiral chromatography. We successfully prepared this compound 156 as well as its derivative, (R)-N-(trimethylsilylmethyl)-5-phenyl-2-pyrrolidinone 157, in reasonable yield. The introduction of a hydroxyl group at C-3 was unsuccessful, and the method was abandoned.

The chemistry of [3+2]-cycloaddition reactions of nonstabilised azomethine ylides to various dipolarophiles is an area of increasing interest. However, due to the difficulties in obtaining good to high stereoselectivities in their reactions, there are few successful examples available. We have attempted various chiral auxiliaries, some of which had the potential of being recycled into the same procedure, but we were constantly faced with either complete failure or with cycloadducts having poor stereoselectivities. This work does indicate the problems encountered with this type of cycloaddition reactions, and the project has been abandoned at this point.
All reactions were carried out under an inert atmosphere of nitrogen with freshly distilled solvents unless otherwise stated. All solvents were reagent grade. DMPU was dried over excess 4Å molecular sieves that had been activated by prolonged heating (1h) with a Bunsen burner while under high vacuum (0.01 mmHg). DMPU was stored and used under an atmosphere of dry nitrogen and employed without further purification. CH₂Cl₂, toluene, benzene, tPr₂NH and Et₃N were freshly distilled from calcium hydride under nitrogen. THF and Et₂O were freshly distilled from sodium metal under dry nitrogen. Flash chromatography was carried out according to Still et al.¹² with Sorbsil C60 40/60A (230-400 mesh) silica gel. Precoated silica gel plates (250 mM) with a fluorescent indicator (E. Merck Kieselgel 60 F₃₄₄) were used for analytical Thin Layer Chromatography. ¹H and ¹³C n.m.r. spectra were carried out on a Varian VXR-400 Series NMR spectrometer (400 MHz) or a JEOL 300 Series Spectrometer (300 MHz). Chemical shifts in the ¹H n.m.r. that are recorded in deuterochloroform (CDCl₃) are reported in δ-values relative to the residual traces of CHCl₃ set at δ 7.24 ppm. Chemical shifts in the ¹³C n.m.r. spectra recorded in CDCl₃ are recorded in δ values relative to the residual CHCl₃ peak at δ 77.0 ppm. Residual traces of DMSO in DMSO-d₆ were set at 2.5 ppm for ¹H n.m.r. spectra and 39.5 ppm for ¹³C n.m.r. spectra. All infra red spectra were recorded on a Perkin Elmer 1605 Series FT-IR Spectrophotometer and values shown are in wave numbers (cm⁻¹). All melting points were determined on a Reichert Hotstage Microscope, No. 242 274, (20-230 °C range) and are uncorrected. High-resolution mass spectra were measured by the ULIRS Mass Spectrometry Service Centre at the London School of Pharmacy on a VG analytical ZAB-SE mass spectrometer. Combustion microanalyses were performed by the Microanalytical Laboratory of University College London. The preparation of known compounds following existing experimental procedures are not included in this part of the report. The procedures followed can be found referenced in the aforementioned text with the relevant chemical and physical data.
A mixture of (±)-3,5-dihydro-4H-dinaphth[2,1-c:1',2'-e]azepine 5 (75 mg, 0.25 mmol), (R)-(+)α-methoxy-α-(trifluoromethyl)phenyl acetic acid (62 mg, 0.27 mmol) and DCC (54 mg, 0.26 mmol) in CH₂Cl₂ (2 ml) was stirred at room temperature under N₂ for 5 days. The reaction mixture was then diluted with EtOAc, quenched with 5 % aqueous AcOH, the aqueous layer discarded and the organic layer washed once with water. This was then dried over MgSO₄, filtered and concentrated in vacuo leaving an oil which was subjected to flash chromatography (hexanes/EtOAc, 3:1) affording the Mosher amide (±)-15 as a clear oil.

Yield: 117 mg, 90.0 %.

δH (400 MHz, CDCl₃) 2.76 (1H, d, JHH 13.2 Hz), 3.57 (1H, d, JHH 13.5 Hz), 3.57 (3H, s, OMe), 3.62 (1H, d, JHH 13.5 Hz), 3.83 (3H, s, OMe), 4.76 (1H, d, JHH 13.2 Hz), 4.80 (1H, d, JHH 12.0 Hz), 5.46 (1H, d, JHH 13.7 Hz), 5.54 (1H, d, JHH 8.4 Hz), 5.72 (1H, d, JHH 13.5 Hz), 7.14-7.34 (6H, m), 7.38-7.70 (18H , m), 7.82 (2H, d, JHH 8.2 Hz), 7.91-7.99 (8H, m).

A mixture of (S)-3,5-dihydro-4H-dinaphth[2,1-c:1',2'-e]azepine 5 (98 mg, 0.33 mmol), (R)-(+)α-methoxy-α-(trifluoromethyl)phenyl acetic acid (79 mg, 0.34 mmol) and DCC
(70 mg, 0.34 mmol) in CH$_2$Cl$_2$ (2 ml) was stirred at room temperature under N$_2$ for 5 days. The reaction mixture was then diluted with EtOAc, quenched with 5% aqueous AcOH, the aqueous layer discarded and the organic layer washed once with water. This was then dried over MgSO$_4$, filtered and concentrated in vacuo leaving an oil which was subjected to flash chromatography (hexanes/EtOAc, 3:1) affording the chiral Mosher amide 15 as a clear oil.

Yield: 58 mg, 34.1%.

Atmospheric Pressure Chemical Ionisation for C$_{32}$H$_{25}$F$_3$NO$_2$ (M+H)$^+$: 512.3.

$\delta$$_H$ (400 MHz, CDCl$_3$) 2.76 (1H, d, J_{HH} 13.2 Hz), 3.57 (1H, d, J_{HH} 13.1 Hz), 3.84 (3H, s, OMe), 4.80 (1H, d, J_{HH} 13.1 Hz), 5.73 (1H, d, J_{HH} 13.1 Hz), 7.14-7.28 (6H, m), 7.40-7.56 (6H, m), 7.68 (1H, d, J_{HH} 8.3 Hz), 7.91-7.99 (4H, m).

A solution of (±)-3,5-dihydro-4H-dinaphth[2,1-c:1’,2’-e]azepine 5 (1.00 g, 3.39 mmol) in THF (3 ml) was added at room temperature with stirring to H$_2$O (10 ml, H$_2$O initially at pH = 3.0 adjusted with dilute HCl). To this white solution was added KOCN (330 mg, 4.06 mmol) in H$_2$O (1 ml) in one portion, and the solution was then allowed to stir overnight at 50 °C in order to yield the crude urea derivative which was used in situ.
To a solution of (±)-3,5-dihydro-4H-nitroso-dinaphth[2,1-c:1’,2’-e]azepine 5 (5.00 g, 16.93 mmol) in dry THF (50 ml) was added isoamyl nitrite (12.0 ml, 89.32 mmol) while stirring at room temperature under nitrogen. The solution was stirred for approx. 21 h before the solvent and excess reagents were removed in vacuo. Rapid flash chromatography (hexanes/EtOAc, 3:1) afforded the N-nitroso compound as an off white/yellow solid.

Yield: 5.40 g, 98.4 %.

M. Pt.: 195-197 °C.

HR-MS (FAB, MNOBA matrix) for C_{22}H_{17}N_{2}O (M+H)^+: required mass: 325.1341; measured mass: 325.1346.

Anal. calculated for C_{22}H_{16}N_{2}O: Calculated: C, 81.46; H, 4.97; C, 8.64; Found: C, 81.08, H, 5.03; N, 5.49.

δ_{H} (400 MHz, CDCl_{3}) 3.62 (1H, d, J_{HH} 15.2 Hz), 4.70 (1H, d, J_{HH} 13.2 Hz), 5.66 (2H, dd, J_{HH} 18.4 Hz, 14.4 Hz), 7.26-7.30 (2H, m), 7.40 (2H, t, J_{HH} 9.4 Hz), 7.48-7.53 (3H, m), 7.66 (1H, d, J_{HH} 8.0 Hz), 7.95-8.01 (4H, m).

δ_{C} (100 MHz, CDCl_{3}) 47.0, 54.3, 126.3, 126.4, 126.5, 127.2, 127.4, 127.5, 128.3, 128.4, 129.4, 129.7, 130.2, 131.2, 131.5, 131.5, 133.3, 133.5, 134.2, 135.7. **Two peaks not seen due to overlap.**

I.R. (KBr, 16 scans): 3051, 1593, 1504, 1429, 1343, 1318, 1233, 1116, 1066, 972, 868, 818, 751, 621, 530.
To a stirred solution of (±)-3,5-dihydro-4-N-nitroso-dinaphth[2,1-c:1’,2’-e]azepine 33 (5.20 g, 16.03 mmol) in CH$_2$Cl$_2$ (50 ml) cooled to -78 °C was dropwise added DIBAL-H (60.0 ml, 90.00 mmol, 1.5 M solution in toluene) and the resultant mixture stirred at -78 °C for 2 h. The reaction mixture was then allowed to stir at room temperature for 65 h before being slowly poured into a mixture of 10 % aqueous Rochelle’s salt solution (60 g in 600 ml) and CH$_2$Cl$_2$ (600 ml). The solution was stirred vigorously for 1½ h at room temperature, the CH$_2$Cl$_2$ layer extracted, and the aqueous layer extracted three times with EtOAc. The combined extracts were dried over MgSO$_4$, filtered and concentrated in vacuo affording a light yellow solid. Flash chromatography (CH$_2$Cl$_2$/MeOH, 50:1 \rightarrow 25:1, CH$_2$Cl$_2$ load) furnished the hydrazine as a light yellow solid.

Yield: 3.50 g, 70.3 %.

M. Pt.: 155-159 °C.

HR-MS (FAB, MNOBA matrix) for C$_{22}$H$_{19}$N$_2$ (M+H)$^+$: required mass: 311.1548; measured mass: 311.1556.

Anal. calculated for C$_{22}$H$_{18}$N$_2$: Calculated: C, 85.13; H, 5.85; N, 9.02; Found: C, 81.88; H, 5.61; C, 8.41.

$\delta$$_H$ (400 MHz, CDCl$_3$) 2.96 (2H, br s, NH$_2$), 3.34 (2H, d, J_{HH} 12.4 Hz), 3.89 (2H, d, J_{HH} 12.4 Hz), 7.23-7.28 (2H, m), 7.46 (4H , t, J_{HH} 7.6 Hz), 7.60 (2H, d, J_{HH} 8.4 Hz), 7.93-7.96 (4H, m).

$\delta$$_C$ (100 MHz, CDCl$_3$) 61.6, 125.6, 125.9, 127.5, 127.5, 128.3, 128.5, 131.5, 132.8, 133.3, 135.0.

(S)-3,5-Dihydro-4N-nitroso-dinaphth[2,1-c:1’,2’-e]azepine 33

To a solution of (S)-3,5-dihydro-4H-dinaphth[2,1-c:1’,2’-e]azepine 5 (500 mg, 1.69 mmol) in dry THF (10 ml) was added isoamyl nitrite (1.30 ml, 9.68 mmol) while stirring at room temperature under nitrogen. The solution was stirred at room temperature for 19 h before the solvent and excess reagents were removed *in vacuo*. Rapid flash chromatography (hexanes/EtOAc, 3:1) afforded the N-nitroso compound as an off white/yellow solid which was used without further analysis for the subsequent DIBAL-H reduction.

Yield: 625 mg, > 100 %.

(S)-3,5-Dihydro-4N-dinaphth[2,1-c:1’,2’-e]azepinehydrazide 1

To a stirred solution of (S)-3,5-dihydro-4N-nitroso-dinaphth[2,1-c:1’,2’-e]azepine 33 (549 mg, 1.69 mmol, 100 % conversion assumed) in CH$_2$Cl$_2$ (6 ml) cooled to -78 °C was dropwise added DIBAL-H (6.0 ml, 9.0 mmol, 1.5 M solution in toluene) and the resultant mixture stirred at -78 °C for 1 h. The reaction mixture was then allowed to stir at room temperature for 44 h before being slowly poured into a mixture of 10 %
aqueous Rochelle’s salt solution (6 g in 60 ml) and CH$_2$Cl$_2$ (70 ml). The solution was stirred vigorously for 1 h at room temperature, the CH$_2$Cl$_2$ layer extracted, and the aqueous layer extracted two times with EtOAc. The combined extracts were dried over MgSO$_4$, filtered and concentrated in vacuo affording a brown oil. Flash chromatography (CH$_2$Cl$_2$/MeOH, 50:1 → 30:1, CH$_2$Cl$_2$ load) furnished the hydrazine as a light brown solidified foam.

Yield: 334 mg, 63.6 %.

FAB-MS (FAB, MNOBA matrix) for C$_{22}$H$_{19}$N$_2$ (M+H)$^+$: 311.

Atmospheric Pressure Chemical Ionisation for C$_{22}$H$_{19}$N$_2$ (M+H)$^+$: 311.1

$\delta$$_H$ (400 MHz, CDCl$_3$) 2.74 (2H, br s, NH$_2$), 3.35 (2H, d, J_{HH} 12.4 Hz), 3.89 (2H, d, J_{HH} 12.4 Hz), 7.24-7.28 (2H, m), 7.42-7.48 (4H, m), 7.60 (2H, d, J_{HH} 8.4 Hz), 7.93-7.97 (4H, m).

$\delta$$_C$ (100 MHz, CDCl$_3$) 61.6, 125.6, 125.9, 127.5, 127.5, 128.3, 128.5, 131.5, 132.8, 133.3, 135.0.

A mixture of (±)-3,5-dihydro-4H-dinaphth[2,1-c:1′,2′-e]azepinehydrazide 1 (114 mg, 0.37 mmol), (R)-(+-)-α-methoxy-α-(trifluoromethyl)phenyl acetic acid (86 mg, 0.37 mmol) and DCC (75 mg, 0.36 mmol) in CH$_2$Cl$_2$ (2 ml) was stirred at room temperature under N$_2$ for 4 days. The reaction mixture was then diluted with EtOAc, quenched with 5 % aqueous AcOH, the aqueous layer discarded and the organic layer washed once with water. This was then dried over MgSO$_4$, filtered and concentrated in vacuo leaving

Mosher derivative (±)-34 of racemate (±)-1
an oil which was subjected to flash chromatography (hexanes/EtOAc, 3:1) affording the racemic Mosher derivative (±)-34 as a light brown solid.

Yield: 182 mg, 94.3 %.

δ\textsubscript{H} (400 MHz, CDCl\textsubscript{3}) 3.34 (3H, d, J\textsubscript{HF} 1.2 Hz, OMe), 3.44 (2H, d, J\textsubscript{HH} 13.2 Hz), 3.46 (2H, d, J\textsubscript{HF} 1.2 Hz, OMe), 3.51 (2H, d, J\textsubscript{HH} 12.4 Hz), 3.89 (2H, d, J\textsubscript{HH} 12.4 Hz), 3.99 (2H, d, J\textsubscript{HH} 12.4 Hz), 7.18 (2H, d, J\textsubscript{HH} 8.4 Hz), 7.24-7.30 (4H , m), 7.36-7.59 (16H, m), 7.67-7.69 (2H, m), 7.85 (2H, d, J\textsubscript{HH} 8.4 Hz), 7.92-8.00 (8H, m).

δ\textsubscript{F} (470 MHz, CDCl\textsubscript{3}): -69.53, -69.60.

A mixture of (S)-3,5-dihydro-4H-dinaphth[2,1-c:1’,2’-e]azepinehydrazide 1 (93 mg, 0.30 mmol), (R)-(+)−α-methoxy-α-(trifluoromethyl)phenyl acetic acid (67 mg, 0.29 mmol) and DCC (62 mg, 0.30 mmol) in CH\textsubscript{2}Cl\textsubscript{2} (2 ml) was stirred at room temperature under N\textsubscript{2} for 4 days. The reaction mixture was then diluted with EtOAc, quenched with 5 % aqueous AcOH, the aqueous layer discarded and the organic layer washed once with water. This was then dried over MgSO\textsubscript{4}, filtered and concentrated in vacuo leaving an oil which was subjected to flash chromatography (hexanes/EtOAc, 3:1) affording the Mosher derivative 34 as a brown oil.

Yield: 150 mg, 94.9 %.

FAB-MS (FAB, MNBOA matrix) for C\textsubscript{32}H\textsubscript{26}F\textsubscript{3}N\textsubscript{2}O\textsubscript{2} (M+H)+: 527.

δ\textsubscript{H} (400 MHz, CDCl\textsubscript{3}) 3.44 (2H, d, J\textsubscript{HH} 12.4 Hz), 3.90 (2H, d, J\textsubscript{HH} 12.4 Hz), 3.46 (3H, d, J\textsubscript{HF} 1.6 Hz, OMe), 7.18 (2H, d, J\textsubscript{HH} 8.0 Hz), 7.24-7.28 (2H , m), 7.42 (2H, d, J\textsubscript{HH} 8.4 Hz).
δ_F (470 MHz, CDCl₃): -69.60 ppm. Racemic Mosher derivative (±)-34 prepared as above using (±)-3,5-dihydro-4H-dinaphth[2,1-c:1’,2’-e]azepinehydrazide 1 gave δ_F (470 MHz, CDCl₃): -69.53 ppm and -69.60 ppm, indicating 100 % e.e.

![Diagram of (±)-3,5-Dihydro-4N-dinaphth[2,1-c:1’,2’-e]azepinehydrazide 5](image)

To a vigorously stirred solution under nitrogen of Zn dust (2.07 g, 31.66 mmol) in AcOH (50 ml) was added a solution of (±)-3,5-dihydro-4H-nitroso-dinaphth[2,1-c:1’,2’-e]azepine 33 (1029 mg, 3.17 mmol) dissolved in THF (10 ml) and AcOH (10 ml) dropwise via a syringe at 0 °C. The resultant solution was stirred at room temperature for 3 h before the solution was diluted with THF (30 ml) and filtered through Celite. The filtrate was concentrated in vacuo affording a clear yellow oil. Flash chromatography in CH₂Cl₂:MeOH (10:1) afforded (±)-3,5-dihydro-4H-dinaphth[2,1-c:1’,2’-e]azepine 5. This evidence was backed up by the mass spectrum (FAB-MS) which showed the same molecular mass.

Yield of azepine: 800 mg, 85.6 %.

The spectral data matched that of (±)-3,5-dihydro-4H-dinaphth[2,1-c:1’,2’-e]azepine 5 prepared by Hawkins (see text, page 102, Scheme 10).
To a solution of (±)-3,5-dihydro-4N-dinaph[2,1-c;1',2'-e]azepinehydrazide 1 (100 mg, 0.32 mmol) in EtOH (2 ml) at room temperature was added benzaldehyde (0.05 ml, 0.49 mmol) and the solution stirred at 70 °C for 15 min. after which the product was seen as a white precipitate. The reaction mixture was cooled to room temperature, the product filtered off under suction, washed well with EtOH and dried in the air.

Yield: 110 mg, 85.9 %.

M. Pt.: 194-195 °C.

HR-MS for (FAB, MNOBA matrix) C_{29}H_{22}N_{2} (M)^+ : required mass: 398.1783; measured mass: 398.1757.

δ_{H} (400 MHz, CDCl₃): 3.79 (2H, d, J_{HH} 12.4 Hz), 4.60 (2H, d, J_{HH} 12.4 Hz), 7.20-7.34 (5H, m), 7.38 (1H, s), 7.44-7.51 (4H, m), 7.56-7.58 (2H, m), 7.61 (2H, d, J_{HH} 8.4 Hz), 7.93 (4H, d, J_{HH} 8.0 Hz).

δ_{C} (100 MHz, CDCl₃): 56.5, 125.7, 125.8, 125.9, 127.4, 127.5, 127.6, 128.3, 128.4, 128.7, 131.4, 133.2, 133.4, 134.7, 134.8, 136.7.

To a stirred room temperature solution of tert-butyl carbazate (3.60 g, 27.24 mmol) in dry DMF (45 ml) was added (±)-2,2'-bis[bromomethyl]-1,1'-binaphthyl 9 (10.0 g, 22.72 mmol) and \(\text{Et}_3\text{N} \) (16.09 g, 0.159 mol) under nitrogen. The solution was heated at 70 °C for 20 hours. The white precipitate was removed by suction filtration, the filtrate diluted with water (60 ml), and the product extracted into \(\text{Et}_2\text{O} \) several times. The combined ether layers were washed with brine (2 x 100 ml), dried over \(\text{Na}_2\text{SO}_4 \), filtered and concentrated in vacuo affording a light brown solid. Recrystallisation from \(\text{Et}_2\text{O} \) afforded a white crystalline solid.

Yield: 3.05 g, 32.7 %.

M. Pt.: 185-187 °C.

HR-MS for (FAB, MNObA matrix) \(\text{C}_{27}\text{H}_{27}\text{N}_2\text{O}_2 \) (M+H)^+ : required mass: 411.2073; measured mass: 411.2080.

\(\delta_H \) (400 MHz, CDCl\(_3\)): 1.48 (9H, s, 3 x CH\(_3\)), 3.44 (2H, d, \(J_{HH} \) 12.4 Hz), 3.96 (2H, d, \(J_{HH} \) 12.4 Hz), 5.48 (1H, s, -NH), 7.23-7.27 (2H, m), 7.43-7.47 (4H, m), 7.60 (2H, d, \(J_{HH} \) 8.0 Hz), 7.95 (4H, t, \(J_{HH} \) 8.0 Hz).

\(\delta_C \) (100 MHz, CDCl\(_3\)): 28.4, 58.9, 80.3, 125.7, 126.0, 127.4, 127.6, 128.3, 128.6, 131.4 (quat-C), 132.2 (quat-C), 133.3 (quat-C), 135.1 (quat-C), 154.3 (C=O).

A solution of (±)-3,5-dihydro-4N-(N'-Boc amino)-dinaphth[2,1-c:1',2'-e]azepine-hydrazide 26 (300 mg, 0.73 mmol) in a 1:1 mixture of CH₂Cl₂/AcOH (10 ml) was stirred at room temperature for 1 hour and the solvents removed in vacuo. Excess AcOH was removed by the co-evaporation with toluene (2 x 10 ml), and the product was then dissolved in CH₂Cl₂ (5 ml) and washed with K₂CO₃ (1 g dissolved in 5 ml H₂O). The organic layer was separated, dried over Na₂SO₄, filtered and concentrated in vacuo leaving an off-white/yellow foam. Crystallisation from Et₂O afforded a white powder.

Yield: 198 mg, 87.2 %.

HR-MS for (FAB, MNOBA matrix) C₂₂H₁₉N₂ (M+H)⁺: required mass: 311.1548; measured mass: 311.1540.

The spectral data matched that of the hydrazine prepared via N-nitroso reduction (see page 200).

To (±)-3,5-dihydro-4N-(trimethylsilylmethyl)-dinaphth[2,1-c:1',2'-e]azepinehydrazide 1 (300 mg, 0.97 mmol) was added (iodomethyl)trimethyl silane (1.00 ml, 6.73 mmol). The resultant solution was heated to 140-150 °C for 3 h, cooled to room temperature, Et₃N (0.40 ml, 2.87
The cooled solution was then diluted with CH$_2$Cl$_2$, quenched with water and extracted four times with CH$_2$Cl$_2$. The combined extracts were dried over Na$_2$SO$_4$, filtered and concentrated *in vacuo* giving a black/brown solid. Flash chromatography (CH$_2$Cl$_2$/MeOH, 25:1) furnished the tertiary amine (±)-43 as a brown solidified foam.

Yield: 200 mg, 54.2 %.

FAB-MS for (FAB, MNOBA matrix) C$_{26}$H$_{28}$NSi (M+H)$^+$: Found: 382.

$\delta$$_H$ (400 MHz, CDCl$_3$): 0.16 (9H, s, Me$_3$Si), 2.05 (1H, d, J_{HH} 14.4 Hz), 2.31 (1H, d, J_{HH} 14.4 Hz), 3.28 (2H, d, J_{HH} 12.0 Hz), 3.68 (2H, d, J_{HH} 12.0 Hz), 7.24-7.28 (2H, m), 7.44-7.48 (4H, m), 7.58 (2H, d, J_{HH} 8.0 Hz), 7.93-7.97 (4H, m).

$\delta$$_C$ (100 MHz, CDCl$_3$): -0.8, 47.6, 58.9, 125.6, 125.9, 127.5, 128.0, 128.3, 128.4, 131.3, 133.3, 135.0. *One quat-C overlaps the other.*

I.R. (neat, 16 scans): 3047, 2948, 2891, 2788, 1593, 1508, 1460, 1364, 1247, 1094, 1027, 853, 816, 751, 624, 535.

To the tertiary amine 43 (100 mg, 0.262 mmol) and solid K$_2$CO$_3$ (348 mg, 2.52 mmol) under nitrogen was added chloroacetonitrile (0.50 ml, 7.90 mmol) at room temperature. The reaction mixture was stirred at 120 °C for 1 h, cooled to room temperature, diluted with CH$_2$Cl$_2$ and the solid precipitate removed by suction filtration. The filtrate was concentrated *in vacuo* leaving a brown oil which was subjected to flash chromatography (CH$_2$Cl$_2$/MeOH, 25:1) affording the quarternary amine as a light brown solid.
Yield: 84 mg, 76.4 %.

M. Pt.: 148-155 °C.

HR-MS for (FAB, MNOBA matrix) C_{28}H_{29}N_{2}Si (M)^{+}: 421.1974.

\(\delta_{\text{H}}\) (400 MHz, CDCl\(_3\)): 0.49 (9H, s, Me\(_3\)Si), 3.08 (1H, d, J\(_{\text{HH}}\) 14.4 Hz), 3.33 (1H, d, J\(_{\text{HH}}\) 14.4 Hz), 3.64 (1H, d, J\(_{\text{HH}}\) 12.4 Hz), 3.99 (1H, d, J\(_{\text{HH}}\) 12.4 Hz), 4.73 (1H, d, J\(_{\text{HH}}\) 12.4 Hz), 4.86 (1H, d, J\(_{\text{HH}}\) 17.6 Hz), 5.84 (1H, d, J\(_{\text{HH}}\) 12.4 Hz), 6.28 (1H, d, J\(_{\text{HH}}\) 17.6 Hz), 7.31-7.40 (3H, m), 7.47 (1H, d, J\(_{\text{HH}}\) 8.4 Hz), 7.56-7.63 (2H, m), 7.70 (1H, d, J\(_{\text{HH}}\) 8.4 Hz), 8.00 (1H, d, J\(_{\text{HH}}\) 8.4 Hz), 8.05 (1H, d, J\(_{\text{HH}}\) 8.4 Hz), 8.14 (2H, t, J\(_{\text{HH}}\) 9.2 Hz), 8.58 (1H, d, J\(_{\text{HH}}\) 8.4 Hz).

\(\delta_{\text{C}}\) (100 MHz, CDCl\(_3\)): -0.4, 50.1, 56.1, 66.0, 68.5, 111.8, 125.2, 126.5, 127.2, 127.3, 127.6, 127.8, 128.1, 128.4, 128.6, 128.9, 130.5, 130.9, 131.1, 131.3, 134.6, 134.7, 136.3, 137.2.

I.R. (KBr, 16 scans): 2925, 2898, 1596, 1509, 1458, 1437, 1364, 1256, 1030, 851, 753, 660, 625.

To a solution of (±)-3,5-dihydro-4\(N\)-dinaph[2,1-c;1',2'-e]azepinehydrazide 1 (100 mg, 0.32 mmol) in CH\(_2\)Cl\(_2\) (2 ml) was added (iodomethyl)trimethylsilane (0.20 ml, 1.35 mmol) while stirring under nitrogen. The reaction mixture was stirred at 100 °C for 29 h in the dark, diluted with CH\(_2\)Cl\(_2\), then treated with a 10 % aqueous KOH solution (10 ml) and then extracted twice with CH\(_2\)Cl\(_2\). The combined extracts were dried over Na\(_2\)SO\(_4\), filtered and concentrated in vacuo leaving a yellow solid. Flash
chromatography (CH$_2$Cl$_2$/MeOH, 50:1) afforded hydrazone (±)-45 as the major product as a yellow solid.

Yield: 24 mg, 23.1 %.

HR-MS for (FAB, MNOBA matrix) C$_{23}$H$_{19}$N$_2$ (M+H)$^+$: required mass: 323.1548; measured mass: 323.1560.

The spectral data matched that of the deliberately prepared hydrazone using para-formaldehyde (see page 211).

Alternative procedure.

To a solution of (±)-3,5-dihydro-4N-dinaph[2,1-c;1',2'-e]azepinehydrazide 1 (736 mg, 2.37 mmol) and solid K$_2$CO$_3$ (655 mg, 4.74 mmol) in CH$_2$Cl$_2$ (4 ml) was added chloroacetonitrile (0.10 ml, 1.58 mmol) while stirring under nitrogen. The reaction mixture was stirred at room temperature for 1 h, diluted with CH$_2$Cl$_2$, the precipitate filtered off under suction and the precipitate washed thoroughly with CH$_2$Cl$_2$. The combined filtrates were concentrated in vacuo leaving a white solid. Flash chromatography (CH$_2$Cl$_2$/MeOH, 50:1) afforded the major product as a foam which was still slightly impure. The 1H n.m.r. spectrum indicated the formation of hydrazone (±)-45 as compared to the previous preparation.

HR-MS for (FAB, MNOBA matrix) C$_{23}$H$_{19}$N$_2$ (M+H)$^+$: required mass: 323.1548; measured mass: 323.1560.

The spectral data matched that of the deliberately prepared hydrazone using para-formaldehyde (see page 211).
Deliberate preparation:

To a solution of (±)-3,5-dihydro-4N-dinaph[2,1-c;1',2'-e]azepinehydrazide 1 (100 mg, 0.32 mmol) in EtOH (2 ml) at room temperature was added para-formaldehyde (12 mg, 0.39 mmol) and the solution stirred at 90 °C for 4 hours. The reaction mixture was cooled to room temperature, diluted with water and extracted 3 times with CH$_2$Cl$_2$. The combined extracts were dried over Na$_2$SO$_4$, filtered and concentrated on a rotary evaporator leaving a brown foam. Flash chromatography (hexanes:EtOAc, 5:1) gave a yellow solidified foam.

Yield: 89 mg, 85.6 %.

M. Pt.: 168-171 °C.

HR-MS for (FAB, MNOBA matrix) C$_{23}$H$_{19}$N$_2$ (M+H)$^+$: required mass: 323.1548; measured mass: 323.1560.

δ$_H$ (400 MHz, CDCl$_3$): 3.65 (2H, d, J_{HH} 12.4 Hz), 4.44 (2H, d, J_{HH} 12.4 Hz), 6.18 (1H, d, J_{HH} 10.4 Hz), 6.27 (1H, d, J_{HH} 10.8 Hz), 7.24-7.28 (2H, m), 7.45-7.48 (4H, m), 7.58 (2H, d, J_{HH} 8.4 Hz), 7.95 (4H, d, J_{HH} 8.4 Hz).

δ$_C$ (100 MHz, CDCl$_3$): 55.7, 124.4, 125.7, 125.9, 127.4, 128.3, 128.7, 131.4, 133.1, 133.2, 134.7. One peak overlapping the other.

2.3:5,6-Di-O-isopropylidene-α-D-mannofuranosyl bromide 48

To a stirred solution of alcohol 47 (4.45 g, 17.10 mmol) in THF (80 ml) cooled to 0 °C (external temperature, ice-salt bath) was added triphenylphosphine (13.45 g, 51.28 mmol) and carbon tetrabromide (17.01 g, 51.29 mmol) and the solution stirred at room temperature for 1 hour. The white triphenylphosphine oxide which precipitated out was filtered off under suction and the filter cake washed thoroughly with THF. The solvent was removed on a rotary evaporator leaving a crude clear oil which was used immediately for the next reaction.

δH (400 MHz, CDCl3): 1.32 (3H, s), 1.39 (3H, s), 1.47 (6H, s, 2 x -CH3), 4.02-4.14 (3H, m), 4.40-4.48 (2H, m), 4.79 (1H, dd, JHH 3.66 Hz, 6.0 Hz), 5.45 (1H, s).

δC (100 MHz, CDCl3): 24.6, 25.1, 25.9, 26.9, 66.8, 72.8, 79.5, 81.9, 85.0, 95.5, 109.4 (quat-C), 113.2 (quat-C).

2.3:5,6-Di-O-isopropylidene-β-D-mannofuranosyl azide 49

To a stirred room temperature solution of the crude bromide 48 (6.21 g, 19.22 mmol, 100 % conversion assumed) in dry DMF (40 ml) was added sodium azide (23.82 g, 366.41 mol). The resulting solution was stirred at room temperature overnight before being diluted with brine (50 ml). The product was extracted into Et2O (3 x 50 ml), and the combined organic layers were washed with brine (100 ml), dried over MgSO4,
filtered and concentrated in vacuo leaving a yellow oil as crude product. Flash chromatography (hexanes:EtOAc, 18:1) afforded the required azide as a clear light brown oil.

Yield: 3.08 g, 56.2 %.

δ_H (400 MHz, CDCl_3): 1.33 (3H, s), 1.35 (3H, s), 1.41 (3H, s), 1.52 (3H, s), 3.56 (1H, dd, J_HH 3.6 Hz, 7.6 Hz), 4.04-4.11 (2H, m), 4.37 (1H, d, J_HH 3.6 Hz), 4.40-4.44 (1H, m), 4.64 (1H, dd, J_HH 3.6 Hz, 6.0 Hz), 4.74 (1H, dd, J_HH 3.6 Hz, 6.0 Hz).

δ_C (100 MHz, CDCl_3): 24.3, 25.1, 25.2, 26.9, 66.7, 72.8, 78.5, 79.5, 81.1, 89.1, 109.3 (quat-C), 113.6 (quat-C).

2.3:5.6-Di-O-isopropylidene-β-D-mannofuranosyl amine 50

To a stirred solution of azide 49 (210 mg, 0.74 mmol) in dry THF (10 ml) at room temperature was added palladium on carbon (39 mg, 0.037 mmol, 5 mol %, contains 10 % Pd in carbon). The solution was stirred at room temperature under a hydrogen atmosphere for 4 hours. The solution was then filtered by suction and the solvent removed on the rotary evaporator leaving the product as a clear oil which was used immediately for the next reaction without further purification.

Yield (crude): 210 mg, > 100 %.
To a solution of trimethylsilylmethyl amine (1.00 ml, 7.46 mmol) in THF (5 ml) at room temperature was added (chloromethyl)trimethylsilane (0.60 ml, 4.30 mmol) and the reaction mixture stirred at gentle reflux for 4 days. The grey/white precipitate was then filtered off under suction filtration leaving a white solid which was used crude for the subsequent reaction.

Yield: 470 mg, 48.4 %.

FAB-MS for (FAB, MNOBA matrix) C₈H₂₄NSi₂Cl (M-Cl)⁺: 190.

To a solution of sugar bromide 48 (3.50 g, 10.83 mmol) in THF (5 ml) stirring under nitrogen at room temperature was added Et₃N (1.45 g, 2.0 ml, 14.35 mmol) and dimethylamine (7.0 ml, 14.00 mmol, 2M solution in THF). The reaction mixture was then stirred in the dark for 24 hours, diluted with water and extracted three times with diethyl ether. The combined extracts were dried over MgSO₄, filtered and concentrated in vacuo leaving a clear oil. Flash chromatography (hexanes:EtOAc, 10:1 → EtOAc) afforded the amine as a clear oil (1.40 g, 45 %) which solidified on standing.

Yield: 1.40, 45.0 %.

M. Pt.: 67-70 °C.
[α]_D^20 = +7.1° (c 0.218, MeOH).

HR-MS (FAB, MNOBA matrix) for C_{14}H_{26}NO_{5} (M+H)^+: required mass: 288.1811; measured mass: 288.1804.

δ_H (400 MHz, CDCl₃): 1.32 (3H, s), 1.35 (3H, s), 1.42 (3H, s), 1.46 (3H, s), 2.22 (6H, s, NMe₂), 3.92 (1H, dd, J_HH 3.6 Hz, 8.0 Hz), 4.00-4.11 (3H, m), 3.34-3.36 (1H, m), 4.66 (1H, d, J_HH 6.0 Hz), 4.77 (1H, dd, J_HH 3.6 Hz, 6.0 Hz).

δ_C (100 MHz, CDCl₃): 24.7, 25.2, 26.1, 26.9, 40.8, 67.0, 73.4, 80.6, 81.7, 83.8, 101.0, 109.2, 112.6.

2,3:5,6-Di-O-isopropylidene-N,N-dimethyl-β-D-mannofuranosylamine-N-oxide 57

To the tertiary amine prepared above 58 (1.00 g, 3.48 mmol) in CH₂Cl₂ (8 ml) at -10 °C was added in one portion meta-chloroperbenzoic acid (1.32 g, 3.83 mmol, 56-88 %, 50% assumed). The mixture was stirred at 0 °C for 10 minutes after which the crude reaction mixture was rapidly flashed chromatographed (CH₂Cl₂:MeOH, 5:1 → 1:1) affording the pure N-oxide as an off white-yellow solid.

Yield: 921 mg, 86.4 %.

FAB-MS (FAB, MNOBA matrix) for C_{14}H_{26}NO_{6} (M+H)^+: required mass: 304.1760; measured mass: 304.1748.
δ_H (300 MHz, CDCl$_3$): 1.33 (6H, s, 2 x Me), 1.40 (3H, s), 1.45 (3H, s), 3.07 (3H, s), 3.12 (3H, s), 4.02-4.08 (2H, m), 4.29-4.32 (1H, m), 4.69 (1H, s), 4.92-4.96 (2H, m), 5.43 (1H, d, J_{HH} 5.7 Hz).

δ_C (75 MHz, CDCl$_3$): 24.3, 25.2, 26.0, 26.7, 55.1, 55.7, 66.6, 73.3, 80.9, 82.0, 86.7, 105.8, 109.4, 113.0.

I.R. (neat, 16 scans): 3380, 2988, 1659, 1456, 1381, 1262, 1210, 1161, 1125, 1069, 970, 947, 895, 846, 796.

1,2,3,4,6-Penta-O-acetyl-β-D-glucopyranosyl azide 62

To a stirred solution of α-bromide 61 (9.00 g, 21.89 mmol) in dry DMF (100 ml) at room temperature was added sodium azide (28.46 g, 0.438 mol, 20 equivalents). The solution was stirred at room temperature for 15 hours. The reaction mixture was then quenched with brine (100 ml) and the product extracted into Et$_2$O (2 x 300 ml). The product crystallised in Et$_2$O, the crystalline product remaining in the aqueous phase was therefore extracted into EtOAc (2 x 300 ml). The combined organic layers were washed with brine (2 x 300 ml), water (2 x 200 ml), dried over MgSO$_4$, filtered and concentrated in vacuo affording pure white crystals.

Yield: 7.19 g, 88.0%.

M. Pt.: 127-128 °C.

HR-MS for (FAB, MNOBA matrix) $C_{14}H_{19}N_3O_9Na$ $(M+Na)^+$: required mass: 396.1019; measured mass: 396.1010.

216
δ_H (400 MHz, CDCl$_3$): 1.92 (3H, s), 1.94 (3H, s), 1.98 (3H, s), 2.01 (3H, s), 3.71-3.75 (1H, m), 4.07 (1H, dd, J_{HH} 2.4 Hz, 12.4 Hz), 4.19 (1H, dd, J_{HH} 4.8 Hz, 12.4 Hz), 4.58 (1H, d, J_{HH} 9.2 Hz), 4.86 (1H, t, J_{HH} 9.4 Hz), 5.01 (1H, t, J_{HH} 9.8 Hz), 5.14 (1H, t, J_{HH} 9.6 Hz).

δ_C (100 MHz, CDCl$_3$): 20.3, 20.5, 61.5, 67.7, 70.4, 72.4, 73.8, 87.6, 169.0 (C=O), 169.1 (C=O), 169.9 (C=O), 170.4 (C=O). Two Me peaks overlapping.

I.R. (KBr, 16 scans): 2970, 2910, 2119, 1756, 1439, 1374, 1311, 1241, 1214, 1121, 1059, 1038, 976, 951, 907, 878, 712, 674, 644, 607, 556, 482.

1,2,3,4,6-Penta-O-acetyl-β-D-glucopyranosyl amine 63

To a stirred solution of β-azide 62 (1.30 g, 3.48 mmol) in dry THF (15 ml) at room temperature was added palladium on carbon (185 mg, 0.174 mmol, contains 10 % Pd on carbon). The solution was stirred at room temperature under a hydrogen atmosphere for 5 hours. The solution was then filtered by suction in air and the solution diluted with water (20 ml). The product was extracted into Et$_2$O (3 x 25 ml) and the combined Et$_2$O layers washed with brine (50 ml), the organic layers dried over MgSO$_4$, filtered and concentrated in vacuo affording pure white crystals which required no further purification.

Yield: 1026 mg, 84.9 %.

M. Pt.: 120-122 °C.

HR-MS for (FAB, MNOBA matrix) C$_{14}$H$_{19}$O$_9$ (M-NH$_2$)$^+$: required mass: 331.1029; measured mass: 331.1013.
δ\textsubscript{H} (400 MHz, CDCl\textsubscript{3}): 1.94 (2H, br s, -NH\textsubscript{2}), 2.02 (3H, s), 2.03 (3H, s), 2.08 (3H, s), 2.10 (3H, s), 3.68-3.72 (1H, m), 4.11 (1H, dd, J\textsubscript{HH} 2.4 Hz, 12.4 Hz), 4.21 (1H, d, J\textsubscript{HH} 8.8 Hz), 4.23 (1H, dd, J\textsubscript{HH} 4.8 Hz, 12.4 Hz), 4.84 (1H, t, J\textsubscript{HH} 9.2 Hz), 5.05 (1H, t, J\textsubscript{HH} 9.6 Hz), 5.25 (1H, t, J\textsubscript{HH} 9.6 Hz).

δ\textsubscript{C} (100 MHz, CDCl\textsubscript{3}): 20.6, 20.7, 20.7, 62.2, 68.7, 71.9, 72.6, 73.1, 84.9, 169.5 (C=O), 170.1 (C=O), 170.6 (C=O). One Me and one C=O peak overlapping.

I.R. (KBr, 16 scans): 3457, 3405, 3332, 2973, 2934, 1732, 1636, 1443, 1373, 1236, 1133, 1095, 1036, 978, 911, 886, 844, 775, 705, 676, 600, 561, 546, 511.

(1R)-endo-3-(N-Trimethylsilyl methyl)camphor amine 80

To a solution of (1R)-endo-3-camphor amine 76 (11.50 g, 68.76 mmol) in dry acetonitrile (50 ml) was added N,N-diisopropyl-N-ethylamine (18.0 ml, 0.104 mol) and (iodomethyl)-trimethylsilane (15.0 ml, 0.101 mol). The reaction mixture was stirred under N\textsubscript{2} at reflux for 22 hours. The reaction mixture was then cooled to room temperature, quenched with water, and extracted three times with CH\textsubscript{2}Cl\textsubscript{2}. The combined organic extracts were dried over MgSO\textsubscript{4}, filtered and concentrated in vacuo leaving a clear yellow oil which could be used crude for the subsequent reaction with only about 10 % reduction in yield as when compared to the pure product.

Yield (crude): 16.20 g, 92.9 %.

FAB-MS (MNOBA matrix) for C\textsubscript{14}H\textsubscript{28}NOSi (M+H+): 254.3.

δ\textsubscript{H} (400 MHz, CDCl\textsubscript{3}): 0.05 (9H, s, Me\textsubscript{3}Si), 0.85 (3H, s), 0.88 (3H, s), 0.98 (3H, s), 1.23-1.30 (1H, m), 1.38 (1H, NH), 1.52-1.62 (2H, m), 1.81-1.85 (1H, m), 1.88 (1H, d,
δ_C (100 MHz, CDCl₃): -2.7, 9.5, 18.4, 19.5, 19.8, 32.0, 38.7, 44.0, 46.5, 58.5, 68.5, 219.3.

(1R)-(+-)-endo-3-(N-Cyanomethyl-N-trimethylsilylmethyl)camphor amine **81**

To a solution of (1R)-endo-3-(N-trimethylsilylmethyl)camphor amine **80** (4.93 g, 19.45 mmol) in acetonitrile (50 ml) was added N,N-diisopropyl-N-ethylamine (5.50 ml, 31.79 mmol) and chloroacetonitrile (2.00 ml, 31.60 mmol) and the resultant reaction mixture stirred at gentle reflux for approx. 90 h. The reaction mixture was then cooled to room temperature, quenched with water, and extracted three times with CH₂Cl₂. The combined organic extracts were dried over Na₂SO₄, filtered and concentrated in vacuo leaving a brown oil. Flash chromatography (hexanes/CH₂Cl₂, 1:1) afforded the required tertiary amine as a clear yellow oil.

Yield: 5.60 g, 98.8 %.

$[\alpha]_D^{20} = + 62.2^o$ (c 0.238, MeOH).

HR-MS (FAB, MNOBA matrix) for C₁₆H₂₉N₂O₃Si (M+H)⁺: required mass: 293.2049; measured mass: 293.2060.

δ_H (400 MHz, CDCl₃): 0.05 (9H, s, Me₃Si), 0.81 (3H, s), 0.84 (3H, s), 0.92 (3H, s), 1.36 (1H, t, J_{HH} 9.0 Hz), 1.58-1.69 (2H, m), 1.76 (1H, t, J_{HH} 8.6 Hz), 2.02 (1H, dd, J_{HH} 1.8

219
\[\delta_C \text{ (100 MHz, CDCl}_3\text{):} -1.6, 9.7, 19.1, 19.3, 19.9, 30.8, 43.1, 43.4, 43.8, 47.2, 59.2, 68.3, 115.0, 216.5. \]

\[(1R)-(+)-(\text{trans-3,4-Dicarbomethoxy})-N-(\text{endo-3-camphor})\text{pyrrolidine} \text{82+83} \]

To a solution of tertiary amine 81 (4.22 g, 14.43 mmol) in acetonitrile (50 ml) was added dimethyl fumarate (4.16 g, 28.86 mmol) and silver (I) fluoride (3.17 g, 24.99 mmol) while stirring under nitrogen in the dark. The reaction mixture was stirred in the dark for 6 days, filtered through a pad of Celite, washed thoroughly with CH\textsubscript{2}Cl\textsubscript{2} and concentrated \textit{in vacuo} leaving a brown solid. This was flash chromatographed (hexanes:EtOAc, 10:1) affording the cycloadduct as a clear yellow oil. Unreacted starting amine 81, 630 mg, was also recovered.

Yield from flash chromatography: 2.97 g, 61.0 %.

Yield based on recovered starting material is thus 71.7 %.

\[[\alpha]_D^{20} = + 33.4^\circ \text{ (c 0.394, MeOH).} \]

HR-MS (FAB, MNOBA matrix) for C\textsubscript{18}H\textsubscript{28}NO\textsubscript{5} (M+H): required mass: 338.1967; measured mass: 338.1950.
The camphor amine 76 was left standing at room temperature for 24 - 96 hours, after which time virtually all camphor amine had dimerised to an orange paste. Flash chromatography (hexanes:EtOAc, 12:1) gave the dimer as a pure light yellow solid.

M.Pt.: 106-108 °C.

\[\alpha\] \text{D} = -247.0° (c 0.2, MeOH).

FAB-MS (FAB, MNOBA matrix) for C\textsubscript{20}H\textsubscript{31}N\textsubscript{2} (M+H): required mass: 299.2487; measured mass: 299.2498.
IR (neat, 16 scans): 2958, 2869, 1747, 1650, 1474, 1447, 1371, 1327, 1292, 1268, 1227, 1155, 1110, 1048, 1011, 903, 748, 630, 481.

To a solution of (1R)-camphorquinone 74 (1.00 g, 6.02 mmol) in absolute EtOH (10 ml) was added pyridine (0.7 ml, 8.65 mmol) and O-benzylhydroxylamine hydrochloride (1056 mg, 6.62 mmol) and the solution stirred at room temperature for 4 hours. The reaction mixture was then quenched with water and extracted three times with CH₂Cl₂. The combined extracts were dried over Na₂SO₄, filtered and concentrated on rotary affording a yellow solid which was subjected to flash chromatography (hexanes:EtOAc, 25:1) to leave a clear liquid. ¹H n.m.r. indicated a mixture of syn/anti isomers of 2.8:1.

Yield: 1.21 g, 74.2 %.

HR-MS (FAB, MNOBA matrix) for C₁₇H₂₂NO₂ (M+H)⁺: required mass: 272.1651; measured mass: 272.1655.

δH (400 MHz, CDCl₃, major isomer only): 0.84 (3H, s), 0.94 (3H, s), 1.00 (3H, s), 1.45-1.57 (2H, m), 1.69-1.78 (1H, m), 1.94-2.03 (1H, m), 3.17 (1H, d, J_HH 4.4 Hz), 5.24 (2H, s), 7.24-7.34 (5H, m).

δC (100 MHz, CDCl₃, mixture of syn/anti isomers): 8.9, 9.0, 17.5, 18.0, 20.4, 20.6, 23.8, 25.1, 29.7, 30.6, 44.7, 45.3, 47.2, 50.4, 58.4, 59.4, 77.2, 77.2, 127.5, 127.6, 128.0, 128.0, 128.2, 128.3, 136.8, 137.5, 156.4, 159.2, 197.9 (C=O), 203.9 (C=O).
To a stirred solution of (1R)-camphorquinone-3-oxime 75 (4.60 g, 25.38 mmol) in benzene (50 ml) at room temperature was added MeSO$_3$H (0.16 ml, 2.47 mmol) and ethane-1,2-diol (7.00 ml, 0.126 mol) and the mixture stirred at gentle reflux for 24 h. The cooled reaction mixture was then treated with an aqueous solution of K$_2$CO$_3$ until pH ~ 8, the solution then extracted with CH$_2$Cl$_2$, the combined extracts dried over MgSO$_4$, filtered and concentrated affording a clear yellow oil. Flash chromatography (hexanes/EtOAc, 2:1) furnished the required product as a clear yellow oil.

Yield: 5.28 g, 92.3 %.

HR-MS (FAB, MNOBA matrix) for C$_{12}$H$_{20}$NO$_3$ (M+H)$^+$: required mass: 226.1443; measured mass: 226.1434.

$\delta$$_H$ (400 MHz, CDCl$_3$): 0.92 (3H, s), 1.06 (3H, s), 1.09 (3H, s), 1.43-1.50 (1H, m), 1.79-1.89 (1H, m), 1.95-2.05 (1H, m), 2.47-2.55 (1H, m), 2.71 (1H, t, J_{HH} 9.6 Hz), 2.89 (1H, s, OH), 3.66 (2H, t, J_{HH} 4.8 Hz), 4.01-4.10 (2H, m).

$\delta$$_C$ (100 MHz, CDCl$_3$): 21.3, 21.9, 24.4, 32.4, 39.2, 46.3, 54.2, 60.2, 65.8, 120.6, 174.9.

One peak overlapping the other.

To a solution of (1R)-2,2-ethylenedioxy-camphorquinone-3-oxime 99 (100 mg, 0.44 mmol) in DMF (2 ml) at room temperature was added in one portion NaH (20 mg, 0.49 mmol, 60 % dispersion in oil) and the mixture stirred under nitrogen for 15 min. Benzyl bromide (0.06 ml, 0.50 mmol) was then added and the reaction mixture stirred at room temperature for 2 h. The mixture was quenched with water, extracted twice with EtOAc, the combined organic extracts washed four times with water, twice with brine, dried over Na$_2$SO$_4$, filtered and concentrated in vacuo leaving a clear yellow liquid. Flash chromatography (hexanes/EtOAc, 10:1) gave a clear oil.

Yield: 55 mg, 39.3 %.

δH (400 MHz, CDCl$_3$): 1.03 (3H, s), 1.17 (3H, s), 1.19 (3H, s), 1.53-1.60 (1H, m), 1.91-2.01 (1H, m), 2.02-2.13 (1H, m), 2.61-2.66 (1H, m), 2.79 (1H, t, J_{HH} 9.8 Hz), 3.62-3.68 (2H, m), 4.16-4.26 (1H, m), 4.27-4.35 (1H, m), 4.53 (2H, s), 7.25-7.36 (5H, m).

To a solution of (1R)-3,3-ethylenedioxy-camphor 88 (928 mg, 4.41 mmol) in THF (20 ml) was added phenyllithium (4.50 ml, 8.10 mmol, 1.8M solution in cyclohexane:diethyl ether, 70:30) while stirring under nitrogen at -78 °C. The resultant reaction mixture was warmed slowly to room temperature, and stirred for 4 hours before being slowly quenched with water and extracted three times CH$_2$Cl$_2$. The combined extracts were dried over Na$_2$SO$_4$, filtered and concentrated on the rotary evaporator
leaving a dark brown oil. Flash chromatography (hexanes:CH₂Cl₂, 4:1) afforded the alcohol as a clear oil.

Yield: 1.08 g, 84.8%.

HR-MS (FAB, MNOBA matrix) for C₁₈H₂₄O₃ (M)+: required mass: 288.1725; measured mass: 288.1721.

δ_H (400 MHz, CDCl₃): 0.73 (3H, s), 0.94 (3H, s), 1.15-1.23 (1H, m), 1.33 (3H, s), 1.40-1.47 (1H, m), 1.68-1.77 (1H, m), 1.86 (1H, d, J_HH 4.8 Hz), 1.97-2.03 (1H, m), 3.19-3.25 (1H, m), 3.46 (1H, s, OH), 3.77-3.88 (3H, m), 7.19-7.30 (3H, m), 7.78-7.80 (2H, m).

δ_C (100 MHz, CDCl₃): 10.0, 21.1, 22.3, 22.8, 30.1, 47.0, 53.8, 54.7, 63.92, 64.8, 84.5, 116.8, 126.2, 126.4, 129.4, 141.0.

(1R)-Camphor-2-O-benzyl oxime 102

To a solution of (1R)-(+)-camphor (2.00 g, 13.14 mmol) in absolute EtOH (10 ml) was added pyridine (1.30 ml, 16.07 mmol) and O-benzylhydroxylamine hydrochloride (2.52 g, 15.79 mmol) and the solution stirred at gentle reflux for 24 hours. The reaction mixture was then diluted with water and extracted three times with CH₂Cl₂. The combined extracts were dried over MgSO₄, filtered and concentrated on rotary affording a brown oil. Flash chromatography (hexanes:CH₂Cl₂, 4:1) gave the product as a clear oil.

Yield: 3.35, 99.1%.
HR-MS (FAB, MNOBA matrix) for C\textsubscript{17}H\textsubscript{24}NO (M+H): required mass: 258.1858; measured mass: 258.1870.

δ\textsubscript{H} (400 MHz, CDCl\textsubscript{3}): 0.82 (3H, s), 0.96 (3H, s), 1.10 (3H, s), 1.24-1.30 (1H, m), 1.49-1.55 (1H, m), 1.71-1.79 (1H, m), 1.83-1.92 (2H, m), 2.10 (1H, d, J\textsubscript{HH} 18.0 Hz), 2.58 (1H, dt, J\textsubscript{HH} 3.6 Hz), 5.15 (2H, s), 7.29-7.43 (5H, m).

δ\textsubscript{C} (100 MHz, CDCl\textsubscript{3}): 11.1, 18.4, 19.3, 27.1, 32.6, 33.8, 43.5, 47.9, 51.5, 75.0, 127.2, 127.6, 128.0, 138.4 (quat-C), 169.4 (C=O).

I.R. (neat, 16 scans): 3031, 2958, 2873, 1664 (w), 1497, 1453, 1428, 1389, 1368, 1200, 1116, 1082, 1016, 914, 826, 730, 697.

\begin{center}
\begin{tikzpicture}
\node at (0,0) [below] {\includegraphics[width=0.5\textwidth]{image}};
\end{tikzpicture}
\end{center}

\textit{(1R,2R)-(-)-1,2-Diphenyl-1,2-dimesyloxyethane 119}

To a solution of (1R,2R)-(+)-1,2-diphenyl-1,2-ethanediol 116 (11.0 g, 51.34 mmol) in pyridine (50 ml) at 0 °C was added in one-portion MsCl (11.0 ml, 0.142 mol) and the reaction mixture stirred at room temperature for 3 h. The mixture was then diluted with ice-water, extracted twice with CH\textsubscript{2}Cl\textsubscript{2}, the combined extracts dried over Na\textsubscript{2}SO\textsubscript{4}, filtered and concentrated \textit{in vacuo} leaving a light brown solid which required no further purification.

Yield: 18.86 g; 99.2%.

M. Pt.: 88-90 °C.

HR-MS (FAB, MNOBA matrix) for C\textsubscript{16}H\textsubscript{18}O\textsubscript{6}S\textsubscript{2}Na (M+Na): required mass: 393.0443; measured mass: 393.0430.

δ\textsubscript{H} (400 MHz, CDCl\textsubscript{3}): 2.79 (6H, s, 2 x Me), 5.75 (2H, s), 7.14-7.23 (10H, m)
A solution of (1R,2R)-(-)-1,2-diphenyl-1,2-dimesyloxyethane 119 (3.80 g, 10.26 mmol) and NaN₃ (1.87 g, 28.76 mmol) in DMF (50 ml) was heated to 90 °C for 7 h. The mixture was cooled to room temperature, quenched with water (50 ml) and extracted 5 times with diethyl ether. The combined organic extracts were washed with brine, dried over Na₂SO₄, filtered and concentrated \textit{in vacuo} leaving a clear brown oil. Flash chromatography (hexanes:CH₂Cl₂, 5:1) afforded a clear yellow oil.

Yield: 1.70 g; 62.7 %.

\([\alpha]^{20}_D = +156.5^\circ (c 0.1, \text{CHCl}_3) \) (Lit.: + 157°, c 1.05, CHCl₃).¹⁵³

HR-MS (FAB, MNOBA matrix) for C₁₄H₁₃N₆ (M+H)⁺: required mass: 265.1202 ; measured mass: 265.1212.

δₜ (400 MHz, CDCl₃): 4.65 (2H, s), 7.06-7.08 (4H, m), 7.22-7.26 (6H, m).

δₜ (100 MHz, CDCl₃): 70.6, 127.5, 128.4, 128.5, 135.6.

To a solution of (1S,2S)-(−)-1,2-diamino-1,2-diphenylethane 111 (3.85 g, 18.13 mmol) and anhydrous solid K$_2$CO$_3$ (7.52 g, 54.41 mmol) in acetonitrile (60 ml) was added (iodomethyl) trimethylsilane (6.50 ml, 43.74 mmol) and the reaction mixture stirred at 100 °C for 68 hours. The cooled reaction mixture was then filtered and concentrated in vacuo leaving a yellow solid. Flash chromatography (hexanes:EtOAc, 50:1 → 20:1) gave a clear yellow oil which solidified on standing at room temperature.

Yield: 6.66 g; 95.4 %.

[α]$_D^{20}$ = −7.1° (c 0.218, MeOH).

HR-MS (FAB, MNOBA matrix) for C$_{22}$H$_{37}$N$_2$Si$_2$ (M+H)$^+$: required mass: 385.2495; measured mass: 385.2481.

δ$_H$ (400 MHz, CDCl$_3$): 0.01 (18H, s, 2 x Me$_3$Si), 1.75 (2H, d, J_{HH} 13.6 Hz), 1.87 (2H, d, J_{HH} 13.6 Hz), 1.89 (2H, br s, 2 x NH), 3.45 (2H, s), 6.94-6.96 (4H, m), 7.08-7.11 (6H, m).

δ$_C$ (100 MHz, CDCl$_3$): -2.6, 37.7, 73.4, 126.5, 127.7, 128.0, 141.7 (quat-C).

Methyl 3-(N-trimethylsilylmethyl)-amino-4,6-O-benzylidene-3-deoxy-α-D-altropyranoside 131

To a solution of methyl 2,3-anhydro-4,6-O-benzylidene-α-D-mannopyranoside 130 (1000 mg, 3.78 mmol) in THF (30 ml) was added trimethylsilylmethyl amine (5.00 ml, 37.29 mmol). The reaction mixture was stirred under nitrogen at gentle reflux for 4 days after which TLC indicated no reaction. DMF (30 ml) was then added and the mixture heated a reflux for a further 4 days. The cooled reaction mixture was quenched with water and extracted with CH$_2$Cl$_2$, dried over MgSO$_4$, filtered and concentrated in vacuo leaving a clear oil. Flash chromatography (CH$_2$Cl$_2$:MeOH, 25:1) gave a clear oil.

Yield: 1364 mg; 98.1%.

δ$_H$ (400 MHz, CDCl$_3$): -0.01 (9H, s, Me$_3$Si), 2.18 (2H, d, J_{HH} 0.8 Hz), 3.06-3.07 (1H, m), 3.33 (3H, s, OMe), 3.74 (1H, t, J_{HH} 10.2 Hz), 3.99 (1H, dd, J_{HH} 0.8 Hz, 2.8 Hz), 4.04 (1H, dd, J_{HH} 4.0 Hz, 9.6 Hz), 4.14-4.16 (1H, m), 4.24 (1H, dd, J_{HH} 5.0 Hz, 10.2 Hz), 4.57 (1H, s), 5.53 (1H, s), 7.30-7.45 (5H, m).

Methyl 3-(N-trimethylsilylmethyl)-amino-4,6-O-benzylidene-2-O-(tert-butyldimethylsilyl)-deoxy-α-D-altropyranoside 132

To a stirred solution of alcohol 131 (1364 mg, 3.71 mmol) in DMF (10 ml) was added imidazole (1.27 g, 18.65 mmol) and TBS-Cl (2.82 g, 18.71 mmol) at room temperature. The reaction mixture was stirred for 4 days, quenched with water and extracted twice with CH$_2$Cl$_2$. The combined extracts were dried over MgSO$_4$, filtered and concentrated
leaving a brown oil. Flash chromatography (hexanes:EtOAc, 5:1) afforded a clear yellow oil.

Yield: 1.30 g, 72.6 %.

The spectral data matched that of the same amine derivative prepared via the epoxide ring-opening using NaN₃ in water and 2-methoxyethanol (see page 232).

\[
\text{(+)-Methyl 3-azido-4,6-O-benzylidene-2-}
\]
\[
\text{O-(tert-butyldimethylsilyl)-3-deoxy-α-D-altropyranoside 137}
\]

To a stirred solution of methyl 3-azido-4,6-O-benzylidene-3-deoxy-α-D-altropyranoside 136 (18.78 g, 61.11 mmol) in DMF (200 ml) was added imidazole (12.48 g, 0.183 mol) and tert-butyldimethylsilyl chloride (27.63 g, 0.183 mol) at room temperature. The reaction mixture was stirred under nitrogen at room temperature for 24 h, quenched with water and extracted three times with EtOAc. The combined extracts were washed once with brine, twice with water, dried over MgSO₄, filtered and concentrated \textit{in vacuo} leaving a clear oil. Flash chromatography (hexanes:EtOAc, 8:1→5:1) afforded a clear yellow oil.

Yield: 25.52 g; 99.1 %.

\[[\alpha]_{D}^{20} = +12.5^\circ \ (c \ 0.28, \ MeOH)\).

HR-MS for (FAB MNOBA matrix) for C₂₀H₃₂N₃O₅Si: (M+H)+: actual: 422.2111; measured: 422.2130.

\[\delta \ (400 \text{ MHz, CDCl}_3): \ 0.10 \ (3\text{H, s, Me}), \ 0.11 \ (3\text{H, s, Me}), \ 0.90 \ (9\text{H, s, }^1\text{Bu}), \ 3.39 \ (3\text{H, s, OMe}), \ 3.79 \ (1\text{H, t, } J_{HH} 10.0 \text{ Hz}), \ 3.87 \ (1\text{H, d, } J_{HH} 2.0 \text{ Hz}), \ 3.91 \ (1\text{H, d, } J_{HH} 3.2 \text{ Hz}),\]
δC (100 MHz, CDCl₃): -5.0, 18.0, 25.7, 55.7, 58.8, 60.9, 69.2, 70.6, 76.0, 101.8, 102.3, 126.2, 128.4, 129.2, 137.1 (quat-C).

To a solution of methyl 3-azido-4,6-O-benzylidene-2-O-(tert-butyldimethylsilyl)-3-deoxy-α-D-altropyranoside 137 (43.00 g, 0.102 mol) in methanol (300 ml) was slowly added palladium on carbon (10.85 g, 10 mol%, 10% Pd on C) and the reaction mixture stirred under H₂ for 24 h. The reaction mixture was then filtered through a pad of Celite, the pad washed thoroughly with CH₂Cl₂ and the combined filtrate concentrated in vacuo leaving a black oil which was subjected to flash chromatography (hexanes/EtOAc, 3:1→1:1) affording a clear yellow oil.

Yield: 39.70 g; 98.4 %.

HR-MS for (FAB MNOBA matrix) for C₂₉H₃₄N₅O₅Si: (M+H)+: actual: 396.2206; measured: 396.2202.

δH (400 MHz, CDCl₃): 0.07 (3H, s), 0.08 (3H, s), 0.89 (9H, s, tBu), 1.62 (2H, br s, -NH₂), 3.18 (1H, t, JHH 2.8 Hz), 3.34 (3H, s, OMe), 3.80 (1H, t, JHH 10.0 Hz), 3.88 (1H, t, JHH 1.2 Hz), 3.95 (1H, dd, JHH 4.0 Hz, 3.6 Hz), 4.01 (1H, dd, JHH 4.8 Hz, 5.2 Hz), 4.27 (1H, dd, JHH 4.8 Hz, 10.0 Hz), 4.45 (1H, s), 5.62 (1H,s), 7.30-7.48 (5H, m).
δC (100 MHz, CDCl3): -5.2, -5.1, 17.8, 25.6, 53.1, 55.1, 57.7, 69.2, 71.9, 76.8, 101.7, 102.4, 126.0, 128.1, 128.9, 137.4 (quat-C).

I.R. (neat, 16 scans): 3395, 2930, 2858, 1592, 1465, 1395, 1312, 1256, 1216, 1126, 1050, 1008, 981, 842, 755, 698.

Methyl 3-(N-trimethylsilylmethyl)-amino-4,6-O-benzylidene-2-O-(tert-butyldimethylsilyl)-deoxy-α-D-altropyranoside 132

To a stirred solution of methyl 3-amino-4,6-O-benzylidene-2-O-(tert-butyldimethylsilyl)-3-deoxy-α-D-altropyranoside 138 (21.57 g, 54.53 mmol) in MeCN (100 ml) was added N,N-diisopropyl-N-ethylamine (16.0 ml, 91.73 mmol) and (iodomethyl)trimethylsilane (13.0 ml, 87.49 mmol) at room temperature. The reaction mixture was stirred at gentle reflux for 16 h, cooled to room temperature, diluted with water and extracted four times with CH₂Cl₂. The combined extracts were dried over MgSO₄, filtered and concentrated in vacuo leaving a an oil. Flash chromatography (hexanes/EtOAc, 10:1, CH₂Cl₂ load) afforded the required amine as a clear yellow oil. Yield: 25.48 g, 97.0 %.

HR-MS for (FAB MNNOBA matrix) for C₂₄H₄₄NO₅Si₂: (M+H)⁺: actual: 482.2758; measured: 482.2740.

δH (400 MHz, CDCl₃): 0.02 (9H, s, Me₃Si), 0.09 (3H, s), 0.10 (3H, s), 0.90 (9H, s, ³Bu), 1.58 (1H, br s, NH), 2.11 (1H, d, JHH 12.8 Hz), 2.22 (1H, d, JHH 12.8 Hz), 2.96 (1H, t, JHH 3.0 Hz), 3.33 (1H, s, OMe), 3.75 (1H, t, JHH 10.2 Hz), 3.97 (1H, d, JHH 2.8 Hz), 4.02 (1H, dd, JHH 4.0 Hz, 10.0 Hz), 4.15-4.17 (1H, m), 4.25 (1H, dd, JHH 5.2 Hz, 10.0 Hz), 4.44 (1H, s), 5.57 (1H, s), 7.32-7.36 (3H, m), 7.46-7.48 (2H, m).
To a stirred solution of methyl 3-[(N-trimethylsilylmethyl)-amino]-4,6-O-benzylidene-2-O-(tert-butyldimethylsilyl)-deoxy-α-D-altropyranoside 132 (25.48 g, 52.89 mmol) in MeCN (200 ml) was added N,N-diisopropyl-N-ethylamine (47.00 ml, 0.269 mol) and chloroacetonitrile (17.00 ml, 0.269 mol) at room temperature. The reaction mixture was stirred at gentle reflux for 86 h, cooled to room temperature, diluted with water and extracted 5 times with CH₂Cl₂. The combined extracts were dried over MgSO₄, filtered and concentrated in vacuo leaving a black oil. Flash chromatography (hexanes/EtOAc, 30:1) afforded the required tertiary amine as a clear yellow oil.

Yield: 25.15 g; 91.3 %.

HR-MS (FAB, MNOBA matrix) for C₂₆H₄₅N₂O₅Si₂ (M+H)+: required mass: 521.2867; measured mass: 521.2883.

Anal. calculated for C₂₆H₄₄N₂O₅Si₂: Calculated: C, 59.96; H, 8.52; N, 5.38; Found: C, 57.90; H, 8.19; N, 5.13.

δH (400 MHz, CDCl₃): 0.04 (9H, s, Me₃Si), 0.14 (3H, s), 0.18 (3H, s), 0.93 (9H, s, tBu), 2.40 (1H, d, JHH 14.4 Hz), 2.63 (1H, d, JHH 14.4 Hz), 3.00 (1H, s), 3.34 (3H, s), 3.73 (1H, dt, JHH 1.6 Hz, 8.2 Hz), 3.97 (2H, dd, JHH 3.9 Hz, 16.0 Hz), 4.19 (2H, dd, JHH 1.6...
δ (100 MHz, CDCl₃): -5.0, -4.7, -1.6, 17.9, 25.7, 44.7, 45.5, 54.9, 58.6, 64.8, 69.1, 69.4, 78.5, 101.3, 102.1, 116.2, 126.0, 128.1, 128.9, 137.6 (quat-C).

Methyl 3-N-(trans-3,4-dicarbomethoxy)pyrrolidine-4,6-O-benzylidene-2-O-(tert-butyldimethylsilyl)-deoxy-α-D-altropyranoside 134ab

To a solution of methyl 3-(N-cyanomethyl-N-trimethylsilylmethyl)amino-4,6-O-benzylidene-2-O-(tert-butyldimethylsilyl)-deoxy-α-D-altropyranoside 133 (5.20 g, 9.98 mmol) in MeCN (50 ml) was added dimethyl fumarate (4.32 g, 29.97 mmol) and AgF (3.80 g, 29.25 mmol) and the solution stirred at room temperature in the dark for 5 days. The reaction mixture was filtered through a pad of Celite, the pad washed thoroughly with CH₂Cl₂ and the filtrate concentrated in vacuo leaving a brown solid. Flash chromatography (hexanes/EtOAc, 20:1→10:1) afforded the cycloadduct as a clear oil.

Yield: 3.98 g; 70.4 %.

HR-MS (FAB, MNOBA matrix) for C₂₆H₄₄NO₉Si (M+H)⁺: required mass: 566.2785; measured mass: 566.2760.

δ (400 MHz, CDCl₃, mixture of isomers): 0.06 (3H, s), 0.07 (3H, s), 0.89 (9H, s), 2.69 (1H, br s), 2.97 (1H, dd, JHH 5.2 Hz, 8.8 Hz), 3.09 (1H, t, JHH 8.6 Hz), 3.15 (1H, t, JHH 7.4 Hz), 3.29 (1H, s), 3.31 (1H, s), 3.34-3.39 (2H, m), 3.67 (6H, s), 3.68 (3H, s), 4.06
(1H, dd, J_HH 2.0 Hz, 13.2 Hz), 4.12 (1H, dt, J_HH 9.4 Hz, 2.8 Hz), 4.20-4.33 (2H, m), 4.37 (1H, s), 5.46 (1H, d, J_HH 3.2 Hz), 7.29-7.36 (3H, m), 7.43-7.46 (2H, m).

δ_C (100 MHz, CDCl_3, mixture of isomers): -5.1, -5.0, 17.9, 25.6, 44.5, 44.7, 51.97, 54.9, 55.1, 56.4, 56.4, 58.9, 59.0, 65.1, 69.3, 69.4, 70.2, 70.3, 77.2, 77.9, 77.9, 101.6, 102.4, 102.5, 126.1, 126.3, 128.1, 128.8, 128.9, 137.7, 137.8, 173.9. Peak overlapping present.

Methyl 3-\textit{N}-(\textit{trans}-3,4-dicarbomethoxy)pyrroolidine-\textit{N}-oxide-4,6-\textit{O}-benzyldiene-2-\textit{O}-(\textit{tert}-butyldimethylsilyl)-deoxy-\textit{\alpha}-\textit{D}-altropyranoside 139ab

To the cycloadduct prepared above 134ab (235 mg, 0.42 mmol) in CH_2Cl_2 (5 ml) at 0 °C was added in one portion \textit{meta}-chloroperbenzoic acid (172 mg, 0.50 mmol, 56-88 %, 50% assumed). The mixture was then stirred at room temperature for 2 h. The crude reaction mixture was then diluted with CH_2Cl_2, treated with 10 % aqueous NaHCO_3 (10 ml) and extracted three times with CH_2Cl_2. The combined extracts were dried over MgSO_4, filtered and concentrated \textit{in vacuo} leaving a clear oil. Flash chromatography (CH_2Cl_2:MeOH, 50:1) afforded the \textit{N}-oxide 139 as a clear oil which was used immediately.

Yield: 202 mg, 83.5 %.

HR-MS for (FAB, MNOBA matrix) C_{28}H_{44}NO_{10}Si, (M+H)^+: required mass: 582.2735; measured mass: 582.2720.
A mixture of methyl 5-bromo-5-deoxy-4-O-tert-butyldimethylsilyl-1,3-O-iso-propylidene-β-D-fructopyranoside 146 (8.40 g, 20.42 mmol) and sodium azide (27.50 g, 0.423 mol) in DMF (80 ml) was stirred under nitrogen at 130 °C for 42 h after which the cooled reaction mixture was quenched with water and extracted with CH₂Cl₂ (5 x). The combined extracts were washed twice with water, dried over MgSO₄, filtered and concentrated in vacuo leaving a clear yellow/orange liquid. Flash chromatography (hexanes/EtOAc, 25:1→8:1) gave the azide as a clear yellow oil.

Yield: 5.34 g; 70.0 %.

HR-MS (FAB, MNOBA matrix) for C₁₆H₃₁N₃O₅Si (M-OME)+: 342.

To a solution of methyl 5-azido-5-deoxy-4-O-tert-butyldimethylsilyl-1,3-O-iso-propylidene-β-D-fructopyranoside 147 (400 mg, 1.07 mmol) in methanol (10 ml) was added palladium on carbon (114 mg, 10 mol%, 10 % Pd on C) and the reaction mixture stirred under H₂ for 6 h. The reaction mixture was then filtered through a pad
of Celite, the pad washed thoroughly with MeOH and the filtrate concentrated in vacuo leaving a light green oil. Flash chromatography (CH$_2$Cl$_2$:MeOH, 40:1) afforded the amine as a clear yellow oil.

Yield: 356 mg; 95.7%.

HR-MS for (FAB, MNOBA matrix) C$_{16}$H$_{34}$NO$_5$Si, (M+H)$^+$: required mass: 348.2206; measured mass: 348.2220.

$\delta$$_H$ (400 MHz, CDCl$_3$): 0.03 (3H, s, Me), 0.04 (3H, s, Me), 0.84 (9H, s, 'Bu), 1.39 (3H, s, Me), 1.43 (3H, s, Me), 1.57 (2H, broad s, NH$_2$), 3.08 (1H, broad m), 3.24 (3H, s, OMe), 3.55 (2H, m), 3.81-3.87 (3H, m), 4.02 (1H, dd, J_{HH} 4.8 Hz, 9.6 Hz).

$\delta$$_C$ (100 MHz, CDCl$_3$): -5.0, -4.4, 18.1, 18.9, 25.7, 29.1, 47.9, 53.1, 60.9, 64.1, 67.7, 71.8, 94.0, 100.0.

Methyl 5-(N-trimethylsilylmethyl)amino-5-deoxy-4-O-tert-butyldimethylsilyl-1,3-O-isopropylidene-β-D-fructopyranoside 149

To a stirred solution of methyl 5-amino-5-deoxy-4-O-tert-butyldimethylsilyl-1,3-O-isopropylidene-β-D-fructopyranoside 148 (320 mg, 0.92 mmol) in MeCN (5 ml) was added N,N-diisopropyl-N-ethyamine (0.30 ml, 1.72 mmol) and (iodomethyl)-trimethylsilane (0.25 ml, 1.68 mmol) at room temperature. The reaction mixture was stirred at gentle reflux for 20 h, cooled to room temperature, quenched with water and extracted 3 times with CH$_2$Cl$_2$. The combined extracts were dried over MgSO$_4$, filtered and concentrated in vacuo leaving a brown oil. Flash chromatography (hexanes/EtOAc, 8:1, CH$_2$Cl$_2$ load) afforded the required secondary amine as a clear oil.
Yield: 326 mg; 81.7 %.

HR-MS for (FAB, MNOBA matrix) C_{20}H_{44}NO_{5}Si_{2}, (M+H)^{+}: required mass: 434.2758; measured mass: 434.2740.

δ_{H} (400 MHz, CDCl\textsubscript{3}): 0.03 (9H, s, Me\textsubscript{3}Si), 0.04 (3H, s), 0.05 (3H, s), 0.85 (9H, s, 13Bu), 1.39 (3H, s), 1.43 (3H, s), 1.61 (1H, d, J\textsubscript{HH} 12.8 Hz), 2.25 (1H, d, J\textsubscript{HH} 12.8 Hz), 2.64 (1H, d, J\textsubscript{HH} 4.8 Hz), 3.24 (3H, s, OMe), 3.56 (1H, d, J\textsubscript{HH} 12.0 Hz), 3.57 (1H, d, J\textsubscript{HH} 12.4 Hz), 3.74 (1H, d, J\textsubscript{HH} 12.0 Hz), 3.83 (1H, d, J\textsubscript{HH} 12.0 Hz), 4.05 (1H, d, J\textsubscript{HH} 10.0 Hz), 4.14 (1H, dd, J\textsubscript{HH} 4.8 Hz, 9.6 Hz).

δ\textsubscript{C} (100 MHz, CDCl\textsubscript{3}): -4.8, -4.4, -2.4, 18.1, 19.0, 25.8, 29.1, 38.0, 47.7, 59.7, 60.9, 64.6, 67.8, 71.9, 93.9, 99.9.

To a stirred solution of methyl 5-(N-trimethylsilylmethyl)-amino-5-deoxy-4-O-tert-butyl-dimethylsilyl-1,3-O-isopropylidene-\beta-D-fructopyranoside \textbf{149} (274 mg, 0.63 mmol) in MeCN (4 ml) was added \textit{N},\textit{N}-diisopropyl-\textit{N}-ethylamine (0.30 ml, 1.72 mmol) and chloroacetonitrile (0.10 ml, 1.58 mmol) at room temperature. The reaction mixture was stirred at 100-110 °C for 25 h, cooled to room temperature, diluted with water and extracted 5 times with CH\textsubscript{2}Cl\textsubscript{2}. The combined extracts were dried over MgSO\textsubscript{4}, filtered and concentrated \textit{in vacuo} leaving a brown oil. Flash chromatography (hexanes/EtOAc, 10:1, CH\textsubscript{2}Cl\textsubscript{2} load) afforded the required secondary amine as a clear yellow oil.
HR-MS for (FAB, MNOBA matrix) C_{22}H_{48}N_{2}O_{5}Si_{2}, (M+H)^+: required mass: 473.2867; measured mass: 473.2890.

δ_{H} (400 MHz, CDCl_{3}): 0.06 (3H, s), 0.09 (3H, s), 0.09 (9H, s, Me_{3}Si), 0.86 (9H, s, tBu), 1.39 (3H, s), 1.42 (3H, s), 2.37 (1H, d, J_{HH} 14.4 Hz), 2.58 (1H, d, J_{HH} 14.4 Hz), 2.81 (1H, d, J_{HH} 2.0 Hz), 3.22 (3H, s, OMe), 3.45 (1H, d, J_{HH} 12.0 Hz), 3.69 (1H, d, J_{HH} 17.2 Hz), 3.76 (1H, dd, J_{HH} 6.0 Hz, 13.2 Hz), 3.84 (1H, d, J_{HH} 12.4 Hz), 3.86 (1H, dd, J_{HH} 1.8 Hz, 13.4 Hz), 4.14-4.19 (3H, m).

δ_{C} (100 MHz, CDCl_{3}): -4.8, -4.4, -1.5, 18.3, 18.7, 25.9, 29.1, 43.6, 44.8, 48.0, 60.8, 61.0, 64.1, 70.4, 71.9, 94.0, 99.9, 116.3.

I.R. (neat, 16 scans): 2992, 2954, 2897, 2857, 2774, 2229, 1468, 1434, 1380, 1287, 1252, 1192, 1142, 1103, 1159, 948, 917, 856, 779, 760, 671.

Methyl 5-N-(trans-3,4-dicarbomethoxypropyrrolidine)-5-deoxy-4-O-tert-butyldimethylsilyl-1,3-O-isopropylidene-β-D-fructopyranoside 151ab

To a solution of methyl 5-(N-cyanomethyl-N-trimethylsilylmethyl)-amino-5-deoxy-4-O-tert-butyldimethylsilyl-1,3-O-isopropylidene-β-D-fructopyranoside 150 (180 mg, 0.38 mmol) in acetonitrile (4 ml) was added dimethyl fumarate (165 mg, 1.14 mmol) followed by AgF (145 mg, 1.14 mmol). The reaction mixture was stirred at room temperature under N_{2} in the dark for approx. 9 h before it was filtered through a pad of Celite. The pad was washed thoroughly with CH_{2}Cl_{2} and the filtrate concentrated in vacuo affording a brown crystalline solid. Flash chromatography (hexanes:EtOAc, 10:1, CH_{2}Cl_{2} load) gave the desired pyrrolidine adducts as a clear oil.
HR-MS for (FAB, MNObA matrix) C_{24}H_{44}NO_{5}Si, (M+H)^{+}: required mass: 518.2785; measured mass: 518.2770.

δ_{H} (400 MHz, CDCl_{3}): 0.04 (6H, s), 0.84 (9H, s), 1.38 (3H, s), 1.42 (3H, s), 2.51 (1H, br s), 2.90 (1H, dd, J_{HH} 5.6 Hz, 8.8 Hz), 2.99 (1H, t, J_{HH} 8.4 Hz), 3.18-3.19 (1H, m), 3.21 (3H, s, OMe), 3.27-3.38 (3H, m), 3.51 (1H, dd, J_{HH} 2.4 Hz, 12.0 Hz), 3.61-3.65 (1H, m), 3.67 (3H, s, Me), 3.68 (3H, s, Me), 3.70-3.72 (1H, m), 3.81 (1H, dd, J_{HH} 4.6 Hz, 12.2 Hz), 4.10-4.20 (2H, m).

δ_{C} (100 MHz, CDCl_{3}): -4.4, -4.4, 18.9, 25.8, 29.1, 44.6, 44.7, 47.8, 52.1, 52.1, 55.8, 55.9, 61.0, 61.9, 64.9, 65.0, 70.0, 71.8, 94.2, 99.9, 174.1, 174.2.

\[N-(\text{Benzyl} \text{ox})\text{c} \text{arbonyl-}O\text{-triethylsilyl-D-(} \text{−} \text{)}\text{-} \alpha\text{-phenylglycinol} \text{166} \]

To a solution of N-(benzyl oxy) carbonyl-D-(−)-α-phenylglycinol 165 (5.00 g, 18.43 mmol) and imidazole (2.51 g, 36.87 mmol) in DMF (50 ml) at room temperature was added chloro triethylsilane (5.00 ml, 29.79 mmol). The reaction mixture was stirred under nitrogen for 30 min., then quenched with water and extracted twice with EtOAc. The combined extracts were washed with water (5 x) dried over MgSO_{4}, filtered and concentrated in vacuo leaving a clear liquid. Flash chromatography (hexanes:EtOAc, 20:1→10:1) afforded the protected alcohol as a clear liquid.

Yield: 7.05 g; 99.2%.
HR-MS for (FAB, MNOBA matrix) C_{22}H_{32}NO_{3}Si, (M+H)^{+}: required mass: 386.2151; measured mass: 386.2139.

δ_{H} (400 MHz, CDCl_{3}): 0.55 (6H, q, J_{HH} 7.8 Hz), 0.91 (9H, t, J_{HH} 8.0 Hz), 3.77-3.79 (1H, broad m), 3.93 (1H, dd, J_{HH} 4.2 Hz, 10.2 Hz), 4.83 (1H, br s), 5.07-5.17 (2H, m), 5.70 (1H, br s), 7.24-7.34 (10H, m).

δ_{C} (100 MHz, CDCl_{3}): 4.1, 6.5, 56.5, 66.0, 66.6, 126.6, 127.2, 127.7, 127.9, 128.2, 128.3, 136.4, 140.3, 155.9 (C=O).

To a solution of D-(-)-a-phenylglycinol 164 (5.00 g, 36.45 mmol) and imidazole (3.72 g, 54.64 mmol) in DMF (100 ml) under N_{2} at room temperature was added chlorotriethylsilane (6.12 ml, 36.49 mmol). The reaction mixture was stirred for 10 min. then quenched with water and extracted twice with EtOAc. The combined organic extracts were washed three times with water, dried over MgSO_{4}, filtered and concentrated in vacuo leaving a clear liquid which required no further purification.

Yield: 9.07 g; 99.0 %.

[α]_{D}^{20} = -14.1° (c 0.22, MeOH).
\[\delta \ (400 \text{ MHz}, \text{CDCl}_3): \ 0.57 \ (6\text{H}, \text{q}, \ J_{\text{HH}} \ 7.8 \text{ Hz}), \ 0.93 \ (9\text{H}, \text{t}, \ J_{\text{HH}} \ 7.8 \text{ Hz}), \ 1.72 \ (2\text{H}, \text{ broad s}, \ \text{NH}_2), \ 3.49 \ (1\text{H}, \text{dd}, \ J_{\text{HH}} \ 8.8 \text{ Hz}, \ 9.6 \text{ Hz}), \ 3.70 \ (1\text{H}, \text{dd}, \ J_{\text{HH}} \ 3.8 \text{ Hz}, \ 9.6 \text{ Hz}), \ 4.06 \ (1\text{H}, \text{dd}, \ J_{\text{HH}} \ 3.8 \text{ Hz}, \ 8.6 \text{ Hz}), \ 7.24-7.37 \ (5\text{H}, \text{m}). \]

\[\delta_c \ (100 \text{ MHz}, \text{CDCl}_3): \ 4.4, \ 6.8, \ 57.7, \ 69.3, \ 126.9, \ 127.3, \ 128.3, \ 142.6. \]

\[\text{HR-MS for (FAB, MNOBA matrix) } \text{C}_{14}\text{H}_{26}\text{NOSi} \ (\text{M}+\text{H})^+: \text{ required mass: } 338.2335; \text{ measured mass: } 338.2324. \]

\[N\text{-Trimethylsilylmethyl-}O\text{-triethylsilyl-D-(}-\text{)-}\alpha\text{-phenylglycinol 173} \]

To a solution of \(O\text{-triethylsilyl-D-(-)-}\alpha\text{-phenylglycinol 172} \ (7.70 \text{ g}, \ 30.62 \text{ mmol})\) in MeCN (100 ml) at room temperature was added Hüning’s base (9.70 ml, 55.61 mmol) followed by (iodomethyl)trimethylsilane (7.30 ml, 49.13 mmol). The resultant clear mixture was stirred at gentle reflux for 29 h. The reaction mixture was then cooled to room temperature, diluted with water, extracted with EtOAc (4 x), and the combined organic extracts dried over Na\textsubscript{2}SO\textsubscript{4}, filtered and concentrated \textit{in vacuo} affording a brown solid. Flash chromatography (hexanes:EtOAc, 100:1 \(\rightarrow\) 50:1) gave a clear yellow oil.

Yield: 7.83 g; 75.7 %.

\[[\alpha]_D^{20} = -42.0^\circ \text{ (c 0.212, MeOH).} \]

HR-MS for (FAB, MNOBA matrix) \(\text{C}_{18}\text{H}_{36}\text{NOSi}_2\), \((\text{M}+\text{H})^+: \text{ required mass: } 338.2335; \text{ measured mass: } 338.2324.\]
\(\delta_H (400 \text{ MHz, CDCl}_3) \): 0.03 (9H, s, Me_3Si), 0.61 (6H, q, J_{HH} 8.0 \text{ Hz}), 0.97 (9H, t, J_{HH} 7.8 \text{ Hz}), 1.81 (1H, d, J_{HH} 13.6 \text{ Hz}), 1.89 (1H, broad s, NH), 1.94 (1H, d, J_{HH} 13.6 \text{ Hz}), 3.47-3.51 (1H, m), 3.64-3.69 (2H, m), 7.24-7.37 (5H, m).

\(\delta_C (100 \text{ MHz, CDCl}_3) \): -2.7, 4.4, 6.7, 37.7, 68.3, 69.2, 127.1, 127.9, 128.2, 141.2.

N-tert-Butoxycarbonyl-N-trimethylsilylmethyl-O-triethylsilyl-D-(-)-\(\alpha \)-phenylglycinol 174

To a solution of N-trimethylsilylmethyl-O-triethylsilyl-D-(-)-\(\alpha \)-phenylglycinol 173 (432 mg, 1.28 mmol) in MeOH (10 ml) was added Et_3N (0.18 ml, 1.29 mmol) and di-tert-butyl dicarbonate, (Boc\(_2\)O), (335 mg, 1.53 mmol) and the mixture stirred at room temperature for 47 h. The reaction mixture was then quenched with water, extracted four times with EtOAc and the combined extracts dried over MgSO\(_4\). Filtration and concentration *in vacuo* afforded a clear yellow oil. Flash chromatography (hexanes:CH\(_2\)Cl\(_2\), 2:1, CH\(_2\)Cl\(_2\) load) gave the required tertiary amine as a clear yellow oil.

Yield: 534 mg; 95.4 %.

\([\alpha]_D^{20} = -40.6^\circ \ (c \ 0.212, \text{MeOH}).\]

HR-MS for (FAB, MNOBA matrix) C\(_{23}\)H\(_{44}\)NO\(_3\)Si\(_2\), (M+H): required mass: 438.2860; measured mass: 438.2879.
1H (400 MHz, CDCl$_3$): -0.07 (9H, br s, Me$_3$Si), 0.63 (6H, q, J$_{HH}$ 8.0 Hz), 0.97 (9H, t, J$_{HH}$ 8.0 Hz), 1.48 (9H, s, tBu), 2.43-2.56 (1H, broad m), 4.04-4.08 (1H, broad m), 5.15-5.16 (1H, broad m), 7.23-7.32 (5H, m).

1C (100 MHz, CDCl$_3$): -1.1, 4.4, 6.8, 28.5, 35.0, 61.3, 62.5, 79.2, 127.3, 127.7, 128.5, 139.3, 156.0.

1-Boc ? H

1Me$_3$Si

7-Butoxycarbonyl-7-Trimethylsilylmethyl-D-(-)-7-phenylglycinol 175

To a solution of 7-Butoxycarbonyl-7-Trimethylsilylmethyl-0-triethylsilyl-D-(-)-7-phenyl-glycinol 174 (1.00 g, 2.28 mmol) in THF (1.66 ml) was added water (5 ml) and AcOH (10 ml) and the mixture stirred at room temperature for 10 min. The reaction mixture was then concentrated in vacuo leaving a clear liquid which was subjected to flash chromatography (hexanes/EtOAc, 3:1, CH$_2$Cl$_2$ load) which afforded the free alcohol as a clear oil.

Yield: 735 mg; 99.5 %.

$[^1]\alpha_{D}^{20} = -60.3^\circ$ (c 0.116, MeOH).

HR-MS for (FAB, MNOBA matrix) C$_{17}$H$_{30}$NO$_3$Si, (M+H)$^+$: required mass: 324.1995; measured mass: 324.1989.

Anal. calculated for C$_{17}$H$_{29}$NO$_3$Si: Calculated: C, 63.12; H, 9.04; N, 4.33; Found: C, 61.08; H, 8.96; N, 4.07.
D-(-)-α-(1-Bromoethyl)-N-(tert-butoxycarbonyl)benzylamine 184

To a solution of D-(-)-α-N-(tert-butoxycarbonyl)phenylglycinol 183 (13.30 g, 56.05 mmol) and triphenylphosphine (44.10 g, 0.168 mol) in dry THF (250 ml) at 0 °C was added carbon tetrabromide (55.76 g, 0.168 mol) in one portion. A white precipitate of Ph₃P=O was seen almost immediately. The reaction mixture was stirred at 0 °C for 5 min. then room temperature for 5 h. The mixture was then diluted with Et₂O, the white Ph₃P=O filtered off under suction, the filter cake washed twice with Et₂O, and the filtrate concentrated in vacuo affording a brown oil. Flash chromatography (hexanes:EtOAc, 16:1→8:1, CH₂Cl₂ load) gave the bromide as a white solid.

Yield: 11.95 g; 71.0 %.

\[\alpha\] = -59.0° (c 0.2, MeOH).

M. Pt.: 112-114 °C.

HR-MS for (FAB, MNOBA matrix) C₁₃H₁₈NO₂Br, (M)+: required mass: 300.0599; measured mass: 300.0580.

δ_H (400 MHz, CDCl₃): 1.42 (9H, s, 'Bu), 3.66 (2H, br s), 4.99 (1H, br s), 5.27 (1H, br s), 7.26-7.36 (5H, m).

δ_C (100 MHz, CDCl₃): -1.4, 28.3, 28.5, 37.0, 63.4, 80.2, 127.7, 127.8, 128.6, 137.9.

δC (100 MHz, CDCl₃): 28.2, 37.1, 54.7, 80.0, 126.3, 127.9, 128.6, 139.3, 154.9.

(R)-(-)-4-tert-Butoxycarbonylamino-4-phenyl-(E)-but-2-enoic acid ethyl ester 190

To a solution of crude aldehyde 189 (982 mg crude, quantitative yield assumed of 887 mg, 3.77 mmol) in CH₂Cl₂ (8 ml) was added in one portion Ph₃P=CHCO₂Et (1313 mg, 3.77 mmol) at room temperature and the reaction mixture stirred under nitrogen for 45 min. The reaction mixture was then concentrated in vacuo leaving a clear yellow oil. This was subjected to flash chromatography (hexanes/EtOAc,10:1, CH₂Cl₂ load) affording a clear oil which solidified on standing at room temperature.

Yield: 771 mg; 67.0 %. (Overall yield of the two steps is 83.5 %).

Chemical Ionisation for C₁₇H₂₃NO₄Na, (M+Na)⁺: measured mass = 328.

δH (300 MHz, CDCl₃): 1.26 (3H, t, JHH 7.1 Hz), 1.42 (9H, s, tBu), 4.18 (2H, q, JHH 6.6 Hz), 4.87 (1H, broad s), 5.42 (1H, broad s), 5.96 (1H, dd, JHH 15.6 Hz, 1.7 Hz), 7.03 (1H, dd, JHH 15.6 Hz, 5.1 Hz), 7.23-7.35 (5H, m).

(R)-(−)-α-4-tert-Butoxycarbonylamino-4-phenyl-butanoic acid ethyl ester 191

To a solution of alkene 190 (19.47 g, 63.76 mmol) in EtOAc (300 ml) was added Pd/C (679 mg, 10 mol%, 10% Pd on C) and the solution flushed with hydrogen. The resultant black reaction mixture was stirred at room temperature for 6 h and then filtered through a pad of Celite. The pad was washed thoroughly with EtOAc and the filtrate concentrated in vacuo leaving a white solid which was sufficiently pure for the next reaction.

Yield: 19.10 g; 97.4%.

HR-MS for (FAB MNOBA matrix): C_{17}H_{26}NO_{4}, (M+H)^+: actual: 308.1862; measured: 308.1865.

δ_{H} (300 MHz, CDCl_{3}): 1.20 (3H, t, \text{J}_{HH} 7.2 \text{ Hz, Me}), 1.37 (9H, s, \text{tBu}), 2.04 (2H, br s), 2.26-2.31 (2H, m), 4.07 (2H, q, \text{J}_{HH} 7.2 \text{ Hz}), 4.62 (1H, br s), 5.56 (1H, br s), 7.20-7.30 (5H, m).

δ_{C} (100 MHz, CDCl_{3}): 14.1, 28.2, 31.2, 31.6, 54.4, 60.4, 79.3, 126.2, 127.2, 128.5, 142.2 (quat-C), 155.1 (C=O), 173.1 (C=O).

To a solution of crude saturated ester 191 (19.10 g, 62.14 mmol) in dry PhMe (250 ml) at -10 °C under nitrogen was slowly added Me₃Al (38.00 ml, 76.00 mmol, 2M in hexanes) over 5 min. The reaction mixture was then allowed to warm to room temperature and stirred for 45 min. before being diluted with CH₂Cl₂. The mixture cooled to 0 °C and then slowly quenched with a 10 % aqueous Rochelle’s salt solution (38 g in 380 ml), stirred vigorously at room temperature for 1h, and the organic layer separated. The aqueous layer was extracted three times with EtOAc, the combined organic extracts dried over MgSO₄, filtered and concentrated in vacuo affording a white solid. Flash chromatography (hexanes/EtOAc, 8:1→4:1, CH₂Cl₂ load) gave the required lactam as a white solid.

Yield: 10.49 g; 64.6 %.

M.Pt.: 105-109 °C.

HR-MS for (FAB MN0BA matrix) C₁₅H₁₉NO₃Na, (M+Na)+: required mass: 284.1253; measured mass: 284.1263.

Anal. calculated for C₁₅H₁₉NO₃: Calculated: C, 68.94; H, 7.33; N, 5.36: Found: C, 68.66; H, 7.29; N, 5.31.

δH (400 MHz, CDCl₃): 1.23 (9H, s, ³Bu), 3.07-4.04 (1H, m), 2.41-2.51 (2H, m), 2.62-2.68 (1H, m), 5.09-5.12 (1H, m), 7.17-7.34 (5H, m).

δC (100 MHz, CDCl₃): 27.4, 27.6, 31.2, 61.6, 82.8 (quat-C), 125.0, 127.5, 128.7, 142.5 (quat-C), 149.5 (C=O), 174.8 (C=O).
To a solution of the N-Boc protected lactam 186 (6.19 g, 23.69 mmol) in CH₂Cl₂ (50 ml) at room temperature was added in one portion trifluoroacetic acid (50 ml). The reaction mixture was stirred for 5 min. after which the mixture was concentrated in vacuo. Any traces of trifluoroacetic acid were removed by twice co-evaporation with toluene leaving a green oil. Flash chromatography (hexanes/EtOAc, 1:1, CH₂Cl₂ load) afforded the lactam as a light brown solid.

Yield: 3.06 g; 80.1 %.

M.Pt.: 89-91 °C.

HR-MS for (FAB MNOBA matrix) for C₁₀H₁₂NO, (M+H)⁺: required mass: 162.0914; measured mass: 162.0919.

Anal. calculated for C₁₀H₁₁NO: Calculated: C, 74.51, H, 6.88, N, 8.69: Found: C, 71.39; H, 6.55; N, 8.24.

δₜ (400 MHz, CDCl₃): 1.91-1.99 (1H, m), 2.34-2.59 (3H, m), 4.73 (1H, t, JHH 7.2 Hz), 6.42 (1H, NH), 7.26-7.36 (5H, m).

δC (100 MHz, CDCl₃): 30.3, 31.2, 58.1, 125.5, 127.8, 128.8, 142.4 (quat-C), 178.9 (C=O).

To NaH (25 mg, 0.63 mmol, 60 % dispersion in oil) was added distilled hexane (4 ml) under nitrogen and the solution stirred well. The NaH was allowed to settle and the hexane and oil removed via syringe. The above process was repeated twice before DMF (5 ml) was added to the powdered NaH. The lactam 156 (100 mg, 0.62 mmol) was then added in one portion and the reaction mixture stirred at room temperature for 70 min. (Iodomethyl)trimethylsilane (0.10 ml, 0.67 mmol) was then added and the solution stirred under nitrogen at room temperature for 19 h. The reaction mixture was then quenched with water, extracted twice with EtOAc, extracted twice with CH$_2$Cl$_2$, the combined extracts dried over MgSO$_4$, filtered and concentrated in vacuo affording a brown oil. Flash chromatography (hexanes/EtOAc, 1:1, CH$_2$Cl$_2$ load) gave the required product as a clear brown oil.

Yield: 77 mg; 50.3 %.

HR-MS for (FAB MNOBA matrix) for C$_{14}$H$_{22}$NOSi, (M+H)$^+$: required mass: 248.1471; measured mass: 248.1484.

δ$_H$ (400 MHz, CDCl$_3$): 0.01 (9H, s, Me$_3$Si), 1.81-1.86 (1H, m), 2.05 (1H, d, J$_{HH}$ 15.2 Hz), 2.39-2.52 (3H, m), 3.18 (1H, d, J$_{HH}$ 15.2 Hz), 4.54 (1H, t, J$_{HH}$ 6.4 Hz), 7.12-7.37 (5H, m).

δ$_C$ (100 MHz, CDCl$_3$): -1.4, 28.6, 29.7, 32.5, 64.5,126.4, 127.9, 129.0, 141.2 (quat-C), 174.4 (C=O).

I.R. (KBr, 16 scans): 3456, 3030, 2953, 2894, 1682, 1492, 1458, 1419, 1361, 1249, 1150, 1080, 1029, 852, 762, 702.
To a stirred solution of commercially available N-nitroso-diphenylamine (5.00 g, 25.22 mmol) in CH$_2$Cl$_2$ (50 ml) cooled to -78 °C was dropwise added DIBAL-H (35.00 ml, 52.50 mmol, 1.5 M solution in toluene) and the resultant clear yellow mixture stirred at -78 °C for 2 h 20 min. after which time DIBAL-H (15.0 ml, 22.50 mmol) was added at -78 °C. The reaction mixture was then allowed to stir at -78 °C for approx. 3 h and then room temperature for 15 h before being diluted with CH$_2$Cl$_2$ (100 ml). With cooling (ice bath) and very vigorous stirring, the reaction mixture was treated with a 10 % aqueous Rochelle’s salt solution (35 g in 350 ml) and the emulsion stirred for 60 min. at room temperature. The mixture was then extracted with CH$_2$Cl$_2$, the combined CH$_2$Cl$_2$ extracts dried over MgSO$_4$, filtered and concentrated _in vacuo_ leaving a brown oil. Flash chromatography (hexanes/EtOAc, 60:1—>45:1) afforded the hydrazine as a purple oil which solidified in the freezer.

Yield: 2.48 g; 53.3 %.

M. Pt.: 34-36 °C. (Lit.: 34.5 °C).173

HR-MS (FAB, MNOBA matrix) for C$_{12}$H$_{12}$N$_2$ (M)$^+$: required mass: 184.1000 ; measured mass: 184.1006.

$\delta$$_H$ (400 MHz, CDCl$_3$) 4.14 (2H, s, -NH$_2$), 6.96-7.00 (2H, m), 7.19-7.22 (4H, m), 7.26-7.31 (4H, m).

$\delta$$_C$ (100 MHz, CDCl$_3$): 119.4, 121.9, 129.0, 149.2 (quat-C).

I.R. (KBr, 16 scans): 3339, 3019, 1588, 1491, 1315, 1253, 1168, 1102, 1074, 860, 830, 748, 693, 609, 507.
To a stirred solution of dibenzylamine (10.00 g, 9.75 ml, 50.69 mmol) in THF (60 ml) was added isoamyl nitrite (35.00 ml, 0.261 mol) at room temperature and the solution stirred under nitrogen for 23 h. The solvent and excess isoamyl nitrite was removed in vacuo leaving yellow/orange paste. Flash chromatography (hexanes:EtOAc, 8:1, CH₂Cl₂ load) afforded the pure N-nitroso compound as a clear yellow oil which solidified on standing at room temperature.

Yield: 11.47 g; 100 %.

HR-MS (FAB, MNOBA matrix) for C₁₄H₁₅N₂O (M+H)⁺: required mass: 227.1184 ; measured mass: 227.1189.

δ_H (400 MHz, CDCl₃): 4.64 (2H, s, -CH₂-), 5.18 (2H, s, -CH₂-), 7.02-7.04 (2H, m), 7.22-7.24 (2H, m), 7.26-7.30 (4H, m), 7.34-7.37 (2H, m).

δ_C (100 MHz, CDCl₃): 44.8, 54.9, 127.8, 128.3, 128.4, 128.5, 128.8, 129.0, 133.8 (quat-C), 134.4 (quat-C).

To a stirred solution of N-nitrosodibenzylamine 201 (5.00 g, 22.10 mmol) in CH₂Cl₂ (75 ml) cooled to -78 °C was dropwise added DIBAL-H (75.0 ml, 0.113 mmol, 1.5 M solution in toluene) and the resultant clear yellow mixture stirred at -78 °C for 2 h. The
reaction mixture was then allowed to stir at room temperature for approx. 74 h before being slowly poured into a mixture of 10 % aqueous Rochelle's salt solution (75 g in 750 ml) and CH$_2$Cl$_2$ (700 ml). The solution was stirred vigorously for 90 min. at room temperature and then extracted three times with EtOAc. The combined extracts were dried over MgSO$_4$, filtered and concentrated in vacuo affording a clear oil. Flash chromatography (hexanes/EtOAc, 10:1→5:1, CH$_2$Cl$_2$ load) furnished the hydrazine as a clear oil which solidified on standing at room temperature.

Yield: 3.10 g; 66.1 %.

HR-MS (FAB, MNOBA matrix) for C$_{16}$H$_{16}$N$_2$ (M)$^+$: required mass: 212.1313; measured mass: 212.1321.

$\delta$$_H$ (400 MHz, CDCl$_3$): 2.90 (2H, br s, -NH$_2$), 3.78 (4H, s, 2 x -CH$_2$-), 7.30-7.45 (10H, m).

$\delta$$_C$ (100 MHz, CDCl$_3$): 64.8, 127.1, 128.3, 129.0, 137.8 (quat-C).

I.R. (KBr, 16 scans): 3329, 3116, 3059, 3027, 2924, 2800, 1601, 1492, 1451, 1376, 1218, 1071, 997, 948, 909, 842, 748, 696, 621, 511.

\[\text{N-N \ NO} \]

\textit{N-Nitroso-dipentylamine 203}

To a stirred solution of dipentylamine (10.00 g, 12.87 ml, 63.57 mmol) in THF (50 ml) was added isoamyl nitrite (43.00 ml, 0.320 mol) at room temperature and the solution stirred under nitrogen for 20 h. The solvent and excess isoamyl nitrite was removed in vacuo leaving a clear yellow liquid. Flash chromatography (hexanes:EtOAc, 8:1, CH$_2$Cl$_2$ load) afforded the pure N-nitroso compound as a clear yellow liquid.
HR-MS (FAB, MNOBA matrix) for C_{10}H_{23}N_{2}O (M+H)^{+}: required mass: 187.1810; measured mass: 187.1813.

Anal. calculated for C_{10}H_{22}N_{2}O: Calculated: C, 64.47; H, 11.90; N, 15.04; Found: C, 64.68; H, 12.19; N, 15.06.

δ_{H} (400 MHz, CDCl_{3}): 0.83 (3H, t, \textit{J}_{HH} 7.2 Hz, -CH_{3}), 0.86 (3H, t, \textit{J}_{HH} 7.0 Hz, -CH_{3}), 1.16-1.35 (8H, m), 1.40-1.47 (2H, pentet), 1.66-1.73 (2H, pentet), 3.48 (2H, t, \textit{J}_{HH} 7.6 Hz), 4.01 (2H, t, \textit{J}_{HH} 7.2 Hz).

δ_{C} (100 MHz, CDCl_{3}): 13.8, 13.8, 22.1, 22.2, 25.6, 27.9, 28.6, 29.2, 43.6, 52.2.

To a stirred solution of \textit{N}-nitrosodipentylamine 203 (4.00 g, 21.47 mmol) in CH_{2}Cl_{2} (60 ml) cooled to -78 °C was dropwise added DIBAL-H (75.0 ml, 0.113 mol, 1.5 M solution in toluene) and the resultant clear yellow mixture stirred at -78 °C for 60 min. The reaction mixture was then allowed to stir at room temperature for 4 days before being slowly poured into a mixture of 10 % aqueous Rochelle's salt solution (75 g in 750 ml) and CH_{2}Cl_{2} (500 ml). The solution was stirred vigorously for 2 h at room temperature, the CH_{2}Cl_{2} layer extracted, and the aqueous layer extracted once with CH_{2}Cl_{2} and twice with EtOAc. The combined extracts were dried over MgSO_{4}, filtered and concentrated \textit{in vacuo} affording a clear liquid. Flash chromatography (hexanes/Et_{2}O, 5:1, hexane load) furnished the hydrazine as a clear liquid.
HR-MS (FAB, MNOBA matrix) for C_{10}H_{24}N_{2} (M-NH_{2})^{+}: 156.

Anal. calculated for C_{10}H_{24}N_{2}: Calculated: C, 69.70; H, 14.04; N, 16.25; Found: C, 70.75, H, 14.05; N, 14.55.

{\^\delta}_H (400 MHz, CDCl_{3}): 0.87 (6H, t, J_{HH} 7.0, 2 x -CH_{3}), 1.21-1.34 (8H, m, 4 x -CH_{2}-), 1.47-1.55 (4H, pentet, 2 x -CH_{2}-), 2.42 (4H, t, J_{HH} 7.6 Hz, 2 x -CH_{2}-).

{\^\delta}_C (100 MHz, CDCl_{3}): 14.1, 22.7, 26.9, 29.6, 61.7.

\[\begin{array}{c}
\text{OH} \\
\text{N} \\
\text{O} \\
\text{OH}
\end{array} \]

To a stirred solution of (±)-2-piperidinemethanol (5.00 g, 43.41 mmol) in THF (50 ml) was added isoamyl nitrite (30.00 ml, 0.223 mol) at room temperature and the solution stirred under nitrogen for 64½ h. The solvent and excess isoamyl nitrite was then removed \textit{in vacuo} leaving a clear yellow oil. Flash chromatography (hexanes:EtOAc, 3:1→1:1, CH_{2}Cl_{2} load) afforded the pure N-nitroso compound as a clear yellow liquid which was used immediately.

Yield: 6.18 g; 98.7 %.

HR-MS (FAB, MNOBA matrix) for C_{6}H_{13}N_{2}O_{2} (M+H)^{+}: required mass: 145.0977; measured mass: 145.0972.
δ_C (100 MHz, CDCl₃): 19.6, 21.6, 24.5, 25.6, 27.6, 38.5, 48.0, 49.4, 60.1, 62.0, 62.3. One peak overlaps the each other.

To a solution of NaH (2.00 g, 50.00 mmol, 60 % dispersion in oil) in DMF (25.0 ml) was slowly added a solution of (±)-N-nitroso-2-piperidinemethanol 209 (5.55 g, 38.50 mmol) in DMF (25.0 ml) at room temperature under nitrogen. The reaction mixture was stirred at room temperature for 1 h and benzyl bromide (6.00 ml, 50.44 mmol) was then added dropwise. The mixture was stirred for 4½ h and was then cooled to 0 °C, slowly quenched with H₂O and extracted three times with EtOAc. The combined organic extracts were washed twice with water, dried over MgSO₄, filtered and concentrated in vacuo affording the required compound as a clear yellow oil. Flash chromatography (hexanes/EtOAc, 5:1, CH₂Cl₂ load) gave the pure N-nitroso product as a clear yellow oil which was used immediately.

Yield: 8.39 g; 93.0 %.

HR-MS (FAB, MNOBA matrix) for C₁₃H₁₉N₂O₂ (M+H)⁺: required mass: 235.1447; measured mass: 235.1450.

Anal. calculated for C₁₃H₁₈N₂O₂: Calculated: C, 66.64; H, 7.74; N, 11.96; Found: C, 66.65, H, 7.62; N, 11.99.
To a stirred solution of (±)-O-benzyl-2-hydroxymethyl-N-nitrosopiperidine 210 (5.00 g, 21.34 mmol) in CH$_2$Cl$_2$ (60 ml) cooled to $-78 \, ^\circ$C was dropwise added DIBAL-H (75.0 ml, 0.113 mol, 1.5 M solution in toluene) and the resultant clear yellow mixture stirred at $-78 \, ^\circ$C for 60 min. The reaction mixture was then allowed to stir for six days at room temperature before being diluted with CH$_2$Cl$_2$ (700 ml). With cooling (ice bath) and very vigorous stirring, the reaction mixture was treated with a 10 % aqueous Rochelle’s salt solution (75 g in 750 ml). Stirring was continued for 60 min. at room temperature and the mixture extracted twice with EtOAc. The combined CH$_2$Cl$_2$ extracts were dried over MgSO$_4$, filtered and concentrated in vacuo leaving a clear yellow oil. Flash chromatography (CH$_2$Cl$_2$/MeOH, 50:1 \rightarrow 30:1) afforded a clear yellow oil.

Yield: 1.75 g; 37.2 %.

HR-MS (FAB, MNOBA matrix) for C$_{13}$H$_{21}$N$_2$O (M+H)$^+$: required mass: 221.1654; measured mass: 221.1669.

δ_H (400 MHz, CDCl$_3$, mixture of isomers): 1.10-1.24 (2H, m), 1.26-1.42 (2H, m), 1.43-1.71 (8H, m), 2.07-2.13 (4H, m), 2.95 (4H, br s, 2 x NH$_2$), 3.09-3.12 (2H, m), 3.50 (2H, dd, J_{HH} 4.6 Hz, 9.6 Hz), 3.65 (2H, dd, J_{HH} 4.8 Hz, 9.6 Hz), 4.49 (4H, 2 x s), 7.21-7.33 (10H, m).
To a stirred solution of indoline (6.04 ml, 53.88 mmol) in THF (40 ml) was added isoamyl nitrite (37.00 ml, 0.275 mol) at room temperature and the solution stirred under nitrogen for 50 min. The solvent and excess isoamyl nitrite was removed in vacuo leaving a dark brown oil. Crystallisation from Et₂O afforded the pure N-nitroso compound as flaky brown crystals.

Yield: 7.40 g; 92.7 %.

M.Pt.: 87-91 °C.

HR-MS (FAB, MNOBA matrix) for C₈H₉N₂O (M+H)+: required mass: 149.0715; measured mass: 149.0720.

Anal. calculated for C₈H₈N₂O: Calculated: C, 64.85; H, 5.44; N, 18.91; Found: C, 61.91, H, 5.06; N, 18.05.

δH (400 MHz, CDCl₃): 3.20 (2H, t, JHH 7.8 Hz), 3.49 (2H, t, JHH 7.8 Hz), 7.21-7.24 (1H, m), 7.29-7.33 (2H, m), 7.81-7.83 (1H, m).

δC (100 MHz, CDCl₃): 26.0, 46.1, 112.1, 126.1, 127.0, 128.2, 132.0 (quat-C), 140.8 (quat-C).
To a stirred solution of N-nitrosoindoline 212 (4.00 g, 27.00 mmol) in CH₂Cl₂ (70 ml) cooled to -78 °C was dropwise added DIBAL-H (75.00 ml, 0.113 mol, 1.5 M solution in toluene) and the resultant clear yellow mixture stirred at -78 °C for 2 h. The reaction mixture was then allowed to stir at room temperature for 49 h before being slowly poured into a mixture of 10 % aqueous Rochelle’s salt solution (75 g in 750 ml) and CH₂Cl₂ (700 ml). The solution was stirred vigorously for 1 h at room temperature, the CH₂Cl₂ layer extracted, and the aqueous layer extracted once with CH₂Cl₂ and twice with EtOAc. The combined extracts were dried over MgSO₄, filtered and concentrated in vacuo affording a brown oil. Flash chromatography (hexanes/EtOAc, 5:1, CH₂Cl₂ load) furnished the hydrazine as a brown oil.

Yield: 1.25 g; 34.5 %.

HR-MS (FAB, MNOBA matrix) for C₈H₁₀N₂ (M)⁺: required mass: 134.0844; measured mass: 134.0842.

δ_H (400 MHz, CDCl₃): 2.91 (2H, t, J_HH 8.0 Hz), 3.36 (2H, t, J_HH 8.0 Hz), 3.56 (2H, br s, NH₂), 6.79-6.84 (2H, m), 7.10-7.18 (2H, m).

δ_C (100 MHz, CDCl₃): 27.9, 60.9, 109.7, 120.0, 124.4, 127.3, 128.7, 154.5.
To a stirred solution of carbazole (5.00 g, 29.90 mmol) in THF (40 ml) was added isoamyl nitrite (20.00 ml, 0.149 mol) at room temperature and the solution stirred under nitrogen for 28 h. The solvent and excess isoamyl nitrite was removed in vacuo leaving a green solid. Flash chromatography (hexanes:CH₂Cl₂, 5:1) afforded the pure *N*-nitroso compound as bright yellow fluffy crystals.

Yield: 5.73 g; 97.6 %.

M. Pt.: 79-81 °C.

HR-MS (FAB, MNOBA matrix) for C₁₂H₉N₂O (M+H)⁺: required mass: 197.0715; measured mass: 197.0712.

Anal. calculated for C₁₂H₈N₂O: Calculated: C, 73.46; H, 4.11; N, 14.28; Found: C, 73.09, H, 4.11; N, 13.24.

δ_H (400 MHz, CDCl₃): 7.41-7.55 (4H, m), 7.86-7.91 (2H, m), 8.19-8.21 (1H, m), 8.52-8.55 (1H, m).

δ_C (100 MHz, CDCl₃): 112.3, 116.5, 119.9, 120.4, 124.8 (quat-C), 125.3 (quat-C), 126.2, 127.4, 128.1, 128.6, 132.7 (quat-C), 138.5 (quat-C).

N-Nitroso carbazole 214
To a stirred solution of 214 (4.00 g, 20.39 mmol) in CH$_2$Cl$_2$ (60 ml) cooled to -78 °C was dropwise added DIBAL-H (70.00 ml, 0.105 mol, 1.5 M solution in toluene) and the resultant clear yellow mixture stirred at -78 °C for 2 h. The reaction mixture was then allowed to stir at room temperature for 6 h before being slowly poured into a mixture of 10 % aqueous Rochelle’s salt solution (70 g in 700 ml) and CH$_2$Cl$_2$ (700 ml). The solution was stirred vigorously for 1 h at room temperature, the CH$_2$Cl$_2$ layer extracted, and the aqueous layer extracted twice with EtOAc. The combined extracts were dried over MgSO$_4$, filtered and concentrated in vacuo affording a brown solid. Flash chromatography (hexanes/CH$_2$Cl$_2$, 20:1→1:1, CH$_2$Cl$_2$ load) furnished the hydrazine as a light brown crystalline solid.

Yield: 1.72 g; 46.4 %.

M. Pt.: 149-151 °C.

HR-MS (FAB, MNOBA matrix) for C$_{12}$H$_{10}$N$_2$ (M)$^+$: required mass: 182.0844; measured mass: 182.0850.

Anal. calculated for C$_{12}$H$_{10}$N$_2$: Calculated: C, 79.10; H, 5.53; N, 15.37; Found: C, 78.10, H, 5.43; N, 15.16.

δ$_H$ (400 MHz, CDCl$_3$): 4.52 (2H, br s, -NH$_2$), 7.21-7.26 (2H, m), 7.45-7.52 (4H, m), 8.04-8.06 (2H, m).

δ$_C$ (100 MHz, CDCl$_3$): 108.2, 119.3, 120.1, 120.8 (quat-C), 125.8, 141.3 (quat-C).

I.R. (KBr, 16 scans): 3333, 3265, 3051, 1604, 1478, 1450, 1317, 1232, 1150, 934, 855, 748, 723.
Bibliography

1. For a good review, see: Tsuge, O.; Kanemasa, S.; *Advances in Heterocyclic Chemistry*, 1989, 45, 232.

Roth, W., Pigman, W., Methods in Carbohydrate Chem., Vol 2, 405.

Forster, M.O.; *J. Chem. Soc.*, 1897, 71, 1037.

Hicks, D.R.; Fraser-Reid, B.; *Synthesis*, 1974, 203.

The following section shows the 1H and 13C n.m.r. spectra obtained. The data for those not shown can be found in the relevant references mentioned in the preceding text.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>1H n.m.r. spectrum of Mosher amide of racemate of (\pm)-3,5-dihydro-N-dinaphth[2,1-c:1',2'-e]azepine (\pm)-15</td>
</tr>
<tr>
<td>Figure 2</td>
<td>1H n.m.r. spectrum of chiral Mosher amide of (S)-3,5-dihydro-N-dinaphth[2,1-c:1',2'-e]azepine 15</td>
</tr>
<tr>
<td>Figure 3</td>
<td>1H n.m.r. spectrum of (\pm)-3,5-dihydro-N-nitroso-dinaphth-[2,1-c:1',2'-e]azepine 33</td>
</tr>
<tr>
<td>Figure 4</td>
<td>13C n.m.r. spectrum of (\pm)-3,5-dihydro-N-nitroso-dinaphth-[2,1-c:1',2'-e]azepine 33</td>
</tr>
<tr>
<td>Figure 5</td>
<td>1H n.m.r. spectrum of (\pm)-3,5-dihydro-N-dinaphth-[2,1-c:1',2'-e]azepinehydrazone 1</td>
</tr>
<tr>
<td>Figure 6</td>
<td>13C n.m.r. spectrum of (\pm)-3,5-dihydro-N-dinaphth-[2,1-c:1',2'-e]azepinehydrazone 1</td>
</tr>
<tr>
<td>Figure 7</td>
<td>1H n.m.r. spectrum of (S)-3,5-dihydro-N-dinaphth-[2,1-c:1',2'-e]azepinehydrazone 1</td>
</tr>
<tr>
<td>Figure 8</td>
<td>13C n.m.r. spectrum of (S)-3,5-dihydro-N-dinaphth[2,1-c:1',2'-e]-azepinehydrazone 1</td>
</tr>
<tr>
<td>Figure 9</td>
<td>1H n.m.r. spectrum of Mosher derivative (\pm)-34 of (\pm)-3,5-dihydro-N-dinaphth[2,1-c:1',2'-e]azepinehydrazone (\pm)-1</td>
</tr>
<tr>
<td>Figure 10</td>
<td>1H n.m.r. spectrum of chiral Mosher compound of (S)-3,5-dihydro-N-dinaphth[2,1-c:1',2'-e]azepinehydrazone 34</td>
</tr>
<tr>
<td>Figure 11</td>
<td>19F n.m.r. spectra of Mosher derivative (\pm)-34 of (\pm)-3,5-dihydro-N-dinaphth[2,1-c:1',2'-e]azepinehydrazone (\pm)-1 and chiral Mosher compound of (S)-3,5-dihydro-N-dinaphth[2,1-c:1',2'-e]azepinehydrazone 34</td>
</tr>
<tr>
<td>Figure 12</td>
<td>1H n.m.r. spectrum of hydrazone 30</td>
</tr>
<tr>
<td>Figure 13</td>
<td>13C n.m.r. spectrum of hydrazone 30</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>14</td>
<td>1H n.m.r. spectrum of (±)-3,5-dihydro-4N-(N'-Boc amino)-dinaphth[2,1-c:1',2'-e]azepinehydrazide 26</td>
</tr>
<tr>
<td>15</td>
<td>13C n.m.r. spectrum of (±)-3,5-dihydro-4N-(N'-Boc amino)-dinaphth[2,1-c:1',2'-e]azepinehydrazide 26</td>
</tr>
<tr>
<td>16</td>
<td>1H n.m.r. spectrum of (±)-3,5-dihydro-4N-(trimethylsilylmethyl)-dinaphth[2,1-c:1',2'-e]azepine 43</td>
</tr>
<tr>
<td>17</td>
<td>13C n.m.r. spectrum of (±)-3,5-dihydro-4N-(trimethylsilylmethyl)-dinaphth[2,1-c:1',2'-e]azepine 43</td>
</tr>
<tr>
<td>18</td>
<td>1H n.m.r. spectrum of (±)-3,5-dihydro-4N-(trimethylsilylmethyl)-4N-(cyanomethyl)-dinaphth[2,1-c:1',2'-e]azepine 44</td>
</tr>
<tr>
<td>19</td>
<td>13C n.m.r. spectrum of (±)-3,5-dihydro-4N-(trimethylsilylmethyl)-4N-(cyanomethyl)-dinaphth[2,1-c:1',2'-e]azepine 44</td>
</tr>
<tr>
<td>20</td>
<td>1H n.m.r. spectrum of hydrazone (±)-45</td>
</tr>
<tr>
<td>21</td>
<td>13C n.m.r. spectrum of hydrazone (±)-45</td>
</tr>
<tr>
<td>22</td>
<td>1H n.m.r. spectrum of 2,3:5,6-di-O-isopropylidene-α-D-mannofuranosyl bromide 48</td>
</tr>
<tr>
<td>23</td>
<td>13C n.m.r. spectrum of 2,3:5,6-di-O-isopropylidene-α-D-mannofuranosyl bromide 48</td>
</tr>
<tr>
<td>24</td>
<td>1H n.m.r. spectrum of 2,3:5,6-di-O-isopropylidene-β-D-mannofuranosyl azide 49</td>
</tr>
<tr>
<td>25</td>
<td>13C n.m.r. spectrum of 2,3:5,6-di-O-isopropylidene-β-D-mannofuranosyl azide 49</td>
</tr>
<tr>
<td>26</td>
<td>1H n.m.r. spectrum of 2,3:5,6-di-O-isopropylidene-N,N-dimethyl-β-D-manno-furanosyl amine 58</td>
</tr>
<tr>
<td>27</td>
<td>13C n.m.r. spectrum of 2,3:5,6-di-O-isopropylidene-N,N-dimethyl-β-D-manno-furanosylamine 58</td>
</tr>
<tr>
<td>28</td>
<td>1H n.m.r. spectrum of 2,3:5,6-di-O-isopropylidene-N,N-dimethyl-β-D-manno-furanosylamine-N-oxide 57</td>
</tr>
<tr>
<td>29</td>
<td>13C n.m.r. spectrum of 2,3:5,6-di-O-isopropylidene-N,N-dimethyl-β-D-manno-furanosylamine-N-oxide 57</td>
</tr>
<tr>
<td>30</td>
<td>1H n.m.r. spectrum of 1,2,3,4,6-penta-O-acetyl-β-D-glucopyranosyl azide 62</td>
</tr>
<tr>
<td>Figure 31</td>
<td>13C n.m.r. spectrum of 1,2,3,4,6-penta-O-acetyl-β-D-glucopyranosyl azide 62</td>
</tr>
<tr>
<td>Figure 32</td>
<td>1H n.m.r. spectrum of 1,2,3,4,6-penta-O-acetyl-β-D-glucopyranosyl amine 63</td>
</tr>
<tr>
<td>Figure 33</td>
<td>13C n.m.r. spectrum of 1,2,3,4,6-penta-O-acetyl-β-D-glucopyranosyl amine 63</td>
</tr>
<tr>
<td>Figure 34</td>
<td>1H n.m.r. spectrum of (1R)-endo-3-(N-trimethylsilyl methyl)camphor amine 80</td>
</tr>
<tr>
<td>Figure 35</td>
<td>13C n.m.r. spectrum of (1R)-endo-3-(N-trimethylsilyl methyl)camphor amine 80</td>
</tr>
<tr>
<td>Figure 36</td>
<td>1H n.m.r. spectrum of (1R)-(+)endo-3-(N-cyanomethyl-N-trimethylsilyl-methyl)-camphor amine 81</td>
</tr>
<tr>
<td>Figure 37</td>
<td>13C n.m.r. spectrum of (1R)-(+)endo-3-(N-cyanomethyl-N-trimethylsilyl-methyl)-camphor amine 81</td>
</tr>
<tr>
<td>Figure 38</td>
<td>1H n.m.r. spectrum of (1R)-(+)trans-3,4-dicarbomethoxy-N-(endo-3-camphor)pyrrolidine 82+83</td>
</tr>
<tr>
<td>Figure 39</td>
<td>13C n.m.r. spectrum of (1R)-(+)trans-3,4-dicarbomethoxy-N-(endo-3-camphor)pyrrolidine 82+83</td>
</tr>
<tr>
<td>Figure 40</td>
<td>1H n.m.r. spectrum of 1,6,11,11,12,12-hexamethyl-1,2,3,4,4a,6,7,8,9,9a-decahydro-1,4;6,9-dimethano-phenazine 87</td>
</tr>
<tr>
<td>Figure 41</td>
<td>13C n.m.r. spectrum of 1,6,11,11,12,12-hexamethyl-1,2,3,4,4a,6,7,8,9,9a-decahydro-1,4;6,9-dimethano-phenazine 87</td>
</tr>
<tr>
<td>Figure 42</td>
<td>1H n.m.r. spectrum of (1R)-camphorquinone-3-O-benzyl-oxime 94</td>
</tr>
<tr>
<td>Figure 43</td>
<td>13C n.m.r. spectrum of (1R)-camphorquinone-3-O-benzyl-oxime 94</td>
</tr>
<tr>
<td>Figure 44</td>
<td>1H n.m.r. spectrum of (1R)-2,2-ethylenedioxy-camphorquinone-3-oxime 99</td>
</tr>
<tr>
<td>Figure 45</td>
<td>13C n.m.r. spectrum of (1R)-2,2-ethylenedioxy-camphorquinone-3-oxime 99</td>
</tr>
<tr>
<td>Figure 46</td>
<td>1H n.m.r. spectrum of (1R)-2,2-ethylenedioxy-camphorquinone-3-O-benzyl oxime 95</td>
</tr>
<tr>
<td>Figure 47</td>
<td>1H n.m.r. spectrum of (1R)-2-exo-hydroxy-2-endo-phenyl-3,3-ethylenedioxy-camphor 100</td>
</tr>
<tr>
<td>Figure 48</td>
<td>13C n.m.r. spectrum of (1R)-2-exo-hydroxy-2-endo-phenyl-3,3-ethylenedioxy-camphor 100</td>
</tr>
<tr>
<td>Figure 49</td>
<td>1H n.m.r. spectrum of (1R)-camphor-2-O-benzyl oxime 102</td>
</tr>
<tr>
<td>Figure 50</td>
<td>13C n.m.r. spectrum of (1R)-camphor-2-O-benzyl oxime 102</td>
</tr>
<tr>
<td>Figure 51</td>
<td>1H n.m.r. spectrum of (1R,2R)-(-)-1,2-diphenyl-1,2-dimesyloxyethane 119</td>
</tr>
<tr>
<td>Figure 52</td>
<td>13C n.m.r. spectrum of (1R,2R)-(-)-1,2-diphenyl-1,2-dimesyloxyethane 119</td>
</tr>
<tr>
<td>Figure 53</td>
<td>1H n.m.r. spectrum of (1S,2S)-(+-)-1,2-diphenylethane-1,2-diazide 118</td>
</tr>
<tr>
<td>Figure 54</td>
<td>13C n.m.r. spectrum of (1S,2S)-(+-)-1,2-diphenylethane-1,2-diazide 118</td>
</tr>
<tr>
<td>Figure 55</td>
<td>1H n.m.r. spectrum of (1S,2S)-(+-)-1,2-diphenylethane-1,2-bis(N',N’'-'trimethylsilyl methyl)diamine 120</td>
</tr>
<tr>
<td>Figure 56</td>
<td>13C n.m.r. spectrum of (1S,2S)-(+-)-1,2-diphenylethane-1,2-bis(N',N’'-'trimethylsilyl methyl)diamine 120</td>
</tr>
<tr>
<td>Figure 57</td>
<td>1H n.m.r. spectrum of methyl 3-(N-trimethylsilylmethyl)-amino-4,6-O-benzylidene-3-deoxy-α-D-altropyranoside 131</td>
</tr>
<tr>
<td>Figure 58</td>
<td>1H n.m.r. spectrum of (+)-methyl 3-azido-4,6-O-benzylidene-2-O-(tert-butyl-dimethylsilyl)-3-deoxy-α-D-altropyranoside 137</td>
</tr>
<tr>
<td>Figure 59</td>
<td>13C n.m.r. spectrum of (+)-methyl 3-azido-4,6-O-benzylidene-2-O-(tert-butyl-dimethylsilyl)-3-deoxy-α-D-altropyranoside 137</td>
</tr>
<tr>
<td>Figure 60</td>
<td>1H n.m.r. spectrum of methyl 3-amino-4,6-O-benzylidene-2-O-(tert-butyl-dimethylsilyl)-3-deoxy-α-D-altropyranoside 138</td>
</tr>
<tr>
<td>Figure 61</td>
<td>13C n.m.r. spectrum of methyl 3-amino-4,6-O-benzylidene-2-O-(tert-butyl-dimethylsilyl)-3-deoxy-α-D-altropyranoside 138</td>
</tr>
<tr>
<td>Figure 62</td>
<td>1H n.m.r. spectrum of methyl 3-(N-trimethylsilylmethyl)-amino-4,6-O-benzylidene-2-O-(tert-butyl-dimethylsilyl)-deoxy-α-D-altropyranoside 132</td>
</tr>
<tr>
<td>Figure 63</td>
<td>13C n.m.r. spectrum of methyl 3-(N-trimethylsilylmethyl)-amino-4,6-O-benzylidene-2-O-(tert-butyl-dimethylsilyl)-deoxy-α-D-altropyranoside 132</td>
</tr>
<tr>
<td>Figure 64</td>
<td>1H n.m.r. spectrum of methyl 3-(N-cyanomethyl-N-trimethylsilylmethyl)-amino-4,6-O-benzylidene-2-O-(tert-butyl-dimethylsilyl)-deoxy-α-D-altropyranoside 133</td>
</tr>
<tr>
<td>Figure 65</td>
<td>13C n.m.r. spectrum of methyl 3-(N-cyanomethyl-N-trimethylsilylmethyl)-amino-4,6-O-benzylidene-2-O-(tert-butyl-dimethylsilyl)-deoxy-α-D-altropyranoside 133</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>66</td>
<td>1H n.m.r. spectrum of methyl 3-N-(trans-3,4-dicarbomethoxy)pyrrolidine-4,6-O-benzyliden-2-O-(tert-butyldimethylsilyl)-deoxy-α-D-altropyranoside 134ab</td>
</tr>
<tr>
<td>67</td>
<td>13C n.m.r. spectrum of methyl 3-N-(trans-3,4-dicarbomethoxy)pyrrolidine-4,6-O-benzyliden-2-O-(tert-butyldimethylsilyl)-deoxy-α-D-altropyranoside 134ab</td>
</tr>
<tr>
<td>68</td>
<td>1H n.m.r. spectrum of methyl 5-amino-5-deoxy-4-O-tert-butyl-dimethylsilyl-1,3-O-isopropylidene-β-D-fructopyranoside 148</td>
</tr>
<tr>
<td>69</td>
<td>13C n.m.r. spectrum of methyl 5-amino-5-deoxy-4-O-tert-butyl-dimethylsilyl-1,3-O-isopropylidene-β-D-fructopyranoside 148</td>
</tr>
<tr>
<td>70</td>
<td>1H n.m.r. spectrum of methyl 5-(N-trimethylsilylmethyl)amino-5-deoxy-4-O-tert-butyl-dimethylsilyl-1,3-O-isopropylidene-β-D-fructopyranoside 149</td>
</tr>
<tr>
<td>71</td>
<td>13C n.m.r. spectrum of methyl 5-(N-trimethylsilylmethyl)amino-5-deoxy-4-O-tert-butyl-dimethylsilyl-1,3-O-isopropylidene-β-D-fructopyranoside 149</td>
</tr>
<tr>
<td>72</td>
<td>1H n.m.r. spectrum of methyl 5-(N-cyanomethyl-N-trimethylsilylmethyl)amino-5-deoxy-4-O-tert-butyl-dimethylsilyl-1,3-O-isopropylidene-β-D-fructopyranoside 150</td>
</tr>
<tr>
<td>73</td>
<td>13C n.m.r. spectrum of methyl 5-(N-cyanomethyl-N-trimethylsilylmethyl)amino-5-deoxy-4-O-tert-butyl-dimethylsilyl-1,3-O-isopropylidene-β-D-fructopyranoside 150</td>
</tr>
<tr>
<td>74</td>
<td>1H n.m.r. spectrum of methyl 5-N-(trans-3,4-dicarbomethoxypyrrolidine)-5-deoxy-4-O-tert-butyl-dimethylsilyl-1,3-O-isopropylidene-β-D-fructopyranoside 151ab</td>
</tr>
<tr>
<td>75</td>
<td>13C n.m.r. spectrum of methyl 5-N-(trans-3,4-dicarbomethoxypyrrolidine)-5-deoxy-4-O-tert-butyl-dimethylsilyl-1,3-O-isopropylidene-β-D-fructopyranoside 151ab</td>
</tr>
<tr>
<td>76</td>
<td>1H n.m.r. spectrum of N-(benzyloxy)carbonyl-O-triethylsilyl-D-(--)α-phenylglycinol 166</td>
</tr>
<tr>
<td>77</td>
<td>13C n.m.r. spectrum of N-(benzyloxy)carbonyl-O-triethylsilyl-D-(--)α-phenylglycinol 166</td>
</tr>
<tr>
<td>78</td>
<td>1H n.m.r. spectrum of O-triethylsilyl-D-(--)α-phenylglycinol 172</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>79</td>
<td>13C n.m.r. spectrum of O-triethyilsilyl-D-(α)-phenylglycinol 172</td>
</tr>
<tr>
<td>80</td>
<td>1H n.m.r. spectrum of N-trimethyilsilylmethyl-O-triethyilsilyl-D-(α)-phenylglycinol 173</td>
</tr>
<tr>
<td>81</td>
<td>13C n.m.r. spectrum of N-trimethyilsilylmethyl-O-triethyilsilyl-D-(α)-phenylglycinol 173</td>
</tr>
<tr>
<td>82</td>
<td>1H n.m.r. spectrum of N-tert-butoxycarbonyl-N-trimethyilsilylmethyl-O-triethyilsilyl-D-(α)-phenylglycinol 174</td>
</tr>
<tr>
<td>83</td>
<td>13C n.m.r. spectrum of N-tert-butoxycarbonyl-N-trimethyilsilylmethyl-O-triethyilsilyl-D-(α)-phenylglycinol 174</td>
</tr>
<tr>
<td>84</td>
<td>1H n.m.r. spectrum of N-tert-butoxycarbonyl-N-trimethyilsilylmethyl-D-(α)-phenylglycinol 175</td>
</tr>
<tr>
<td>85</td>
<td>13C n.m.r. spectrum of N-tert-butoxycarbonyl-N-trimethyilsilylmethyl-D-(α)-phenylglycinol 175</td>
</tr>
<tr>
<td>86</td>
<td>1H n.m.r. spectrum of D-(α)-(1-bromoethyl)-N-(α)-tert-butoxycarbonylbenzylamine 184</td>
</tr>
<tr>
<td>87</td>
<td>13C n.m.r. spectrum of D-(α)-(1-bromoethyl)-N-(α)-tert-butoxycarbonylbenzylamine 184</td>
</tr>
<tr>
<td>88</td>
<td>1H n.m.r. spectrum of (R)-(α)-4-tert-butoxycarboxylamino-4-phenyl-E-but-2-enoic acid ethyl ester 190</td>
</tr>
<tr>
<td>89</td>
<td>1H n.m.r. spectrum of (R)-(α)-4-tert-butoxycarboxylamino-4-phenylbutanoic acid ethyl ester 191</td>
</tr>
<tr>
<td>90</td>
<td>13C n.m.r. spectrum of (R)-(α)-4-tert-butoxycarboxylamino-4-phenylbutanoic acid ethyl ester 191</td>
</tr>
<tr>
<td>91</td>
<td>1H n.m.r. spectrum of (R)-(α)-N-tert-butoxycarbonyl-5-phenyl-2-pyrrolidinone 186</td>
</tr>
<tr>
<td>92</td>
<td>13C n.m.r. spectrum of (R)-(α)-N-tert-butoxycarbonyl-5-phenyl-2-pyrrolidinone 186</td>
</tr>
<tr>
<td>93</td>
<td>1H n.m.r. spectrum of (R)-α-5-phenyl-2-pyrrolidinone 156</td>
</tr>
<tr>
<td>94</td>
<td>13C n.m.r. spectrum of (R)-α-5-phenyl-2-pyrrolidinone 156</td>
</tr>
<tr>
<td>95</td>
<td>1H n.m.r. spectrum of (R)-α-N-(trimethyilsilylmethyl)-5-phenyl-2-pyrrolidinone 157</td>
</tr>
<tr>
<td>96</td>
<td>13C n.m.r. spectrum of (R)-α-N-(trimethyilsilylmethyl)-5-phenyl-2-pyrrolidinone 157</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>97</td>
<td>1H n.m.r. spectrum of N-amino-diphenylamine 200</td>
</tr>
<tr>
<td>98</td>
<td>13C n.m.r. spectrum of N-amino-diphenylamine 200</td>
</tr>
<tr>
<td>99</td>
<td>1H n.m.r. spectrum of N-nitroso-dibenzylamine 201</td>
</tr>
<tr>
<td>100</td>
<td>13C n.m.r. spectrum of N-nitroso-dibenzylamine 201</td>
</tr>
<tr>
<td>101</td>
<td>1H n.m.r. spectrum of N-amino-dibenzylamine 202</td>
</tr>
<tr>
<td>102</td>
<td>13C n.m.r. spectrum of N-amino-dibenzylamine 202</td>
</tr>
<tr>
<td>103</td>
<td>1H n.m.r. spectrum of N-nitroso-dipentylamine 203</td>
</tr>
<tr>
<td>104</td>
<td>13C n.m.r. spectrum of N-nitroso-dipentylamine 203</td>
</tr>
<tr>
<td>105</td>
<td>1H n.m.r. spectrum of N-amino-dipentylamine 204</td>
</tr>
<tr>
<td>106</td>
<td>13C n.m.r. spectrum of N-amino-dipentylamine 204</td>
</tr>
<tr>
<td>107</td>
<td>13C n.m.r. spectrum of (±)-N-nitroso-2-piperidinemethanol 209</td>
</tr>
<tr>
<td>108</td>
<td>13C n.m.r. spectrum of (±)-O-benzyl-N-nitroso-2-piperidinemethanol 210</td>
</tr>
<tr>
<td>109</td>
<td>1H n.m.r. spectrum of (±)-N-amino-O-benzyl-2-hydroxymethyl piperidine 211</td>
</tr>
<tr>
<td>110</td>
<td>13C n.m.r. spectrum of (±)-N-amino-O-benzyl-2-hydroxymethyl piperidine 211</td>
</tr>
<tr>
<td>111</td>
<td>1H n.m.r. spectrum of N-nitroso-indoline 212</td>
</tr>
<tr>
<td>112</td>
<td>13C n.m.r. spectrum of N-nitroso-indoline 212</td>
</tr>
<tr>
<td>113</td>
<td>1H n.m.r. spectrum of N-amino-indoline 213</td>
</tr>
<tr>
<td>114</td>
<td>13C n.m.r. spectrum of N-amino-indoline 213</td>
</tr>
<tr>
<td>115</td>
<td>1H n.m.r. spectrum of N-nitroso carbazole 214</td>
</tr>
<tr>
<td>116</td>
<td>13C n.m.r. spectrum of N-nitroso carbazole 214</td>
</tr>
<tr>
<td>117</td>
<td>1H n.m.r. spectrum of N-amino carbazole 215</td>
</tr>
<tr>
<td>118</td>
<td>13C n.m.r. spectrum of N-amino carbazole 215</td>
</tr>
</tbody>
</table>
Figure 1 1H n.m.r. spectrum of racemic Mosher amide of (±)-3,5-dihydro-4N-dinaphth[2,1-c:1',2'-e]azepine (±)-15
Figure 2 1H n.m.r. spectrum of chiral Mosher amide of (S)-3,5-dihydro-4N-dinaphth-[2,1-c:1',2'-e]azepine 15
Figure 3 1H n.m.r. spectrum of (±)-3,5-dihydro-4N-nitroso-dinaphth[2,1-c:1',2'-e]-azepine 33
Figure 4 13C n.m.r. spectrum of (±)-3,5-dihydro-4N-nitroso-dinaphth[2,1-c:1',2'-e]-azepine 33
Figure 5 1H n.m.r. spectrum of (±)-3,5-dihydro-4N-dinaphth[2,1-c:1',2'-e]-azepinehydrazide 1
Figure 6 13C n.m.r. spectrum of (±)-3,5-dihydro-4Π-dinaphth[2,1-c:1',2'-e]-azepinehydrazide 1
Figure 7 1H n.m.r. spectrum of (S)-3,5-dihydro-4N-dinaphth[2,1-c:1',2'-e]-azepinehydrazide 1
Figure 8 13C n.m.r. spectrum of (S)-3,5-dihydro-4N-dinaphth[2,1-c:1',2'-e]-azepinehydrazide 1
Figure 9 1H n.m.r. spectrum of Mosher derivative (±)-34 of (±)-3,5-dihydro-4N-dinaphth[2,1-c:1',2'-e]azepinehydrazide (±)-1
Figure 10 1H n.m.r. spectrum of chiral Mosher compound of (S)-3,5-dihydro-4N-dinaphth[2,1-c:1',2'-e]azepinehydrazide 34
Figure 11 19F n.m.r. spectra of Mosher derivative (±)-34 of (±)-3,5-dihydro-4N-­
dinaphth[2,1-c:1',2'-e]azepinehydrazide (±)-1 and chiral Mosher compound of (S)-3,5-dihydro-4N-dinaphth[2,1-c:1',2'-e]azepinehydrazide 34
Figure 12 1H n.m.r. spectrum of hydrazone 30
Figure 13 13C n.m.r. spectrum of hydrazone 30
Figure 14 1H n.m.r. spectrum of (±)-3,5-dihydro-4N'-(N'-Boc amino)-dinaphth-[2,1-c:1',2'-e]azepinehydrazide 26
Figure 15 13C n.m.r. spectrum of (±)-3,5-dihydro-4N-(N'-Boc amino)-dinaphth-[2,1-c:1',2'-e]azepinehydrazide 26
Figure 16 1H n.m.r. spectrum of (±)-3,5-dihydro-4N-(trimethylsilylmethyl)-dinaphth-[2,1-c:1',2'-e]azepine 43
Figure 17 13C n.m.r. spectrum of (±)-3,5-dihydro-4N-(trimethylsilylmethyl)-dinaphth-[2,1-\textit{c}:1',2'-\textit{e}]azepine 43
Figure 18 1H n.m.r. spectrum of (±)-3,5-dihydro-4N-(trimethylsilylmethyl)-4N-(cyanomethyl)dinaphth[2,1-c:1',2'-e]azepine 44
Figure 19 $\mathrm{^{13}C}$ n.m.r. spectrum of (±)-3,5-dihydro-4N-(trimethylsilylmethyl)-4N-(cyanomethyl)-dinaph[2,1-c:1',2'-e]azepine 44
Figure 20 1H n.m.r. spectrum of hydrazone (±)-45
Figure 21 13C n.m.r. spectrum of hydrazone (±)-45
Figure 22 1H n.m.r. spectrum of 2,3:5,6-di-\(O\)-isopropylidene-\(\alpha\)-D-mannofuranosyl bromide 48
Figure 23 13C n.m.r. spectrum of 2,3:5,6-di-O-isopropylidene-α-D-mannofuranosyl bromide 48
Figure 24 1H n.m.r. spectrum of 2,3:5,6-di-O-isopropylidene-β-D-mannofuranosyl azide 49
Figure 25 ^{13}C n.m.r. spectrum of 2,3:5,6-di-O-isopropylidene-β-D-mannofuranosyl azide 49
Figure 26 1H n.m.r. spectrum of 2,3:5,6-di-\textit{O}-isopropylidene-\textit{N},\textit{N}-dimethyl-\textit{\beta}-\textit{D}-mannofuranosyl amine 58
Figure 27 ^{13}C n.m.r. spectrum of 2,3:5,6-di-O-isopropylidene-N,N-dimethyl-β-D-mannofuranosyl amine 58
Figure 28 1H n.m.r. spectrum of 2,3:5,6-di-O-isopropylidene-N,N-dimethyl-β-D-mannofuranosyl amine-N-oxide 57
Figure 29 13C n.m.r. spectrum of 2,3:5,6-di-O-isopropylidene-N,N-dimethyl-β-D-mannofuranosyl amine-N-oxide 57
Figure 30 1H n.m.r. spectrum of 1,2,3,4,6-penta-O-acetyl-β-D-glucopyranosyl azide 62
Figure 31 13C n.m.r. spectrum of 1,2,3,4,6-penta-O-acetyl-β-D-glucopyranosyl azide 62
Figure 32 1H n.m.r. spectrum of 1,2,3,4,6-penta-O-acetyl-β-D-glucopyranosyl amine 63
Figure 33 13C n.m.r. spectrum of 1,2,3,4,6-penta-O-acetyl-β-D-glucopyranosyl amine 63
Figure 34 1H n.m.r. spectrum of (1R)-endo-3-(N-trimethylsilyl methyl)-camphor amine 80
Figure 35 13C n.m.r. spectrum of (1R)-endo-3-(N-trimethylsilyl methyl)-camphor amine 80
Figure 36 1H n.m.r. spectrum of (1R)-(+-)endo-3-(N-cyanomethyl-N-trimethylsilyl- methyl)camphor amine 81
Figure 37 13C n.m.r. spectrum of (1R)-(+)\textit{endo}-3-(N-cyanomethyl-N-trimethylsilyl-methyl)camphor amine 81
Figure 38 1H n.m.r. spectrum of (1R)-(+)-(trans-3,4-dicarbomethoxy)-N-(endo-3-camphor)pyrrolidine 82+83
Figure 39 13C n.m.r. spectrum of (1R)-(+)-(trans-3,4-dicarbomethoxy)-N-(endo-3-camphor)pyrrolidine 82+83
Figure 40 1H n.m.r. spectrum of 1,6,11,11,12,12-hexamethyl-1,2,3,4,4a,6,7,8,9,9a-decahydro-1,4;6,9-dimethano-phenazine 87
Figure 41 13C n.m.r. spectrum of 1,6,11,11,12,12-hexamethyl-1,2,3,4,4a,6,7,8,9,9a-decahydro-1,4;6,9-dimethano-phenazine 87
Figure 42 1H n.m.r. spectrum of (1R)-camphorquinone-3-O-benzyl-oxime 94
Figure 43 13C n.m.r. spectrum of (1R)-camphorquinone-3-O-benzyl-oxime 94
Figure 44 1H n.m.r. spectrum of (1R)-2,2-ethylenedioxy-camphorquinone-3-oxime 99
Figure 45 13C n.m.r. spectrum of (1R)-2,2-ethylenedioxy-camphorquinone-3-oxime 99
Figure 46 1H n.m.r. spectrum of (1R)-2,2-ethylenedioxy-camphorquinone-3-O-benzyl oxime 95
Figure 47 1H n.m.r. spectrum of (1R)-2-exo-hydroxy-2-endo-phenyl-3,3-ethylenedioxy camphor 100
Figure 48 13C n.m.r. spectrum of (1R)-2-exo-hydroxy-2-endo-phenyl-3,3-ethylene-dioxycamphor 100
Figure 49 1H n.m.r. spectrum of (1R)-camphor-2-O-benzyl oxime 102
Figure 50 13C n.m.r. spectrum of (1R)-camphor-2-O-benzyl oxime
Figure 51 1H n.m.r. spectrum of (1R,2R)-(-)-1,2-diphenyl-1,2-dimesyloxyethane 119
Figure 52 13C n.m.r. spectrum of (1R,2R)-(-)-1,2-diphenyl-1,2-dimesyloxyethane 119
Figure 53 1H n.m.r. spectrum of (1S,2S)-(+-)1,2-diphenylethene-1,2-diazide 118
Figure 54 13C n.m.r. spectrum of (1S,2S)-(+) 1,2-diphenylethane-1,2-diazide 118
Figure 55 1H n.m.r. spectrum of (1S,2S)-(−)-1,2-diphenylethane-1,2-bis(N',N'''-trimethylsilyl methyl)diamine 120
Figure 56 13C n.m.r. spectrum of (1S,2S)-(−)-1,2-diphenylethane-1,2-bis(N',N''-trimethylsilylmethyl)diarnine 120
Figure 57 1H n.m.r. spectrum of methyl 3-(N-trimethylsilylmethyl)-amino-4,6-O-benzylidene-3-deoxy-α-D-altropyranoside 131
Figure 58 1H n.m.r. spectrum of (+)-methyl 3-azido-4,6-O-benzylidene-2-O-(tert-butylidimethylsilyl)-3-deoxy-\(\alpha\)-D-altropyranoside 137
Figure 59 13C n.m.r. spectrum of (+)-methyl 3-azido-4,6-O-benzylidene-2-O-(tert-butyldimethylsilyl)-3-deoxy-α-D-altropyranoside 137
Figure 60 1H n.m.r. spectrum of methyl 3-amino-4,6-0-benzylidene-2-0-(tert-butyl-dimethylsilyl)-3-deoxy-α-D-altropyranoside 138
Figure 61 13C n.m.r. spectrum of methyl 3-amino-4,6-O-benzylidene-2-O-(tert-butyl-dimethylsilyl)-3-deoxy-α-D-altropyranoside 138
Figure 62 1H n.m.r. spectrum of methyl 3-(N-trimethylsilylmethyl)-amino-4,6-O-benzylidene-2-O-(tert-butyldimethylsilyl)-deoxy-α-D-altropyranoside 132
Figure 63 13C n.m.r. spectrum of methyl 3-(N-trimethylsilylmethyl)-amino-4,6-\(O\)-benzylidene-2-\(O\)-(tert-butylidemethylsilyl)-deoxy-\(\alpha\)-D-altropyranoside 132
Figure 64 1H n.m.r. spectrum of methyl 3-(N-cyanomethyl-N-trimethylsilylmethyl)-
amino-4,6-O-benzyldene-2-O-(tert-butyldimethylsilyl)-deoxy-α-D-
altropyranoside 133
Figure 65 13C n.m.r. spectrum of methyl 3-$(N$-cyanomethyl-N-trimethylsilylmethyl)-
amino-4,6-O-benzylidene-2-O-$(tert$-butyldimethylsilyl$)$-deoxy-α-D-
altpyranoside 133
Figure 66 1H n.m.r. spectrum of methyl 3-N-(trans-3,4-dicarbomethoxy)pyrrolidine-4,6-O-benzylidene-2-O-(tert-butyldimethylsilyl)-deoxy-α-D-altropyranoside 134ab
Figure 67 13C n.m.r. spectrum of methyl 3-N-(trans-3,4-dicarbomethoxy)pyrrolidine-4,6-O-benzylidene-2-O-(tert-butylidimethylsilyl)-deoxy-α-D-altropyranoside 134ab
Figure 68 1H n.m.r. spectrum of methyl 5-amino-5-deoxy-4-\textit{O}-\textit{tert}-butyl-dimethylsilyl-1,3-\textit{O}-isopropylidene-\textit{D}-fructopyranoside 148
Figure 69 13C n.m.r. spectrum of methyl 5-amino-5-deoxy-4-\textit{O-tert}-butyl-dimethylsilyl-1,3-\textit{O}-isopropylidene-\textbeta-\textit{D}-fructopyranoside 148
Figure 70 1H n.m.r. spectrum of methyl 5-(N-trimethylsilylmethyl)amino-5-deoxy-4-O-tert-butyldimethylsilyl-$1,3$-O-isopropylidene-β-D-fructopyranoside 149
Figure 71 13C n.m.r. spectrum of methyl 5-(N-trimethylsilylmethyl)amino-5-deoxy-4-O-tert-butyldimethylsilyl-1,3-O-isopropylidene-β-D-fructopyranoside 149
Figure 72 ^1H n.m.r. spectrum of methyl 5-(\(N\)-cyanomethyl-\(N\)-trimethylsilyl-methyl)-amino-5-deoxy-4-\(O\)-\textit{tert}-butyldimethylsilyl-1,3-\(O\)-isopropyldene-\(\beta\)-D-fructopyranoside 150
Figure 73 13C n.m.r. spectrum of methyl 5-(N-cyanomethyl-N-trimethylsilylmethyl)-amino-5-deoxy-4-\textit{O-tert}\textendash butyldimethylsilyl-1,3-\textit{O-isopropylidene-\textbeta-D-fructopyranoside 150
Figure 74 1H n.m.r. spectrum of methyl 5-N-(trans-3,4-dicarboxymethoxypyrrolidine)-5-deoxy-4-O-tert-butylidemethylsilyl-1,3-O-isopropylidene-β-D-fructopyranoside 151ab
Figure 75 13C n.m.r. spectrum of methyl 5-N-(trans-3,4-dicarbomethoxypyrrolidine)-5-deoxy-4-0-tert-butyldimethylsilyl-1,3-O-isopropylidene-β-D-fructopyranoside 151ab
Figure 76 1H n.m.r. spectrum of N-(benzyloxy)carbonyl-O-triethylsilyl-D-(−)-α-phenylglycinol 166
Figure 77 13C n.m.r. spectrum of N-(benzyloxy)carbonyl-O-triethylsilyl-D-(−)-α-phenylglycinol 166.
Figure 78 1H n.m.r. spectrum of O-triethylsilyl-D-(-)-α-phenylglycinol 172
Figure 79 13C n.m.r. spectrum of O-triethysilyl-D-(−)-α-phenylglycinol 172
Figure 80 1H n.m.r. spectrum of N-trimethylsilylmethyl-O-triethylsilyl-D-(-)-
α-phenylglycinol 173
Figure 81. 13C n.m.r. spectrum of N-trimethylsilylmethyl-O-triethylsilyl-D(-)-α-phenylglycinol 173.
Figure 82 1H n.m.r. spectrum of \(N\)-tert-butoxycarbonyl-\(N\)-trimethylsilylmethyl-\(O\)-triethylsilyl-\(D\)-(-)-\(\alpha\)-phenylglycinol 174
Figure 83 13C n.m.r. spectrum of N-tert-butoxycarbonyl-N-trimethylsilylmethyl-O-triethylsilyl-D(-)-α-phenylglycinol 174
Figure 84 1H n.m.r. spectrum of N-tert-butoxycarbonyl-N-trimethylsilylmethyl-D-(-)-
α-phenylglycinol 175
Figure 85 13C n.m.r. spectrum of N-tert-butoxycarbonyl-N-trimethylsilylmethyl-D-(-)-α-phenylglycinol 175
Figure 86 1H n.m.r. spectrum of D-(-)-α-(1-bromoethyl)-N-(tert-butoxycarbonyl)-benzylamine 184
Figure 87 13C n.m.r. spectrum of D-(-)-α-(1-bromoethyl)-N-(tert-butoxycarbonyl)-benzylamine 184
Figure 88 1H n.m.r. spectrum of (R)-(-)-α-4-tert-butoxycarbonylamino-4-phenyl-(E)-but-2-enoic acid ethyl ester 190
Figure 89 1H n.m.r. spectrum of (R)-(-)-α-4-tert-butoxycarbonylamino-4-phenylbutanoic acid ethyl ester 191
Figure 90 13C n.m.r. spectrum of (R)-(−)-α-4-tert-butoxycarbonylamino-4-phenylbutanoic acid ethyl ester 191
Figure 91 1H n.m.r. spectrum of (R)-(−)-α-N-tert-butoxycarbonyl-5-phenyl-2-pyrrolidinone 186
Figure 92 13C n.m.r. spectrum of (R)-(−)-α-N-tert-butoxycarbonyl-5-phenyl-2-pyrrolidinone
Figure 93 1H n.m.r. spectrum of (R)-α-5-phenyl-2-pyrrolidinone 156
Figure 94 13C n.m.r. spectrum of (R)-α-5-phenyl-2-pyrrolidinone 156
Figure 95 1H n.m.r. spectrum of (R)-α-N-(trimethylsilylmethyl)-5-phenyl-2-pyrrolidinone 157
Figure 96 13C n.m.r. spectrum of (R)-α-N-(trimethylsilylmethyl)-5-phenyl-2-pyrrolidinone 157
Figure 97 1H n.m.r. spectrum of N-amino-diphenylamine 200
Figure 98 13C n.m.r. spectrum of N-amino-diphenylamine 200
Figure 99 1H n.m.r. spectrum of N-nitroso-dibenzylamine 201
Figure 100 13C n.m.r. spectrum of N-nitroso-dibenzylamine 201
Figure 101 1H n.m.r. spectrum of N-amino-dibenzylamine 202
Figure 102 \[{\textstyle \^{13}}\text{C n.m.r. spectrum of } N\text{-amino-dibenzylamine} \] 202
Figure 103 1H n.m.r. spectrum of N-nitroso-dipentylamine 203
Figure 104 13C n.m.r. spectrum of N-nitroso-dipentylamine 203
Figure 105 1H n.m.r. spectrum of N-amino-dipentylamine 204
Figure 106 13C n.m.r. spectrum of N-amino-dipentylamine 204
Figure 107 13C n.m.r. spectrum of (±)-N-nitroso-2-piperidinemethanol 209
Figure 108 13C n.m.r. spectrum of (±)-O-benzyl-N-nitroso-2-piperidinemethanol 210
Figure 109 \(^1\)H n.m.r. spectrum of (±)-N-amino-O-benzyl-2-hydroxymethyl piperidine 211
Figure 110 13C n.m.r. spectrum of (±)-N-amino-O-benzyl-2-hydroxymethyl piperidine \textbf{211}
Figure 111 1H n.m.r. spectrum of N-nitroso-indoline 212
Figure 112 13C n.m.r. spectrum of N-nitroso-indoline 212
Figure 113 1H n.m.r. spectrum of N-amino-indoline 213
Figure 114 13C n.m.r. spectrum of N-amino-indoline 213
Figure 115 1H n.m.r. spectrum of N-nitroso carbazole 214
Figure 116 13C n.m.r. spectrum of N-nitroso carbazole 214
Figure 117 1H n.m.r. spectrum of N-amino carbazole 215
Figure 118 13C n.m.r. spectrum of N-amino carbazole 215