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Abstract  

Background: The use of Multilevel Models (MLM) and Generalized Estimating Equations 

(GEE) for analysing clustered data in the field of intellectual and developmental disability 

(IDD) research is still limited. 

Method: We present some important features of MLMs and GEEs: main function, 

assumptions, model specification and estimators, sample size and power. We provide an 

overview of the ways MLMs and GEEs have been used in IDD research.   

Results: While MLMs and GEEs are both appropriate for longitudinal and/or clustered data, 

they differ in the assumptions they impose on the data, and the inferences made. 

Estimators in MLMs require appropriate model specification, while GEEs are more resilient 

to misspecification at the expense of model complexity. Studies on sample size seem to 

suggest that Level 1 coefficients are robust to small samples/clusters, with any higher-level 

coefficients less so. MLMs have been used more frequently than GEEs in IDD research, 

especially for fitting developmental trajectories.  

Conclusions: Clustered data from research in the IDD field can be analysed flexibly using 

MLMs and GEEs. These models would be more widely used if journals required the inclusion 

of technical specification detail, simulation studies examined power for IDD study 

characteristics, and researchers developed core skills during basic studies. 

 

What this paper adds?  

Research data cease to be independent when a super-ordinate structure or repeated 

measurements create correlation amongst individual data points. Ignoring this correlation in 

model specification leads to a bias in standard errors that is proportionate to the magnitude 

and direction of the correlation. Multilevel models (MLM) and Generalized Estimating 

Equations (GEEs) model the data taking into account this correlation. The two approaches 

differ in the way they handle this correlation, and selecting between the two relies on the 

research aims and study characteristics.  The paper discusses some of the core features of 

MLMs and GEEs for researchers who are considering how to analyse their longitudinal or 

clustered data. We review how IDD researchers have used the models so far, in the hope 

that other researchers will consider using them. We believe their use would be more 

widespread if researchers were taught these models as part of their studies, if journals 

required researchers to include more technical details on how MLM or GEE models were 
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fitted, and if further research focused on examining how powerful these models could be 

for IDD studies that often rely on modest sample sizes, few clusters or large cluster to 

participant ratios. 

 

 

 

 

 

 

 

• Ignoring data dependence can lead to inappropriate inferences and conclusions  

• MLMs and GEEs are appropriate for clustered/longitudinal data 

• IDD research could benefit from increased use of these models 
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1.1 Introduction 

Research in the field of intellectual and developmental disabilities (IDD) often generates 

longitudinal and/or correlated data. One source of correlation comes from clustering such as 

data from mothers and children who share the same household; data from parents (couples) 

of children with IDD. Another often encountered source of correlation is repeated 

measurements obtained from a group of participants over time.  

 

Researchers have three options when they analyse correlated data (e.g. longitudinal data on 

the same individuals, or data clustered within a hyper-ordinate structure): (1) ignore the 

correlation, (2) bypass it by withholding one part of the data, or (3) deal with the correlation 

using appropriate analytic techniques. The first two approaches are not really efficient or 

appropriate since they (1) either result in inappropriate inferences or (2) do not make full use 

of the data. Statistical expertise to deal with clustered and/or longitudinal data is required at 

an advanced level, one which often exceeds the training researchers in the IDD field may 

have. In addition, IDD research presents some unique challenges: (a) low prevalence of 

condition examined (typically resulting in small sample size), (b) often a high number of super-

ordinate clusters (for example, a relatively small number of children within a large number of 

genetic syndromes). In addition, where research is applied and the focus is on informing 

educational or social policy, there is often an interest in drawing conclusions about the 

population with a particular need, and not about the way individuals’ diagnostic labels/ 

clinical services/educational settings are clustered. In other words, the clustering is not always 

part of the substantive research question. This often results in a higher than expected 

frequency of the first two options, i.e., either ignoring the clustering or bypassing it by not 

using part of the data.  

 

With the present paper, we would like to encourage IDD researchers to use appropriate 

modelling techniques when having correlated data. We focus on two analytic techniques: 

Multilevel Models (MLM; also known as Mixed Models proposed by Laird and Ware 1982) 

and Generalized Estimating Equations (GEE); proposed by Zeger and Liang, 1986). Using  non- 

technical terms, we will discuss: (i) why it is important to account for the correlation and (ii) 

what MLMs and GEEs do and how they could be used in research in IDD drawing on examples 

from published research in the field. 
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1.2  Generalized Linear Models (GLM) 

The standard ANOVA and regression models are part of a bigger family called the Generalized 

Linear Models (GLMs). GLMs assume that one variable – referred to as the outcome or 

dependent variable - is explained by or depends on some other variables called the 

explanatory or independent variables. The outcome and explanatory variables are assumed 

to be related (“linked”) with a function called the “link function”. One of the purposes of a 

GLM is to estimate a unique combination of the explanatory variables which explain as much 

variation of the outcome variable as possible. This is done by estimating different weights 

called “regression coefficients”. Up to this point the whole process is a mathematical process 

referred to as optimization, as its aim is to minimize the unexplained variance of the outcome 

(i.e. the amount of variation not accounted for by the explanatory variables). This is usually 

done by using the so called “least squares” optimization method. Additionally, we want to 

know how certain we are about these estimated coefficients given that their estimation was 

based on a sample rather than a population. This is achieved by estimating confidence 

intervals and the associated p values (i.e., hypothesis testing). The usual test checks if the 

coefficients are significantly different from zero; for this we rely on distributional 

assumptions, and the issue now becomes a statistical one. 

1.3 Assumptions of GLMs 

A standard GLM assumes: (i) a distributional assumption (i.e. the distribution of residuals of 

the regression has a particular shape), needed for estimating confidence intervals (ii) a link 

function which connects the outcome with the explanatory variables (iii) constant variance, 

so that the inferences we make are valid for all the range of the dependent and independent 

variables and (iv) independence of the individual measurements.  This last assumption is 

violated when analyzing longitudinal and clustered data in standard ANOVAs or regressions. 

We demonstrate the effect of this violation with an example in 1.3.4 

 The distributional assumption is used for mathematical calculations and 

approximations during the optimization procedure. Importantly, it is also used for making 

inferences and especially for estimating the confidence intervals. The confidence intervals are 

used to determine if an estimated coefficient is different from zero (hence statistically 

significant) or not.  

1.3.1 Linear relationship  
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In every GLM we assume a mathematical relationship between the dependent variables and 

the independent variables. In a linear regression, we assume that the link function takes the 

form f(y)=y, and thus in most cases it is not stated. On the other hand, in Poisson regression 

for example, we assume the log() link function and thus f(y)=log(y) and the Poisson regression 

can be written as log(y)=a+bx+e. The equivalent form of the normal linear regression is 

Y=a+bx+e. 

1.3.2 Homoscedasticity 

Homoscedasticity is a term of Greek origin and means “equal variance”. This is more of a 

practical assumption since it allows us to use the same standard error for the range of the 

values we have available. Otherwise, we would have to estimate a separate standard error 

for each value.  

1.3.3 Independence 

For estimating standard errors of regression coefficients we need two components: (i) a 

properly estimated residual variance and (ii) the number of observations that this residual 

variance is based upon, the so called degrees of freedom. The estimation of the residual 

variance is where the main estimation bias occurs when we incorrectly use a GLM for 

analysing clustered or longitudinal data.  

1.3.4 Violation of independence with clustered and longitudinal data 

Let us assume a simple longitudinal design with two time points. Using data from Totsika, 

Hastings, Vagenas & Emerson (2014), where child behaviour problems were measured in 516 

children with intellectual disability at three (Time 1) and five years (Time 2), we will estimate 

the standard error of the mean difference, given different levels of correlation between the 

repeated measures. For simplicity, we assume that scores were normally distributed. Mean 

total behaviour problems at Time 1 were 16.18 and 12.27 at Time 2. In statistical notation this 

is represented as: 𝜇1̂ = 16.18 and 𝜇2̂ = 12.27, where the hat stands for estimated, μ stands 

for mean and the subscript 1 and 2 denotes the times of measurement. Equivalently, the 

standard deviations can be denoted as 𝜎1̂ = 6.32 and 𝜎2̂ = 8.11. The mean difference 

between the two time points is 𝜇2̂ − 𝜇1̂ = 12.27 − 16.18 = −3.91 units. Our objective is to 

determine if this difference is statistically significantly different from zero on the 5% level of 

significance, and for this we need to estimate the standard error of the mean difference. If 

we assume that there is no correlation between the two measurements the appropriate 

formula to determine the standard error of the mean difference is: 
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𝑠. 𝑒. = √(𝜎1̂ + 𝜎2̂)
𝑛⁄    (1) 

However, if we assume that the two measurements are related we have to take into 

account the covariance of the two means, symbolized as 𝜎12 and estimated by: 

𝑠. 𝑒. = √(𝜎1̂ + 𝜎2̂ − 2 × 𝜎12)
𝑛⁄  (2) 

The effect of the omission of the covariance term depends on the relative size of the 

covariance compared to the sum of the variances. For demonstration purposes, we plot the 

relationship between the covariance term and the standard error of the mean difference, for 

different levels of correlation using the Totsika et al (2014) data (see Figure 1). 

 

---------------------------------------Please insert Figure 1 here------------------------------------------------ 

 

As it can be seen in Figure 1, ignoring the correlation between the two measurements will 

lead to biased inferences about the standard error of the mean difference. The level of bias 

depends on the strength of the correlation. For behaviour problems, we have good evidence 

to indicate that over-time correlations tend to be at least moderate both in children and 

adults with IDD (Emerson et al., 2014; Totsika, Toogood, Hastings & Lewis, 2008; Totsika et 

al., 2013; 2014). As Figure 1 suggests, the presence of positively correlated measurements is 

associated with smaller standard errors compared to non-correlated measures (i.e., a 

correlation coefficient of zero), whereas a negative correlation is associated with higher 

standard errors than would have been estimated under the assumption of independence. 

Thus, if we were to test if a particular difference between two time points was different from 

zero, a positive correlation between the two time points would result in a tighter confidence 

interval compared to zero correlation, whereas a negative correlation would result in a wider 

confidence interval. As a corollary, we would need a smaller sample size for finding a 

statistically significant difference when we have positive correlation compared to a negative 

one when the difference if of similar magnitude.  As an example, using the above numbers of 

Totsika et al. (2014) and assuming a correlation of -0.5 and 0.5 would have led to a standard 

error that would have been obtained if they had 67% and 190% of the participants (n) 
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respectively, compared to that obtained if there was no correlation between the two time 

points.  

2.1 Multilevel Models and Generalized Estimating Equations 

There are several approaches for accounting for the correlation between measurements in 

longitudinal and clustered data. Repeated measures ANOVA is one of the better known 

approaches. Whilst it is part of the GLM family, it has some drawbacks which make it 

unsuitable for many studies (Fitzmaurice et al., 2004; pp.73-78). Repeated measures ANOVA 

assumes a so called compound symmetry correlation structure for the data. This means that 

each measurement time/cluster unit has the same correlation with every other time/cluster 

unit. This might be a valid assumption for cluster units, but it is generally not true for 

longitudinal data. Typically, the closer the time points of measurement, the higher the 

correlation amongst them. For example, parenting stress on the day of measurement will 

have a higher correlation with parenting stress experienced yesterday, compared to a year 

ago. Therefore, the assumption of compound symmetry is more difficult to satisfy in applied 

research with people, whereas it was easier to assume in agricultural data that ANOVAs were 

originally developed to analyse. A further difficulty with repeated measures ANOVA is the 

treatment of missing data. All the data for individuals who have missing values are excluded 

from the analysis (i.e., listwise deletion). This is not the most efficient use of the data, and 

modern methods have been developed to use all available data.  

 

MLMs and GEEs are two approaches for dealing with correlated data as they estimate the 

appropriate correlation and take it into account when estimating standard errors for the 

regression coefficients. Both can be viewed as extensions of GLMs with the main difference 

being the optimization method used for getting estimates of the regression coefficients 

and/or the partition of variance. MLMs were developed to analyse dependent variables 

where the independent variables were measured at different levels, or where data violated 

the assumption of independence. These models have been used extensively with continuous 

outcomes, although modern software now enables the analysis of categorical, binary or 

ordinal outcomes (e.g., Heck, Thomas & Tabata, 2012).  GEEs were developed as an extension 

of GLMs for analysing outcomes that violate the assumption of independence, and are most 

often used with count, binary, ordinal or just non-normally distributed outcomes, although 

they can also be used with normally distributed data.  In sections 2.2 to 2.5, we highlight 
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particular areas of interest within each modelling approach, and we give examples of their 

use in IDD research (3.1). By necessity, the present paper cannot cover all aspects of MLMs 

and GEEs; our aim is to provide readers with some initial information on these approaches to 

support them when considering adopting them.  

 

2.2 Multilevel Models 

2.2.1 Fixed and random effects in MLMs 

Multilevel models are also known as mixed models because they mix two types of effects 

(variables): fixed and random effects. All independent variables used in an ANOVA/regression 

are effectively equivalent to fixed effects in MLMs. At least five different definitions of fixed 

effects have been proposed, but, at its simplest, Gelman and Hill (2007, p.245) suggest that 

fixed effects are constant across individuals, whereas random effects vary. When variables 

are specified as fixed effects in MLMs, they are assumed to: (i) be measured without error (ii) 

not vary, i.e., all their levels have been included in our study (the levels assumed to affect the 

outcome of interest). Gender is a typical example of a variable usually modelled as a fixed 

effect. 

 

On the other hand, random effects: (i) are thought to represent a sample of all possible values 

of this characteristic in the population and (ii) have an underlying distribution that in the 

simplest case is the standard normal distribution. Thus, if we were conducting the same study 

again we could have, potentially, sampled different levels of the random effects. Examples of 

variables that fit into this description are individuals, time points, schools, wards etc. When 

we recruit individuals into a study we are not interested in these specific individuals but rather 

in what they represent as a (random) sample from the wider population of such individuals. 

For example, when we recruit children with ASD in one study, we are interested in these 

children, insofar as they represent a sample of children from all the population of children 

with ASD. When we sample a clinic or a classroom we are not interested (usually) in this 

specific clinic or classroom but rather on what this classroom/clinic represents as a member 

of the wider clinical or educational population. Time points can also be considered as random 

effects. Researchers are usually interested in change over some time period, rather than in 

the exact time points that they are taking the measurements at. Thus, although in a study the 

researchers might have planned to take measurements every 7 days, the same results might 
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have been obtained if measurements were obtained at 5- or 10-day intervals.  The 

distributional assumption is also an important one and complements the issue of “sampling” 

point. We assume that random effects (individuals, patients, families, etc.) come from a 

standard normal distribution. For reasons that will not be discussed in this paper, random 

effects create a correlation amongst the measurements. For an explanation of how the 

random effect create this correlation the reader is referred to Fitzmaurice et al. (2004, 

pp.198-199). 

2.2.2 Specifying random and fixed effects in MLM 

Deciding on which variable to treat as fixed and which as random can be tricky, as one might 

have guessed given the variation in definitions. This is not helped by the fact that published 

papers do not always report whether independent variables were treated as fixed or random 

effects in their models. Here, we provide some guidelines on how to make a decision. The 

reader should be aware that, depending on the research question, a variable treated as fixed 

in one study may be treated as random in another.  In other words, a variable’s 

characterization as fixed or random is largely contextual.  

 

In general, we treat as random: (i) independent variables whose values are a (random) sample 

from a wider population of values, and whose specific values (in our study) are not of intrinsic 

interest; (ii) independent variables that we believe create some correlation in our study (e.g., 

cluster units; repeated measures). These are general guidelines and the choice will depend 

on the specific research question. Below, we discuss selection by giving some examples.   

 

We discussed the first criterion in 2.2.1 above. As long as the sample is randomly selected 

from the population, it will provide an unbiased estimate of the underlying population 

parameter. The point here is that individual participants are not of intrinsic interest.  What is 

of interest is that they represent the population of interest.  A very similar case can be made 

for classrooms, schools, districts, households etc. They are entities representing the wider 

population of classrooms, schools, districts, households.  The specific entity (e.g. “household 

1011”) is not of intrinsic interest, but the fact it represents the wider population of such 

entities is.   
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In longitudinal studies, two variables typically fitted as random are the participants’ identity 

(ID) and time. Specifying ID as a random effect essentially indicates that measurements with 

the same ID could be correlated and thus the (co)variance associated with this variable will 

be estimated as a result of the mathematical formulation of the model (Fitzmaurice et al., 

2004). In this example, the variable participant ID is specified as a random effect following 

criterion (ii) in the paragraph above.  

 

Time is another variable which is often specified as a random effect in longitudinal studies. 

Although time per se does not ‘cause’ a correlation between individuals, it usually is an 

essential component of correlation for longitudinal data since time is what creates the within 

individual component.  Please note, however, that where we specify time as a random effect 

the underlying assumption (which ought to be reflected in the research question) is that we 

are not interested in the exact times measured in the study. In most cases, the time 

component in longitudinal research has an element of convenience and randomness (in the 

sense of choosing convenient times to suit the researcher), and researchers are not interested 

in the exact times chosen. When the latter is true, however (e.g., in intervention evaluation 

which is a special case of longitudinal design), the research question directly dictates 

measuring the effect of a specific time point, e.g., post or follow up. For example, De Boer 

and colleagues examined the effect of a school-based intervention on attitudes towards 

students with disabilities one week post and 12 months after the intervention (De Boer et al., 

2014). To determine whether there were significant group (intervention vs control) 

differences at post and follow up (i.e. “Time”) De Boer et al., (2014) fitted fixed effects of 

interaction terms group * Time.  Another type of longitudinal design where time is meaningful 

as a random effect is developmental trajectories studies. We consider the specification of 

time as a random effect in such studies in detail in 2.2.4 below but before this we review the 

issue of levels in MLMs.  

 

2.2.3 Levels in Multilevel Modelling 

Multilevel modelling is called so because the random effects can be viewed in levels which 

are nested i.e. one level contain another level. Educational data illustrate this point well. We 

are interested in analyzing data collected from different schools, within educational districts 

on individual students. So, we have students within a class, classes within a school, and 
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schools within educational districts. Starting numbering from lowest to the highest nested 

level we have: (i) individual students within a class are at level 1 (ii) classrooms within schools 

are at level 2, (iii) schools within an educational district are at level 3, and (iv) educational 

districts are level 4. A 4-level multilevel model is quite complicated but in theory we could 

have as many levels as we want. In this example, if we had repeated measures of each 

individual student, the “time” variable becomes level 1, the individual becomes level 2, the 

classroom level 3 and so on. A variance component will be estimated for each level (four in 

total for the original 4 level model), with six covariances as well (n x (n-1)/2 where n = number 

of levels).  

 

An intuitive way of thinking about the levels in MLM is by using the two stage random effects 

formulation. Let us consider a simple two level model: an outcome is measured on 

participants over time, along with another explanatory variable with two levels (e.g. Group 1 

vs. Group 2). For each individual participant we could perform a regression of time on the 

outcome variable as a first step. If this is a simple linear regression with an intercept, for each 

individual we have estimated two parameters: (i) an intercept and (ii) a slope for time. We 

can then fit a regression line for each parameter (intercept and slope) using the independent 

variable (not used in the first step) and an intercept. This last intercept will represent the 

overall mean of the population for the outcome variable, and the estimated Group effect will 

represent the deviation of one group from the other. The first step is about random effects 

whereas the second one is for fixed effects. This formulation can be generalized to further 

random and fixed effects. Indeed, some software require a specification of this type for fitting 

MLMs (e.g., MLwin, HLM). 

 

2.2.4 Intercepts and slopes in longitudinal MLMs that study growth 

In longitudinal studies where the focus is on growth or developmental trajectories, there are 

two aspects of time that need to be considered: where people are at the start of the study or 

a crucial fixed time point (i.e., intercept); and how or how much people change over time 

(slope).  Each participant is assumed to have a specific intercept (e.g., starting point) which is 

modelled as a random effect because it is considered a deviation from the overall population 

mean. Using IQ scores as an example, we estimate a baseline mean across the sample, and 

then estimate the intercept of each individual as the difference between each individual’s 
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baseline score and that mean. Intercepts are usually assumed to be normally distributed with 

a mean of zero and a variance which is estimated from the data. Note that the mean of 

intercepts is by default zero, since they are effectively measures of deviation from the overall 

mean. Intercepts specified as random effects may be referred to as random intercepts. 

 

For continuous variables in longitudinal studies, a random slope is also fitted for each 

individual. Similarly to the random intercepts, the change over time is modelled by fitting an 

overall slope for the average of the population, and each person’s change over time is 

modeled as a deviation from the overall slope. Slopes are assumed to be normally distributed 

with a mean of zero and a variance which is estimated from the sample. Figure 2 provides a 

visual representation of two individuals (broken lines) and their mean (solid line) as an 

example of: (i) random intercepts and random slopes (ii) random slopes fixed intercepts and 

(iii) fixed slopes random intercepts. 

 

---------------------------------------Please insert Figure 2 here------------------------------------------------ 

 

Of interest is the specification of intercepts and slopes in a study by Mervis and colleagues 

(2012) who examined the trajectory of IQ scores in children with Williams syndrome.  In their 

study, 40 children with Williams Syndrome completed the same IQ test, four to seven times 

over a period of five years on average. Researchers wanted to examine the trajectory of IQ in 

this population.  

 

We will use the example of Mervis et al., 2012 to describe the most used MLM, that of 

longitudinal measurements taken on a cohorts/group(s) of individuals. This is described by a 

2-level model. The lowest more “granular” level 1 describes the change of each individual 

over time (i.e. within individual), whereas level 2 describes differences between individuals. 

Thus, each individual’s personal trajectory is described by two variables: (i) the individual and 

(ii) the time within each individual. These two variables will be used as random effects since 

they are sufficient for accounting for the correlation between measurements of the same 

individual. This will be fully described and explained in this section. Assuming that the reader 

is familiar with simple linear regression, we could describe these two levels as two separate 

(but linked) regressions: (i) one at level 1 where a linear regression is fitted for every 
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individual, separately. Thus, for each individual j we have the following regression line for 

each measurement over time i: 

 

Yij=aj + bj*time+eij       (1) 

   

In the above equation, we have sacrificed mathematical accuracy (no index I for “a” and “b”) 

to highlight the fact that the above regression line is specific for each individual. In the 

example of Mervis et al (2012), Yij are the IQ measurements for individual j at time point i. 

Thus, for each individual we get an intercept for the IQ (aj), regression coefficient bj for the 

change over time and a residual (i.e. unexplained part of the IQ) eij. For the level 2 part of the 

MLM, there are two different but equivalent ways we can think. The first way is to think of 

the above regression coefficients being further split into an “average” and an “individual” 

part: 

 

aj= a0 + kj + aej 

bj=b0+ dj +bej 

 

where a0 and b0 are the “average” intercept, and regression coefficient which are the same 

for each individual; kj and dj are deviations from the mean intercept and slope for each 

individual; and aej and bej are the respective residuals. At this level, we can introduce the 

between individual variables, which by definition will have the same value no matter what 

the timepoint (i.e. the within individual) is. In Mervis et al. (2012), these were the child gender 

and the maternal education variables. The second but equivalent way to think about level 2 

is a second regression where we predict the population average values for the intercept and 

slopes from individual values, rather than decomposing the individual intercept and slope: 

one could think of it like taking the average of aj for intercepts and bj for slopes from the 

previous notation. Thus, we have: 

 

a0=aj+aej 

b0=bj+bej 
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This second way of thinking about this level is the so called 2-stage formulation of MLMs. 

Thus, in the case of Mervis et al. (2012) we estimate an overall intercept and slope for the 

average population from the estimates of the individuals’ IQ intercepts and slope of the 

participants, adding the child sex and maternal education. 

2.3  Generalized Estimating Equations (GEEs) 

Generalized Estimating Equations (GEEs) take a different approach to MLMs: GEEs do not 

distinguish between fixed and random effects but rather require the specification of a 

clustering variable which is assumed to account for the covariance between measurements 

either on the same individual or on members of the same cluster. They use a different 

optimization procedure for achieving this compared to MLMs. A result of this different 

optimization procedure, which is often understated, is that the interpretation of the output 

is different compared to that of MLMs: MLMs essentially make inferences about the 

individual whereas GEEs make inferences about the population average (hence an alternative 

name for GEEs is “marginal models”). Mathematically, this difference is not so important 

when the underlying assumed distribution is symmetric (i.e., normal distribution) but 

becomes important when this distribution is non symmetrical (e.g., binomial distribution for 

logistic regression). However, this difference is crucial when we consider what the aims of the 

research are (e.g., individual prediction vs population description/prediction).  

2.4 Model Specification in Analysis of Clustered Data 

Finally, the two approaches to modelling clustered data differ in the assumptions they impose 

on the data. A full list of assumptions for each approach will not be provided here as relevant 

textbooks have available information (Garson, 2013; Fitzmaurice et al. 2004, pp.187-200, p. 

294). Here, we will focus on two issues: model specification, and adequacy of sample size. 

Model specification relates to the method MLMs and GEEs use to estimate coefficients and 

their standard errors from their data. MLMs are particularly sensitive to model specification: 

in other words, if the distribution of error terms is inappropriately specified, any inference 

based on the estimated coefficients may be biased, because the standard errors of these 

coefficients will be biased (Garson, 2013). GEEs do not model random effects and by 

extension they do not need to model the covariance structure of these effects, hence they 

impose fewer assumptions on the data (Zeger, Liang, & Albert, 1988). Researchers suggest 

that GEEs can be more robust to misspecification of the distribution of the outcome variable 

or the link function, especially when the sample size is not very small (Hubbard et al., 2010).  
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2.4.1 Estimators in Multilevel Models 

There are two iterative optimization methods that can be used with MLMs: (i) maximum 

likelihood (ML) and (ii) Restricted Maximum Likelihood (REML). In a statistical package, users 

typically have the option to select either of them. From a user’s perspective, it suffices to 

know that ML will give biased results (albeit a very small bias) for the random effects (but 

unbiased for the fixed effects), whereas the REML will give biased results for the fixed effects 

(but unbiased for the random effects) (Zuur et al. 2009, pp.116-119). Thus, the question 

becomes how to select which one to use. Zuur et al. (2009, pp. 121-122) present a protocol 

for selecting the most parsimonious MLMs, and recommend the selection of the random part 

using REML first, and then the selection of the fixed part using ML. We believe this is sound 

approach. ML and REML are relatively sensitive to distributional misspecifications, and thus 

care should be taken to specify the correct underlying distribution. This is more so with small 

sample sizes. 

2.4.2 Estimator in Generalized Estimating Equations 

A very appealing property of the GEEs is the estimator used for obtaining the regression 

coefficients which is known as the sandwich estimator. We will not provide mathematical 

details but we will highlight some important properties of this estimator. The sandwich 

estimator tends to result in unbiased and consistent estimates for the regression coefficients 

and their standard errors, even when the covariance (i.e., correlation) structure is mispecified 

(Hubbard et al., 2010). What is required is that the mean is appropriately modelled (i.e. the 

regression equation) rather than the covariance. This is quite an appealing property, unlike in 

MLMs where a correct specification of the covariance is also important. However, one should 

be aware that this is the case when the following conditions hold (Fitzmaurice et al. 2004, 

pp.304-305): (i) the sample is large, (ii) the design is balanced (i.e., equal number of 

observations for each group), (iii) there are enough observations for the covariances to be 

appropriately estimated, (iv) the number of individuals observed is relatively large compared 

to the number of timepoints/clusters. If these conditions are not met, the standard errors 

obtained from the sandwich estimator will usually be underestimated (Fitzmaurice et al., 

2004).  

2.5 Sample Size Considerations 

In terms of sample size, researchers need to consider not just the overall N, but also the 

number of available clusters, and the size of the clusters.  From a statistical perspective 
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without a constraint on available resources (e.g. funds, subjects, time etc.) or ethical issues 

(e.g., we do not know if the new treatment is really beneficial, hence the test) more of 

everything is better in terms of sample size, but this is not the case in applied research where 

constraints such as the above are present. Research on sample size has examined parameters 

that need to be taken into account when determining optimum sample size within each of 

the two modelling approaches (e.g., Gibbons et al., 2010; Teerenstra et al., 2010).  Research 

of this type is important for determining study design before the data is actually collected. 

“One-size fits all” methods for determining sample size/cluster size are not available; rather 

guidance is specific to design, i.e., whether the study is a trial, the level of randomisation 

(Level 1 or Level 2), whether the model includes any/how many random factors, if the 

outcome is continuous, if the link function is linear, etc.  

 

In the field of IDD research, we are often faced with three common scenarios: (i) small N 

because of low prevalence of the condition (which means that more investment in 

recruitment is unlikely to result in a linear increase in N); (ii) access to a limited number of 

clusters (partly, this is due to low prevalence of IDD [if a small proportion of children have IDD  

than IDD-clinics would be fewer than, say, clinics for children without IDD], and partly to 

issues related to level of funding and ethics); and (iii) large cluster:participant ratios (i.e., a 

small-er number of participants in a large number of super-ordinate clusters): for example, 

when considering genetic syndrome clustering, or recruiting from mainstream classrooms or 

mainstream clinical services.  Research that considers all three of these scenarios in 

determining sample size is limited, especially research that considers different types of 

outcomes (continuous and non-continuous), and/or research that compares the performance 

of GEEs and MLMs under these scenarios. Moving away from rules of thumb that have at 

times been suggested (e.g., 30 clusters with 30 participants each) and discredited (Bell et al., 

2010a), the question in the IDD field is how low is too low for using either of these methods. 

 

Overall, MLMs are fairly robust to small numbers of clusters and participants. Huang (2016) 

in a simulation study found that Level 1 estimated coefficients were not biased even with 

samples as low as five for Level 1 participants and 10 for Level 2 clusters, while Level 2 

estimates required a minimum of 30 Level 2 clusters with five Level 1 participants each to 

avoid bias. Apart from the estimated coefficient, the impact of sample size has also been 
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examined in relation to the standard errors of the estimated parameters.  Overall, standard 

errors for Level 1 variables seem to be unaffected by small participant or cluster numbers 

(Bell et al., 2010a, 2010b; Huang, 2016). In terms of the standard errors of the Level 2 

coefficients, the pattern of findings differs among simulation studies. Huang (2016) in a 

simulation involving one Level 2 independent variable and two Level 1 independent variables 

found that Level 2 standard errors from MLMs were without bias even for the smallest sample 

size condition he examined (five Level 1 participants and 10 Level 2 clusters). Standard errors 

of Level 2 predictors were not biased even in models with more independent variables, binary 

or continuous, that also included interaction terms (Bell et al., 2010a). However, it appears 

that standard errors of Level 2 predictors are more prone to bias (higher possibility of Type I 

error) as the ratio cluster:participant increases (fewer participants in each cluster unit) when 

the number of clusters is small (50 or less; Bell et al., 2010b). A recent simulation study 

indicated that using GEEs with a small number of clusters (about 10) that have either few 

(ranging between 7 and 14 participants) or many participants (ranging 17 to 34 participants) 

was associated with a higher risk for Type I errors, despite the fact that estimated coefficients 

were fairly robust (McNeish & Stapleton, 2016).   

 

A third area of consideration with regard sample size is power. It appears more challenging 

to achieve a desired level of power (e.g. conventional .80) in MLMs especially when they are 

fairly complex. Bell et al (2010a) found that achieving .80 power was possible with about 30 

clusters with 20 to 40 Level 1 participants. When the number of clusters is below 10 and effect 

sizes are anything other than large, both MLMs and GEEs will be underpowered (NcNeish & 

Stapleton, 2016).  With a small level of clusters (i.e., below 10), researchers need to consider 

whether modelling their effect is actually of substantive interest. Another way to account for 

the clustering effect without explicitly modelling it is to use a fixed effects regression, i.e., a 

standard regression model that includes dummy codes for the cluster levels (termed the fixed 

effects approach to clustering; Cohen, Cohen, West & Aiken, 2003, pp. 539-541). This has 

been shown to produce unbiased estimates and standard errors for Level 1 variables (Huang, 

2016). This approach can be used even within a MLM environment to reduce model 

complexity. For example, in a MLM used to account for repeated measurements of activity 

levels in adults with ID, the clustering of adults within settings (a Level 3 hyper-ordinate 

factor) was not part of the research question and, moreover, there were only four settings 
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(van der Putten et al., 2017). Researchers thus fitted three dummy coded variables to 

represent the settings specified as fixed effects in a 2-level MLM (van der Putten et al., 2017).      

 

Overall, simulation findings seem to suggest that variation in sample size at either individual- 

or cluster-level does not affect the estimated coefficients or Level 1 standard errors, but it 

may affect Level 2 standard errors (Bell et al., 2010a; 2010b; Huang, 2016; McNeish & 

Stapleton, 2016).  Any conclusions regarding the direction of bias (and hence our ability to 

conclude accurately what is significant and what not) is restricted to the different 

combination of parameters examined in simulation studies to date. Given the large number 

of parameters that need to be taken into account to determine adequacy of sample size for 

analysis using a specific approach (N, cluster size, cluster:participant ratio, intraclass 

correlation, number of covariates, predictors binary or continuous, outcome distribution, 

design, etc.), it is important that more simulation studies, and in particular simulation studies 

with data from IDD research are conducted to facilitate field-specific recommendations. Our 

suggestion is that researchers determine the modelling approach guided by the research 

question primarily (and the considerations outlined in 2.2.1- 2.4.2). Any sample size 

considerations should include reference to model convergence (Bell et al., 2010a, 2010b; 

Nooraee, Molenberghs, & van den Heuvel, 2014).  

 

For further guidance the reader is referred to the following resources which the authors find 

helpful. As a basis and starting point we recommend the paper by Rutterford et al, (2015) 

which summarizes in a very accessible way the methods for sample size determination in 

cluster randomized trials. An easy to read book which is focused on this issue is that of Ahn 

et al. (2015). Practical advice on how to estimate the various parameters needed for sample 

size calculations along with reference to relevant software are given by Guo et al. (2013).    

3.1 Use of these modelling approaches in IDD research 

An overview of the available literature suggests that MLMs have been used more frequently 

than GEEs when it comes to the analysis of data in the field of IDD research. GEEs are a 

relatively recent development in statistical analysis methods. They are also less likely to be in 

the training curriculum of social science researchers so it is likely that researchers in IDD are 

less exposed to them.  
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MLMs and GEEs have both been used to account for clustering caused by a hyper-ordinate 

structure. For example, MLMs have been used to analyse data clustered because of nesting 

of parents in couples (Garcia-Lopez et al., 2016; Hartley & Schultz, 2015; Jones et al., 2014; 

Langley et al., 2017; Pottie et al., 2009), families in households (Pottie et al., 2009), individuals 

with ID in community homes (Qian et al., 2015), support staff in organizations (Knotter et al., 

2016). GEEs have been used to account for clustering caused by carers nesting within 

households (Totsika et al., 2017), multiple births nesting within women (Brown et al., 2016), 

or twins nesting within families (Cheng et al., 2015).  A key difference in these two approaches 

reflected in the studies is that those studies that modelled their data using MLMs wanted to 

describe how much of the outcome variance could be attributed to the factors causing the 

clustering, whereas in GEE analyses this was not a main consideration, but a characteristic of 

the design that had to be controlled for prior to the interpretation of estimated parameters.  

 

With repeated measures, researchers are often interested in modelling 

growth/developmental trajectory, or evaluating interventions with multiple evaluation 

points.  MLMs tend to be used more often than GEEs in IDD research for either of these 

repeated measures scenarios, although overall there are more developmental trajectory 

studies than intervention evaluations in our field. A body of work has examined 

developmental trajectories or growth or change over time in cognitive, social, behavioural, or 

psychological outcomes of individuals with IDD or their carers using MLMs (e.g., Benson, 

2014; Jenni et al., 2015, Hartman et al., 2014; Mervis et al., 2002; Wong et al., 2014, 

Woodruff-Borden et al., 2010). In such designs, MLMs are sometimes called growth curve 

models. Growth curve models as a term encompass longitudinal analyses fitted within a MLM 

framework or a structural equation framework (Curran, Obeidat, & Losardo, 2010). They may 

also be called hierarchical linear models, which refers to a group of MLMs that analyses data 

where the relationship between predictors and outcome is linear. Repeated measures studies 

with data analysed by GEEs have focused on modelling longitudinal outcomes in this 

population, especially outcomes that are not continuous (e.g., counts, binary or ordinal 

outcomes: Downes et a., 2015; Miller et al., 2017; Lin et al., 2007; Shoushtari et al., 2014), 

although not always (e.g., continuous adaptive skills scores analysed by GEEs in van Schie et 

al., 2013). Sample sizes vary considerably among these studies. Similarly, the number of 

repeated measures available also varies, but three is the minimum. While three is the 
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minimum number of repeated measures for a longitudinal analysis, some studies analysed 

data sets where not everyone had the required three time points (e.g., Benson, 2014, van 

Schie et a., 2013), whereas others exclude participants who did not have at least three 

repeated measures available (e.g., Woodruff-Borden et al., 2010).  Overall, GEEs and MLMs 

cope well with unbalanced designs and missing data (and this is one of their main attractions 

compared to ANOVAs). However, when the aim of a MLM is to describe a developmental 

trajectory or growth line, three data points should be the minimum considered as anything 

less than three would only be able to identify linear trajectories.  

 

Last, intervention evaluations  have used MLMs to account for clustering caused by repeated 

measures (typically at least three evaluation points; pre, post and follow up) and hyper-

ordinate structures (e.g., Level 2: intervention vs control group, Level 3: schools, clinics). 

Where the lack of association between a hyper-ordinate structure and outcomes could be 

established, researchers have dropped Level 3 to reduce model complexity and analysed 2-

level models, even if randomization was clustered (e.g., de Boer et a., 2014; Hassiotis et al., 

2009). GEEs have been used in intervention evaluations when intervention outcomes are not 

continuous (e.g., psychiatric diagnosis present/absent in Hassiotis et al., 2009) or not normally 

distributed (e.g., Shu & Lung, 2005; Shu, Lung, & Huang, 2002), though not always (e.g., Wei 

et al., 2012).  

 

Intervention evaluations are still being analysed using repeated measures ANOVAs or 

MANOVAs or even change scores analysis with the pitfalls we described in 1.3.4. In addition 

to correctly accounting for data non-independence, MLMs and GEEs offer a lot more flexibility 

as they can cope with missing data, unequally spaced time points and outcomes that are not 

continuous or normally distributed. The more flexible modeling options can in turn offer more 

powerful interpretation. To highlight this, we note the slopes-as-outcomes MLMs Dykens and 

colleagues (2014) used to evaluate the effectiveness of a mindfulness intervention for parents 

of children with IDD. Their cluster randomized trial with six evaluation points focused not on 

between group differences at post/follow up controlling for pre-scores (which is what a mixed 

ANOVA model would do), but on the between group differences of the change over time (i.e., 

the course of change in mothers during the study; in other words mothers’ slopes), thus 
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allowing a more interesting insight to the effects of the intervention, while also using all of 

the data available.   

4.1 Conclusion 

In this paper, we discussed some important features of MLMs and GEEs, two statistical 

methods for analyzing clustered/longitudinal data. Our aim was to encourage the take up of 

these modelling approaches where it is appropriate. We believe three factors could increase 

the use of such models. Firstly, we propose the inclusion of model specification details in 

published papers. A full description of how MLMs or GEEs were fitted, and why, is likely to 

increase use by other IDD researchers, who will be able to read, understand, and replicate 

the approach. Usually model specification details are sacrificed on the altar of word count 

restrictions. However, researchers and publishers have recognized the need to publish 

technical details for other methods (e.g., systematic reviews), and found ways to include 

them in papers (e.g., use of online appendices). Second, future simulation studies need to 

draw on data from IDD research to generate more knowledge about sample size and power 

that is specific to IDD research characteristics (for example, small N, limited clusters, large 

cluster:participant ratios). This information is invaluable during study design, which is the 

best time for deciding what statistical model to use (and in some cases, e.g., randomised 

trials, the only time when analysis can be planned). Last, training social sciences researchers 

in the use of MLMs and GEEs at undergraduate or postgraduate level will ensure that they 

have some core skills in place when they decide to embark on research in IDD. This is easier 

nowadays when statistical software has become more user-friendly.  

  



 23 

Funding: The research did not receive any specific grant from funding agencies in the public, 
commercial, or not-for-profit sectors  
  



 24 

References 
Ahn, C., Heo, M., & Zhang, S. (2015). Sample Size Calculations for Clustered and Longitudinal 

Outcomes in Clinical Research. CRC Press. 
Bell, B.A., Morgan, B.G., Kromrey, J.D., & Ferron, J.M. (2010b). The impact of small cluster size on 

multilevel models: A Monte Carlo examination of two level models with binary and 
continuous predictors. JCM Proceedings Survey Research Methods Section, 4057-4067. 
Retrieved from 
https://ww2.amstat.org/sections/srms/Proceedings/y2010/Files/308112_60089.pdf 

Bell, B.A., Morgan, B.G., Schoeneberger, J.A., & Loudermilk, B.L. (2010a). Dancing the sample size 
limbo with mixed models: How low can you go? SAS Global Forum, 4, 11-14. Retrieved from 
http://support.sas.com/resources/papers/proceedings10/197-2010.pdf   

Benson, P.R. (2014). Coping and psychological adjustment among mothers of children with ASD: An 
accelerated longitudinal study. Journal of Autism and Developmental Disorders, 44, 1793-
1807. doi: 10.1007/s10803-014-2079-9 

Brown, H.K., Kirkham, Y.A., Cobigo, V., Lunsky, Y, & Vigod, S.N. (2016). Labour and delivery 
intervention in women with intellectual and developmental disabilities: a population-based 
cohort study. Journal of Epidemiology and Community Health, 70, 238-244.  

Cheng, E.R., Palta, M., Poehlmann-Tynan, J., & Witt, W.P. (2015). The influence of childen’s 
cognitive delay and behavior problems on maternal depression. Journal of Pediatrics, 167, 
679-686. doi: 10.1016/j.jpeds.2015.06.003 

Cohen, J., Cohen, P. West, S.G., & Aiken, L.S. (2003). Applied Multiple Regression/Correlation 
Analysis for the Behavioral Sciences ( 3rd ed). Mahwah, New Jersey: Lawrence Erlbaum.  

Curran, P.J., Obeidat, K., & Losardo, D. (2010). Twelve frequently asked questions about growth 
curve models. Journal of Cognition and Development, 11, 121-136. doi:    
10.1080/15248371003699969 

De Boer, A., Pijl, S.J., Minnaert, A., & Post, A. (2014). Evaluating the effectiveness of an intervention 
program to influence attitudes of students towards peers with disabilities. Journal of Autism 
and Developmental Disorders, 44, 572-583/ doi:10.1007/s10803-013-1908-6 

Downes, A., Anixt, J.S., Esbensen, A., Wiley, S., & Meinzen-Derr, J. (2015). Psychotropic medication 
use in children and adolescents with Down Syndrome. Journal of Developmental and 
Behavioral Pediatrics, 36, 613-619. doi:10.1097/DBP.0000000000000179 

Dykens, E.M., Fisher, M.H., Taylor, J.L., Lambert, W., & Miodrag, N. (2014). Reducing distress in 
mothers of children with autism and other disabilities: A randomized trial. Pediatrics, 134, 
E454-E463. doi:10.1542/peds.2013-3164 

Emerson, E., Blacher, J., Einfeld, S., Hatton, C., Robertson, J., & Stancliffe, R. (2014). Environmental 
risk factors associated with the persistence of conduct difficulties in children with 
intellectual disabilities and autistic spectrum disorders. Research in Developmental 
Disabilities, 35, 3508-3517. http://dx.doi.org/10.1016/j.ridd.2014.08.039 

Fitzmaurice G.M., Laird, N.M., & Ware J.H. (2004). Applied Longitudinal Analysis. Wiley Series in 
Probability and Statistics. New Jersey: John Wiley & Sons. 

Garcia-Lopez, C., Sarria, E., & Pozo, P. (2016). Multilevel approach to gender differences in 
adaptation in father-mother dyads parenting individuals with autism spectrum disorder. 
Research in Autism Spectrum Disorders, 28, 7-16. doi: 10.1016/j.rasd.2016.04.003.  

Garson, D. (2013). Generalized Linear Models/Generalized Estimating Equations. Statistical 
Associates Publishing. ISBN-10: 1626380155. 

Gelman, G. & Hill, G. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models.  
Cambridge: Cambridge University Press. 

https://ww2.amstat.org/sections/srms/Proceedings/y2010/Files/308112_60089.pdf
http://support.sas.com/resources/papers/proceedings10/197-2010.pdf
http://dx.doi.org/10.1016/j.ridd.2014.08.039


 25 

Gibbons, R.D., Hedeker, D., & DuToit, S. (2010). Advances in analysis of longitudinal data. Annual 
Review of Clinical Psychology, 6, 79-107. doi:10.1146/annurev.clinpsy.032408.153550. 

Guo, Y., Logan, H.L Glueck, D.H., & Muller, K.E. (2013). Selecting a sample size for studies with 
repeated measures. BMC Medical Research Methodology, 13:100. Doi: 10.1186/1471-2288-
13-100 

Hanley, J.A., Negassa, A., Edwardes, M.D.deB., & Forrester, J.E. (2003). Statistical analysis of 
correlated data using generalized estimating equations: An orientation. American Journal of 
Epidemiology, 157, 364-375. doi: 10.1093/aje/kwf215 

Hartley, S.L., & Schultz, H.M. (2015). Support needs of fathers and mothers of children and 
adolescents with autism spectrum disorders. Journal of Autism and Developmental 
Disorders, 45, 1636-1648. doi: 10.1007/s10803-014-2318-0 

Harman, E., Smith, J., Westendrop, M., & Visscher, C. (2015). Development of physical fitness in 
children with intellectual disabilities. Journal of Intellectual Disability Research, 59, 439-449. 
doi: 10.1111/jir.12142 

Hassiotis, A., Robotham, D., Canagasabey, A., Romeo, R., Langridge, D. Blizard, R., …King, M. (2009). 
Randomized, single-blind, controlled trial of a specialist behaviour therapy team for 
challenging behavior in adults with intellectual disabilities. American Journal of Psychiatry, 
166, 1278-1285. doi:10.1176/appi.ajp.2009.08111747  

Heck, R.H., Thomas, S.L., & Tabata, L.N. (2012). Multilevel modelling of categorical outcomes using 
IBM SPSS. New York: Routledge.  

Hubbard, A. Ahern, J., Fleischer, N.L., Van der Laan, M., Lippman, S.A., Jewell, N…Satariano, W.A.  
(2010). To GEE or Not to GEE: Comparing population average and mixed models for 
estimating the associations between neighbourhood risk factors and health. Epidemiology, 
21, 467-474. doi:10.1097/EDE.0b013e3181caeb90 

Huang, F.L. (2016). Alternatives to multilevel modelling for the analysis of clustered data. The 
Journal of Experimental Education, 84, 175-196. 
http://dx.doi.org/10.1080/00220973.2014.952397  

Jenni, O.G., Fintelmann, S., Calfisch, Latal, B, Rousson, V., & Chaouch, A. (2015). Stability of 
cognitive performance in children with mild intellectual disability. Developmental Medicine 
and Child Neurology, 57, 463-469. doi: 10.1111/dmcn.12620 

Jones. L., Totsika, V., Hastings, R.P. & Petalas, M. (2013). Gender differences when parenting 
children with Autism Spectrum Disorders: a multilevel modeling approach. Journal of Autism 
and Developmental Disorders, 43, 2090-2098. 

Knotter, M.H., Stams, G.J.J.M., Moonen, X.M.H., & Wissink, I.B. (2016) Correlates of direct care 
staffs’ attitudes towards aggression of persons with intellectual disabilities. Research in 
Developmental Disabilities, 59, 294-305. doi: 10.1016/j.ridd.2016.09.008 

Laird, N.M., & Ware, J.H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963-
974.  

Langley, E., Totsika, V., & Hastings, R. P. (2017). Parental relationship satisfaction in families of 
children with Autism Spectrum Disorder (ASD): A multilevel analysis. Autism Research, 10, 
1259-1268. 

Lin, J.D., Loh, C.H., Choi, I.C., Yen, C.F., Hsu, S.W., Wu, J.L., & Chu, C.M. (2007). High outpatient visits 
among people with intellectual disabilities caring in a disability institution in Taipei: A 4-year 
survey. Research in Developmental Disabilities, 28, 84-93. doi: 10.1016/j.ridd.2005.12.003 

McNeish, D., & Stapleton, L.M. (2016). Modeling clustered data with very few clusters. Multivariate 
Behavioral Research, 51, 495-518, doi:10.1080/00273171.2016.1167008 

https://doi.org/10.1097/EDE.0b013e3181caeb90
http://dx.doi.org/10.1080/00220973.2014.952397


 26 

Mervis, C.B., Kistler, D.J., John, A. E., & Morris, C.A. (2012). Longitudinal assessment of intellectual 
abilities of children with Williams Syndrome: multilevel modeling of performance on the 
Kaufman Brief Intelligence Test-2. American Journal on Intellectual and Developmental 
Disabilities, 117, 134-155. 

Miller, M., Iosif, A-M., Hill, M., Young, G.S., Schwichtenberg, A.J., & Ozonoff, S. (2017). Response to 
name in infants developing autism spectrum disorder: A prospective study. The Journal of 
Pediatrics, 183, 141-146.e. doi: 10.1016/j.jpeds.2016.12.071 

Nooraee, N., Molenberghs, G., & van der Heuvel, E.R. (2014). GEE for longitudinal ordinal data: 
Comparing R-geepack, R-multgee, R-repolr, SAS-GENMOD, SPSS-GENLIN. Computational 
Statistics and Data Analysis, 77, 70-83. https://doi.org/10.1016/j.csda.2014.03.009 

Pottie, C.G., Cohen, J., & Ingram, K.M. (2009). Parenting a child with autism: Contextual factors 
associated with enhanced daily parental mood. Journal of Pediatric Psychology, 34, 419-429. 
Doi: 10.1093/jpepsy/jsn094   

Qian, X., Ticha, R., Larson, S., Stancliffe, R.J., Wuorio, A. (2015). The impact of individual and 
organizational factors on engagement of individuals with intellectual disability living in 
community group homes: a multilevel model. Journal of Intellectual Disability Research, 59, 
492-505. doi: 10.1111/jir.12152 

Rutterford, C., Copas, A., & S. Eldridge. (2015). Methods for sample size determination in cluster 
randomized trials. International Journal of Epidemiology, 44(3): 1051-1067. DOI: 
10.1093/ije/dyv113 

Shooshtari, S., Brownell, M., Dik, N., Chateau, D., Yu, C.T., Mills,…Wetzel, M. (2013). A population-
based longitudinal study of depression in children with developmental disabilities in 
Manitoba. Journal of Mental Health Research in Intellectual Disabilities, 7, 191-207. DOI: 
10.1080/19315864.2013.798389 

Shu, B.C., & Lung, F.W. (2005). The effect of support group on the mental health and quality of life 
of mothers with autistic children. Journal of Intellectual Disability Research, 49, 47-53. 
doi:10.1111/j.1365-2788.2005.00661.x 

Shu, B.C., Lung, F.W., & Huang, C. (2002). Mental health of primary family caregivers with children 
with intellectual disability who receive a home care programme. Journal of Intellectual 
Disability Research, 46, 257-263. doi: 10.1046/j.1365-2788.2002.00370.x 

Teerenstra, S., Lu, B., Preisser, J.S., van Achterberg, T. & Borm, G.F. (2010). Sample size 
considerations for GEE analyses of three-level cluster randomized trials, Biometrics, 66, 
1230-1237. doi:10.1111/j.1541-0420.2009.01374.x. 

Totsika, V., Toogood, S., Hastings, R.P., & Lewis, S. (2008). Persistence of challenging behaviours in 
adults with intellectual disabilities over a period of 11 years. Journal of Intellectual Disability 
Research, 52, 446-457. 

Totsika, V., Hastings, R.P., Emerson, E., Lancaster, G.A., Berridge, D.M., & Vagenas, D. (2013). Is 
there a bidirectional relationship between maternal well-being and child behavior problems 
in Autism Spectrum Disorders? Longitudinal analysis of a population-defined sample of 
young children. Autism Research, 6, 201-211. doi: 10.1002/aur.1279 

Totsika, V., Hastings, R.P., Vagenas, D., & Emerson, E. (2014). Parenting and the behavior problems 
of young children with an intellectual disability: Concurrent and longitudinal relationships in 
a population-based study. American Journal of Intellectual and Developmental Disabilities, 
119, 422-435. doi: 10.1352/1944-7558-119.5.422 

Totsika, V., Hastings, R.P., & Vagenas, D. (2017). Informal caregivers of people with an intellectual 
disability in England: health, quality of life and impact of caring. Health and Social Care in 
the Community, 25, 951-961. doi: 10.1111/hsc.12393  

https://doi.org/10.1016/j.csda.2014.03.009


 27 

Van Schie, P.E.M., Sciebes, R.C., Dallmeijer, A.J., Schuengel, C., Smits, D.W., Gorter, JW., & Bercher, 
J.G. (2013). Development of social functioning and communication in school-aged (5-9 
years) children with cerebral palsy. Research in Developmental Disabilities, 34, 4485-4494. 
doi: 10.1016/j.ridd.2013.09.033  

Van der Putten, A.A.J., Bossink, L.W.M., Frans, N., Houwen, S., & Vlaskamp, C. (2017). Motor 
activation in people with profound intellectual and multiple disabilities in daily practice. 
Journal of Intellectual and Developmental Disability, 42, 1-11. 
doi:10.3109/13668250.2016.1181259 

Wei, Y.S., Chu, H., Chen, C.H., Hsueh, Y.J., Chang, Y.S., Chang, L.I., & Chou, K.R. (2012). Support groups 
for caregivers of intellectually disabled family members: effects on physical-psychological 
health and social support. Journal of Clinical Nursing, 21, 1666-1677. doi: 10.1111/j.1365-
2702.2011.04006.x 

Wong, J.D., Mailick, M.R., Greenberg, J.S., Kong, J., & Coe, C.L. (2014). Daily work stress and 
awakening cortisol in mothers of individuals with autism spectrum disorders or Fragile X. 
Family Relations, 63, 135147. doi: 10.1111/fare.12055 

Woodruff-Borden, J., Kistler, D.J., Henderson, D.R., Crawford, N.A., & Mervis, C.B. (2010). 
Longitudinal course of anxiety in children and adolescents with Williams Syndrome. American 
Journal of Medical Genetics, Part C-Seminars in Medical Genetics, 154C, 277–290. 
doi:10.1002/ajmg.c.30259 

Zeger, S.L., & Liang, K-Y. (1986). Longitudinal data analysis for discrete and continuous outcomes. 
Biometrics, 42, 121-130.  

Zeger, S.L., Liang, K-Y., & Albert, P.S. (1988). Models for longitudinal data: A Generalized Estimating 
Equation Approach, Biometrics, 44, 1049-1060. 

Zuur, A.F., Ieno, E., Walker, N., Saveliev, A.A., & Smith, G.M. (2009). Mixed Effects Models and 
Extensions in Ecology with R. New York: Springer. Doi: 10.1007/978-0-387-87458-6 
 

  



 28 

 
 
 
Figure 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

St
an

d
ar

d
 e

rr
o

r 
o

f 
th

e 
d

if
fe

re
n

ce

Correlation

Correlation No Correlation



 29 

 

 

 
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
es

p
o

n
se

Time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
es

p
o

n
se

Time

(ii)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
es

p
o

n
se

Time

(iii)

(i) 



 30 

Figure 1. Comparison of standard error of mean difference, assuming no correlation (bullet 

points) and correlations from -1 to 1 (crosses).  

 
Figure 2. Examples of multilevel models with: (i) random intercepts and random  slopes (ii) 
random slopes fixed intercepts and (iii) fixed slopes random intercepts, for two individuals 
(broken lines) and their average (solid line).  

 
 
 
 
 
 
 
 
 
 

 


