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Appendices  

Supplemental materials and methods (detailing full experimental outline) and 

supplemental results are detailed in the Supplemental Materials appendix. 
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Abstract 

Immune Thrombotic Thrombocytopenic Purpura (iTTP) is an ultra-rare, life-

threatening disorder, mediated through severe ADAMTS13 deficiency causing multi-

system micro-thrombi formation, and has specific HLA associations.  We undertook 

a large genome wide association study to investigate additional genetically distinct 

associations in iTTP. 

We compared two iTTP patient cohorts with controls, following standardised genome 

wide quality control procedures for SNPs and imputed HLA types. Associations were 

functionally investigated using expression quantitative trait loci (eQTL), and motif 

binding prediction software.  

Independent associations consistent with previous findings in iTTP were detected at 

the HLA locus and in addition a novel association was detected on chromosome 3 

(rs9884090, p-value of 5.22x10-10, Odds Ratio (OR) = 0.40) in the UK discovery 

cohort. Meta-analysis, including the French replication cohort, strengthened the 

associations. The haploblock containing rs9884090 is associated with reduced 

protein O-glycosyltransferase 1 (POGLUT1) expression (eQTL P<0.05), and 

functional annotation suggested a potential causative variant (rs71767581). This 

work implicates POGLUT1 in iTTP pathophysiology and suggests altered post-

translational modification of its targets may influence disease susceptibility. 

167 words  
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INTRODUCTION 

Thrombotic Thrombocytopenic Purpura (TTP) is an ultra-rare, life-threatening illness, 

with an annual incidence of approximately 6/million, and with an untreated mortality 

approaching 90% (10-20% with prompt intervention). It can affect patients of any 

age, but often affects young adults (30-40 years) and is more common in women.(1) 

The initial diagnosis of TTP is based on clinical suspicion, but ADAMTS13 (a 

disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) 

activity <10IU/dL confirms the diagnosis. Severe deficiency of ADAMTS13 results in 

failure to cleave ultra large von Willebrand Factor multimers (UL-VWF), crucial for 

normal haemostatic function and proteolytic regulation of VWF. ADAMTS13 

deficiency in immune TTP (iTTP) is mediated through IgG autoantibodies.(2,3) The 

precipitant of the disease in most cases is unclear.(4)  

As with many autoimmune diseases, HLA type is associated with the risk of 

developing iTTP, with HLA-DRB1*11, HLA-DQB1*03 and HLADRB3* increasing risk, 

and HLA-DRB1*04 and HLA-DRB4 (HLA-DR53) being protective in Europeans.(5,6,7) 

No genetic risk factors outside the HLA genes have previously been shown to be 

associated with iTTP.  

We performed a genome wide association study in UK and French iTTP cohorts and 

identified association of alleles both within and beyond the HLA locus.  

 

METHODS 

COHORTS 
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As part of the UK TTP registry, patients were consented for DNA analysis (MREC: 

08/H0810/54) (see Supplemental Materials). Patients on the UK TTP registry were 

screened for the clinical diagnosis, and confirmed with an ADAMTS13 level <10IU/dL 

at diagnosis (utilising FRETS methodology)(8) and the presence of an anti-

ADAMTS13 autoantibody.(2,3) The French replication cohort TTP samples were 

obtained from the French Reference Centre for TMA (CNR-MAT) and informed 

consent was obtained from each patient with confirmed iTTP (see above criteria) 

(Institutional Review Board of Pitié Salpêtrière Hospital, ClinicalTrials.gov, 

NCT00426686). The European control genotypes were obtained from the Wellcome 

Trust Case Control Consortium (WTCCC), both the 1958 British Birth Cohort and 

National Blood Service control samples.(9) In addition, controls were used from the 

Illumina reference panel(10) and Oxford controls.(11,12) 

GENOTYPING, QUALITY CONTROL AND IMPUTATION 

TTP samples were genotyped on the Illumina Human Omni Express SNP chips and 

controls were genotyped on different SNP chips (see Supplementary Methodology). 

Pre-imputation quality control was performed in all data sets separately, and then in 

a combined cohort (Supplemental Figure 1). Quality control was performed for 

individuals and SNPs. Individuals were selected for further analysis by European 

ancestry principal component analysis (PCA) (see Supplemental Figure 2). Only 

SNPs present in all data sets were subsequently analysed.  

Genome-wide imputation was performed on markers that had passed quality control, 

and were present in all datasets using Beagle (version 5.0) utilising the 1000 

Genome Project Phase 3 as a reference panel.(13) In addition to standardised QC, 

only SNPs with a dosage R2 (DR2) >0.8 were included.  
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GWAS AND LOCI CHARACTERISATION 

Genome wide association testing was performed using SNP & Variation Suite v8, 

using logistic regression with principal component correction.(14,15) The logistic 

regression p-values, odds ratios were calculated in addition to lambda inflation 

factors, and QQ plots are shown (Supplemental Figure 3). A standardised genome 

wide significance level of 5x10-8 was applied.(15) For discovery and replication 

analysis meta-data please contact the authors. 

Conditional analyses were undertaken using a full versus reduced regression model. 

Lead SNPs at each locus were used as conditional inputs to determine 

independence, with results plotted using Locus Zoom software.(16) 

Imputation of HLA types was performed utilising SNP2HLA with previously 

genotyped markers.(17) Imputed HLA types were excluded if the R2 (confidence) was 

<0.80. Conditional analyses were subsequently performed as described above.  

Expression quantitative trait locus (eQTL) analysis was performed to associate 

identified SNPs with differential gene expression.(18) Additional markers in linkage 

disequilibrium with the lead SNP at the Chromosome 3 locus were identified by LD-

link (https://ldlink.nci.nih.gov).(19) Functional annotation of the haploblock was 

performed using ChipSeq data via the UCSC genome browser 

(https://genome.ucsc.edu) . Binding sites of transcription factors (highlighted through 

genome annotation) were obtained from FactorBook(20), and position weight matrix 

(PWM) binding motifs generated. Binding motifs were generated using Mast-

Meme.(21)  
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RESULTS 

DISCOVERY COHORT  

Following quality control as outlined in the methods (Supplemental Figure 1) there 

were 241 TTP cases and 3200 controls in the UK discovery cohort. Following 

imputation and quality control 3,649,347 SNPs were available for analysis. 

Association testing was performed using a logistic regression model with PCA 

correction, and the genomic inflation factor (lambda) was 1.0239 (Supplemental 

Figure 3). 

In the UK discovery cohort two peaks were identified (Figure 1) (Supplemental 

Figure 4) (lead SNPs summarised in Table 1). The peak with the strongest 

association corresponded to the class II HLA region on chromosome 6, with 1,017 

SNPs reaching genome wide significance. The lead SNP rs28383233 located in the 

intergenic region between HLA-DRB1 and HLA-DQA1 (p=2.20x10-23, odds ratio 

3.12, 95% CI 2.49-3.93) (Table 1 and Figure 2).  

Conditional analysis was performed on rs28383233 and the lead SNP following this 

was rs1064994 (within HLA-DQA1), with a p-value of 1.13x10-10 (odds ratio 2.20, 

95% CI 2.06-3.37). Following conditioning on both rs28383233 and rs1064994 no 

further markers reached significance within the class II HLA region, indicating that 

there are two detectable independent genetic associations with iTTP within the HLA 

region. 

HLA imputation was performed on the UK discovery cohort, and following quality 

control, 95 imputed HLA alleles remained. HLA-DRB1*11:01 was the allele most 
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strongly associated with iTTP, with a p-value of 3.25x10-17 (odds ratio 2.79, 95% CI 

2.23-3.50). Following conditional analysis of HLA-DRB1*1101, no other HLA types 

reached genome wide significance, but HLA-DQA1*03:01 remained significant (with 

a HLA-only Bonferroni correction, P<5.26x10-4) at 1.49x10-6 (odds ratio 0.47, 95% CI 

0.33-0.65) suggesting that the protective effect of this allele is independent of HLA-

DRB1*11:01. 

In addition to the class II HLA peak on chromosome 6, a novel association was 

observed on chromosome 3. 16 markers reached genome wide significance, with the 

lead SNP, rs9884090(A), having a p-value of 5.22x10-10 (odds ratio 0.40, 95% CI 

0.29-0.56) (Table 1 and Figure 3). Upon conditional analysis of the lead SNP no 

markers reached genome wide significance indicating one detectable signal at this 

locus. No statistical epistasis was seen between the chromosome 3 and 

chromosome 6 associations, with each association being independent. Five genes 

are annotated within this chromosome 3 haploblock: ARHGAP31, TMEM39A, 

POGLUT1, TIMMDC1, and CD80.  

REPLICATION COHORT  

Within the French replication cohort there were 112 cases and 2603 controls 

following quality control as outlined in the methods (Supplemental Figure 1 and 2). 

3,649,546 SNPs were available for analysis, and association testing was performed 

using a logistic regression model with PCA correction, and lambda was 1.0830 

(Supplemental Figure 5). 

The association with the lead SNP in the chromosome 3 haploblock, rs9884090(A) 

was replicated with a p-value of 0.001 (odds ratio 0.52), and the two independent 

lead SNPs with the class II HLA peak on chromosome 6 were also replicated (Table 
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2). The locus zoom plots are shown (Supplemental Figures 6-8). Imputed HLA type 

analysis was also consistent with the UK discovery cohort with HLA-DRB1*11:01 

and HLA-DQA1*03:01 representing two independent HLA signals. 

In addition, a meta-analysis was performed combining the UK and French cohorts 

(cases 241/112, controls 3200/2603 respectively), which demonstrated 

strengthening of the previously observed signal (rs9884090 p=1.60x10-10, OR 0.47, 

rs28383233 p=1.22x10-42, OR 3.70, rs1064994 p= 5.03x10-25, OR 2.89) (Table 3 and 

Supplemental Figure 9).  

EQTL AND FUNCTIONAL DNA ANALYSIS 

Expression quantitative trait loci (eQTL) data from the Genotype Tissue Expression 

Project and Blood eQTL Browser for the lead SNP at the chromosome 3 locus 

(rs9884090) demonstrated significant reduction in expression of POGLUT1 with the 

protective allele in the majority of tissues tested, including blood cells (p<0.001).(18,22) 

LD-link identified 20 markers found to be in tight linkage disequilibrium (R2 and D’ 

>0.80) with rs9884090 contained within the chromosomal region (see supplemental 

Table 1).(19) All markers were functionally annotated with information from the UCSC 

Genome Browser (Human Assembly GRCh37/hg19)(23,24) (see Supplemental Table 

1). One variant was particularly noted, rs71767581 (Ch3, 119187422 AC/-del), which 

is a 2 base pair deletion in the promoter of POGLUT1. This may be functionally 

important as the haploblock identified is associated with reduced expression in 

POGLUT1. Upon analysis of ChipSeq data in UCSC Genome Browser 14 

transcription factors were predicted to bind at this site (see Supplemental Table 2), 

adding further evidence that rs71767581 may be functionally important for 

POGLUT1 expression. 
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DISCUSSION 

This genome wide association study, involving 2 European populations, is the first to 

be performed in iTTP and shows consistent evidence of association at loci on 

chromosome 6 and chromosome 3. The associated alleles on Chromosome 6 lie 

within the HLA region and imputation of HLA types and conditional analyses 

indicated independent association between HLA-DRB1*11:01 (OR 2.79; p=3.25x10-

17) and HLA-DQA1*03:01 (OR 0.47; p=1.49x10-6, post conditional analysis), which 

are consistent, and in linkage with previously published risk and protective 

associations with iTTP at this locus.(5–7) A recent case-control study comparing 

frequency of alleles only at immune loci in 190 Italian TTP patients and 1255 controls 

identified the HLA variant rs6903608, (in addition to HLA-DQB1*05:03) as conferring 

a 2.5 fold increase of developing TTP.(25)  

Here we also identified a novel association of iTTP with alleles on chromosome 3 

tagged by the lead SNP rs9884090. Five genes are located within the associated 

haploblock: ARHGAP31, TMEM39A, POGLUT1, TIMMDC1, and CD80. ARHGAP31 

(Rho GTPase Activating Protein 31) is associated with the autosomal dominant 

condition Adams-Oliver Syndrome (OMIM 100300).(26) Mutations within ARHGAP31 

have been implicated with abnormal vascular development and VEGF (vascular 

endothelial growth factor) angiogenesis.(27)  Little is understood regarding the 

function of TMEM39A (transmembrane protein 39A). While variants have been 

implicated in autoimmune disease such as systemic lupus erythematosus(28,29) and 

multiple sclerosis(30,31), understanding of its function is lacking. TIMMDC1 is a 

membrane embedded mitochondrial complex factor, and is associated with 

mitochondrial disorders.(32) The protein encoded by the CD80 gene functions as a 

membrane receptor being activated by CTLA-4 or CD28, both of which are T-cell 
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receptors. The downstream mechanisms are T-cell proliferation and cytokine 

production. CD80 and its receptors have been associated with focal segmental 

glomerulosclerosis(33) and systemic lupus erythematosus.(34),(35) POGLUT1 (Protein 

O-Glucosyltransferase 1) is mutated in Dowling-Degos Disease-4 (an autosomal 

dominant genodermatosis with progressive and disfiguring reticulate 

hyperpigmentation and muscular dystrophy, OMIM 615696) and POGLUT1 has 

been shown to catalyse O-glycosylation of epidermal growth factor (EGF)-like 

repeats.(36,37) EGF-like repeats are well conserved structures, and highly represented 

with proteins involved in coagulation.(38,39) In-vitro work has demonstrated POGLUT1 

binds and glycosylates specific coagulation factors including Factor VII and Factor 

IX.(37,40)  

The haploblock identified in this analysis of iTTP (which is tagged by rs9884090(A)) 

is associated with significantly decreased POGLUT1 expression by eQTL.(41) Several 

other genetic variants contained within this haploblock have been associated with 

other autoimmune diseases, and the majority of these variants have been shown to 

be in linkage with our lead variant rs9884090 (see Supplemental Results), 

supporting the findings described here.(28,29,31,42,43,44) eQTL analysis is a robust tool, 

that can associate gene expression with specific genetic variants. Our analysis found 

rs9884090(A) to have a reduced frequency in iTTP, and rs9884090(A) was shown to 

be associated with significantly decreased POGLUT1 expression in different eQTL 

resources.(18,22) In order to locate the underlying genetic variant implicated in this 

reduced POGLUT1 expression we used LD-link to identify additional variants, and 

located a 2-bp deletion with the POGLUT1 upstream promoter region that is in tight 

linkage disequilibrium with the lead associated variant (R2/D’>0.80). As 

rs9884090(A) confers reduced risk of developing iTTP, we hypothesize that reduced 
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expression of POGLUT1 leads to altered post-translational modification (O-

glycosylation) of key POGLUT1 targets to reduce the risk of iTTP. The evidence we 

present supports POGLUT1 as the gene of interest, but we cannot exclude other 

genes within the associated haploblock. The pathway through which POGLUT1’s 

effects could be mediated remains to be determined. Given there are several 

reported variants with this haploblock associated with different autoimmune disease, 

it is likely the downstream functional consequences medicated through POGLUT1 

influence immune-regulatory pathways which may generally increase the risk of 

other autoimmune disease, in addition to iTTP, and may provide insights into 

potential therapies.(45–56) 

In summary, we have identified a novel genetic variant, rs9884090(A), in two 

independent populations, which is associated with reduced risk of iTTP. Utilising 

linkage disequilibrium we have identified a functional variant in tight LD with the lead 

SNP in the POGLUT1 promoter site and eQTL demonstrates reduced POGLUT1 

expression associated with this variant. We therefore hypothesise this leads to 

altered O-glycosylation on POGLUT1 targets. Whilst the exact role of POGLUT1 in 

the pathophysiology of iTTP requires further downstream functional analysis, this 

work represents an important step forward in our understanding of iTTP.  
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TABLES 

rsID (position) Minor Allele / 
Major Allele 

MAF Cases /  
MAF Controls 

Logistic 
Regression p-
value 

Odds Ratio 
(95% CI) 

rs9884090 
(ch3:119116150) 

A/G 0.08/0.19 P = 5.22x10-10 0.40 (0.29-
0.56) 

rs28383233 
(ch6:32584153) 

G/A 0.64/0.40 P = 2.20x10-23 3.12 (2.49-
3.93) 

rs1064994 
(ch6:32611195) 

C/T 0.25/0.11 P = 1.13x10-10  2.20 (2.06-
3.37) 

Table 1 - Lead SNPs identified in the UK discovery cohort. Displayed are 
Minor/Major Alleles, Minor Allele Frequencies (MAF), logistic regression p-value 
(corrected for PCA stratification), and Odds Ratio (with 95% confidence intervals). 
Genomic positions refer to Human Assembly GRCh37/hg19. 

rsID (position) Minor Allele / 
Major Allele 

MAF Cases /  
MAF Controls 

Logistic 
Regression p-
value  

Odds Ratio 
(95% CI) 

rs9884090 
(ch3:119116150) 

A/G 0.10/0.18 P = 0.001 0.52 (0.34-
0.81) 

rs28383233 
(ch6:32584153) 

G/A 0.68/0.40 P = 3.87x10-9 2.57 (1.87-
3.53) 

rs1064994 
(ch6:32611195) 

C/T 0.42/0.11 P = 5.015x10-

9  
2.86 (2.06-
3.99) 

Table 2 – French cohort replication of lead SNPs identified in the UK discovery 
cohort. Displayed are Minor/Major Alleles, Minor Allele Frequencies (MAF), logistic 
regression p-value (corrected for PCA stratification), and Odds Ratio (with 95% 
confidence intervals). Genomic positions refer to Human Assembly GRCh37/hg19. 

 
rsID (position) Minor Allele / 

Major Allele 
MAF Cases /  
MAF Controls 

Logistic 
Regression p-
value  

Odds Ratio 
(95% CI) 

rs9884090 
(ch3:119116150) 

A/G 0.08/0.19 P = 1.60x10-10 0.47 (0.36-
0.60) 

rs28383233 
(ch6:32584153) 

G/A 0.64/0.41 P = 1.22x10-42 3.70 (2.81-
4.03) 

rs1064994 
(ch6:32611195) 

C/T 0.22/0.11 P = 5.03x10-25  2.89 (2.39-
3.49) 

Table 3 – Meta-analysis combining UK and French Cohorts, showing lead SNPs 
identified in the UK discover cohort. Displayed are Minor/Major Alleles, Minor Allele 
Frequencies (MAF), logistic regression p-value (corrected for PCA stratification), and 
Odds Ratio (with 95% confidence intervals). Genomic positions refer to Human 
Assembly GRCh37/hg19. 
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FIGURE LEGENDS 

Figure 1 – Manhattan plot of genome wide association analysis comparing UK iTTP 

discovery cohort compared with controls. The X axis shows chromosome location, 

and the Y axis shows negative logarithmic p-values. Standardised genome wide 

significant 5x10-8 is depicted by the red line. The HLA peak is visualised on 

chromosome 6 (black), in addition to the novel chromosome 3 association (orange). 

Figure 2 – Locus zoom plots of the chromosome 6 peak in the UK discovery cohort. 

The upper plot (a) shows the unconditioned analysis with the lead SNP rs28383233, 

and the middle plot (b) shows analysis conditioned on the lead SNP rs28383233, 

revealing independent association with rs1064994. The lower plot (c) shows analysis 

conditioned on both rs28323233 and rs1064994. Genomic positions refer to Human 

Assembly GRCh37/hg19. 

Figure 3 – Locus zoom plots of the chromosome 3 peak in the UK discovery cohort. 

The upper plot (a) shows the unconditioned analysis and the lower plot (b) shows 

associations of the same markers when conditioned on the lead SNP, rs9884090. 

Genomic positions refer to Human Assembly GRCh37/hg19. 
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SUPPLEMENTARY MATERIALS  

 

SUPPLEMENTARY METHODOLOGY 

COHORTS 

TTP cases were collected as described in the main paper between 2012 and 2017, 

with UK TTP cases (discovery cohort) and French TTP cases (replication cohort).  

• UK TTP cases, n=413 

• French TTP cases, n=200 

The control cohorts include the 1958 British Birth Cohort and National Blood Service 

control samples, in addition to reference genotypes from the Illumina reference panel 

(HapMap Ethnicity controls) and Oxford controls.(1–5) 

• Illumina Ethnicity Cohort, n=90 

• Oxford Cohort, n=432 

• British Birth Cohort, n=2867 

• National Blood Service Cohort, n=2737 

GENOTYPING 

Samples were genotyped on the following SNP chips; 

• UK TTP cases - HumanOmniExpress-12v1_H and 24v102_A1 

• French TTP cases – HumanOmniExpress- 24v102_A1 

Controls were genotyped on the following SNP chips; 

• Illumina Reference - Illumina HumanOmniExpress-12v1_C 

• Oxford controls - Illumina HumanOmniExpress-12v1_J  

• British Birth Cohort - Human1-2M0DuoCustom_v1_A.  

• National Blood Service Cohort - Human1-2M0DuoCustom_v1_A  

Genotypes were re-encoded using in-house software to genomic forward for further 

analysis.(6) 
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QUALITY CONTROL  

Quality control was performed using SNP & Variation Suite(7) PLINK version 1.90(8) 

and PRIMUS.(9) 

Strict quality control per sample was performed, excluding individuals with call rate 

(CR) <0.90, duplicated samples/related individuals (sample identity by state (IBS) 

>0.1875), sample heterozygosity rate >3SD, in addition to excluding individuals not 

of European ancestry by principal component analysis (PCA) filtering.  

Case Sample Quality control is summarised below; 

• UK TTP Cohort -  241 UK TTP patients were included for subsequent 

analysis, from 413 samples genotyped.  

• French TTP Cohort  - 112 French TTP patients were included for subsequent 

analysis, from 200 samples genotyped.  

Control Sample Quality control is summarised below; 

• Illumina Ethnicity Controls  - 58 individuals were included for subsequent 

analysis, from 90 samples genotyped.  

• Oxford Controls - 381 individuals were included for subsequent analysis, 

from 432 samples genotyped.  

• British Birth Cohort - 2761 individuals were included for subsequent 

analysis, from 2867 samples genotyped.  

• National Blood Service Cohort - 2603 individuals were included for 

subsequent analysis, from 2737 samples genotyped.  

 

Quality control was performed per SNP, and SNPs were excluded with that had a 

CR<0.99, an allele count (AC) >2, minor allele frequency (MAF) <0.05, and Hardy 

Weinberg Equilibrium (HWE) p<0.001, non-autosomal markers, in addition to 

ambiguous SNPs. 

Case SNP Quality Control is summarised below;  

• UK TTP Cohort  - QC was performed on 675,533 SNPs, and post QC 

521,046 SNPs remained.  
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• French TTP Cohort  - QC was performed on 675,533 SNPs, and post QC 

490,032 SNPs remained.  

Control SNP Quality Control is summarised below;  

• Illumina Ethnicity Controls  - QC was performed on 711,320 SNPs, and post 

QC 531,093 SNPs remained.  

• Oxford Controls - QC was performed on 712,878 SNPs, and post QC 

567,947 SNPs remained.  

• British Birth Cohort - QC was performed on 1,066,003 SNPs, and post QC 

722,672 SNPs remained.  

• National Blood Service Cohort - QC was performed on 1,066,003 SNPs, 

and post QC 736,251 SNPs remained.  

The UK and French datasets were combined with separate control datasets, and the 

above per-SNP QC performed on the merged datasets 

• UK Discover Cohort  - The UK TTP cohort (n=241) was combined with 

control datasets (Illumina Ethnicity, Oxford and British Birth cohorts) (n=3200) 

for overlapping SNPs (n=337,088). 

• French Replication Cohort  - The French TTP cohort (n=112) was combined 

with control datasets (National Blood Service cohort) (n=2603) for overlapping 

SNPs (n=334,756). 

  

IMPUTATION 

Genotype data was imputed using Beagle version 5.0, utilising the 1000 Genome 

European CEU reference population (Supplemental Figure 1 for QC).(10) Cases and 

controls were imputed together using individuals and markers that had previously 

passed stringent QC. Following imputation filtering was performed using bcftools(11) 

(https://samtools.github.io/bcftools/bcftools.html), and markers with a Dosage R-

squared (DR2) less than 0.80 were removed, and imputed genotype data was also 

re-filtered per SNP using SNP & Variation Suite,(7) details listed below: 

• The UK TTP cohort and control data sets were imputed, with indels and SNPs 

with DR2<0.80 excluded. Post QC 3,649,349 remained for analysis, and 
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further QC SNP’s were excluded, CR<0.99, AC>2 (n=0), MAF<0.05, HWE 

p<0.001. 

• The French TTP cohort and control data was imputed, and indels and SNPs 

with DR2<0.80 were excluded. Post QC n=3,649,546 remained for analysis, 

and further QC SNP’s were excluded, CR<0.99, AC>2, MAF<0.05 and HWE 

p<0.001. 

GENOME WIDE ASSOCIATION TESTING  

Genome wide association testing was performed using SNP & Variation Suite, using 

logistic regression with correction of 10 principal components.(12–14) The logistic 

regression p-values, odds ratios were calculated in addition to Lambda inflation 

factors. A standardised genome wide significance level of 5x10-8 was applied.(15) 

Meta-analysis was performed by combining the independent cohorts and 

subsequently undertaking analysis by logistic regression with 10 principal component 

correction. 

CONDITIONAL ANALYSIS 

To investigate for independent signal conditional analysis was undertaken using a 

full versus reduced regression model in SVS. Lead SNPs were used as conditional 

inputs to determine independence, with results plotted using Locus Zoom 

software.(16) 

HLA IMPUTATION 

HLA imputation was performed utilising SNP2HLA to impute HLA types using 

previously genotyped markers.(17) Imputed HLA types were excluded if the DR2 

(confidence) was <0.80. Conditional analysis was subsequently performed, using the 

previously described method. To validate our HLA imputation, we compared imputed 

HLA types in a subset of serologically HLA typed individuals (n=17), and found a 

concordance of >80%.  

EXPRESSION QUANTITATIVE TRAIT LOCUS 

Expression quantitative trait locus analysis was performed subsequently to associate 

identified SNPs with differential gene expression.(18) Reduced POGLUT1 expression 

associated with our haploblock was the most significant, and frequently reported 
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association, and the only gene with expression reduced across different 

platforms.(18,19)  

LD-LINK 

Additional markers in linkage disequilibrium with our lead SNP were identified by LD-

link (https://ldlink.nci.nih.gov).(20) LD between variants rs71767581 and rs9884090 

was supported using the NIHR BioResource-Rare Diseases dataset, comprising 

whole genome sequences from 6,588 European individuals.(21)  

FUNCTIONAL ANNOTATION 

Functional annotation of the haploblock was performed using the UCSC genome 

browser (https://genome.ucsc.edu)(22,23), to identify functional important variants. 

Functional annotations, Chip-Seq data and expression data to identify functionally 

important variants such as missense variants or regulatory variants.  

FACTOR BOOK 

Binding sites of transcription factors that were identified through functional 

annotation in the region of interest, with potential functional importance were 

obtained from FactorBook.(24) Searching for specific cells lines (HEPG2) the position 

weight matrix (PWM) binding motifs of transcription factors of interest were identified, 

to be analysed alongside genetic variants derived from UCSC genome browser. 

MAST/MEME 

PWM binding motifs that were obtained from factor book were analysed along-side 

haploblock genetic variants, obtained from UCSC. A 80bp DNA sequence (40bp 

flanking, listed below) were analysed for potential DNA-transcription factor 

binding).(25) 

• Wide Type Sequence: TATGCTAATTGCAACCTTTGGGGTCTAACCGTGC 

TGTACACACACACACACACACACACACACACACACACACATGCTCA 

• Variant Sequence: TATGCTAATTGCAACCTTTGGGGTCTAACCGTGCTGT 

-/- ACACACACACACACACACACACACACACACACACATGCTCA 
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SUPPLEMENTARY FIGURES / RESULTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 1  – Summary of Quality Control in UK Discovery Cohort and 
French Replication Cohort. 

QC Samples: Removal of CR<90%, 

IBS>0.1875, DST <0.66,      Het-rate 

>3SD, Ambiguous SNPs, +Overlapping 
Ancestry Selection of Samples: PCA 

Standard Deviation 
QC SNPs: Removal of MAF <0.05%, 

AC>2, HWE p <0.001 (controls) 
SNPs overlapping in all datasets were 

selected 

CASES AND CONTROLS 
CASES   = 241  

CONTROLS  = 3200 
SNPs   = 337,088 

CASES AND CONTROLS 
CASES   = 241  

CONTROLS  = 3200 
SNPs   = 3,649,347 

QC Samples: Removal of CR<90%, 

IBS>0.1875, DST <0.66,      Het-rate 

>3SD, Ambiguous SNPs, +Overlapping 
Ancestry Selection of Samples: PCA 

Standard Deviation 
QC SNPs: Removal of MAF <0.05%, 

AC>2, HWE p <0.001 (controls) 
SNPs overlapping in all datasets were 

selected 

CASES AND CONTROLS 
CASES   = 112  

CONTROLS   = 2603 
SNPs   = 334,756 

CASES AND CONTROLS 
CASES   = 112   

CONTROLS  = 2603 
SNPs   = 3,649,546 

CASES AND CONTROLS 
HLA Class II Alleles = 95 

UK TTP DISCOVERY 

COHORT 
FRENCH TTP REPLICATION 

COHORT 

EUROPEAN CONTROLS 
ILLUMINA: N= 90, SNPs 

= 711,320  
OXFORD: N=432, SNPs 

712,878 
BBC: N= 2867, SNPs 

1,066,003 

UK TTP 

CASES 
N = 413 
SNPs = 

675,533 

FRENCH TTP 

CASES 
N = 200 
SNPs = 

675,533 

EUROPEAN 

CONTROLS 
NBS: N= 2737,  

SNPs = 1,066,003 

WHOLE GENOME IMPUTATION 
SNP QC: Removal of DR2<80%, INDELS, 

MAF<0.05%, HWE<0.001 (on controls) 

HLA IMPUTATION 
QC HLA Alleles: Removal of R2<80% 

WHOLE GENOME IMPUTATION 
SNP QC: Removal of DR2<80%, INDELS, 

MAF<0.05%, HWE<0.001 (on controls) 
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Supplemental Figure 2  – Principal Component Analysis in UK and French Cohorts. 
Cases are shown in red, and control genotypes in grey, and controls with known 
genetic ancestry are shown in black (EUR, European), blue (AFR, African) and 
green (EAS, East Asian). a. UK discovery cohort (without ethnicity ancestry filtering) 
and b. UK discovery cohort following ethnicity ancestry filtering applying 8.0 standard 
deviations to the principal component data to select cases with European ancestry. 
c. French replication cohort (without ethnicity ancestry filtering) and d. French 
replication cohort following ethnicity ancestry filtering applying 8.0 standard 
deviations to the principal component data to select cases with European ancestry. 
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Supplemental Figure 3  – QQ plots, observed against expected p-values, for a. UK 
discovery population, b. French replication cohort, and c. Combined Analysis.  
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Supplemental Figure 4  – UK Cohort Directly Genotyped  GWAS - (a) Manhattan 
plot of genome wide association test for directly genotyped SNPs only, comparing 
UK cases against controls, utilising the logistic regression method, corrected for top 
10 principal components for stratification. The X axis shows chromosome location, 
and the Y axis shows logarithmic p-values. Standardised genome wide significant 
5x10-8 is depicted by the red line. Locus zoom plot for the UK discovery cohort 
(visualising only directly genotyped SNPs) are shown for (b) chromosome 3 and (c) 
and chromosome 6 peak. The X axis shows chromosome location, and the left Y 
axis shows logarithmic p-values (logistic regression), and the right Y axis shown the 
recombination rate (shown as the blue line) (Human Assembly GRCh37/hg19). 
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Supplemental Figure 5 – French Cohort Imputed GWAS – Manhattan plot of 
genome wide association test comparing French Replication cohort compared 
against controls, utilising the logistic regression method, corrected for top 10 
principal components for stratification, in all imputed SNPs. The X axis shows 
chromosome location, and the Y axis shows logarithmic p-values. Standardised 
genome wide significant 5x10-8 is depicted by the red line. The HLA peak is 
visualised on chromosome 6 (black).  
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Supplemental Figure 6  – Locus zoom plot of the chromosome 6 peak in the 
French replication cohort.  Genomic area displayed is 32.5 Mb to 32.7 Mb on 
chromosome 3 (Human Assembly GRCh37/hg19). The X axis shows chromosome 
location, and the left Y axis shows logarithmic p-values (logistic regression), and the 
right Y axis shown the recombination rate (shown as the blue line). a. shows the 
unconditional analysis with the lead SNP rs9461776, b. shows conditional analysis 
conditioned on rs9461776, revealing an independent association signal, lead SNP 
rs28383457, and c. shows analysis conditioned on conditioned on rs9461776 and 
rs28383457.  

a. 

b. 

c. 
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Supplemental Figure 7  – Locus zoom plot of the chromosome 3 peak in the 
French Replication cohort.  Genomic area displayed is 119.0 Mb to 119.3 Mb on 
chromosome 3 (Human Assembly GRCh37/hg19). The X axis shows chromosome 
location, and the left Y axis shows logarithmic p-values (logistic regression), and the 
right Y axis shown the recombination rate (shown as the blue line). a. shows the 
unconditional analysis with the lead SNP rs9884090. b shows the same region 
containing the same markers, following conditioning on rs9884090 (identified from 
the UK discovery cohort analysis).  

a. 

b. 
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Supplemental Figure 8  – French Cohort Directly Genotyped GWAS -  (a) Manhattan plot 
of genome wide association test for directly genotyped SNPs only, comparing French cases 
against controls, utilising the logistic regression method, corrected for top 10 principal 
components for stratification. The X axis shows chromosome location, and the Y axis shows 
logarithmic p-values. Standardised genome wide significant 5x10-8 is depicted by the red 
line. Locus zoom plot for the French replication cohort (visualising only directly genotyped 
SNPs) are shown for (b) chromosome 3 and (c) and chromosome 6 peak. The X axis shows 
chromosome location, and the left Y axis shows logarithmic p-values (logistic regression), 
and the right Y axis shown the recombination rate (shown as the blue line) (Human 
Assembly GRCh37/hg19). 



14 
 

 

Supplemental Figure 9 – GWAS Meta-Analysis of UK an d French Cohorts -  
Manhattan Plot of Genome wide association tests for the meta-analysis of UK and 
French combined cohorts, utilising the logistic regression method, corrected for top 
10 principal components for stratification. The X axis shows chromosome location, 
and the Y axis shows logarithmic p-values. Standardised Genome wide significant 
5x10-8 is displayed in as the red line. The HLA peak is visualised on chromosome 6 
(black, grey), in addition to the novel chromosome 3 association (orange, grey).  
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RS_ID Location 
(GRCh37/hg19)  

Alleles MAF Distance  D' R2 Functional 
Annotation  

rs9884090 chr3:119116150 (G/A) 0.1364 0 1 1 
ARHGAP31 
INTRON 

rs9834901 chr3:119111870 (T/C) 0.1364 -4280 1 1 
ARHGAP31 
INTRON 

rs12494314 chr3:119122820 (T/C) 0.1364 6670 1 1 
ARHGAP31 
INTRON 

rs2305249 chr3:119128398 (G/A) 0.1364 12248 1 1 
ARHGAP31 
EXON (SYNON)  

rs9855065 chr3:119130141 (G/A) 0.1364 13991 1 1 
ARHGAP31 
INTRON 

rs3732421 chr3:119150089 (A/G) 0.1364 33939 1 1 TMEM39A 3'UTR 

rs7650774 chr3:119205050 (T/C) 0.1364 88900 1 1 
POGLUT1 
INTRON 

rs12695386 chr3:119209027 (T/C) 0.1364 92877 1 1 POGLUT1 CTCF 

rs12636784 chr3:119174383 (A/G) 0.1313 58233 1 0.95 
TMEM39A 
INTRON 

rs2293370 chr3:119219934 (G/A) 0.1515 103784 1 0.88 TIMMDC1 TFBS  

rs1131265 chr3:119222456 (G/C) 0.1515 106306 1 0.88 
TIMMDC1 EXON 
(SYNONYMOUS) 

rs9843355 chr3:119228508 (G/A) 0.1515 112358 1 0.88 
TIMMDC1 
INTRON 

rs144104218 chr3:119237726 (AAC/-) 0.1515 121576 1 0.88 
TIMMDC1 
INTRON 

rs62264485 chr3:119237798 (C/A) 0.1515 121648 1 0.88 
TIMMDC1 
INTRON 

rs35264490 chr3:119238753 (A/-) 0.1515 122603 1 0.88 
TIMMDC1 
INTRON 

rs57271503 chr3:119244593 (G/A) 0.1515 128443 1 0.88 
CD80 EXON 
ENHANCER  

rs13092998 chr3:119245044 (G/T) 0.1515 128894 1 0.88 CD80 INTRON 
rs3830649 chr3:119246385 (G/-) 0.1515 130235 1 0.88 CD80 INTRON  
rs71767581 chr3:119187433 (AC/-) 0.1364 71283 0.91 0.84 POGLUT1 TFBS  

rs1132200 chr3:119150836 (C/T) 0.1162 34686 1 0.83 
TMEM39A EXON 
(MISSENSE) 

 

Supplemental Table 1 – Additional SNP’s identified from LD-Link, found to be in 
Linkage disequilibrium with rs9884090 (lead chromosome 3 haploblock 3, identified 
through GWAS). SNP’s with R2 and D’ >0.80 are shown. Functional annotations 
(derived from UCSC) are also included.  
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Transcription Factors 

TCF12 

GATA1 

JUND 

CHD1 

MYBL2 

TEAD4 

STAT5A 

POLR2A 

NR3C1 

RELA 

REST 

YY1 

E2F6 

PHF8 

 

Supplemental Table 2 – Transcription factors, identified from UCSC that have 
ChipSeq tracts overlaying the proposed functional variant rs71767581.  
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Supplemental Results  

  

Several other SNPs within the haploblock containing rs9884090 have also been 

implicated with other autoimmune disease. Previously published SNPs were 

analysed for linkage with rs9884090 (D’ and R2) using LD-link (with 1000G European 

CEU reference panel)(20) and also searched for any evidence of eQTL using GTEX, 

particularly indicating any evidence of altered POGLUT1 expression. The LD (D’ and 

R2 shown) and also eQTL data is shown below for different autoimmune disease. 

Notably the eQTL data was not included in the for the majority of the initial studies. 

  

SNPs associated with Multiple Sclerosis 

• rs1132200, D’ 1.0 R2 0.83, Reduced POGLUT1 expression on eQTL 

analysis.(26,27) 

SNPs associated with Systemic Lupus Erythematosus 

• rs1132200; D’ 1.0 R2 0.83, Reduced POGLUT1 expression on eQTL 

analysis.(28) 

• rs12494314, D’ 1.0, R2 1.0, Reduced POGLUT1 expression on eQTL analysis 

(in addition to TIMMDC1).(29) 

• rs12493175, D’ 1.0, R2 0.04, Reduced POGLUT1 on eQTL analysis.(30) 

• rs13062955,D’ 1.0, R2 0.04, No eQTL data available.(30) 

SNPs associated with Autoimmune Thyroid Disease 

• rs12492609, D’ 1.0, R2 0.036, No eQTL data available.(31) 

• rs7629750, D’ 1.0, R2 0.27, No eQTL data available.(31) 

SNPs associated with Primary Biliary Cholangitis  

• rs2293370, D’ 1.0, R2 0.88, Reduced POGLUT1 expression on eQTL 

analysis, which was reported in the published paper.(32) 

   

The above results demonstrate that the majority of SNPs associated with different 

autoimmune disease within this haploblock have evidence of strong linkage with 

rs9884090, and where available eQTL demonstrates altered POGLUT1 expression. 
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SUPPLEMENTAL WEBLINKS 

 

• WTCCC(1) 
WTCCC Available from the European Genome Archive, 
http://www.wtccc.org.uk 

 
• Golden Helix, SNP and Variation Suite (SVS)(7) 

Details of SVS available from http://www.goldenhelix.com (Bozeman) 
  

• PLINK(8) 
Software available from http://www.cog-genomics.org/plink/1.9 

  
• PRIMUS(9) 

Primus available from http://primus.gs.washington.edu/primusweb/index.html 
  

• Beagle(10) 
Software available from http://faculty.washington.edu/browning/beagle/ 

  
• Locus Zoom(16) 

Locus Zoom web platform access via http://locuszoom.org 
  

• SNP2HLA(17) 
SNP2HLA software available from 
http://software.broadinstitute.org/mpg/snp2hla 

  
• LD-LINK(20) 

LD-link online platform available from https://ldlink.nci.nih.gov 
  

• UCSC genome browser(22,23) 
UCSC Genome browser available from https://genome.ucsc.edu 

  
• FACTOR BOOK(24) 

Factor book online software available at www.factorbook.org  
  

• MASTMEME(25) 
Mast-Meme online software available at https://meme-suite.org  
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