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Abstract

1. A wide array of technologies are available for gaining insight into the movement of

wild aquatic animals. Although acoustic telemetry can lack the fine-scale spatial
resolution of some satellite tracking technologies, the substantially longer battery
life can yield important long-term data on individual behavior and movement for
low per-unit cost. Typically, however, receiver arrays are designed to maximize
spatial coverage at the cost of positional accuracy leading to potentially longer
detection gaps as individuals move out of range between monitored locations.
This is particularly true when these technologies are deployed to monitor species

in hard-to-access locations.

. Here, we develop a novel approach to analyzing acoustic telemetry data, using the

timing and duration of gaps between animal detections to infer different behav-
iors. Using the durations between detections at the same and different receiver
locations (i.e., detection gaps), we classify behaviors into “restricted” or poten-
tial wider “out-of-range” movements synonymous with longer distance dispersal.
We apply this method to investigate spatial and temporal segregation of inferred
movement patterns in two sympatric species of reef shark within a large, remote,
marine protected area (MPA). Response variables were generated using network
analysis, and drivers of these movements were identified using generalized linear

mixed models and multimodel inference.

. Species, diel period, and season were significant predictors of “out-of-range”

movements. Silvertip sharks were overall more likely to undertake “out-of-range”
movements, compared with gray reef sharks, indicating spatial segregation, and
corroborating previous stable isotope work between these two species. High indi-
vidual variability in “out-of-range” movements in both species was also identified.

. We present a novel gap analysis of telemetry data to help infer differential move-

ment and space use patterns where acoustic coverage is imperfect and other
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1 | INTRODUCTION

Biologging and biotelemetry are now ubiquitous in aquatic ecology,
revealing important insight into the movement patterns of a broad
spectrum of species (Block et al., 2011; Carrier et al., 2018; Hussey
et al., 2015). For example, geolocations from pop-up satellite ar-
chival tags (PSATs) can be used to reconstruct estimated tracks of
tagged animals that rarely come to the surface. Although satellite
telemetry has greatly advanced our knowledge of aquatic species
(Hammerschlag et al., 2011; Hussey et al., 2015), it can be con-
strained by high costs, battery life, and the low spatial accuracy of
estimated positions (Ferreira et al., 2018). Acoustic telemetry is a
popular alternative for monitoring the spatial ecology of aquatic spe-
cies, particularly of those that have a tendency to be site-attached
(e.g., reef fishes), as it can prove cheaper and enable the monitoring
of wildlife over longer time periods (Donaldson et al., 2014; Heupel
et al., 2018; Hussey et al., 2015). However, there are a number of
trade-offs to consider when establishing acoustic arrays that are in-
fluenced by scale, field logistics, and habitat type; consequently, the
spatial configuration of receiver arrays is often designed to maximize
spatial coverage at the cost of positional accuracy leading to numer-
ous blind spots (Heupel, Kessel, et al., 2018; Kessel et al., 2014). This
can potentially lead to longer detection gaps as individuals move
out of range between monitored locations (Kessel et al., 2014), and
limit investigations into certain ecological questions, such as relative
space use between species.

Acoustic telemetry is increasingly becoming an important tool
for researchers and is used across a wide range of aquatic species
and environments (Abecasis et al., 2018; Donaldson et al., 2014).
Previously, it has been usefully employed to inform spatial manage-
ment (Heupel, Kessel, et al., 2018), in particular, in assisting the des-
ignation and evaluation of marine protected areas (MPAs) (Carlisle
et al., 2019; Espinoza et al., 2015; Knip et al., 2012). Acoustic telem-
etry, however, is primarily used not only to measure or infer multiple
aspects of ecology in aquatic wildlife (Hussey et al., 2015; Mourier
et al., 2018), such as social structuring (Guttridge et al., 2011; Jacoby
et al., 2016; Wilson et al., 2015) and individual social preferences
(Findlay et al., 2016), but also to investigate spatiotemporal distribu-
tion and movement dynamics (Heupel, Kessel, et al., 2018; Heupel
et al., 2019; Jacoby et al., 2012; Williams et al., 2018).

Investigating changes in movement patterns over time is import-

ant for understanding how species can influence one another, such

tracking methods are impractical at scale. In remote locations, inference may be
the best available tool and this approach shows that acoustic telemetry gap analy-
sis can be used for comparative studies in fish ecology, or combined with other

research techniques to better understand functional mechanisms driving behavior.

animal movement, biotelemetry, elasmobranchs, marine protected areas, network analysis,

sharks, spatial and temporal segregation, sympatry

as how predators impact prey through predation (Speed et al., 2010).
Knowledge of these mechanisms is important as this can lead to top-
down effects through mortality and antipredator behavior, result-
ing in changes to prey communities and species abundance (Creel
& Christianson, 2008; Ferretti et al., 2010; Heithaus et al., 2008;
McCauley et al., 2012). Temporal changes in movement patterns
(e.g., seasonal or diurnal) of aquatic wildlife may also have bottom-up
effects by impacting nutrient cycle timings in marine ecosystems,
such as coral reefs (Williams et al., 2018). Consequently, the distribu-
tion and timing of acoustic detection data can be extremely informa-
tive at daily, monthly, seasonal, and annual scales. However, there is
also important information contained within the absences between
detections that are often overlooked. Thus, it is important to identify
not only the frequency and periodicity of movements to areas of
interest (e.g., feeding and breeding areas, and resting refugia), but
also the time taken for movements between these and other areas
(Calabrese & Fagan, 2004), specifically, the periods when they are
not being detected.

Network analyses of movements derived from acoustic telem-
etry are becoming more commonplace for exploring not just the
spatial but also the temporal patterns of movement within acous-
tic detection data (Jacoby & Freeman, 2016; Jacoby et al., 2016;
Mourier et al., 2018). Typically, network analyses of acoustic telem-
etry data often ignore the gaps between detections. These gaps
can be informative for inferring the length of time taken between
movements, and as a proxy of tortuosity in fish species that must
constantly swim for example, as the longer the duration between
two points the greater the tortuosity of the movement is likely to
be. Therefore, the analysis of detection gaps from acoustic teleme-
try data can be useful for investigating coarse-scale behavior and its
associated timings. For example, gaps might be used to inform the
likelihood of fish moving out of marine protected areas (MPAs) into
unprotected waters, where they may be vulnerable to exploitation
from commercial fisheries (Carlisle et al., 2019). These gaps can also
be used to estimate the timings of ontogenetic habitat shifts, when
individuals begin leaving nursery areas for longer periods (Poulakis
et al., 2013), as well as for more accurately determining the timings
and thresholds to define residency events for spatial distribution and
movement analyses (Chapman et al., 2019).

The British Indian Ocean Territory (BIOT) is a large, remote
archipelago declared a “no-take” MPA in 2010, the reefs of which

are home to multiple elasmobranch species (Koldewey et al., 2010;
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Sheppard et al., 2017). In this study, we utilize an extensive acoustic
tracking data set from this region to present an approach to mon-
itor coarse-scale movements of sympatric reef shark species in
the absence of full receiver coverage or sufficient satellite telem-
etry data to determine broader (pelagic) activity. Gray reef sharks
(Carcharhinus amblyrhynchos) and silvertip sharks (Carcharhinus albi-
marginatus) were used as model species for this study as they are the
most abundant large predator species in the BIOT MPA, and often
co-occur with the potential for competition for resources (Carlisle
et al., 2019; Curnick et al., 2019). Our aim was to (1) develop and
test an approach for identifying informative detection gaps between
movements from acoustic telemetry data; and (2) combine this ap-
proach with information-theoretic modeling to analyze and assess
the potential of detection gaps to investigate differential movement

patterns and segregation in sympatric species.

2 | MATERIALS AND METHODS
2.1 | Data collection and study site

Acoustic telemetry data were collected in the BIOT MPA between
2014 and 2018. Throughout the archipelago, there have been
situated up to 93 permanent and temporary acoustic receivers
(VR2W, VR4-UWM, VR4G, and VR2AR receivers; Vemco Inc.,
Nova Scotia, Canada), as configured in Figure 1. The BIOT MPA is
characterized by numerous small islanded atolls with submerged
banks and reefs, with depths of 1,000 m or more separating each
atoll or reef system (Sheppard et al., 2013). Acoustic receivers in
the BIOT MPA are mainly based on areas accessible to divers, such
as coral reef systems, with few receivers covering the deep pelagic
waters of the region. In addition, the considerable size of the MPA
[640,000 km? (Sheppard et al., 2013)] limits the ability and spatial
resolution of monitoring wildlife movements in this region. These
factors result in the array having some significant blind spots be-
tween and within some of the larger reef systems. Close-up maps
of the receiver deployments at three of the most well-monitored
reef systems within the BIOT MPA, and an assumed 500 m detec-
tion range, can be found in Appendix 1: Figures S1-S3. The BIOT
MPA receiver array was initially started in 2013, and expanded
throughout subsequent years [for more information, see Carlisle
et al. (2019) and Jacoby et al. (2020)], covering a perimeter of
700 km and an area of 25,500 km? within the MPA, for the de-
tection of acoustically tagged marine fauna. Of the 93 receivers,
82 are in depths of 45 m or less. All receivers were situated far
enough apart to avoid overlap in their detection range, with mean
distance to closest receiver being 2.15 km, with a range of 0.55-
4.57 km (the frequency distribution of interreceiver distances can
be found in Appendix 1: Figure S4). Although range testing has not
been undertaken for this array due to financial and logistical con-
straints of vessel time in the BIOT MPA, other studies conducted
around coral atolls in the Indian Ocean using the same or similar

equipment have found detection ranges between 300 and 500 m
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FIGURE 1 Acoustic array in the BIOT MPA with the locations
of 93 acoustic receivers shown in red, adapted from Carlisle

et al. (2019). Insert shows the location of the BIOT MPA in the
Indian Ocean, with the exclusive economic zone (EEZ) and MPA
boundary indicated by the dotted line. Gray lines show the
contours of major submerged geographic features. Shallow reefs
are <20 m in depth, with deep reefs between 20 and 100 m in
depth

(Field et al., 2011; Forget et al., 2015; Govinden et al., 2013; Speed
et al., 2011).

Gray reef sharks (Carcharhinus amblyrhynchos) and silvertip
sharks (Carcharhinus albimarginatus) were used as model species for
this study as they are the most abundant large predator species in
the BIOT MPA, appear sympatrically across the region and they are
both a target for illegal fishing activity that continues to plague the
MPA (Tickler et al., 2019). Importantly for our methodology, both
species are ram ventilators and have to keep moving in order to
breathe (Skomal et al., 2007). Data were collected on shark detec-
tions between 2014 and 2018. In total, our data comprise 102 gray
reef and 75 silvertip sharks tagged with acoustic transmitters across
nine different locations following the methodology described by
Carlisle et al. (2019). Of tagged gray reef sharks, 76 were female
and 26 were male, and for the tagged silvertip sharks, 44 were fe-
male and 31 were male. As in previous studies (Barnett et al., 2012;
Espinoza, Lédée, et al., 2015), silvertip sharks (mean total length,
TL = 123.56 cm + S.D. 19.14) were on average slightly larger than
gray reef sharks (mean TL = 119.15 cm + S.D 18.07). Detailed
metadata for each tagged individual can be found in Appendix 1:
Table S1. Tags were configured to transmit an acoustic “ping” con-
taining a unique ID code with a nominal delay of 60-180 s for the
duration of their battery life (~10 years), providing a long-term time
series of detection data. Receivers were downloaded and serviced

annually at the same time each year (March-May).



WILLIAMSON ET AL.

ﬂ_wl LEy_Ecology and Evolution

Open Access,

2.2 | Movement classification

Acoustic telemetry generates presence-only, time-series informa-
tion for individuals carrying uniquely coded transmitters across
receivers often deployed as an array and is commonly used to moni-
tor the attendance and residency of individuals/species at specific
sites (Heupel et al., 2006; Vianna et al., 2014). Network analysis was
used here to define and distinguish between two different types of
shark movement within coral reef systems from acoustic telemetry
data. A detection gap is the length of time between two consecutive
detections from the same individual. Using a movement network
approach, this can be when an individual leaves one receiver and
arrives at another in a new location, known as a “transition” (Jacoby
et al.,, 2012). Alternatively, an animal might leave a receiver, move
out of detection range, and then return to the same location, a “self-
loop” in network parlance, but here called a “recursion.” These two
movement types were used to assess “restricted” and “out-of-range”
activity, where “restricted” activity is defined as on-reef movements
within the acoustic array, and “out-of-range” activity, defined as
wider, off-reef movement activity. In order to investigate differential
movement patterns, classification of “restricted” and “out-of-range”
activity was, therefore, inferred based on the duration of transitions
and recursions (Figure 2), before being tested as a binary response
variable in subsequent models using our empirical example.

All analyses were conducted in R version 3.6.0 (R Core
Team, 2019). To avoid false detections from unknown animals in our
study system, only detections from animals with known ID codes
were used for the analyses. For recursions, detection gaps of less
than six minutes (minimum of two detections) were removed from

the data. This was undertaken as an initial filter to ensure a recursion

Recursion

'\ 91/64 mins
o= IS
LN ~

Restricted movement

‘Out-of-range’ movement

had taken place, rather than an animal had stayed in the same lo-
cation but a detection had been missed. In addition, this reduces
the possibility of false positives from the recursion data set, as any
sequential detections at the same receiver quicker than the repeat
rate are removed (Simpfendorfer et al., 2015). To avoid subjective
methodologies, such as visual assessment with histograms, classifi-
cation of “restricted” and “out-of-range” movements was conducted
using an optimal classification method, where similar data values
were placed in the same class by minimizing an objective measure
of classification error, such as numerical mean (Slocum et al., 2009).
Time differences for recursive movements per species were log-
transformed to normalize the data, and the “classIntervals” function
in the classInt package (Bivand et al., 2019) was used to calculate
thresholds between “restricted” and “out-of-range” movements. The
Fisher algorithm was used, which determines thresholds by minimiz-
ing the sum of absolute intraclass mean variance, as well as maxi-
mizing interclass mean variance (Fisher, 1958; Slocum et al., 2009).
This resulted in a threshold of 91 min for gray reef sharks and 64 min
for silvertip sharks for “restricted” activity, beyond which it was as-
sumed that the shark had conducted an “out-of-range” movement.
Transitions were subject to a separate filtering process. Unlike
recursions, no initial filter was required for transitions as the detec-
tion of an individual on one receiver followed by another receiver is
immediately indicative of a movement from one location to another.
Temporal gaps in the detection data for any given pair of receivers
were informed by both the distance and species-specific minimum
sustainable swim speeds (0.69 m/s for gray reef sharks and 0.73 m/s
for silvertip sharks) (Jacoby et al., 2015). For example, the predicted
transition duration of a direct movement of a shark between two

receivers, without deviation, would be the ratio between distance

Transition

FIGURE 2 Schematic describing designation of “restricted” and “out-of-range” movements. Black and gray arrows indicate a movement
either to and from the same point (recursion), or between two points (transition). Time between detections for recursions, and relative
deviation from expected time (RDET) for transitions, is represented by length, curvature, and color of the arrow. As time and RDET increase,
length and curvature increase, and color gets lighter indicating less-directed movement. Red dashed line indicates our cutoff detection

gap (91 min for gray reef sharks and 64 min) for silvertip sharks for recursions and RDET (0.128 for gray reef sharks and 0.164 for silvertip

sharks) for transitions
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and speed. As such, by first calculating expected time for a transi-
tion using swim speeds and distance, the relative deviation from this
expected time (RDET) between any pair of receivers was determined
by dividing the expected transition time by the observed transition
time. RDET values of >1 were movements faster than expected, and
values of <1 were slower/more tortuous than expected (Figure 2).
As high RDET indicates swim speeds much greater than expected,
RDET values greater than 5 (5 times expected speed) were removed
to remove the chances of false detections.

For transitions, log-transformed RDET values were calculated for
both species, and as with recursions, the same optimal classification
method for determining thresholds was used (Slocum et al., 2009).
Movement values greater than the threshold value of 0.164 for gray
reef sharks and 0.128 for silvertip sharks were determined as “re-
stricted,” with values less than the thresholds determined as “out of
range.” Animals rarely travel in straight lines and often vary in their
tortuosity depending on factors such as resource use, habitat qual-
ity, competition, and predation (Fahrig, 2007; Gurarie et al., 2009;
Roshier et al., 2008). These thresholds of 0.164 and 0.128 are,
therefore, very conservative, to allow for a tortuous movement to
occur and still be classified as “restricted” in each species. Finally,
recursions and transitions were combined so that every move-
ment was categorized as a binary response (“restricted” = 0, “out
of range” = 1) (Figure 2). Our conservative classification thresholds
allow for missed detections and movements to still be classified as
“restricted.” As both species are ram ventilators (Skomal et al., 2007)
and are therefore unable to rest motionless, we assume that if an an-
imal is absent from the array for longer than the determined thresh-
old, that it has left the reef region, rather than remaining in an area
where there were no receivers or where there is poor detection ef-
ficiency. In addition, it is worth noting that transitional and recursive
movements are dependent on the scale of the array. What would be
termed two transitional movements in a fine-scale array (from A to
B to A) may be a recursion in an array with larger spacing between
receivers. However, this does not impact our methodology as the

two movements are combined.

2.3 | Data analysis

To explore the influence of explanatory variables on “out-of-range”
movements, an information-theoretic approach was taken, which ac-
counts for model selection uncertainty (Burnham & Anderson, 2002;
Harrison et al., 2018). In recent years, information-theoretic ap-
proaches have become a staple for modeling ecological systems,
particularly those where explanatory models describing the system
may have similar complexity and fit the data equally well, such as un-
derstanding the spatial distribution (Diniz-Filho et al., 2008; Greaves
et al., 2006; Rhodes et al., 2009), behavior (Garamszegi, 2011;
Kavanagh et al., 2017), and anthropogenic impact on survival of
wildlife populations (Aronson et al., 2014; Currey et al., 2009). To
limit exploratory analyses, and prevent model overfitting, an a

priori selection of variables and interactions based on previous
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research and theory was conducted (Dochtermann & Jenkins, 2011;
Grueber et al., 2011; Harrison et al., 2018). Explanatory variables

» o« » o« n o«
’

included in the model were “species,” “sex season” (wet/
dry), and “diel period” (day/night) (Andrews et al., 2009; DiGirolamo
et al., 2012; Dudgeon et al., 2013; Espinoza, Lédée, et al., 2015;
Heupel et al., 2019). As size had a non-normal distribution, it was

size,

log-transformed. The BIOT MPA is located near the equator and
has a roughly 12-hr day/night cycle. As such, day was designated
from 0700 to 1900 and night from 1900 to 0700 following sunrise
and sunset times obtained from https://www.timeanddate.com. The
MPA experiences distinct Indian Ocean wet and dry seasons with
wet season running from October to March and dry season from April
to September (Sheppard et al., 2012). Seasonal variability is often
greater than monthly variability in tropical ocean systems (Huang
& Kinter I, 2002; Servain et al., 1985), and therefore, we deemed
season a more biologically relevant driver of shark movement.

All variables used in the model were assessed for multicollinear-
ity. Multicollinearity, which occurs when predictors in a multiple re-
gression are highly correlated (McGowan et al., 2012), was assessed
by producing a variance inflation factor (VIF) using the “check_
collinearity” function in the performance package in R (Lidecke
et al., 2019). VIF measures the degree of multicollinearity in a re-
gression model by providing an index of how much the variance of
the model variables increases due to collinearity (O’brien, 2007).
No evidence of collinearity was found, with all variables having a
VIF =< 1.05, less than the critical threshold of 5.0 (see Appendix 1:
Table S2) (McGowan et al., 2012; Welzel & Deutsch, 2011). As such,
all a priori selected explanatory variables were included in the global
model.

A global model was subsequently created using a generalized
linear mixed model (GLMM) (family = binomial, link = logit) in the
glmmTMB package (Brooks et al., 2017). To explore putative spatial
and temporal segregation between gray reef and silvertip sharks,
“restricted” versus “out-of-range” movements were included as a
binary response variable and “species” was included as interaction
term with all explanatory variables and individual ID as a random
factor. As the likelihood of a movement between locations decays as
a function of distance (Jacoby et al., 2020), receiver location was also
included as an independent random factor. Residuals of the global
model were checked for heteroscedasticity, and autocorrelation
and data were checked for binomial distribution using the functions
“resid,” “fitted,” and “acf” from the stats package (R Core Team, 2019)
and found free from autocorrelation and heteroscedasticity of resid-
uals (Appendix 1: Figure S5).

To generate the model set from the global model, the “dredge”
function from the MuMIn package was used (Barton, 2009). Models
in the set were ranked by small sample size Akaike information crite-
rion (AlCc) values (Burnham & Anderson, 2002; Grueber et al., 2011;
Harrison et al., 2018). As inference using AlCc can be made more
reliable by removing models, which are more complex versions of
others (Grueber et al., 2011; Richards, 2008), the “nested” function
from the MuMIn package was used on the model selection table. If

a single parsimonious model remains following these analyses, this
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“out-of-range” movements, respectively

model is fitted to the data. If no single parsimonious model subse-
quently results from the set and the weight of the best model is less
than 0.9, model averaging is recommended (Grueber et al., 2011).
Parameter estimates indicate the change in probability of ob-
serving an “out-of-range” movement as the value for continuous
predictor variables increases. Categorical predictor variables were
compared to the categorical variable level used as the model base-
line. Positive estimates indicate an increased probability of “out
of range” and a decreased probability of “restricted” movements;
negative estimates, the reverse. To assess the effect of the fixed
effects on the model, and the combination of fixed and random
effects (Johnson, 2014; Nakagawa & Schielzeth, 2013), marginal
R? (R?m) and conditional R? (R?%c) values were calculated, using
“r.squaredGLMM” in the MuMIn package (Barton, 2009; Nakagawa
& Schielzeth, 2013), and conditional models of the random ef-
fects, and their standard deviations, were extracted from the top

model using the “ranef” function from the Ime4 package (Bates
et al., 2015).

2.4 | Model cross-validation

To assess the predictive capabilities of our final model, analysis was
conducted on 80% of the data. Cross-validation of the model estimate
values was conducted on the remaining 20% of data as confirmation
of how well the selected model performed (Harrison et al., 2018).
The “predict” function in the gImmTMB package was used to validate
the expected outputs of the multimodel inference on the observed
values from the reserved 20% of the data. Area under the receiver
operating characteristic curve (AUC) values designates the prob-
ability that positive and negative instances are correctly classified
(Siders et al., 2013). As such, AUC was calculated using the pROC



WILLIAMSON ET AL.

package (Robin et al., 2011), as a threshold-independent method to
check the robustness of the model. An AUC value of greater than 0.5
indicates better than random performance (Jiménez-Valverde, 2012,
2014; Swets, 1988).

3 | RESULTS
3.1 | Sample size

Between January 2014 and December 2018, there were 206,619
movements (gray reef shark = 134,201, silvertip shark = 72,418),
transitional and recursive, identified from 102 gray reef sharks and
75 silvertip sharks. From these movements, 129,292 were identi-
fied as “restricted,” and 77,327, “out of range.” Gray reef sharks
conducted 67.0% and 33.0% % of “restricted” and “out-of-range”
movements, respectively. Silvertip sharks conducted 54.3% and
45.7% of “restricted” and “out-of-range” movements, respectively.
Mean “out-of-range” movements increased from 32.5% and 43.9%
during the day to 34.4% and to 48.1% at night for gray reef sharks
and silvertip sharks, respectively (Figure 3a). Mean “out-of-range”
movements increased from 31.9% and 44.9% in the dry season to
34.9% and to 47.2% in the wet season, in gray reef sharks and silver-

tip sharks, respectively (Figure 3b).

3.2 | Model analysis

Residuals of the global model were free from heteroscedasticity
and temporal autocorrelation (Appendix 1: Figure S5). Following
the dredge and nesting of the global model, one single parsimonious
model was found. Although the weight of the top model was 0.25,
as only a single model remained following “dredging” and “nesting,”
model averaging was not undertaken. This model was fitted to the
data, and the results from model analysis are presented in Table 1.
No interactions were included in the final model. Species, diel
period, and season were significant predictors of “out-of-range”
movements (Table 1). Silvertip sharks were overall more likely to un-

dertake “out-of-range” movements compared with gray reef sharks

TABLE 1 Model averaging results
following model selection for out-of-range
movements Intercept
Diel period
Night
Season
Wet season
Species

Silvertip shark

Estimate

0.179

0.159

0.449
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(p < .001, Table 1), suggesting spatial segregation between the spe-
cies. However, as both species still undertook regular “out-of-range”
and “restricted” movements, this segregation was not discrete.
“Out-of-range” movements were more likely to occur at night than
during the day (p < .001, Table 1) (Figure 3a), and during the wet
season than the dry season (p < .001, Table 1) (Figure 3b). The vari-
ance and standard deviation of the random factors on the logit scale
were 0.43 and 0.65 for individual ID, and 0.43 and 0.66 for receiver
location, respectively. Marginal R? (R2m) was 0.02 and conditional
R? (R2c) 0.22, suggesting high individual variation in both species
(Figure 4). Results from conditional models of the random effects
and their standard deviations showed that 48% of gray reef sharks
had significantly different “out-of-range” movements from the inter-
cept (Figure 4). For silvertip sharks, 37% of individuals had signifi-
cantly different “out-of-range” movements relative to the intercept.

Model validation results calculated an AUC value of 0.68.

4 | DISCUSSION

Here, we developed a new approach, which utilizes gaps in detec-
tions from acoustic telemetry to infer presence or absence from re-
gions of interest, such as in our case, coral reef systems. Currently,
analyses using GLMMs on acoustic telemetry time-series data typi-
cally underuse information from timings and periodicity of detection
gaps. However, as seen here, the analysis of detection gaps has the
potential, albeit at coarse scales, to identify both spatial and tem-
poral differences in movement in sympatric marine species, as well
as high individual variation in movements in both species. As such,
this method could potentially enhance our understanding of the
organization and spatial distribution of aquatic wildlife, in a variety
of environments, from telemetry data, where coverage is far from
complete and in the absence of more accurate movement data for
large numbers of animals, which can be prohibitively expensive using
satellite telemetry.

Gray reef and silvertip sharks in the BIOT MPA had significant
differences in “out-of-range” movements, which can be inferred as
wider, off-reef movement activity. Overall, silvertip sharks were

more likely to undertake these potential wider, “out-of-range”

Std. error Cl z value p value
-0.475 0.111 -0.693 -0.257 -4.27 .000
0.011 0.158 0.200 16.673 .000
0.011 0.137 0.181 13.961 .000
0.111 0.231 0.667 4.037 .000

Note: Estimates with standard error, 97.5% confidence intervals (Cl), and associated p values are
presented. Significant results are highlighted in bold.
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movements than gray reef sharks. These results suggest spatial
segregation between these species, with gray reef sharks, prob-
abilistically, more likely to inhabit reef-based areas, while silvertip
sharks were more mobile and conducted more widespread move-
ments (Figure 3). These results extend previous research describing

variable patterns of movement and activity in both gray reef sharks

0
Departure from Global Intercept (Logits)

and silvertip sharks globally (Espinoza et al., 2015; Papastamatiou
et al., 2018; Vianna et al., 2013). In addition, this also supports previ-
ous research in the BIOT MPA, which found that silvertip sharks had
higher mobility, larger activity spaces, and lower reef residency com-
pared with gray reef sharks, which had small activity spaces (Carlisle
et al.,, 2019; Jacoby et al., 2020).



WILLIAMSON ET AL.

Our results indicate that although there is spatial segregation be-
tween the species, there is probable overlap between the two in the
areas they reside (Figure 3). This supports evidence from stable iso-
tope data from this region, with each species utilizing both reef and
pelagic areas for foraging, but with gray reef sharks obtaining 78%
of their biomass from reef resources, but silvertip sharks only 60%
(Curnick et al., 2019), as well as movement data from the BIOT MPA
showing that, despite the wider dispersal in silvertip sharks, there
are overlapping activity spaces between the two species (Carlisle
et al., 2019; Jacoby et al., 2020).

Prior research on patterns of movements between coral reef-
associated elasmobranch species has been limited but primar-
ily focus on differences in space use (Heupel et al., 2018, 2019;
Papastamatiou et al., 2006). To date, temporal aspects of segregation
are rarely considered (Bracis et al., 2018; McClintock et al., 2014).
However, temporal patterns of movement, such as diel stage and
season, are common in multiple elasmobranch species (Dudgeon
et al., 2013; Heupel et al., 2004; Papastamatiou & Lowe, 2012). Our
method found seasonal variance in probable wider “out-of-range”
movements and diel variance between species. This suggests tem-
poral segregation of movements between the two species, with sil-
vertip sharks more likely to conduct “out-of-range” movements at
night, and gray reef sharks showing smaller diel change (Figure 3a).

In addition, the model variance results, low marginal R? values
from our fixed effects relative to our conditional R? values, and the
results from conditional models of the random effects suggest that,
in both gray reef sharks and silvertip sharks, interindividual variabil-
ity plays an important role in explaining the probability of “out-of-
range” movements (Figure 4). This suggests that within a species,
some individuals have a tendency to be more wide-ranging than
others, which have limited dispersal ranges (often termed “partial
migration”).

Although the low R? does mean we should interpret our par-
ticular results with some caution, our AUC values indicate that
the model is a decent representation of our system (Jiménez-
Valverde, 2014; Swets, 1988). In addition, the use of R? to evalu-
ate linear regressions of binary responses can be misleading (Cox
& Wermuth, 1992; Mittlbéck & Heinzl, 2001). Low R? values in
ecological systems are not uncommon and can be expected when
using linear regressions of binary responses as, in empirical re-
search, it may be improbable to find explanatory variables that
give predicted probabilities close to 0 or 1 (Ash & Shwartz, 1999;
Cox & Wermuth, 1992; Mittlb6ck & Heinzl, 2001). Although they
may prevent the use of the model in model predictions, they can,
however, still be of use for describing processes within model
systems (Alexander et al., 2015; Ash & Shwartz, 1999; Colton &
Bower, 2002; Novak & MacEvoy, 1990). As such, this approach has
shown that not only can gaps in detections be used to help inter-
pret and support other types of data, but, despite the low R? values
from the model, it also has the potential to provide insight into
ecological mechanisms in environmental systems at coarse scales,
such as the differences in spatiotemporal movements that under-

pin reef predator sympatry.
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Because acoustic telemetry only measures presence, array de-
sign and detection ranges can significantly impact results obtained
using this technology (Carlisle et al., 2019; Kessel et al., 2014). An
inability to detect an animal could be due to the animal leaving the
study area, or because it moved out of detection range (Heupel,
Kessel, et al., 2018), and consequently might result in some misdes-
ignated movements in this study. Detection ranges for the region
vary between 300 and 500 m (Field et al., 2011; Forget et al., 2015;
Govinden et al., 2013; Speed et al., 2011), and distances between
receivers ranged between 0.55 and 4.57 km with mean distance to
closest receiver 2.15 km, with minimal overlap between receivers
(Appendix 1; Figures S1-54). We acknowledge that this could lead
to periods where sharks remain close to a receiver conducting “re-
stricted” movements without being detected, rather than engaging
in wider “out-of-range” movements. Unfortunately, due to the logis-
tics of conducting research in the BIOT MPA we were not able to
conduct range tests as part of this study to quantify the exact im-
pact this issue may have on our results. We consider the influence of
this, however, to be minimal for the following reasons; classification
thresholds of movement were very conservative, giving consider-
able leeway for an animal to move around a reef area, detections
to be missed, and still the movement be classed as “restricted”; fur-
thermore, neither of these species are able to rest motionless on the
bottom, as they are required to ram ventilate (Skomal et al., 2007).
This means these species are less likely to remain in a blind spot for
long time periods and less likely for the tag signal to be blocked in the
long term by physical objects, therefore increasing the chances of
them being detected on the same or additional receivers even when
frequenting gaps between or within arrays.

In addition, animals using the lagoons of these atolls would also
not necessarily be detected on the array, and movements across the
lagoons could also be misdesignated. However, lagoon use in these
species tends to be minimal (Barnett et al., 2012; Dale et al., 2011;
Economakis & Lobel, 1998) and the isotope signatures obtained from
these two species indicate they are not using lagoons for foraging
(Curnick et al., 2019). As such, we believe these potential issues
should not have impacted our results significantly. However, we
stress that this is an inference method being used in lieu of more ac-
curate measurements for large numbers of free-ranging individuals.
It may not be suitable for regions where receivers are spaced further
apart, particularly when the study species may exhibit bouts of sed-
entary behavior, as this could lead to increased chance of missed
detections. Simulating the impacts of receiver distance, detection
probability and movement classification will be an interesting exten-
sion to this work in the future.

Although the consistent nature of our results with those ob-
tained from stable isotope work (Curnick et al., 2019) helps to
validate our methodological approach, further validation of classifi-
cations for other systems could be carried out using more accurate
positional data (e.g., GPS fixes or mark-recapture positions). In our
study, although there were several silvertip sharks double-tagged
with both acoustic and PSAT tags, unfortunately the positional data

from these satellite tags were not of a high enough resolution to
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fully confirm our claims. At low latitudes, the error associated with
light-level geolocation estimates from PSAT tags can be very high
(Ferreira et al., 2018). For example, the geolocation error from a sil-
vertip shark tagged with a PSAT in the BIOT MPA was estimated at
0.25° or 27.83 km at the equator (Carlisle et al., 2019). In addition,
geolocation algorithms used to reconstruct positions from PSAT
data only produce a single position per day, which limits their abil-
ity to investigate diel differences in location. Although not feasible
in this study, the accuracy of this technique should be validated in
future studies with more accurate positional data, such as those de-
rived from Fastloc GPS tags (e.g., smart positioning or temperature
transmitting tags).

Multiple environmental factors, such as wind, biological noise,
and current, can also impact the probability of detections (Kessel
et al., 2014; Reubens et al., 2019). In addition, these may differ with
diel stage, tides, and lunar cycle, which can lead to reduced detec-
tions at night (Payne et al., 2010). Control tests, such as using tags
placed in fixed locations, can be carried out to investigate how de-
tection range and probability of detections vary with time of day and
different environmental conditions (Payne et al., 2010), and ideally,
these tests should be carried out whenever a new acoustic array is
set up. For logistical reasons, these control tests have not yet been
performed for the BIOT MPA, but it may be feasible to perform
these tests in the BIOT MPA in the future to understand the impact
of this on our results.

In this study, detection gaps and RDET were combined to
have a single metric for both recursive and transitional movement
types, in order to detect whether an animal was conducting “re-
stricted” on-reef movements, or wider, off-reef and “out-of-range”
movements. However, there may be differences in recursive and
transitional movement types that were not investigated here and
using modeling techniques on detection differences and RDET in-
dividually would enable further investigations into the movement
behavior of fish species. For example, are wider, “out-of-range”
movements more likely to be undertaken with a recursive or
transitional movement? In addition, modeling detection gaps and
RDET could be used as response variables separately to further
investigate what drives the recursive and transitional movements,
respectively.

There are no single “silver bullet” techniques for fully investigat-
ing the movement ecology of aquatic species at an appropriate and
meaningful spatial and temporal scale; each methodology has its lim-
itations. Here, we show that, in the absence of finer-scale movement
data beyond the boundaries of our acoustic detection ranges, this
methodology, using gaps in detections, can be used to investigate,
support, and extend conclusions about spatiotemporal movement
patterns from acoustic telemetry data, such as how variable behav-
joral strategies can influence interspecific species organization on
coral reef systems. However, there are some limitations that may
preclude the use of this approach within other locations/arrays. This
approach, however, has the potential to be used to inform under-
standing of the behavioral biology and ecology of aquatic fauna,

particularly in conjunction with other methodologies, principally

in regions where high spatial resolution data may not be available,
which can assist more informed strategies for the conservation and

management of the aquatic environment.
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