
1. Introduction
Whistler mode hiss is a broadband (∼50–2,000 Hz) unstructured electromagnetic emission typically occur-
ring inside the plasmasphere and the plasmaspheric plumes (Chan & Holzer, 1976; Hayakawa et al., 1986; 
Parrot & Lefeuvre,  1986). Hiss plays an important role in radiation belt dynamics via gyro-resonant 
wave-particle interactions (Dunckel & Helliwell, 1969; Meredith et al., 2004; R. M. Thorne et al., 1973). 
These wave-particle interactions break all three adiabatic invariants, leading to the pitch angle diffusion 
and potential loss of electrons to the upper atmosphere (J. Li et al., 2019; Ni et al, 2013, 2014; Summers 
et al, 2007a, 2007b; R. M. Thorne et al., 2013). Plasmaspheric hiss is largely responsible for the formation 
of the slot region between the inner and outer radiation belts through the cyclotron resonant pitch angle 
diffusion (e.g., Lyons & Thorne, 1973; Meredith et al., 2009).

Traditionally, empirical models of pitch angle diffusion in the radiation belts have been computed us-
ing average magnetospheric parameters, such as number density and magnetic field intensity (e.g., Fok 
et al., 2011; Glauert et al., 2013; Malaspina et al., 2020; Subbotin & Shprits, 2009). However, recent mod-
eling and data analysis work (Watt et al., 2019, 2021) indicates that the efficacy of diffusion is increased 
if the variability in hiss wave growth parameters is considered instead of simply using average values. In 
idealized numerical experiments of radial diffusion, the solution is shown to depend upon the temporal and 
length scales of variability in the diffusion coefficients (Thompson et al., 2020). Therefore, in general, it is 
important to know how rapidly wave and plasma characteristics vary in order to determine the importance 
of variability, and the best way to construct models of diffusion coefficients, for all types of wave-particle 
interactions in the Outer Radiation Belt.
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The wave coherence spatial scale in radiation belt region has been studied in depth (e.g., Agapitov et al., 2010; 
Blum et al., 2016; Gurnett et al., 1979; Němec et al., 2016; Santolík & Gurnett, 2003). For example, Shen 
et al. (2019) statistically obtained the spatial correlation scale of chorus wave of 315 km between L shells of 
∼5–6. Using a case study, J. Li et al. (2017) found that there is a good correlation between the whistler mode 
waves outside the plasmasphere and the hiss waves inside the plasmasphere, and that for 500–1,500 Hz 
rising-tone emissions, their coherence was unexpectedly large at spatial scales up to 4.3 RE and even across 
the plasmapause. For the focus of this study, plasmaspheric hiss, Agapitov et al. (2018) statistically analyzed 
the radial separation (Δr) effect on the correlation of hiss wave amplitudes using five THEMIS spacecraft 
observations. Agapitov et al. (2018) found that the radial correlation of hiss waves decays to 0.5 at radial 
separation Δr ∼3,000 km. However, many outstanding questions regarding the global temporal and spatial 
coherence of hiss wave still remain, for example: (a) what is the spatial coherence of plasmaspheric hiss 
wave in a physical coordinate system? (b) does the spatial coherence vary with L shell or magnetic local time 
(MLT)? (c) what is the temporal coherence of plasmaspheric hiss waves?

In this study, we study the spatial and temporal variation of hiss using Van Allen Probes measurements. The 
Van Allen probes provide measurements of hiss waves at constantly varying separation from ∼0.01 to 5 RE, 
since Van Allen Probe A catches up and passes Van Allen Probe B every few weeks, making the mission a 
perfect platform for this type of analysis. We study the correlation of wave amplitudes across a range of fre-
quencies that cover the plasmaspheric hiss band as a function of spacecraft separation and time lag in order 
to determine how rapidly the correlations vary as the satellite separation and time lag increases.

The remainder of this study is organized as follows. In Section 2, we discuss the data set, selection criteria 
and the correlation analysis method of the plasmaspheric hiss. Section 3 shows the statistical results of the 
spatial and temporal correlations of the plasmaspheric hiss. The discussion and conclusion are shown in 
Sections 4 and 5.

2. Data Set and Methods
The Van Allen Probes were launched on August 30, 2012 and consists of two identical satellites (Van Allen 
Probes A & B) in elliptic orbits (a perigee of 618 km, an apogee of 5.8 RE, and 10.2° orbital inclination) with 
∼537 min orbital period (Mauk et al., 2012). The measurements used in this study are primarily obtained 
from Electric and magnetic field instrument suite and integrated science (EMFISIS; Kletzing et al., 2013), 
which consists of ∼6 s resolution wave magnetic field data in 65 frequency channels (∼10–12,000 Hz) from 
WaveForm Receiver (WFR). The WFR also provides the wave normal angle, polarization and ellipticity cal-
culated by the singular value decomposition method (Santolík et al., 2003). The electron density data used 
in this study are derived from the upper hybrid frequency from the high-frequency receiver spectra (Kurth 
et al., 2015).

Figure 1 shows an example of a hiss event from Van Allen Probe A on November 9, 2012 and how we select 
our hiss intervals. Briefly, we select hiss waves that are inside the plasmasphere using previously published 
criteria, as outlined below, when:

 i.  Both the electron density measurements from Van Allen Probes A&B are higher than the larger value 
between 10 × (6.6/L)4 and 50 cm−3 (the black line in Figure 1a) to ensure that the observations are in the 
plasmasphere (e.g., Li et al., 2010, 2015). For the vast majority of this event, the observed value is larger 
than the black line and hence most observations during this event fit this criterion.

 ii.  The wave is broadband in the frequency range of 50–2,000 Hz (Figure 1b). This is detected by ensuring 
that the majority of large-amplitude regions (with a power spectral density greater than 10−7.5 nT2/Hz) 
stay in this hiss frequency band. Large amplitude events are studied in order to ensure the correlation 
analysis is focused on the plasmaspheric hiss activity, and not background noise or other signals that 
are more ambiguous in origin. For this event, there are several emissions around 13:00–15:00 UT and 
16:00–19:00 UT that do not fit this criterion, but all over wave amplitudes during this event fall in be-
tween the horizontal black lines.

 iii.  The planarity is larger than 0.2 (Figure 1c) and ellipticity larger than 0.7 (Figure 1d) over the frequency 
range of 50–2,000 Hz. The magnetosonic waves, which typically have very low ellipticity approaching 
zero, will likely be excluded in this step (e.g., Kim et al., 2019; Ma et al., 2016). For this event, all wave 
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amplitudes in the studied frequency range adhere to these criteria other than waves during perigee, as 
denoted by vertical striped emissions that extend across all of the frequency range.

 iv.  Chorus waves are also excluded, which are typically observed in the plasmatrough region (where the 
black line is higher than the blue line in Figure 1a), and the majority of large-amplitude regions stay 
in 0.1 and 0.8 fce (the two white lines in Figure 1b), where fce is the equatorial electron gyrofrequency 
(e.g., Burtis & Helliwell, 1969; Tsurutani & Smith, 1974). Finally, we perform a visual inspection of each 
event to ensure that even chorus waves that penetrate the plasmasphere (e.g., Chen et al., 2012; Zeren 
et al., 2013) are excluded from our data set.

 v.  Finally, the satisfied bins are shown in green in Figure 1e. The example of the duration of plasmas-
pheric hiss is shown as the black bars at the top of Figures 1b and 1e, showing that the vast majority of 
large-amplitude, broadband plasmaspheric hiss is captured by these criteria.

An example of the correlation analysis of the plasmaspheric hiss waves is shown in Figure 2. Figures 2a and 
2b show the magnetic field spectrograms of wave power from Van Allen Probes A&B, which are in a similar 
format as that of Figure 1b. Figure 2c shows the integrated hiss wave amplitudes of Van Allen Probes A 
(red) & B (blue), which are calculated by integrating the power spectral densities in panels a and b across 
the frequency range between 50 Hz and 2 kHz and taking the square root value. Figure 2d shows the spatial 
separation (Δd) between Van Allen Probes A&B. Figure 2e shows the time lag between Van Allen Probes 
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Figure 1. An example of the density and wave survey data measured by Van Allen Probes A on November 09, 2012 
from 00-24 UT. (a) Electron density derived from the upper hybrid frequency data (blue line), the black line indicates 
the larger value between 10 × (6.6/L)4 and 50 cm−3; (b) magnetic field wave power spectrogram; (c) planarity; (d) 
ellipticity; (e) bins that meet the criteria from (i) to (iv) are green. The two black lines in panels (b–e) indicate 
frequencies of 50 Hz and 2 kHz. The two white dashed lines in (b) indicate frequencies of 0.1 fce and 0.8 fce, where fce is 
the electron cyclotron frequency. The black bars above the panels (b and e) indicate the duration of plasmaspheric hiss.
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A&B, which are estimated from the spacecraft location in Figures 2j–2l. Figures 2f and 2g show the spatial 
correlation coefficients and ratios between the red and blue lines in panel c (two time series of amplitudes 
at same time but different position) in steps of 20 min. Figures 2h and 2i show the temporal correlation 
coefficients and ratios between the shifted blue line (with the time lag in Figure 2e) and red line (Figure 2c) 
(two time series of amplitudes at same position but different time with the time lag). In total, 3,264 events 
were found during November 2012 to July 2019, where both Van Allen Probes A&B observed hiss wave with 
small separation (<1 RE). Each event is determined as a 20 min time window.

It can be seen in Figures 2a and 2b that the hiss spectra appear to be relatively well correlated visually. Fig-
ure 2c demonstrates that the integrated wave amplitudes during the identified hiss wave intervals (all other 
wave amplitudes are excluded) also appear well matched both in shape and in amplitude. Figures 2d and 
2e show the differing spacecraft separation and corresponding time lag that goes into our analysis. Figures 
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Figure 2. An example of the correlation of the plasmaspheric hiss waves observed from Van Allen Probes A & B. (a 
and b) Magnetic field wave power spectrogram measured from Van Allen Probes A & B; (c) Wave magnetic amplitudes 
integrated from 50–2,000 Hz of Van Allen Probes A (red) and B (blue); (d) spacecraft separation; (e) spacecraft time 
lag; (f and g) spatial correlation coefficients and ratios of amplitudes (smaller amplitudes/larger amplitudes); (h and i) 
temporal correlation coefficients and ratios of amplitudes; (j) radial distance from earth; (k) magnetic local time (MLT); 
(l) magnetic latitude (MLAT). The red dots in panels (e, g, and i) are 20 min averaged values of the black dots.
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2f and 2g show the correlation coefficient and amplitude ratio, respectively, between the two time series 
in Figure 2c but accounting for the spacecraft separation shown in Figure 2d, which shows that there is a 
clear variability to the correlation as a function of time throughout the interval. Similarly Figures 2h and 2i 
show the same cross-correlation and amplitude, respectively according to the time lag between spacecraft 
shown in Figure 2e. Again there is clear variability in the correlation and amplitude ratio seen in Figure 2h. 
Taken together, the spatial and temporal correlations in Figures 2f and 2h (respectively) show that there are 
periods where there is excellent spatial and temporal agreement between the spacecraft (e.g., 13:00 UT), but 
that there are also very poor correlations (e.g., 17:00 UT).

3. Statistical Results
3.1. Event Distribution

Figure  3 shows the relevant characteristics of hiss events as a function of location and separation. The 
left hand column shows a scatterplot of each of the 3,264 events, whereas the right hand column shows a 
two-dimensional histogram of these events. Figure 3a shows the relevant locations of plasmaspheric hiss 
events in MLT-L coordinates and Figure 3b shows their corresponding two-dimensional histograms, where 
the color represents the number of events in each bin. We can see that our events have a peak in occurrence 
in the post-noon sector around L = 6, but have a good distribution (>10 points) in the dayside magneto-
sphere between 2 < L < 6. Figures 3c and 3d show the event distributions of the total spacecraft separation 
(Δd) between Van Allen probes A&B as a function of L-shell. We can see that at large L-shells (L = 6) 
there is a uniform coverage at all spacecraft separations, but that at lower L-shells the occurrence peaks in 
the 4,000–600 km range, although there is still good coverage at L < 4. Figures 3e and 3f show the event 
distributions of the azimuthal separation (ΔMLT) between Van Allen probes A&B as a function of L-shell. 
We can see that there is generally little separation in MLT between the two spacecraft but if there is, this is 
limited to ±1 MLT. Figures 3g and 3h show the event distributions of the radial separation (ΔL) between 
Van Allen probes A&B as a function of L-shell. We can see that the measurements are mostly distributed in 
|ΔMLT| < 1 h and |ΔL| < 0.5, and all of the spacecraft separations (Δd, ΔMLT, and ΔL) are decreasing with 
increasing L-shell. Finally, Figures 3i and 3j show the distributions of hiss waves in ΔMLT-ΔL panel. We 
can see that there is a large concentration of occurrences close to ΔMLT = 0 and ΔL = 0, but that there is a 
large spread and where the spacecraft separation is larger, the MLT is larger. However, the highest number 
of events is highest near ΔMLT < 0.2 h and ΔL < 0.2.

3.2. Spatial Correlation of Plasmaspheric Hiss

Figures 4a–4d shows spatial correlation coefficients in Figure 2f as a function of L-shell for all of 3,264 
events during November 2012 to July 2019. Figure 4a shows a scatterplot of the spatial correlation coeffi-
cients shown in Figures 2f and 4b shows a two-dimensional histogram. Figure 4c shows the normalized 
probability for each column, where the largest bin in each column is normalized to 1. Finally, the bilinear 
interpolated probability distributions are shown in Figure  4d, and the red solid line indicates the least 
squares fitting to the contours (red line). It can be seen that the spatial correlation coefficients of amplitudes 
are higher at smaller L-shell than larger L-shell, which means that the plasmaspheric hiss is more spatially 
incoherent with increasing L-shell. A correlation of 0.5 is reached at L = 3.34, demonstrating that only 25% 
of the variance of the data set is explained by the L-shell relationship and that correlations between Van 
Allen Probe measurements of hiss become very weak at this location.

Figures 4e–4h shows spatial correlation coefficients as a function of the separation of Van Allen Probes 
A&B, Δd, for all of 3,264 events, which have same format with panels a–d and on a log-linear scale. From 
panels e and f, we can see that only few (∼8%) spatial correlation coefficients at Δd < 1 are greater than 
0.8, and there are fewer events distributed in the lower left part of the Figure. From Figures 4g and 4h, it 
can be seen that as separation increase, the spatial correlation coefficients of amplitudes decreased signif-
icantly, which means that the plasmaspheric hiss is more incoherent with increasing separation. To quan-
tify the variation of spatial correlation with increased Δd, we fit a functional form to the contours (black 
line) in Figure 4h. Considering that the correlation coefficients vary from ∼1 at Δd ∼ 0 to 0 as Δd gets 
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very large, we choose f(Δd) = ekΔd to fit the peaks in spatial correlation, indicated by the red dotted line, 
where k = −6.68 × 10−04 (R2 = 0.67). We find that the spatial correlation coefficients drop to 0.5 when Δd 
∼1,038 km. If we consider when the correlation coefficients drop to 0.3 or 0.1, we obtained values of Δd of 
1,803 and 3,448 km, respectively. In summary, we find that the spatial coherence of plasmaspheric hiss is 
much smaller than previously thought, and statistically meaningful correlations may only last ∼1,000 km. 
Figure S1a–S1d demonstrates that the ratio of plasmaspheric hiss amplitude (see Figure 2g) decreases sig-
nificantly as spacecraft separation increases.

To examine the combined L-shell and Δd effect, Figure 5a shows the distributions of the spatial correla-
tion coefficients as a function of the spacecraft separation Δd and L-shell. The color indicates the median 
value of the spatial correlation coefficients in each bin. Figure 5b shows the interpolated distributions in 
panel a, and the red (black) lines indicate the 0.5 (0.1) contours. We can see that when L < ∼4.5, the spatial 
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Figure 3. The distribution of plasmaspheric hiss in the (a) MLT-L, (c) Δd-L, (e) Δ MLT-L, (g) Δ L-L, and (i) ΔMLT-ΔL 
planes. MLT and L are the measurements from the Van Allen Probes A. Δd, ΔMLT and ΔL indicate the total, azimuthal, 
and radial separation between Van Allen probes A& B. Right panels show the corresponding two-dimensional 
histograms of the events in left panels. MLT, magnetic local time.
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correlation coefficient is very high when Δd is small, and it decreases significantly as Δd increases along 
the y-axis (and drop to 0.5 at average Δd∼1,500 km). When L > ∼4.5, no matter what Δd and L-shell, all of 
the coefficients at any separation are significantly reduced and closer to 0 than 1, with an average of ∼0.3.

In summary, we find that plasmaspheric hiss is incoherent (R2 < 0.5):
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Figure 4. The distributions of the spatial correlation coefficients. (a) The scatterplot of the spatial correlation coefficients against L-shell. (b) The number 
distribution of the events in panel a. (c) The column normalized probability distribution in each given L-shell bin, the largest bin in each column is normalized 
to 1. (d) The interpolated figure to panel (c), the black solid line indicates 0.9 contours. Panels (e–h) show the distributions of the spatial correlation coefficients 
against the spacecraft separation between Van Allen Probes A & B, which have the same format as in panels (a–d). The red lines indicate the least squares fitting 
and the weighted fitting (f(x) = ekΔd) to the contours in panels d and h, respectively.

2 4 6
L

-1

-0.5

0

0.5

1

Sp
at

ia
l

co
rr

el
at

io
ns

2 4 6
L

-1

-0.5

0

0.5

1
Distribution

0

0.5

1

1.5

2
10x

2 4 6
L

-1

-0.5

0

0.5

1
Probablity

2 4 6
L

-1

-0.5

0

0.5

1
Probablity

0

0.2

0.4

0.6

0.8

1

2 2.5 3 3.5

 d [10x km]

-1

-0.5

0

0.5

1

Sp
at

ia
l

co
rr

el
at

io
ns

2 2.5 3 3.5

 d [10x km]

-1

-0.5

0

0.5

1

0

0.5

1

1.5

2

10x

2 2.5 3 3.5

 d [10x km]

-1

-0.5

0

0.5

1

2 2.5 3 3.5

 d [10x km]

-1

-0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Figure 5. The median spatial correlation coefficients as a function of Δd and L-shell. The red (black) line indicates the 0.5 (0.1) contours.

2 3 4 5 6

L

0

2500

5000

 d
 [k

m
]

2 3 4 5 6

L

0

2500

5000

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

c.c.



Journal of Geophysical Research: Space Physics

 - outside of L = 3.34 (Figure 4d)
 - when spacecraft are separated by >1,000 km (Figure 4h)

And generally incoherent in all other regions (Figure 5)

3.3. Temporal Correlation

The distribution of the temporal correlation coefficients against L-shell and time lag between Van Allen 
Probes A&B are investigated in Figure 6. Figures 6a–6d show the temporal correlation coefficients in Fig-
ure 2h as a function of L-shell, which have the same format as Figures 4a–4d. We find that the temporal 
correlation coefficients of amplitudes are significantly higher at smaller L-shell than larger L-shell., reach-
ing one when at low L = 2, but 0 at L = 6, and reaching a correlation coefficient of 0.5 when L = 3.5. Fig-
ures 6e–6h shows temporal correlation coefficients as a function of the time lag between Van Allen Probes 
A&B, which have same format and similar variation trend as Figures 4e–4h. It can be seen that as time lag 
increases, the temporal correlation coefficients of amplitudes decreased significantly. The functional form 
(f(Δt) = eλΔt) of the fitting is indicated by the red lines in panel h, where λ = −0.0052 and R2 = 0.53. We 
find that the temporal correlation coefficients drop to 0.5 when Δt = ∼2.22 min. If we consider when the 
correlation coefficients drop to 0.3 or 0.1 we obtained values of time lag of 3.86 and 7.38 min, respectively. 
Figures S1e–S1h demonstrate that the ratio of plasmaspheric hiss amplitudes accounting for temporal sep-
aration (see Figure 2i) also decreases significantly as the time lag increases.

Figures 7a and 7b show the distributions of the temporal correlation coefficients as a function of the space-
craft time lag and L-shell with the same format as Figure 5. The color indicates the median value of the spa-
tial correlation coefficients in each bin. We can see that when L < ∼3, the temporal correlation coefficient 
is higher in the smaller L and time lag (drop to 0.5 at averaged Δt∼10 min). When L > ∼4.5, no matter what 
time lag and L-shell, almost all of the coefficients are reduced to close to 0.

In summary, we find that plasmaspheric hiss is incoherent (R2 < 0.5):

 - outside of L = 3.5 (Figure 6d)
 - when time lag >2 min (Figure 6h)

And generally incoherent in all other regions (Figure 7)
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Figure 6. The distributions of the temporal correlation coefficients against L-shell (a–d) and time lag (e–h), which have the same format as Figure 4.
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3.4. Dependence of Correlation on MLT and Substorm Activities

In addition to the L-shell effect, we also investigate the impact of MLT and substorm activities to the global 
coherence of plasmaspheric hiss, which have been shown to affect the plasmaspheric hiss amplitudes in 
previous studies (e.g., Meredith et al., 2004). Figure 8 shows that the distributions of spatial and temporal 
correlation coefficients with respect to (a–c) and (g–i) MLT and (d–f) and (j–l) substorm activity for the 
spatial and temporal correlations, respectfully, in the same format as Figures 4a–4d. The substorm activity 
is indicated by AL*, where AL* is the minimum AL in the previous 3h, which has been shown to be more 
directly related to substorm activity compared to AE (e.g., McPherron et al., 2013). From Figures 8a–8f, 
we can see that the spatial-coherent of chorus wave are slightly higher at low AL*, and there is no clear 
relationship between the spatial-coherent and MLT; However, no clear relationship was found between the 
temporal-coherent and AL* and MLT, as shown in Figures 8g–8l.

4. Discussion
The global coherence of plasmaspheric hiss wave is analyzed statistically using data from the EMFISIS 
instrument onboard the Van Allen Probes A&B during the period from November 2012 to July 2019. 
We use established criteria in the literature (e.g., to determine whether measurements are in the plas-
maspheric region, the emissions have a broadband structure, and higher planarity and ellipticity) to 
determine the occurrence and characteristics of plasmaspheric hiss (e.g., Kim et al., 2019; Li et al., 2015, 
2010). In total, 3,264 plasmaspheric hiss events with small spacecraft separation (Δd < 1RE) are found. In 
this study, we determine both the spatial and temporal coherence of plasmaspheric hiss events seen by 
the Van Allen Probe spacecraft. The spatial separation (Δd) between Van Allen Probes A and B is derived 

along satellite trajectories from equation   2 2 2Δ Δ Δ Δd x y z  to understand the spatial coherence 
of hiss inside of the plasmasphere. The temporal separation is estimated as the time lag when Van Allen 
Probes A and B arriving at the same position to determine the temporal coherence of hiss inside the 
plasmasphere.

4.1. Spatial Correlation

Figures 4a–4d show that the spatial correlation coefficient is proportional to −0.115 L + 0.885, which indi-
cates that hiss waves are less coherent at large L shells. The correlation coefficient reduces to 0.5 (0.3, 0.1) 
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Figure 7. The median temporal correlation coefficients as a function of time lag and L-shell. The red (black) line indicates the 0.5 (0.1) contours.
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at ∼3.34 (5.08, 6.91) and the distributions are very wide, demonstrating a lot of variability in the amount 
of correlation. Figures 4e–4h show spatial correlation coefficient as a function of Δd (e-6.68*10^(−4)*Δd). The 
correlation coefficient reduces to 0.5 (0.3, 0.1) when ∼1,038 (1,803, 3,448) km. This suggests that during the 
construction of drift-averaged diffusion coefficients, it may be important to consider the spatial extent of 
plasmaspheric hiss more carefully, as measurements of hiss that are less than 0.5 RE apart are not spatially 
coherent. However, we can see that the event with smallest separation (Δd < ∼200 km) is rarely observed, 
but has a very high coefficient (close to 1).

As in Agapitov et al. (2018), where THEMIS observations were used to study the spatial variability of hiss 
waves, we find that as spacecraft separation increases, the correlation of hiss waves decreases. However, in 
Agapitov et al. (2018), the radial correlation of hiss waves decays to 0.5 (0.3) at radial separation Δr ∼3,000 
(7,000) km, which is significantly larger than our results. In our study, we considered the L variation in 
coherence when computing the correlation coefficients due to separation in Δd as there is also a natural 
decay in correlation with L (see Figures 3c and 3d). It is also important to note that the relative spacecraft 
positions of THEMIS satellites cover a very different range from the Van Allen Probes mission, since Van 
Allen Probe A catches up and passes Van Allen Probe B every few weeks. This gives us the opportunity to 
obtain sufficient events with smaller and uniform spatial separation Δd (∼0.01–1 RE) to study the Δd effect 
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Figure 8. The distributions of the spatial and temporal correlation coefficients against MLT and AL*, which have the 
similar format to Figures 4a–4d. MLT, magnetic local time.
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on spatial correlation, as shown in Figures 3c and 3d. In our study, we combine the Δd and L effect to the 
spatial correlation coefficients, as shown in Figure 5, which shows that there is a cutoff in coefficient at a 
L = 4.5 and after that there is no correlation no matter what Δd and L-shell. The possible reason could be 
that the plasmasphere is more variable near the plasmapause due to the significant and irregular variability 
in the plasmapause location (e.g., Moldwin et al., 2002; Pedatella et al., 2010). The plasmaspheric hiss will 
be guided by the density perturbations (e.g., Woodroffe & Streltsov, 2013) and is therefore more likely to be 
concentrated in regions where the density gradients are favorable.

4.2. Temporal Correlation

As shown in Figures  6a–6d, in general the temporal correlation coefficient decreases with L shell 
(−0.217 L+1.254 for L > 1.5). The correlation coefficient reduces to 0.5 (0.3, 0.1) at L = ∼3.62 (4.55, 5.47), 
which means that the further out in L, the less coherent hiss is in time. We can see that the coefficients at 
low-L (L∼2) are very high and hiss is very uniform. Figures 6e–6h show the correlation coefficient is propor-
tional to time lag (e−0.0052*Δt). The correlation coefficient reduces to 0.5 (0.3, 0.1) when Δt = ∼2.2 (3.86, 7.38) 
minutes. It should be noted that 10 min is very short in terms of electron diffusion timescales; many radia-
tion belt models assume that hiss amplitudes exist for many hours in the same functional form since the dif-
fusion coefficient models are functions of Kp with 3-h cadence (e.g., Glauert et al., 2013; Shprits et al., 2009)

Temporal correlation coefficients depend on both time lag and L-shell for L < ∼3 (Figure 7). On the other 
hand, the spatial correlation coefficient drops to 0.5 at about the same Δd ∼ 1,500 km for all L < 4.5, as 
shown in Figure 5. Moreover, no matter what time lag and L-shell, almost all of the correlation coefficients 
are reduced to nearly 0 at L > ∼4.5 (near the plasmapause), demonstrating that hiss waves observed outside 
of this region are remarkably localized in MLT and should be considered as such in radiation belt models.

4.3. Generation and Propagation of Hiss

Only ∼8% (∼7%) spatial (temporal) correlation coefficients with Δd < 1RE are larger than 0.8, which are 
much lower than expected. This means the plasmaspheric hiss waves are not uniform in plasmasphere. We 
can only assume that there must be patches of hiss in space and in time, the largest of which exist at low-L. 
These patches typically exist for less than ∼10 min and within a region smaller than 1,500 km. Previous 
studies have brought to light that lower band chorus waves behaves in this way (e.g., Aryan et al., 2016; 
Nishimura et al., 2011; Shen et al., 2019), but plasmaspheric hiss is often thought to be relatively uniform 
inside of the plasmasphere (e.g., Delport et al., 2012; R. M. Thorne et al., 1979). We conclude that the plas-
maspheric hiss environment should not be considered a static environment, and statistical averages should 
be constructed with care. This is especially true since plasmaspheric hiss wave amplitudes exhibit a statisti-
cally heavy tail (e.g., Watt et al., 2019, 2021).

Several studies have shown that the plasmaspheric hiss amplitude has a pronounced MLT and substorm 
activity dependence (e.g., Li et al., 2015; Meredith et al., 2004; Spasojevic et al., 2015), however, we find that 
there is no significant dependence for spatial or temporal coherence on MLT or substorm activity, as shown 
in Figure 8. Therefore, MLT and substorm activity only affect the plasmaspheric hiss amplitude, and not the 
global coherence of the waves, as studied within this study.

Recent numerical experiments have revealed that the temporal variability of wave-particle interactions is 
important for the solution of Fokker-Planck diffusion models. Watt et al. (2021) shows that results of an 
idealized numerical diffusion experiment depend sensitively on the timescale of variability of the plas-
maspheric hiss diffusion coefficient, which in turn depends on both wave amplitude and local plasma pa-
rameters such as number density. For short timescales of variability in the diffusion coefficients (2 min), 
the solutions of an ensemble of numerical experiments with different randomized selections of diffusion 
coefficients were very similar to each other, and very similar to the solution obtained if the experiment was 
run with a single, averaged diffusion coefficient. For long timescales of variability (6 h), the ensemble nu-
merical experiment exhibited a wide range of solutions, none of which were similar to any average of the 
diffusion coefficients, whether constructed from averaged inputs, or an average of many separately calcu-
lated diffusion coefficients. Earlier numerical experiments by Thompson et al. (2020) demonstrated that the 
solutions of the Fokker-Planck equation for radial diffusion depended sensitively on the timescale of the dif-
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fusion—more rapidly varying diffusion coefficients resulted in more diffusion. In both these very different 
numerical experiments, the variability timescale of the diffusion coefficient describing the wave-particle in-
teractions was an important factor that determined the solution of the Fokker-Planck equation, suggesting 
that the timescales of variation have universal importance for radiation belt diffusion due to wave-particle 
interactions.

5. Summary and Conclusions
In conclusion, the plasmaspheric hiss waves are not always spatially or temporally coherent in the plasmas-
phere. Outside of L = 4.5, hiss is statistically both spatially and temporally incoherent, even when the space-
craft is within the plasmasphere. Inside of L = 4.5, the plasmaspheric hiss only becomes spatially coherent 
at remarkably small distances and timescales; when Δd > ∼1,500 km or when Δt > ∼10 min, plasmaspheric 
hiss can be considered to be incoherent.

These results have implications for modeling of wave-particle interactions due to plasmaspheric hiss. The 
construction of averaged models of drift-averaged diffusion coefficients requires knowledge of how the 
waves vary in space and time. For 1–2 MeV electrons drifting around the Earth at L < 4.5, our analysis 
demonstrates that the temporal coherence lengths are less than the drift period. Knowledge of the distri-
bution of wave amplitudes and plasma parameters (Watt et al., 2019), as well as how they vary, is therefore 
important to construct an appropriate drift-averaged value of hiss.

This study demonstrates the variation of plasmaspheric hiss amplitudes. In future, additional analysis will 
demonstrate the temporal and spatial variability of other wave characteristics, such as wave normal angle, 
as well as plasma number density and magnetic field strength, which are also important input variables 
to quasilinear diffusion coefficient calculations (Watt et al., 2019). Ultimately, knowledge of the concur-
rent variability of all inputs into diffusion coefficient calculations is essential to construct a new model of 
wave-particle interactions that performs averaging in the most appropriate way.

Data Availability Statement
The data that supporting the findings of this study are openly availability at https://spdf.sci.gsfc.nasa.gov/.
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