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Abstract 
We recently described a dynamic causal model of a COVID-19 
outbreak within a single region. Here, we combine several 
instantiations of this (epidemic) model to create a (pandemic) model 
of viral spread among regions. Our focus is on a second wave of new 
cases that may result from loss of immunity—and the exchange of 
people between regions—and how mortality rates can be ameliorated 
under different strategic responses. In particular, we consider hard or 
soft social distancing strategies predicated on national (Federal) or 
regional (State) estimates of the prevalence of infection in the 
population. The modelling is demonstrated using timeseries of new 
cases and deaths from the United States to estimate the parameters 
of a factorial (compartmental) epidemiological model of each State 
and, crucially, coupling between States. Using Bayesian model 
reduction, we identify the effective connectivity between States that 
best explains the initial phases of the outbreak in the United States. 
Using the ensuing posterior parameter estimates, we then evaluate 
the likely outcomes of different policies in terms of mortality, working 
days lost due to lockdown and demands upon critical care. The 
provisional results of this modelling suggest that social distancing and 
loss of immunity are the two key factors that underwrite a return to 
endemic equilibrium.
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Introduction
This technical report describes a dynamic causal model of 
how COVID-19 spreads among regions by combining multiple 
models of an epidemic within a single region. This (epidemic)  
model was introduced recently to showcase the potential of 
variational Bayesian procedures in fitting mechanistic or gen-
erative models of an epidemic to measurable outcomes (Friston  
et al., 2020a).

Mechanistic or generative models enable forecasting based 
upon epidemiological parameters estimated from empirical data  
(Wu et al., 2020), e.g., serial interval estimates (Nishiura et al., 
2020; Yang et al., 2020). Models of this sort have been applied 
to the initial outbreak in Wuhan, China (Sun et al., 2020; 
Wang et al., 2020a; Wang et al., 2020c) to predict new cases or  
clinical resources (Moghadas et al., 2020) and the effects of 
various interventions (Prem et al., 2020; Wells et al., 2020). 
Such models are invaluable when predicting the demand for 
critical care (Ferguson et al., 2020; Moghadas et al., 2020). The 
particular contribution of this report is to illustrate the use of 
variational procedures to compare different models of the same 
data—and the inherent latitude for building large multifactorial 
models that can handle different kinds of outcomes.

The (dynamic causal) model (DCM) used in this report has a 
degree of predictive validity (Friston et al., 2020a) and Bayesian 
model comparison suggests that it provides a simpler and more 
accurate account than equivalent single factor (e.g., SEIR) mod-
els (Moran et al., 2020). However, the DCM only considered a 
single outbreak in a single region and therefore precluded epidemi-
ological trajectories that feature things like second waves. In this 
technical report1, we build upon this epidemic model to create a  

pandemic model that comprises multiple epidemic (single 
region) models. In what follows, we apply this model to explain 
regional timeseries from the United States, treating each State as  
a region and modelling the exchange of people—who may or 
may not be infected—among States. Our focus is on the interplay 
between regional outbreaks in the evolution of the pandemic and 
how this evolution informs strategic responses, such as social dis-
tancing. Models of the international spread of COVID-19—such 
as the Global Epidemic and Mobility Model (GLEAM)—usually 
partition the world into regions centred on major transportation 
hubs (e.g., airports). These regions are then connected by the 
flux of people travelling daily among them (Chinazzi et al., 2020). 
See also (Steven et al., 2020; Wu et al., 2020). In what  
follows, we apply the same idea to daily travel between the  
United States of America, equipping each State with its own epi-
demiology that becomes coupled through reciprocal exchange 
of their denizens. This creates a loosely coupled (nonlinear)  
oscillator model, of the sort that is used widely in other set-
tings: e.g., (Jafri et al., 2016; Kaluza & Meyer-Ortmanns, 2010;  
Ladenbauer & Obermayer, 2019; Lizarazu et al., 2019;  
Schumacher et al., 2015).

Often, the first wave of a pandemic, so-called “herald waves” 
(Simonsen et al., 2018), are followed some months later by 
a second or third waves of infection (see Figure 1) that may, in 
some instances, be more severe than the first, such as those  
seen in the influenza pandemics of 1918 (H1H1), 1957 (H2H2), 
1968 (H3N2), and 2009 (H1N1). If one commits to the idea 
that a generative model of measurable outcomes is necessary  
to properly predict systemic dynamics, then the natural question 
is: what causes a second wave? One answer is that a regional 
population is re-exposed to infection by an influx of infected  
people from another—that may itself have been caused by the 
first. Clearly, the degree to which an outbreak in another region 
induces a second wave in the first will depend sensitively on 
the level of herd immunity inherited from the first wave. It is 
therefore important to consider the degree to which herd immu-
nity is lost following the first wave; either through an endogenous 
loss of immunity within the first population or a renewal of that  
population with people who are not immune. For example, about 
0.5% of the American population move between States every  
day2. This movement ‘mixes’ the total population, with  
consequent loss of herd immunity.

Heuristically, the picture that emerges can be likened to a 
Californian or Australian wildfire with embers seeded throughout 
a large territory. One ember may gain a sufficient hold to cause the  
first flareup and become the epicentre of a bushfire. As the fire 
rages through the locale, consuming combustible material, it will 
eventually burn itself out. However, if the right conditions pre-
vail—and embers are carried to another locale—a second fire will  
start and thereby elicit a chain of fires. In this analogy, the 
second wave corresponds to a reignition of the first by embers 
from the second. However, there is a natural fire retardant in 
the first locale (i.e., herd immunity) that offers some protection  

1 This technical report is a follow-up to an original report prepared in  
anticipation of the RAMP (Rapid Assistance in Modelling the Pandemic) 
initiative (https://royalsociety.org/topics-policy/Health-and-wellbeing/ramp/). It 
should be read as a proof of concept whose main aim is didactic; namely, to 
explain how variational procedures enable highly parameterised compartmental 
models to be inverted and compared quickly and efficiently. As such,  
it provides the technical details that allow people to reproduce the modelling 
at home. Alternatively, it could complement epidemiological modelling with 
Approximate Bayesian Computation. Although the authors of the current 
report are involved in the clinical management of COVID-19 patients—and 
are experts in biological timeseries modelling—they are not virologists or 
epidemiologists. As such, the validity of the model described in this report  
may or may not be endorsed by experts in the appropriate fields.

          Amendments from Version 1
The main changes that we have in this new version.
1. Clarifications regarding technical aspects of the modelling, for 
e.g. explanation of initial conditions and priors used, robustness 
of the inversion scheme based on variational Bayes. We also 
provide explanation why effective connectivity or population 
fluxes between States, which can be measured empirically, are 
being estimated in this work.
2. We provide limitations of the current dynamic causal modelling 
scheme employed in this paper (in the Conclusion). 

Any further responses from the reviewers can be found at 
the end of the article

REVISED

2 According to the Bureau of Transportation Statistics (http://www.transtats.
bts.gov/), a total of 631,939,829 passengers boarded domestic flights in the 
United States in the year 2010. This corresponds to 1.73 million passenger  
flights per day. The population of the United States is about 327.2 million; a 
ratio of 190.
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(i.e., there is nothing left to burn). Crucially, this protection 
will decline over time as new growth furnishes more combusti-
ble material (i.e., a loss of immunity). So, what causes a second  
wave—is it the recursive spread of the fire (i.e., pandemic)  
or is it susceptibility to reignition (i.e., herd immunity)?

These considerations highlight the importance of herd immu-
nity and the factors that underwrite resistance to infection.  
After the first wave, immunity in any given population may be 
lost for several reasons. These include a natural loss of immunity 
of the sort seen in seasonal influenza—mediated by viral muta-
tion or the prevalence of different viral serotypes. For COVID-19,  
this is an area of active research that has yet to provide defini-
tive answers. However, empirical evidence suggests that neu-
tralising antibodies to COVID-19 can be raised fairly quickly  
(Bao et al., 2020; Bendavid et al., 2020; Chan et al., 2013). Fur-
thermore, instances of reinfection are sufficiently low to suggest 
that immunity to COVID-19 may be long lasting, at least over  
a period of months. Furthermore, studies in nonhuman pri-
mates suggest it is difficult to elicit the symptoms of COVID-19  
after an initial infection (Bao et al., 2020)3. However, this does  
not necessarily guarantee an enduring herd immunity.

The transmission of SARS-CoV-2 depends on many factors, 
including seasonal variation in transmission strength, the dura-
tion of immunity, and cross-immunity with other coronaviruses.  
SARS-CoV-2 belongs to the betacoronavirus genus, which 
includes the SARS, MERS, and two other human coronaviruses,  
HCoV-OC43 and HCoV-HKU1 (Kissler et al., 2020; Su 
et al., 2016). HCoV-OC43 and HCoV-HKU1 infections may be 
asymptomatic or produce mild to moderate upper respiratory 
tract symptoms; namely, a common cold (Kissler et al., 2020).  
Accumulating evidence suggests that primary SARS-CoV-2 
infection causes a mild illness in the majority of cases with a 
minority progressing to severe lower respiratory infection, inter-
stitial pneumonia, acute respiratory distress syndrome (ARDS)  
and multiple organ failure. The primary infections may also 
be further complicated by additional insults, such as second-
ary bacterial infections or thromboembolic events4. Immunity to  
HCoV-OC43 and HCoV-HKU1 appears to be lost over a few 
months. However, betacoronaviruses can induce immune 
responses against each another. For example, SARS can generate  
neutralizing antibodies against HCoV-OC43 that can endure 
for years (Chan et al., 2013), while HCoV-OC43 infection can 
generate cross-reactive antibodies against SARS (Chan et al.,  
2013). Now, the question is: does SARS-CoV-2 behave like 
SARS, conveying long-lasting immunity or does it behave like  
HCoV-OC43, conferring immunity for just a few months? In  

Figure  1.  Second  waves  in  China.  This figure illustrates a secondary wave of new cases in reports from China. The dots represent 
empirical records of new cases and deaths as a function of weeks from the onset of the outbreak. The lines correspond to the predicted 
incidences, under a (single region) model described in (Friston et al., 2020a). These data are presented to illustrate a resurgence of new 
cases (orange arrow), several weeks after the first wave that is not accompanied by a marked increase in death rates. We will see a similar 
phenomenology in predictions of new cases and deaths for the United States in subsequent figures.

3 After seroconversion, asymptomatic monkeys were challenged with a 
second dose of SARS-CoV-2. Neither viral loads in nasopharyngeal and anal  
swabs nor viral replication in primary tissue compartments was evident in 
re-exposed monkeys. On the basis of follow-up virologic, radiological and 
pathological assessment, monkeys with re-exposure showed no recurrence  
of COVID-19. Bao et al., 2020. Reinfection could not occur in SARS-CoV-2 
infected rhesus macaques. bioRxiv, 2020.2003.2013.990226.

4 See https://www.sciencemag.org/news/2020/04/how-does-coronavirus-kill-
clinicians-trace-ferocious-rampage-through-body-brain-toes for an accessible 
summary of COVID-19’s reach beyond the lungs.
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what follows, we will consider both scenarios and the 
implications for how we live with COVID-19—or not.

This report tries to characterise the interplay between popula-
tion fluxes and the waning of immunity using a compartmental 
model of ensemble dynamics. Typically, these kinds of mod-
els employ a sparse coupling between nonlinear systems (here a  
compartmental model of a regional outbreak). In the present set-
ting, the sparse coupling is a small exchange of people between 
States that can be parameterised in terms of the daily prob-
ability that ‘I will leave one State for another’. Clearly, this  
will depend upon whether I can leave home, which depends  
upon any social distancing currently in play.

This brings us to the second focus of the current modelling; 
namely, how does social distancing mitigate interregional influ-
ences? To answer this question, one has to have a formal model 
of social distancing. There are two attributes of any social 
distancing—its functional form and its argument, i.e., what is 
social distancing a function of? In what follows, we consider 
functional forms based on dual criteria: namely, the prevalence 
of measurable infection, and demand upon critical care. In brief, 
these functions can be regarded as adaptive strategies. In other 
words, they are social distancing responses to changes in meas-
urable quantities. These responses may be mediated via govern-
mental advice, social media, behavioural dispositions, and other 
affordances5 that we can lump together in terms of a propensity  
to avoid interpersonal contact—or not.

We will consider two threshold-based responses to the preva-
lence of infection in the population. This prevalence is fairly 
straightforward to estimate on the basis of currently available tests 
for the presence of the virus on mucosa. This does not require 
exhaustive or comprehensive testing; provided these measures 
are modelled appropriately (e.g., using a generative model of 
the sort considered below). Although offering a straightfor-
ward model of social distancing there remains an outstanding 
issue: do I (or the government) base my social distancing on the 
prevalence of infection in my region, or is it driven by the expe-
rience of other regions in my country. In other words, should 
social distancing be based upon regional or national criteria, 
and therefore enacted at a regional or national level? In what 
follows, we fit a pandemic model to regional data from the United 
States and ask what would happen if a national (i.e., Federal) 
social distancing strategy was adopted, as opposed to a regional 
(i.e., State) approach.

This report comprises three sections. The first rehearses the 
dynamic causal model presented previously, with an emphasis on 
the extension to multiple regions—and implicit coupling among 
regions. The second section presents the results of model fitting 
to timeseries from States in America6. This section considers the 

sensitivity of cumulative deaths to various model parameters, 
with a focus on the connectivity among States that shapes the  
overall progression of the pandemic. The final section con-
siders social distancing strategies by simulating what would 
happen under regional and national approaches, with hard 
(e.g., lockdown) and soft (e.g., partial) social distancing.

Dynamic causal modelling
Technically, dynamic causal modelling is the application of 
variational Bayes to state space models of any form; usually, 
with the objective of inferring the model parameters and struc-
ture via Bayesian model inversion and reduction, respectively. 
Generally, variational Bayes can be an involved process that 
requires the specification of conjugate priors and variational updates 
in a model-specific fashion. However, dynamic causal modelling 
uses a generic scheme called Variational Laplace. Variational 
Laplace can be used for any generative model because it dis-
penses with the usual variational updates and uses a gradient 
descent directly on variational free energy, under the assumption 
that the posterior is a Gaussian. With suitable transformations 
of parameters – such as log transforms – this is usually a mild 
assumption. This is usually licensed by reference to Monte Carlo 
Markov Chain schemes that relax the Laplace assumption. For 
state space models of the kind used in this report, the Laplace 
assumption can be taken as appropriate (Chumbley et al., 
2007; Penny et al., 2003; Sengupta et al., 2015).

The dynamic causal model used in this report is an extension 
of a compartmental model of a regional outbreak detailed in 
(Friston et al., 2020a). This (epidemic) model is a factorial exten-
sion of a conventional SEIR (susceptible, exposed, infected, and  
recovered) model in which the four states7 of the SEIR model 
are unpacked into four factors (location, infection, symptoms, 
and testing), each with four states. This furnishes a 44 = 256- 
compartmental model that allows for different combinations of 
states to generate daily case and death data. For example, being 
infected does not necessarily mean that one has to manifest 
symptoms. Conversely, one can be severely ill without having 
a viral infection8. Similarly, including a testing factor allows for 
people to be contagious but not reported as testing positive 
for SARS-CoV-29.

The factorial structure of this model exploits conditional inde-
pendencies among the factors to provide a relatively straight-
forward parameterisation. Technically, it uses a mean field 
approximation to certain dependencies. For example, the prob-
ability of developing symptoms depends on, and only on, whether 
I have an infection. However, the probability of becoming 
infected does not depend on whether I am symptomatic or not. 
The four factors in question are shown schematically in Figure 2 

5 In the sense of Gibson, 1977. The theory of affordances, in: R, S., 
Bransford, J. (Eds.), Perceiving, acting, and knowing: Toward an ecological 
psychology. Erlbaum, Hillsdale, NJ, pp. 67-82. For example, seeing the  
person on the pavement affords the opportunity to circumnavigate them by 6 
feet.

6 Available from https://github.com/CSSEGISandData/COVID-19.

7 We will use State to indicate a State of the United States and state to denote  
a level of a factor in the generative model.

8 For example, acute respiratory distress due to secondary bacterial 
pneumonia, which may itself be antimicrobial resistant: https://www. 
southcentre.int/wp-content/uploads/2020/03/RP-104.pdf.

9 Undocumented infections may be the source of infection for 79% of 
documented cases Li et al., 2020. Substantial undocumented infection 
facilitates the rapid dissemination of novel coronavirus (SARS-CoV2). 
Science, eabb3221.
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in the form of a compartmental model. The accompanying param-
eters of this compartmental model (that mediate the conditional  
dependencies) are listed in Table 1. This model is described in 
detail in (Friston et al., 2020a) and used subsequently to look at 
herd immunity and lockdown cycles in (Moran et al., 2020).  
Here, the model is equipped with two further features: namely, 
a loss of immunity over time and a distinction between sus-
ceptible and non-susceptible members of the population. We  
equipped the model with a loss of immunity, with the following 
parameter: 

 ( )exp 1/θ τ= −imm imm                                                                  (1.1)

Figure 2. The dynamic causal (LIST) model. This schematic summarises the dynamic causal model that is used to explain timeseries 
data in a single region. In brief, it comprises four factors, each with four states (listed in the key on the left), giving 256 states or 
compartments. Regional factors include location, infection, symptom, and testing status (the infection state of resistance has been omitted 
from the schematic for simplicity). The small arrows denote transitions among states that are parameterised in terms of the probability 
of moving from one state to another, every day. Black or unlabelled arrows denote a unit probability. Coloured arrows designate 
transitions that are determined by the model parameters (ϴ—please see Table 1). To suppress visual clutter, the expressions for transition 
probabilities are colour-coded within each factor. The quantities pi are marginal probabilities over the states of the i-th factor. Crucially, 
transitions among the states of one factor depend upon other factors. These conditional dependencies (highlighted by broken arrows) 
are illustrated by showing the transition probabilities among the states of one factor under the levels of another. For example, the 
probability that I will move from a state of being asymptomatic (Sa) to being symptomatic (Ss) depends upon whether I am infected 
(Ii and Ic) or not (Is and Im). Furthermore, the probability that I will move from acute respiratory distress syndrome (ARDS) (Sr) to 
being deceased (Sd) depends upon whether I am located in a critical care unit (Lc) or at home (Lh)—and so on. The parameters of the 
implicit transition probabilities are listed in Table 1 and are described in detail in (Friston et al., 2020a). A particularly important 
transition is the probability that I will leave home (i.e., expose myself to more potentially contagious contacts) on any given day; 
namely, social distancing. This is denoted by (1.2), corresponding to Equation (1.3) in the main text.

Table 1A. Parameters of the pandemic (multiple region) 
model, N(η, C). (NB: prior means are for scale parameters  
θ = exp(ϑ)).

Number Parameter Mean Variance Description

1 θn exp(-4) 1/4 Number of 
initial cases in 
the epicentre

2 θik exp(-8) 1/16 Population 
flow between 
regions
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Table 1B. Parameters of the epidemic (LIST) model and priors, N(η, C). (NB: prior means are 
for scale parameters θ = exp(ϑ)).

Number Parameter Mean Variance Description

1 θn exp(-4) 1/4 Number of initial cases

2 θr 1/2 1/16 Proportion of resistant cases

Location

3 θout 1/3 1/64 Prob(work | home): probability of 
going out

4 θsde 1/32 1/128 Social distancing threshold

5 θcap 16/100000 1/64 CCU capacity threshold (per 
capita)

Infection

6 θRin 4 1/64 Effective number of contacts: 
home

7 θRou 48 1/64 Effective number of contacts: 
work

8 θtrn 1/4 1/64 Prob(contagion | contact)

9 1exp( )inf
inf

θ
τ

= − τinf = 4 1/64 Infected (pre-contagious) period 
(days)

10 1exp( )con
con

θ
τ

= − τcon = 4 1/64 Contagious period (days)

11 1exp( )imm
imm

θ
τ

= − τimm = 32 1/64 Period of immunity (months)

Symptoms

12 11 exp( )dev
inc

θ
τ

− = − τinc = 8 1/64 Incubation period (days)

13 θsev 1/128 1/64 Prob(ARDS | symptomatic)

14 1exp( )sym
sym

θ
τ

= − τsym = 5 1/64 Symptomatic period (days)

15 1exp( )rds
rds

θ
τ

= − τrds = 12 1/64 Acute RDS period (days)

16 θfat 1/2 1/64 Prob(fatality | CCU)

17 θsur 1/16 1/64 Prob(survival | home)

Testing

18 θtft 1/1024 1/4 Threshold: testing capacity (per 
capita)

19 θsen 1/1024 1/4 Prob(being tested) (per day)

20 1exp( )del
del

θ
τ

= −
τdel = 2 1/4 Delay in reporting test results 

(days)

21 θtes 1/4 1/4 Prob(tested | uninfected) (per 
day)

CCU – critical care unit, ARDS – acute respiratory distress syndrome
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This controls a slow flux from a state of immunity to a state 
of susceptibility, under the infection factor. We made the  
provisional assumption that immunity to SARS-CoV-2 resem-
bles the immunity to SARS-CoV-1. Operationally, we mod-
elled this as a period of immunity with a time constant of 
32 months: c.f., (Kissler et al., 2020). This parameter was 
included to repeat simulations under more pessimistic condi-
tions, in which immunity could be lost within a few (four) months 
(c.f., a common cold human coronavirus, HCoV-OC43).

The distinction between susceptible and non-susceptible was 
modelled by assigning people to a susceptible or resistant state, 
such that they did not participate in the spread of the virus if 
they were resistant. We assumed a priori that half of the total  
population would be susceptible to infection and estimated the 
proportion of resistant cases under the model10. This can be  
regarded as a crude approximation to varying levels of suscep-
tibility in the population at large and could be further refined as  
more is learnt about the susceptibility to COVID-19 infection;  
for example, by leveraging regional demographic data.

Numerous viral-evasion mechanisms are known. For exam-
ple, mutations in the ‘resistome’ cause susceptibility to infec-
tion, and other (yet to be identified) mutations cause resistance 
to infection. (Beutler et al., 2007). Though age and comorbidity  
contribute substantially to fatality rates, the host factors that influ-
ence resistance or susceptibility to infection with pathogenic  
human coronaviruses (CoVs) are largely unknown but might 
involve several mechanisms. For example, innate immune 
responses to CoVs are initiated by recognition of double-stranded 
RNA and induction of interferon, which turns on gene expression  
programs that inhibit viral replication (Heer et al., 2020). Fur-
thermore, epidemiological evidence suggests that SARS-CoV-2  
infection in children is less frequent and severe than in adults: 
age-related ACE2 receptor expression might be a relevant host 
factor (Cristiani et al., 2020). Including a distinction between  
susceptible and resistant enables the model to explain data from 
the total population, as opposed to a susceptible population.  
This is important when considering models of how the virus 
is spread among regions by movement of people who may or 
may not be susceptible and therefore capable of infecting—and  
being infected by—others.

Figure 3 illustrates how a single-region (epidemic) model can 
be used to construct a (pandemic) model that encompasses sev-
eral regions. The key aspect of this factorial extension (i.e.,  
including a region factor) rests upon the coupling among 
regions. Here, people who are not confined in self-isolation (i.e.,  
at home) are available to travel with a certain daily probabil-
ity from one state to another. A priori, this probability is based 
upon the probability that any American citizen will fly from one  
state to another every day. This can be written down as the  
following transition probability 
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( ) ( )
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1

1

| ,

| , , . .,

| , | , /
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(1.2)

Here, N
i
 corresponds to the number of people in the i-th State 

and ΔN corresponds to the relative number of people that are  
exchanged between States i and k. This construction ensures 
that the total number of people in each state does not change  
over time. In turn, this constraint means that the flux of people  
between any two States can be parameterised with a single  
coupling or connectivity parameter, θ

ik
.

Usually, in these kinds of connectivity models, one consid-
ers different sparsity constraints on the coupling architecture. 
One could use Bayesian model comparison based upon the  
variational free energy (a.k.a. evidence lower bound) to test for 
different connectivity structures (Friston et al., 2015); e.g., full 
connectivity, a serial connectivity based upon spatial distance  
between states, the time of onset and so on. However, for sim-
plicity, we elected to use a model with full connectivity and 
eliminate redundant connections post hoc, using Bayesian model  
reduction (Friston et al., 2018).

Here we note that the model reduction identified a model where 
migration was restricted to New York and remaining states. 
A natural question is whether this reflects the assumption that 
the epidemic was seeded in New York. This kind of question 
suggests a new model space in which models that have multiple 
seeds are compared. More generally, any initial condition or prior 
assumption of this sort is part of the generative model and 
can be evaluated using Bayesian model comparison. The appli-
cation of Bayesian model reduction in this setting would 
require a full model in which the epidemic was seeded in multi-
ple regions. Reduced models with then comprise seeds in subsets 
of States. We do not pursue this analysis here but note that 
this is an interesting question.

The second important extension to the epidemic model was  
the inclusion of a dual criteria social distancing process, parameter-
ised as follows: 

( ) ( ) ( )
( ) ( ) ( )

1

1

| , , , 8

| , , , 8

infection location
t t out infected sde CCU sde cap

infection location
t t out infected sde CCU sde cap

P work home asymptomatic p p

P work home asymptomatic q q

θ σ θ σ θ θ

θ σ θ σ θ θ

+

+

= ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅
 
(1.3)

The first equality parameterises the probability of going to work 
in the morning as a function of the marginal probabilities of 
certain states for the region in question, p, while the second  
has the same functional form but takes the marginal prob-
ability from all regions, q. These can be regarded as a regional 
(State) and national (Federal) social distancing responses,  
respectively. It would also be possible to respond based on a lin-
ear combination of these two formulations, however we limit 
the simulations presented here to one or other of the extremes. 
The states in question are the probability that any member  

10 This parameter determines the initial conditions and specifies the proportion 
of the population that do not participate in epidemiological transitions. As  
such, we omit the state of resistance from subsequent figures, for clarity.
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of the population is currently infected or requires critical care.  
The form of the decreasing threshold (sigmoid) functions that  
constitute this model of social distancing is illustrated in Figure 4.

Intuitively, this models social distancing as the probability of 
leaving home, which only attains normal levels when two crite-
ria are met. First, the proportion of the population infected with  
coronavirus must be below some threshold and second, the 
number of people in critical care must be less than some frac-
tion of maximum capacity. Equation (1.3) lumps the thresholds 
together so that there is a single social distancing threshold that is  
applied to both criteria. When the threshold is low (say 1/32) 
we effectively have a lockdown policy that will remain in place 

until less than 1/32 of the population are deemed to be infected 
and the occupancy of critical care facilities has fallen below  
8/32 = ¼ of total capacity. A more liberal threshold could be 
interpreted as a softer social distancing strategy, where certain  
(non-vulnerable) people are allowed to return to school (or 
work) and some degree of social distancing is maintained when  
commuting or at work (e.g., wearing face masks).

Note that social distancing is modelled as a part of the epide-
miological dynamics generating data. In other words, it is not 
an exogenous input or strategic response that enters the model.  
Rather, it is installed as a reactive and adaptive process that 
best explains the observed data. An interesting twist here is that 

Figure  3.  A  multi-region  model.  This schematic summarises the dynamic causal model used to explain timeseries (daily death and 
positive test) data from multiple regions. This (pandemic) model is composed of several regional (epidemic) models. In brief, the 
model for a single region comprises four factors, each with four states, giving 44 = 256 states or compartments per region. These 
regional models are then assembled to model the coupling among eight regions giving 2568 compartments. However, due to conditional 
independencies, this can be treated as a collection of 256 compartmental models; providing one links the states of one region to 
the states of another carefully. Here, this linking or connectivity is parameterised in terms of a probability flux or exchange of people 
among regional populations. The probability that I will move from one region to another depends upon whether I am at work (i.e., 
not at home, Lh) and do not consider myself to be ill (i.e., I am asymptomatic, Sa). In short, the exchange between different regional 
populations is limited to the people who are not at home and are consequently in a position to travel. This is illustrated by the 
arrows in the figure that connect the appropriate states. The parameters of interregional coupling correspond to rate constants or 
effective connectivity that ensure the conservation of total numbers in each region. For example, the probability of moving to New York 
from New Jersey is the same as a probability of moving from New Jersey to New York; however, the number of people commuting in 
either direction will depend on the respective population sizes of New Jersey and New York.

Page 9 of 34

Wellcome Open Research 2021, 5:103 Last updated: 08 FEB 2021



the optimisation of the parameters that shape social distancing  
are those that best explain the data; namely, the social dis-
tancing that has been achieved. They are not optimised to  
minimise some cost function (e.g., mortality rates)—they are 
a measure of what a population actually does when confronted  
with a pandemic. Later, we will simulate different levels of 
social distancing—by increasing or decreasing the estimated  
threshold—to see what mitigates morbidity; either in terms 
of cumulative deaths or economic morbidity (as measured in  
terms of lost working days under the location factor).

Finally, we included a back-to-work parameter that allowed peo-
ple who were immune to be exempt from social distancing and 
return to work. This is a fictive aspect of the model, in the sense  
that it would rest upon knowing whether somebody was immune 
or not. This enabled us to model the potential benefits of being 
able to measure seroconversion and allow people back to work  

if they had detectable (and hopefully neutralising) antibodies  
to SARS-CoV-2.

With this pandemic model in place, we modelled the eight 
States in America with the greatest number of cases of 
COVID-19, using standard (variational Laplace) Bayesian meth-
ods (Friston et al., 2020a). We chose to analyse eight States 
because the key information in the accompanying timeseries 
lies in the form of the transients or fluctuations in new cases and 
deaths. This form is better evinced by larger numbers. Put simply, 
including States that have yet to experience an epidemic provides  
no useful information that would inform the parameters that  
are shared between States.

One advantage of modelling data from the United States of 
America is that one can, a priori, assume that many factors 
are conserved from State to State, given the homogeneity of the 

Figure 4. Threshold strategies. This figure illustrates the different kinds of social distancing functions that could be adopted to model 
social distancing responses. Both parameterise the degree of social distancing as a function of the proportion of the population that 
are currently infected (and are currently occupying critical care facilities). This proportion can, in principle, be estimated directly or  
indirectly, given current testing capabilities. These social distancing functions are decreasing functions of the prevalence of infection 
(or critical care occupancy). In other words, as prevalence increases, the probability of leaving home (e.g., self-isolation) decreases. 
The two examples above are distinguished by the form of this decrease. The (threshold) strategy used in this report is based upon a  
threshold, afforded by the reverse sigmoid function (solid line). Conversely, the (exponent) strategy used in previous models (Friston  
et al., 2020a) decreases smoothly as a power function of prevalence (broken line). The functional forms are given by the equations in the 
figure. Please see main text for further details.
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medical infrastructure within America. Unlike the epidemic model,  
the population size of each state serves as an informative prior 
on the susceptible population size. In other words, previously  
we estimated the number of people affected by an epidemic as 
an unknown quantity. Here, we try to explain the data in terms 
of all the population who are caught up in the pandemic—an  
unknown proportion of which may be resistant to infection. 
Technically, this involves placing very precise shrinkage pri-
ors on the population size, corresponding to the population of  
each State. Finally, because each state is likely to have been 
seeded with one or two infected individuals at different times, we 
modelled the pandemic as ensuing from the epicentre; namely,  
New York State11. This involves estimating the number of  
people in New York who were infected eight days after records 
began.

To expedite model inversion, we used a further mean field 
approximation, by assuming conditional independence between 
the between-region (i.e., connectivity) parameters in Table 1A  
and the within-region parameters in Table 1B. This allowed us 
to estimate the parameters for each region (i.e., State) separately 
and then use the ensuing State-specific estimates to infer the  
connectivity parameters (and initial case load at the epicen-
tre). This greatly finesses the numerics; however, it comes at the  
price of ignoring conditional dependencies between the two 
sorts of parameters. This completes our description of the model.  
The next section turns to the results of fitting multivariate  
timeseries of new cases and deaths under this model.

Secondary sources (Huang et al., 2020; Kissler et al., 2020; 
Mizumoto & Chowell, 2020; Russell et al., 2020; Verity et al.,  
2020; Wang et al., 2020b) and: 

•    https://www.statista.com/chart/21105/number-of-critical-
care-beds-per-100000-inhabitants/

•    https://www.gov.uk/guidance/coronavirus-COVID-19-infor-
mation-for-the-public

•    http://www.imperial.ac.uk/mrc-global-infectious-disease-
analysis/COVID-19/

These prior expectations should be read as the effective rates 
and time constants as they manifest in a real-world setting. 
For example, a four-day period of contagion is shorter than the  
period that someone might be infectious (Wölfel et al., 2020)12,  
on the (prior) assumption that they will self-isolate, when 
they realise they could be contagious. Although the scale  

parameters are implemented as probabilities or rates, they are  
estimated as log parameters, denoted by ϑ = ln θ.

Results
This section reviews the within and between-State parameters 
following model inversion under a regional social distancing 
response. We then use these parameters to predict outcomes that  
have yet to be observed. In the final section, we will repeat 
these predictions under different social distancing strategies.  
Our focus in this section is on how the second wave, if any, is 
shaped by social distancing responses and the acquisition—and  
subsequent loss—of immunity.

Figure 5 reports the differences among States in terms of 
selected parameters for each State, ranging from the population 
size, through to the probability of testing its denizens. The blue  
bars report the posterior expectations, while the pink bars are 90% 
Bayesian credible intervals. Notice that there is no uncertainty 
about the population sizes because these are known quantities.  
From the current perspective, the interesting thing to note here 
is the social distancing threshold that varies among States,  
around 0.03. In other words, each State is behaving as if lock-
down is invoked when either 3% of the population become  
infected or critical care occupancy approaches 8 · 3% = 24% of 
total capacity. Interestingly, California appears to have the most  
stringent social distancing response so far, with the lowest 
threshold. This may be relevant later when trying to explain  
differential mortality rates.

Figure 6 summarises the estimated connectivity or population 
exchange between States. The upper right panel shows the con-
nectivity among States as an adjacency matrix. The key thing 
to take from this analysis is that nearly all the connections  
among states have been removed following Bayesian model 
reduction, leaving only reciprocal exchange with New York. 
Clearly, this is not what is happening in the field. However, 
it is the simplest account of the data at hand. In other words, it  
is sufficient to describe the current data in terms of one epi-
centre (New York) exchanging infected individuals with the 
remaining States. In this analysis, the greatest flux of people  
appears to be between New York and California. The question 
now is whether these fluxes have a material impact on cumulative  
deaths or mortality rates. This sort of question can be  
addressed using a sensitivity analysis.

A sensitivity analysis involves changing each of the parameters 
by a small value and measuring the consequent change in cumu-
lative deaths, while holding all the other parameters constant.  
Figure 7 shows the results of this analysis for the connectiv-
ity parameters of the model that survived Bayesian model  
reduction. Interestingly, the effects of movement between 
States does not appear to have a consistent effect on cumulative 
deaths. Sometimes increasing commuter traffic decreases over-
all mortality and sometimes it is increased. Having said this, the  
flux that has the greatest (mitigating) effect on overall mortal-
ity is the exchange between New York and California. In other  
words, mixing the populations in New York and California 

11 We considered a series of models with sparse connectivity and full connectivity 
(entertaining initially infected cases in one State or all States). We chose to 
report the full connectivity model to showcase the use of subsequent Bayesian  
model reduction. 

12 Shedding of COVID-19 viral RNA from sputum can outlast the end of 
symptoms. Seroconversion occurs after 6-12 days but is not necessarily followed 
by a rapid decline of viral load.
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would, under this model, save lives. The explanation for these  
complicated effects rests upon the intricate dynamics of latent  
states that constitute the underlying causes of the pandemic.

Figure 8 provides a prediction of the future course of the pan-
demic in each of the eight States. The picture that emerges here 

is what one might expect from a loosely coupled oscillator model 
(here, a factorial compartmental model of ensemble dynamics).  
Notable aspects of these predictions are that New York expe-
riences a marked peak in death rates early in the epidemic, 
whereas other States follow after a week or so. In terms of the 
epidemiology, an interesting feature of these predictions is a  

Figure 5. Differences among States. This figure reports the differences among States in terms of selected parameters of the generative 
(epidemic) model, ranging from population size, through to the probability of testing. The blue bars represent the posterior expectations, 
while the pink bars are 90% Bayesian credible intervals. Notice that these intervals are not symmetrical about the mean because we are  
reporting scale parameters—as opposed to log parameters. For each parameter, the States showing the smallest and largest values  
are labelled. For example, New Jersey and New York behave as if they had a relaxed social distancing threshold, when compared to California. 
Please see next figure for a key to the States.
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second peak in death rates at around 38 weeks (i.e., 28 weeks 
after the first peak). Another aspect of these predictions is the 
large variability in death rates between States. Much of this  
variability can be accounted for by differences in populations; 
however, as shown in the lower right panel, mortality rates (as esti-
mated by the expected number of deaths in one year divided by  
the population of each State) still show a substantial variation. 
For example, the mortality rate in New York is estimated to be 
just over 0.1%, while it is much smaller in California. Recall  
that these predictions are entirely conditioned upon the model 
and available data. Having said this, the currently available  
peak death rates in New York and California testify to some 

difference that cannot be explained in terms of population  
sizes, e.g., climactic effects on transmission strength that medi-
ate seasonal influences (Kissler et al., 2020). Alternatively,  
the differential social distancing estimates in New York and  
California (see Figure 5) may speak to regional or cultural  
differences (e.g., the prevalence of high density, low-cost housing 
or ethnic differences in communal activities).

The cumulative deaths under this particular model are consistent 
with predictions based upon other modelling work. For example,  
at 20 weeks, the cumulative deaths in the United States  
has—on some conservative estimates—been reported in the 

Figure 6. Connectivity and viral spread. This figure reports the connectivity among states, following Bayesian model reduction of a full 
connectivity model. The upper left panel shows the log evidence of the 256 models with the greatest evidence. A model here constitutes a 
reduced model in which various combinations of connectivity parameters have been removed. The upper right panel shows the maximum 
a posteriori (MAP) estimates of the ensuing Bayesian model average, as an adjacency matrix. The elements of this matrix quantify the rate 
or probability that a State in each column will deliver a proportion of its (out-of-home) population to a State in the rows. For example, the 
greatest flux of people is between New York and California. The lower right panel shows the posterior probability of a model with and 
without each of these parameters, based upon Bayesian model comparison. For the connectivity parameters involving New York, we can be 
nearly 100% certain that the model that includes this coupling parameter has greater evidence than a model that does not. The insert on 
the lower left provides a schematic representation of the connectivity, based upon these estimates. The heavier connectors correspond to 
a greater probability of moving between States.
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media to be around 60,00013. The eight States here constitute  
119 million people (about a third of the population). The cumu-
lative deaths within these States are estimated to be about  
48,000, under the current model. One potentially reassuring 
aspect of these results is that predicted (annual) mortality rates 
in most States is, overall, less than that attributable to seasonal  
influenza (0.1%) (Paget et al., 2019). Indeed, typical mortal-
ity rates appear to be in the order of 0.05% or less. This is in 
line with projections based upon global data and countries who  
experienced an early epidemic, such as Italy.

The underlying causes of the (predicted) outcomes in  
Figure 8 are shown in Figure 9. The predicted outcomes are repro-
duced in the upper panels, in terms of rates per day (upper left 
panel) and cumulative cases and deaths (upper right panel). In  
addition, the model has generated the occupancy of critical 
care unit beds that accompanies these State-specific predic-
tions. The lines correspond to the predicted numbers under a  
model with a regional social distancing strategy. The dots cor-
respond to the data observed so far. These trajectories are 

generated by fluctuations in the probability of being away from  
home (i.e., denoted by the state work, Lw), whether one is infec-
tious or not, the clinical expression of the infection and the  
probability that one tests negative or positive. A key aspect of 
these results is the rapid acquisition of herd immunity to levels of 
about 30% at the peak of the first wave (see yellow lines in the  
middle right panel of Figure 9). This rise is most pronounced  
during the early phase of the pandemic that shows subsequent 
fluctuations due to movement between states and a mild loss of  
immunity.

One can see two sorts of second wave, in terms of new cases 
and deaths in the upper left panel. The first is an early second-
ary peak about four weeks after the first peak (orange arrow). 
This is particularly evident in the new cases predicted for New  
York. This coincides with a relaxation of social distancing and 
a concomitant influx of people from other States (compare 
this with the second wave of new cases in Figure 1). However,  
there is a more protracted and pronounced second wave after 
28 weeks (blue arrow) that induces a fluctuation in social  
distancing behaviour; again, most evident in New York. The 
mechanism for this second peak is due to the endogenous loss of 
immunity. Increasing the period of immunity from 32 months to  
8 years delays this peak by about 20 weeks (data not shown).  
As we will see next, decreasing the period of immunity to 
4 months accelerates the second peak so that it encroaches on 
the first.

Figure 7. Sensitivity analysis. This figure reports the effect of changing each connectivity parameter on cumulative deaths over an 18-
month period. The upper panel shows the rate of increase (or decrease) in cumulative deaths per unit change in the (log) parameters. These 
sensitivity metrics are based upon a first order Taylor expansion about the maximum a posteriori values shown in the lower panel. The blue 
bars correspond to the most likely estimate and the pink bars report the 90% credible intervals. Interestingly, the effects of connectivity or  
coupling among States are mixed. In some instances, increasing the exchange between one State and another will increase or decrease 
overall death rates; presumably, based upon the respective capacity of different states to respond to pressure on their clinical care 
capacities.

13 Consistently, across countries, excess death is higher than reported COVID-
19 deaths: in many cases deaths in care homes or in the home are not  
reported systematically as COVID-19 related. For example, https://www.nytimes.
com/interactive/2020/04/21/world/coronavirus-missing-deaths.html.
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Figure 8. Predicted mortality rates. This figure reports the predicted trajectory of death rates for each State. The upper panels show the 
predicted time course of death rates per day under a social distancing strategy based upon regional estimates of prevalence. The expected 
rates are shown as blue lines, while the shaded blue areas correspond to 90% Bayesian credible intervals. The dots report empirical data 
observed to date. The same data are shown in the upper right panel after scaling the Y axis. This enables the second wave of deaths—
predicted under this model—to be seen more clearly, about 28 weeks following the first wave. The lower left panel shows the cumulative 
deaths in each State, based upon these predictions, in terms of the total expectation (blue bars) and accompanying 90% credible intervals  
(pink bars). These projections reflect differences among the States in terms of their population—and their response to the influx and 
subsequent explosion of infected cases. The middle right panel adjusts for differences in the population by expressing mortality rates (per year)  
as a percentage of the population of each state. The broken horizontal line corresponds roughly to the mortality rate of seasonal influenza. 
The lower panel shows the cumulative deaths over all States, in terms of the posterior expectation (blue line) and confidence intervals 
(shaded area). The (black dots) correspond to empirical data. The confidence intervals in these figures should not be overinterpreted:  
they were approximated (under large-number assumptions) by a Poisson distribution. This approximation was used purely for computational 
expediency (and was not used during model inversion).
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Figure 9. The pandemic under long-term immunity (32 months). This figure reports the predicted outcomes and underlying latent 
states generating those outcomes over a one-year period, under a regional social distancing strategy. The upper panels show some key 
outcomes, some of which are measurable. Here, daily death rates are shown in blue, new cases in red and critical care unit (CCU) occupancy 
in orange. The lines correspond to the predictions of the model, while the dots are empirical data available at the time of writing (18th of 
April 2020). The dotted line in the upper left panel corresponds to the typical critical care capacity of a large US city14. The same results are 
shown on the upper right panel in terms of cumulative new cases (red) and deaths (blue). The underlying or latent causes of this mortality 
are shown in the lower panels. These are organised according to the four factors of the generative model. In each panel, the latent states 
are plotted for the eight States considered in this analysis. The location factor shows that, under this strategy, the number of people away 
from the home (or equivalent location) decreases sharply at the onset of the outbreak and then recovers slowly over the ensuing weeks. In 
terms of infection, there is a rapid acquisition of immunity, to varying levels between 40% and 80% over the first months of the pandemic. 
At any one time, about 18% or less of the population is either infected or infectious. In terms of the clinical expression of these infections, 
8% percent or less of people will experience symptoms and a small minority will progress to acute respiratory distress, from which they may 
recover or die. Under this model, positive test results for the virus (based on buccal swabs) accumulate over time as more and more people 
are tested. In the initial phases of the outbreak, most people are negative. However, during the onset of the pandemic about a half to a third 
of people tested are positive. This proportion declines over the ensuing months.

14 The overall number of critical care beds for US was 28/100,000 head of population (Carr et al., 2010. Variation in critical care beds per capita in the 
United States: implications for pandemic and disaster planning. JAMA 303, 1371–1372.). We assume a large US city to have an urban population of  
say 8 million (e.g. New York or Chicago) which means it would have about 2000 CCU beds.

Page 16 of 34

Wellcome Open Research 2021, 5:103 Last updated: 08 FEB 2021



Finally, note that social distancing never disappears, i.e., the 
blue lines reporting the probability of leaving home (left middle 
panel) never quite return to their pre-pandemic levels. In other  
words, there is a persistent failure to return to levels of work 
prior to the pandemic. This persistent change in social distanc-
ing behaviour is an integral part of the endemic equilibrium  
simulated in these analyses. Put simply, there is an equilibrium 
that constitutes the endpoint of any ‘exit strategy’—and this  
equilibrium will be attained at about 40 weeks (i.e., 10 months) 
following the onset of the pandemic. However, this will not be a  
return to normal life; it will be a way of ‘living with COVID-19’. 
This way of living is comfortably within the resources of our  
ability to provide critical care for those people who need it. Fur-
thermore, as noted above, this endemic equilibrium entails mor-
tality rates due to COVID-19 that are less than half those due to  
seasonal influenza. It should be reiterated that these are just  
model predictions and should not be taken literally. They 
should be read as the kind of predictions that can be made with  
suitable modelling15.

A key aspect of the simulation results is that new cases in 
the second wave are not necessarily accompanied by marked 
increases in daily death rates. Furthermore, the amplitude of the  
second wave, under this model, is much less than that of the 
first. This reflects the immunity acquired during the first wave. 
In other words, the context in which the second wave emerges is  
contextualised by the immunological memory of the first expo-
sure to the virus. In these simulations, herd immunity is between 
40% and 70%. These simulations can be compared with the  
predictions of seasonal re-emergencies of COVID-19, based 
upon models that factor in seasonal variations in transmission, of  
the kind associated with seasonal influenza. For example, 
short term immunity on the order of 10 months (similar to  
HCoV-OC43 and HCoV-HKU1) would engender annual  
SARS-CoV-2 outbreaks, while longer-term immunity (24 months) 
favours biennial outbreaks (Kissler et al., 2020).

The simulations above should be compared with the corre-
sponding simulations in Figure 10 under short term immunity.  
Here, we repeated the analysis but changed the period of immu-
nity from 32 months to 4 months. In this scenario, herd immu-
nity declines rapidly, and endemic equilibrium is reached almost 
as soon as the first wave subsides. This endemic equilibrium is  
probably not sustainable: although the demand for critical 
care does not exceed total capacity, this demand is mitigated 
by persistent social distancing. In turn, this social distancing  
precludes any meaningful return to work (in the majority of 
States simulated, only 8% or less of the population returns to 
work). On the assumption that the ensuing damage to social and  
economic infrastructure is untenable, the scenario of losing  
immunity within months is difficult to countenance.

The emerging picture is that two things are crucially impor-
tant in shaping the long-term trajectory of the pandemic. First, 

the acquisition of herd immunity and second, the rate at which 
immunity is lost. At present, the second factor is difficult  
to assess empirically, which is why cases of reinfection would 
be so telling16. Documented cases of reinfection speak to a short-
term immunity. At the time of writing, there is little evidence  
to suggest reinfection is a characteristic of COVID-19. Indeed, 
the evidence points in the other direction (Bao et al., 2020). So, 
is there any evidence for a rapid acquisition of herd immunity? At  
the time of writing, there are no published reports; however, 
preprints and local media have identified apposite studies in  
California. These studies are in a position to provide important 
data that will endorse or constrain the modelling of immunity.  
Figure 11 shows the predicted immunity for people in Califor-
nia shown in Figure 9. These predictions are not inconsistent  
with early reports of antibody testing in California based upon 
preprints (Bendavid et al., 2020)17 and local media reports18,  
shown as confidence intervals (vertical bars) and point esti-
mates (red dot) respectively. Although the consilience should not  
be overinterpreted, these provisional findings are in line with 
the model predictions; although the Santa Clara prevalence of  
antibodies is about half what would have been predicted  
on the basis of the current model. As noted in the LA Times, these 
results suggest:

“[t]he fatality rate may be much lower than previously thought. 
But although the virus may be more widespread, the infection 
rate still falls far short of herd immunity that, absent a vaccine,  
would be key to return to normal life.” (Hundreds of thousands 
in L.A. County may have been infected with coronavirus, study  
finds, LA Times).

In fact, on the current reading of the model predictions, this 
prevalence of seropositive cases in California is consistent 
with the acquisition of herd immunity over the next few weeks.  
Clearly, it would be reassuring—if not imperative—to have more 
definitive data from other States (or countries) to track herd  
immunity as it develops.

In summary, the acquiring and maintaining critical levels of 
immunity are crucial factors in determining the course of the pan-
demic over the next few months. Put simply, the rate at which  
we move to (a potentially catastrophic) endemic equilibrium will 

16 Note that that a confirmed reinfection is distinct from a second positive 
test, which might be expected given the false positive (and negative) rates of  
many tests.

17 The authors measured the seroprevalence of antibodies to SARS-CoV-
2 in Santa Clara County on the third and fourth of April 2020, using a lateral 
flow immunoassay. Under three scenarios for their test performance, the 
population prevalence of COVID-19 in Santa Clara ranged from 2.49% (95CI  
1.80-3.17%) to 4.16% (2.58-5.70%).

18 Initial results from the first large-scale study tracking the spread of the 
coronavirus in LA county found that 4.1% of adults have antibodies. This 
translates to roughly 221,000 to 442,000 adults who have recovered from an 
infection. LA county had reported fewer than 8,000 cases at that time. Our  
thanks to Virginia Webber for forwarding this material.

15 Note also that we have not included any therapeutic advances or vaccination 
programs in this model.
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be much faster if immunity is lost quickly (via antigenic drift  
or mixing of the immune pool)— sufficiently quickly to pre-
clude a second wave. This concludes our summary of the results  
under models of regional social distancing. In the next section,  
we turn to other aspects of strategic responses and ask what are  
the best mitigation strategies, under the current model?

Mitigation strategies
In this section, we use the parameter estimates from the DCM 
to integrate 18 months into the future and record various  
outcomes under distinct social distancing strategies. The param-
eters of these strategies are estimated from empirical data; how-
ever, their functional form is a question of model selection.  

Figure 10. The pandemic under short-term immunity (4 months). This figure uses the same format as the previous figure. The only 
difference here is that we decreased the period of immunity from 32 months to 4 months.
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Figure 11. Predicted and observed levels of immunity. This figure reproduces the results of Figure 9, with a focus on the states of the 
infection factor. The blue line reports the expected percentage of the population who are infected in California, up until the date of writing. 
The red line shows the prevalence of contagious or infectious people that follows a few days later. The yellow line reports the acquisition 
of immunity; namely, the number of people who have moved from a contagious state to an immune state. The two bars represent the 90% 
confidence intervals from an early report from Santa Clara. The red dot corresponds to the estimated prevalence of immunity according to 
a local media report. Please see main text for details.

Having said this, given that there is only data from the ini-
tial phase of the pandemic, model comparison may be best left 
until after the epidemic has run its course. In the interim, we  
can examine the effect of strategic responses on metrics of inter-
est; here, the total number of deaths, the total number of work-
ing days and the peak occupancy of critical care facilities. We  
will consider mitigation strategies that are driven by the 
prevalence of infection in any given State or whether national 
(i.e., Federal) measures of prevalence inform our behaviour. 
First, we look at the effect of relaxing social distancing (by 
increasing the social distancing threshold) and then repeat the 
analysis under a Federal policy.

Figure 12 shows the results of simulations under 16 levels of 
social distancing based upon regional prevalence. The different 
levels were simulated by scaling the social distancing threshold 
of about 3% in Figure 5 from very small values (around 0.05%)  
to very large values (around 100%). Figure 12 uses the same 
format as previous figures to quantify the rate of new cases and 
deaths per day (upper left panel), cumulated cases (upper right  
panel) and the underlying or latent causes (lower four panels). 
Here, the lines report the average rates and probabilities over 

States, for different levels of social distancing. With stringent  
social distancing (i.e., a low threshold) the initial relaxing of the 
lockdown after the first wave is quickly reversed as new cases 
start to accumulate. The probability of returning to work peaks  
at about 20% and then falls to negligible levels as the months 
pass. In this scenario, the second wave is delayed until about 
60 weeks following the first wave. As social distancing is 
relaxed by increasing the threshold to its posterior estimate 
from the original model estimation, the return to work 
approaches endemic equilibria at successively higher levels, 
until, at low levels of social distancing (high thresholds) there is 
hardly any fluctuation in the probability of being found at work. 
At the same time, a second peak at around 40 weeks (30 weeks 
after the first peak) emerges and cumulative cases and deaths 
rise more quickly over the months. This spectrum of long-term 
trajectories is summarised by the green and blue arrows illus-
trating the suppression of a second wave at 70 weeks and the 
emergence of an earlier wave at 40 weeks.

The key aspect of these simulations is that there is a balance 
between an overzealous lockdown that precludes any meaning-
ful return to work and a capricious social distancing strategy that  

Page 19 of 34

Wellcome Open Research 2021, 5:103 Last updated: 08 FEB 2021



releases a second wave a few months after the first. This effect  
of social distancing is illustrated more explicitly in Figure 13.

Figure 13 plots the cumulative deaths, working days and lost 
weeks as a function of the (logarithmic) deviation from an 

Figure 12. The effect of social distancing. This figure shows the results of simulations under different levels of social distancing, based 
upon regional prevalence. This figure uses the same format as previous figures, to illustrate the rate of new cases and deaths per day 
(upper left panel), accumulated cases (upper right panel) and the underlying or latent causes (lower four panels). Here, the lines report the 
average rates and probabilities over States, for different levels of social distancing. These levels were evaluated in 16 steps by scaling the 
posterior expectation of the social distancing thresholds from exp(-4) to exp(4) = 54.6. The key effects of this scaling are summarised in the 
next figure.
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estimated social distancing threshold of about 3%. As one might 
intuit, increasing the threshold monotonically increases the 
number of working days at the expense of cumulative deaths, rang-
ing across the eight states from about 48,000 to 62,000, over a  
period of 18 months. Changing the threshold for social dis-
tancing has a nonlinear aspect. This can be evinced more 
clearly by plotting the weeks lost due to lockdown as a func-
tion of the (logarithmic) changes in threshold. Weeks lost was  
quantified in terms of the number of weeks, over 18 months, dur-
ing which the probability of being at work was less than 8%. 
The lower left panel of Figure 13 highlights the switch from 
lockdown strategies—which preclude a long-term return to 
work—to those that permit near-normal social distancing in the 
long term. Interestingly, the empirical (posterior expectation) 
estimate of social distancing based upon the data is character-
ised by a threshold that is close to the transition between the two 

kind of strategies. Again, as one might intuit, these simulations  
speak to a trade-off between lives and weeks lost due to 
the pandemic—and our adaptive response (see lower right 
panel).

Finally, we repeated the above analysis under regional and 
national strategies, using high (1/4) and low (1/32) social dis-
tancing thresholds. Figure 14 (upper row) shows the effects of 
the four kinds of strategy on cumulative deaths, total number 
of working days and peak CCU occupancy. It is apparent that a  
hard (low threshold) strategy reduces deaths and frees up 
working days to a greater extent than soft (high threshold)  
strategies. Interestingly, a regional response strategy based on 
local prevalence rates incurs fewer deaths with a slight increase in  
CCU occupancy. There is no discernible difference between  
a regional and national strategy on working days.

Figure 13. Lost lives and weeks. This figure summarises the key effects of social distancing on cumulative deaths and working days lost 
due to the virus. The upper panels plot the cumulative deaths and days at work under different levels of social distancing. As in the previous 
figure, social distancing was evaluated over 16 levels by scaling the threshold estimated for each State. In terms of log parameters, this 
corresponds to adding or subtracting a change (between -4 and +4 natural units). In this figure, social distancing is expressed in terms 
of these changes, where zero corresponds to no change from the (posterior) estimates of the previous section. The lower panel provides 
another perspective on working days lost by calculating the number of lost weeks—defined operationally as the number of weeks during 
which the probability of going to work was less than 8%. The final (lower right) panel plots cumulative deaths against weeks lost. This 
illustrates the trade-off between the loss of life and working weeks—reflected in the decreasing monotonic relationship between these two 
outcomes.
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Figure 14. Different strategies evaluated. These bar charts report the effects of different strategies on cumulative deaths (left column), 
total number of working days (middle column) and peak occupancy of critical care unit (CCU) (right column). The top row shows simulation 
results based upon the parameters used in the previous figures. One can see that a low threshold (lockdown) strategy generally reduces 
cumulative deaths and working days lost to the economy, while augmenting peak CCU occupancy. The middle row reproduces the 
same analysis but under more pessimistic assumptions about the retention of immunity. Specifically, we reduced the time constant for 
retaining immunity from 32 months to 4 months. Under this scenario, death rates increase dramatically (approximately doubling), with an 
accompanying loss of working days. Peak CCU is largely unaffected, because this parameter determines long-term outcomes or trajectories 
as opposed to initial responses. The lower row shows the equivalent results when including a back-to-work policy based upon serological 
testing. The only effect of this, under the current model, is to exacerbate the effect of a hard versus relaxed social distancing strategy on the 
number of working days lost. This follows because returning people who are immune to the community has no effect on morbidity or for 
critical care; however, it does take the pressure off the economy.

Page 22 of 34

Wellcome Open Research 2021, 5:103 Last updated: 08 FEB 2021



The middle row shows the same results but when immunity is 
lost over four months, as opposed to 32 months. As one might 
intuit, increasing the rate at which immunity is lost substan-
tially increases death rates and other costs. In this scenario, the  
impact of a hard (low threshold) lockdown strategy on cumu-
lative deaths is more marked. And the relative benefit of a  
regional versus national policy is more pronounced. This is at 
the expense of damage to the economy, in terms of the relative  
number of days lost. Total CCU occupancy is largely unaf-
fected with short-term immunity (because the loss of immunity  
only affects the epidemiology after it is acquired during the first 
peak).

The lower row reproduces the upper row, with the inclusion 
of a back-to-work policy, in which people who were serop-
ositive are allowed to leave the home. The point made by these  
simulations is that a back-to-work policy has limited effects 
on mortality rates19 or peak CCU occupancy but greatly  
ameliorates the economic damage entailed by the lost working 
days.

Conclusion
This report describes an extension of a single region (epi-
demic) model that furnishes a (pandemic) model of regions 
that collectively participate in a pandemic. Our focus has been 
on the genesis of a second wave of new cases—and potential  
deaths—due to the loss of immunity within a regional popula-
tion and the influx of people from other regions. We have show-
cased this model by applying it to statistics from the United  
States, treating each State as a separable region. When using 
the optimised model parameters one can simulate the impact of  
various strategies or (non-pharmaceutical) responses.

If one subscribes to the modelling in this report, then there are 
several narratives one could entertain. These depend sensitively  
on the rate at which the immunity is lost. If SARS-CoV-2 con-
fers immunity that lasts for years, the following narrative  
might be appropriate:

“Endemic equilibrium will be reached by the end of the year, 
by which time COVID-19 will become ‘another way to die’.  
COVID-19 will account for a small proportion of deaths—with 
mortality rates that are less than seasonal influenza (approxi-
mately 1/3). This state of affairs rests upon an adaptive (i.e., reac-
tive) response to intervening fluctuations in the prevalence of  
infection (and demands upon critical care). Operationally, this 
response could be characterised by social distancing when 
either the prevalence of infection in the population exceeds 3%  
or the number of COVID-19 patients in critical care surpasses 
a quarter of maximum capacity. Comprehensive social dis-
tancing (i.e. lockdown) is currently in force and will last, on  
average, about 7.5 weeks in each affected region. For most coun-
tries, at the time of writing, this suggests a relaxing of lockdown in 
3 weeks.

However, this relaxation will not return to pre-pandemic lev-
els of interpersonal contact. In other words, there will be an 
enduring pressure to reduce interpersonal contact, which will  
reduce the time spent in the company of others by 5% or 
less. The road to equilibrium will be relatively smooth with a  
slight bump (second wave) at about seven months follow-
ing the initial outbreak (i.e., November). This will not require 
lockdown but there will be an appreciable increase in the 
number of cases and critical care uptake. This second wave 
should last for about five weeks and may be confounded by 
the onset of a flu season.”

Under this narrative, social distancing will become ‘a way of 
living’ with COVID-19 and reflect changing attitudes to prosocial 
behaviour; very much like our attitudes to recycling, smoking or  
outdated and dangerous practices, such as the use of lauda-
num or mercury in the Victorian age. For example, unnecessary  
commuting and international meetings may be seen as antiso-
cial and unhygienic. Similarly, shaking hands may become as 
socially sanctioned as frotteurism. In short, changing attitudes, 
affordances and dispositions may be sufficient social distancing  
mechanisms to guarantee an endemic equilibrium. Note that the 
above narrative makes no mention of ‘exit strategies’, vaccina-
tion, or anti-viral therapy. This is because strategic responses 
are modelled as an inherent part of the epidemiology. In other  
words, they are treated as part of the process as a reactive strat-
egy, as opposed to a proactive strategy. This does not mean that  
governments are under no pressure to declare their exit strate-
gies. Rather, this declaration is part of the process of changing  
attitudes to social behaviour.

As in (Friston et al., 2020a), this narrative is not a prediction. It is 
a concrete example of the kind of prediction on offer, with a suit-
ably formulated and informed epidemiological model that installs 
social behaviour into the dynamics. This particular narrative  
depends on long-lasting immunity. A different story would be 
told if immunity to SARS-CoV-2 is lost within months. This  
speaks to two pressing issues. First, has the first wave induced 
a substantive herd immunity predicted by the DCM? Second, 
if this immunity has been induced, how long will it last? The  
answer to the first question should be available within the next 
few weeks, as studies assessing community levels of seroconver-
sion appear. The answer to the second question is more vexed  
because—from a purely epidemiological perspective—one might 
have to wait and see (given the many factors that determine the 
loss of immunity and potential variation within different cohorts).  
In the final report of this series, we will estimate the period 
of immunity by comparing models over a range of short-term  
immunity, in terms of their model evidence. At some point over 
the next month or so, there should be sufficient data to render 
this model comparison sufficiently definitive to estimate the  
effective period of immunity one can expect.

As with all dynamic causal modelling studies, everything is 
entirely conditioned upon the models that have been evaluated in 
terms of their evidence. In this report, the aim of the modelling  
is not to provide predictions or guidance per se—it is to show 
that such predictions are possible under a suitably configured  19 Although it appears to reverse the effect of a regional versus national policy.
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model using state-of-the-art variational Bayesian model inver-
sion and reduction. In other words, one can reproduce these  
analyses under different models or prior assumptions in a few 
minutes on a personal computer. This allows one to explore dif-
ferent models in an efficient fashion; thereby treating the model-
ling as hypotheses testing, as more data becomes available. Being  
able to identify the best hypothesis or model—in terms of its 
parameterisation of structure—is potentially important. This is 
because the model and (maximum a posteriori) parameters can then  
form the basis of a prediction about data that has not yet been 
observed, i.e., the future. In this light, we will not list the  
shortcomings of this particular model. Any ‘shortcoming’ is just a 
statement of an alternative model that can be included in the model 
comparison procedure to optimise the model in and of itself.

We have noted some of the limitations of dynamic causal 
modelling—and more generally variational Bayes—above. Two 
key limitations are (i) the overconfidence problem and (ii) the 
robustness of the Laplace assumption. The overconfidence prob-
lem derives from a failure to explicitly account for conditional 
dependencies among the factors that constitute the mean field 
approximation that defines variational procedures. This is a 
ubiquitous problem in any variational approach that tries to sim-
plify model inversion by breaking the problem into a series 
of marginal posteriors. Generally, one just acknowledges the 
overconfidence problem or, as in this application of dynamic 
causal modelling, inflate the credible intervals such that they 
encompass the data points. The robustness of the Laplace 
assumption speaks to the discrepancy between the form of 
the true and approximate posterior that has two implications. 
First, one is committed to unimodal Gaussian approximations 
to the posterior density that might be multimodal. The second 
implication is that the assumed (quadratic) form for the objective 
function may be violated, creating local minima. The solution 
to these problems generally rests on finessing nonlinearities by 
using different functional forms for the likelihood or priors. For 
example, using log transforms as in the current application. The 
very existence of local minima and failures of convergence 
are often used as a diagnostic to suggest that the generative 
model (and implicit formal priors) need attention. As illus-
trated above, different generative models can then be optimized 
in relation to their free energy.

In this paper, we estimated the effective connectivity or 
population fluxes between States that, in principle, can be 
measured empirically. One might ask why not use proxies for 
exchange between regions based upon transport or mobility 
data? A useful answer here is that the use of proxies rests on an 
implicit hypothesis; namely, that the chosen proxy provides 
an informative constraint on the latent variable in question. 
Crucially, one can test this hypothesis by comparing two 
models with and without prior constraints based upon proxy 
measurements. An interesting example of this in imaging neu-
roscience is the use of structural connectivity measurements 
from tractography data as priors on effective connectivity 
(Sokolov et al., 2019). In short, if a model with priors (e.g., 
mobility data) has more evidence than a model without, 
one can claim that the proxies are licensed in a useful way.

Perhaps the most important aspect of this modelling is its focus 
on herd immunity and the notion of an adaptive or reactive 

strategy. As in our provisional modelling of a single outbreak in a 
single region, the passage from the onset of an outbreak to endemic  
equilibrium depends on establishing herd immunity to a greater 
or lesser extent. This underwrites the repeated call for a greater 
understanding of the virology and immunology of COVID-19.  
Not only will this speak to therapeutic interventions, but simply 
being able to measure the proportion of individuals in a popula-
tion who are immune would provide informative constraints on  
modelling—and subsequent projections. The second aspect—of 
adaptive social distancing— can be contrasted with other for-
mulations that prescribe a fixed pattern of social distancing. For  
example, a sawtooth or intermittent social distancing that ena-
bles the acquisition of herd immunity without overwhelming  
critical care capacity (Ferguson et al., 2006). Both adaptive and 
proactive schedules (e.g., encouraging the use of facemasks)  
have their merits and could be evaluated using the procedures  
outlined above.

Adaptive strategies provide a quantitative and formal guideline 
for personal and governmental responses as the pandemic devel-
ops. In other words, the response becomes part of the ensemble 
dynamics that determine the eventual outcome. A pragmatic 
advantage of adaptive strategies (see Figure 4) is that they can be  
operationalised given available estimates of the prevalence. 
For a threshold strategy, one can simply revert to one mode of 
social distancing or another, whenever a particular threshold  
is passed. An interesting perspective on adaptive strategies fol-
lows from the fact that—in the model—they are an integral part 
of the process. In other fields, this corresponds to the notion of  
Chaos control; e.g., (Rose, 2014) and may yield to an optimal 
control theoretic treatment (Fleming & Sheu, 2002; Kappen,  
2005; Todorov & Jordan, 2002). In other words, the optimal  
policy can be treated very much like an engineering problem  
or, indeed, an active inference problem. This brings us to our  
last point.

In closing, there is one perspective on applications of genera-
tive models to pandemics that touches on (unrelated) work in  
theoretical neurobiology. This work tries to understand the behav-
iour of sentient systems, such as ourselves, in terms of active  
inference and the optimisation of variational free energy asso-
ciated with our internal world models (Parr & Friston, 2018).  
On this view, using a generative model of a pandemic to inform 
policies becomes formally identical to the imperatives that  
underwrite active inference (Clark, 2016; Hohwy, 2013). In brief, 
these imperatives are to bring about those situations that we  
find the least surprising; namely, that we all elude death and  
return to normal.

Methods
Software note
The annotated (MATLAB/Octave) code is available as part of 
the free and open source academic software SPM (https://www.
fil.ion.ucl.ac.uk/spm/), released under the terms of the GNU  
General Public License version 2 or later. The routines are 
called by a demonstration script that can be invoked by typing  
DEM_COVID_X at the MATLAB prompt. For this technical 
report, we used MATLAB R2019b and SPM12 r7840 (archived at  
https://doi.org/10.6084/m9.figshare.12174006.v2) (Friston et al., 
2020b). We have also checked compatibility of this code with 
Octave 5.2.
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The present model in the paper is quite complex and include many different factors. What 
confuses me about the work is fitting the between-States mobility pattern to the data. It is a bit 
strange for me. First, because the mobility is what can be directly measured. Second, considering 
the rates of mobility as the parameters for the fit may give misleading results as it would be 
heavily affected by the prior choice of the underlying epidemiological model. I am also afraid that 
the used framework of the variational Bayes is unable to give strict results that can be validated 
and believed to be the true ones--close to the reality. At least, I was not able to find the strong 
evidence of this in the paper. Because of that, the present results can be considered only with 
some degree of speculation. 
 
About the abstract: 
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mode, while the second sentence says about combining several of *these* models. I am also 
confused about whether the authors consider only US or the whole North and South America as 
stated in the title.
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Dear Prof. Akhmetzhanov, 
 
We would like to thank you for the time and effort you have spent reviewing our 
manuscript. Below are the replies to the comments. We hope these revisions are what you 
had in mind.

The present model in the paper is quite complex and include many different factors. What 
confuses me about the work is fitting the between-States mobility pattern to the data. It is 
a bit strange for me. First, because the mobility is what can be directly measured. Second, 
considering the rates of mobility as the parameters for the fit may give misleading results 
as it would be heavily affected by the prior choice of the underlying epidemiological model.

○

This is an interesting observation. We have taken this point in development along the 
following lines (in the Conclusion): 
 
“In this paper, we estimated the effective connectivity or population fluxes between States 
that, in principle, can be measured empirically. One might ask why not use proxies for 
exchange between regions based upon transport or mobility data? A useful answer here is 
that the use of proxies rests on an implicit hypothesis; namely, that the chosen proxy 
provides an informative constraint on the latent variable in question. Crucially, one can test 
this hypothesis by comparing two models with and without prior constraints based upon 
proxy measurements. An interesting example of this in imaging neuroscience is the use of 
structural connectivity measurements from tractography data as priors on effective 
connectivity (Sokolov et al., 2019). In short, if a model with priors (e.g., mobility data) has 
more evidence than a model without, one can claim that the proxies are licensed in a useful 
way.” 
 

I am also afraid that the used framework of the variational Bayes is unable to give strict 
results that can be validated and believed to be the true ones--close to the reality. At least, 
I was not able to find the strong evidence of this in the paper. Because of that, the present 
results can be considered only with some degree of speculation.

○
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These are good points that pertain to any Bayesian inference, especially at the level of 
model comparison. There are many issues that one could discuss about variational 
inference in this regard. For example, we now highlight a couple of the limitations as follows 
(in the Conclusion): 
 
“We have noted some of the limitations of dynamic causal modelling—and more generally 
variational Bayes—above. Two key limitations are (i) the overconfidence problem and (ii) the 
robustness of the Laplace assumption. The overconfidence problem derives from a failure 
to explicitly account for conditional dependencies among the factors that constitute the 
mean field approximation that defines variational procedures. This is a ubiquitous problem 
in any variational approach that tries to simplify model inversion by breaking the problem 
into a series of marginal posteriors. Generally, one just acknowledges the overconfidence 
problem or, as in this application of dynamic causal modelling, inflate the credible intervals 
such that they encompass the data points. The robustness of the Laplace assumption 
speaks to the discrepancy between the form of the true and approximate posterior that has 
two implications. First, one is committed to unimodal Gaussian approximations to the 
posterior density that might be multimodal. The second implication is that the assumed 
(quadratic) form for the objective function may be violated, creating local minima. The 
solution to these problems generally rests on finessing nonlinearities by using different 
functional forms for the likelihood or priors. For example, using log transforms as in the 
current application. The very existence of local minima and failures of convergence are 
often used as a diagnostic to suggest that the generative model (and implicit formal priors) 
need attention. As illustrated above, different generative models can then be optimized in 
relation to their free energy.” 
  
In responding to the other reviewer, we also try to make it clear that Bayesian model 
reduction can be used to convert a concern about the appropriateness of a model into a 
question and then answer that question formally in terms of the evidence at hand. For 
example: 
 
“Here we note that the model reduction identified a model where migration was restricted 
to New York and remaining states. A natural question is whether this reflects the 
assumption that the epidemic was seeded in New York. This kind of question suggests a 
new model space in which models that have multiple seeds are compared. More generally, 
any initial condition or prior assumption of this sort is part of the generative model and can 
be evaluated using Bayesian model comparison. The application of Bayesian model 
reduction in this setting would require a full model in which the epidemic was seeded in 
multiple regions. Reduced models with then comprise seeds in subsets of States. We do not 
pursue this analysis here but note that this is an interesting question.” 
 

The first two sentences of the abstract can be confusing. The first sentence says about one 
causal mode, while the second sentence says about combining several of *these* models.

○

We have amended the abstract wording to “... several instantiations of this (epidemic) model 
to create a (pandemic) model …”

I am also confused about whether the authors consider only US or the whole North and 
South America as stated in the title.

○

We have amended the title to “... across the USA.” 
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Friston et al. extend their previous epidemic model into a metapopulation of COVID-19 
transmission across eight states in the US. The resulting estimates (informed by time series of 
confirmed cases and deaths curated by the team at Johns Hopkins University) are then used as a 
starting point for considering longer-term outcomes of the epidemic such as the occurrence of a 
secondary wave due to a loss of immunity and the need for ongoing intervention measures if a 
vaccine cannot be developed. The effects of social distancing are included in the model as a 
sigmoidal function of the prevalence. This is an interesting approach and I would like to see it 
developed further. A substantial amount of thought has gone into developing the generative 
model. 
 
The term "dynamic causal model" may be unfamiliar to some readers (it was to me). I understand 
that it refers to a hidden Markov model: in this case, a differential equation (DE) model of the 
epidemic where the data is assumed to be a random variable conditional upon that epidemic. 
Although the exact definition does not seem essential, I point this out because some of the 
language used may be unfamiliar but as far as I can tell the constructions are all the familiar ones 
from mathematical epidemiology. 
 
The authors should be commended for the substantial efforts put into making this analysis 
reproducible with good documentation and by referencing the commit of the JHU repository for 
the data they used. Although on a fresh installation of Octave version 4.0.0 I was not able to 
reproduce the computation, even after following the Octave specific instructions regarding the 
`importdata` function. The data appeared to be read in successfully, but subsequently, an indexing 
error was hit and I was not able to debug further. Please note that I have not used 
Octave/MATLAB for several years so there may have been something obvious I was missing. 
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There are several (potentially conflicting) points I would like to see addressed that I suspect would 
improve this manuscript.

The text is very conversational, which is pleasant to read, but which makes it difficult to get 
a strong grasp on the details. I think it would be much easier to understand the work if the 
text was heavily edited for brevity. 
 

1. 

The model reduction has left a model in which there is only migration between New York 
and the other states. I worry that result may be driven entirely by the assumed initial 
condition in which the epidemic is only seeded in New York (a dubious assumption). I would 
like to see that the connectivity is robust to changes in the initial condition as I suspect 
allowing for importation into all the considered states will affect this. 
 

2. 

I could not see whether it was the weekly number of cases/deaths or the weekly cumulative 
number of cases/deaths that were being used. The use of cumulative counts is questionable 
if one is modelling the observations as conditionally independent. Having a more explicit 
definition of the likelihood function would probably resolve my misunderstanding. For 
details of the model (before the inclusion of spatial structure) the reader is directed to a 
previous manuscript which seemed to suggest it was not the cumulative counts used, but 
then the cumulative counts are frequently referenced in the text as the data that the model 
is being compared to. 
 

3. 

There are comments regarding the limitations of the work scattered throughout the text. I 
think it would be useful to have a couple of paragraphs towards after the results section 
spelling these out in one place. In particular, the results "are just model predictions and 
should not be taken literally. They should be read as the kind of predictions that can be 
made with suitable modelling." 
 

4. 

In my (very limited) experience with variational Bayes methods, I have found the technique 
to be fiddly. I would like to see more evidence to suggest that the Laplace approximation is 
reasonable in this setting (i.e., that there is sufficient information to have a posterior that is 
approximately Gaussian). Ideally, one would re-run some of the inference using something 
such as MCMC to check that the resulting posterior samples conform to something vaguely 
Gaussian. Are there some sort of diagnostics that could be applied here?

5. 

 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use 
by others?
Partly

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes
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Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.
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Dear Dr. Zarebski, 
 
We would like to thank you for the time and effort you have spent reviewing our 
manuscript. Below are the replies to the comments. We hope these revisions are what you 
had in mind.

The authors should be commended for the substantial efforts put into making this analysis 
reproducible with good documentation and by referencing the commit of the JHU 
repository for the data they used. Although on a fresh installation of Octave version 4.0.0 I 
was not able to reproduce the computation, even after following the Octave specific 
instructions regarding the `importdata` function. The data appeared to be read in 
successfully, but subsequently, an indexing error was hit, and I was not able to debug 
further. Please note that I have not used Octave/MATLAB for several years so there may 
have been something obvious I was missing.

○

We have tested our code with Octave 5.2 (as mentioned in the paper under software 
availability) for which it worked however there was a slight mistake in importdata command 
which is now fixed. OCTAVE 4.0.0 is relatively old hence we cannot guarantee code 
execution due to backward compatibility issues.

The text is very conversational, which is pleasant to read, but which makes it difficult to get 
a strong grasp on the details. I think it would be much easier to understand the work if the 
text was heavily edited for brevity.

○

We have tried to be slightly more concise in our revisions.
The model reduction has left a model in which there is only migration between New York 
and the other states. I worry that result may be driven entirely by the assumed initial 
condition in which the epidemic is only seeded in New York (a dubious assumption). I 
would like to see that the connectivity is robust to changes in the initial condition as I 
suspect allowing for importation into all the considered states will affect this.

○

Initial conditions and other prior assumptions are clearly important aspects. We now try to 
make this clear by adding the following (just above Equation 1.3): 
 
“Here we note that the model reduction identified a model where migration was restricted 
to New York and remaining states. A natural question is whether this reflects the 
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assumption that the epidemic was seeded in New York. This kind of question suggests a 
new model space in which models that have multiple seeds are compared. More generally, 
any initial condition or prior assumption of this sort is part of the generative model and can 
be evaluated using Bayesian model comparison. The application of Bayesian model 
reduction in this setting would require a full model in which the epidemic was seeded in 
multiple regions. Reduced models with then comprise seeds in subsets of States. We do not 
pursue this analysis here but note that this is an interesting question.”

I could not see whether it was the weekly number of cases/deaths or the weekly cumulative 
number of cases/deaths that were being used. The use of cumulative counts is 
questionable if one is modelling the observations as conditionally independent. Having a 
more explicit definition of the likelihood function would probably resolve my 
misunderstanding. For details of the model (before the inclusion of spatial structure) the 
reader is directed to a previous manuscript which seemed to suggest it was not the 
cumulative counts used, but then the cumulative counts are frequently referenced in the 
text as the data that the model is being compared to.

○

Models were fit to daily (not cumulative) deaths and positive tests. We have amended the 
third sentence in the paragraph headed “Dynamic causal modelling” to read “This furnishes a 
4^4 = 256-compartmental model that allows for different combinations of states to generate 
daily case and death data”. We have also amended the legend for Figure 3 to “... explain 
timeseries (daily death and positive test) data …”. Note that in some sections of the paper we 
use cumulative deaths as a measure of overall impact and consider its sensitivity to various 
model parameters. However, the model itself is fit to the daily data.

There are comments regarding the limitations of the work scattered throughout the text. I 
think it would be useful to have a couple of paragraphs towards after the results section 
spelling these out in one place. In particular, the results "are just model predictions and 
should not be taken literally. They should be read as the kind of predictions that can be 
made with suitable modelling."

○

We have included a brief paragraph (in the Conclusions section) phrasing some of the key 
limitations of dynamic causal modelling and variational Bayes: 
 
“We have noted some of the limitations of dynamic causal modelling—and more generally 
variational Bayes—above. Two key limitations are (i) the overconfidence problem and (ii) the 
robustness of the Laplace assumption. The overconfidence problem derives from a failure 
to explicitly account for conditional dependencies among the factors that constitute the 
mean field approximation that defines variational procedures. This is a ubiquitous problem 
in any variational approach that tries to simplify model inversion by breaking the problem 
into a series of marginal posteriors. Generally, one just acknowledges the overconfidence 
problem or, as in this application of dynamic causal modelling, inflate the credible intervals 
such that they encompass the data points. The robustness of the Laplace assumption 
speaks to the discrepancy between the form of the true and approximate posterior that has 
two implications. First, one is committed to unimodal Gaussian approximations to the 
posterior density that might be multimodal. The second implication is that the assumed 
(quadratic) form for the objective function may be violated, creating local minima. The 
solution to these problems generally rests on finessing nonlinearities by using different 
functional forms for the likelihood or priors. For example, using log transforms as in the 
current application. The very existence of local minima and failures of convergence are 
often used as a diagnostic to suggest that the generative model (and implicit formal priors) 
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need attention. As illustrated above, different generative models can then be optimized in 
relation to their free energy.”

In my (very limited) experience with variational Bayes methods, I have found the technique 
to be fiddly. I would like to see more evidence to suggest that the Laplace approximation is 
reasonable in this setting (i.e., that there is sufficient information to have a posterior that 
is approximately Gaussian). Ideally, one would re-run some of the inference using 
something such as MCMC to check that the resulting posterior samples conform to 
something vaguely Gaussian. Are there some sort of diagnostics that could be applied 
here?

○

We have now added (in the Introduction): 
 
“Technically, dynamic causal modelling is the application of variational Bayes to state space 
models of any form; usually, with the objective of inferring the model parameters and 
structure via Bayesian model inversion and reduction, respectively. Generally, variational 
Bayes can be an involved process that requires the specification of conjugate priors and 
variational updates in a model-specific fashion. However, dynamic causal modelling uses a 
generic scheme called Variational Laplace. Variational Laplace can be used for any 
generative model because it dispenses with the usual variational updates and uses a 
gradient descent directly on variational free energy, under the assumption that the 
posterior is a Gaussian. With suitable transformations of parameters – such as log 
transforms – this is usually a mild assumption. This is usually licensed by reference to Monte 
Carlo Markov Chain schemes that relax the Laplace assumption. For state space models of 
the kind used in this report, the Laplace assumption can be taken as appropriate (Chumbley 
et al., 2007; Penny et al., 2003; Sengupta et al., 2015)” 
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