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ABSTRACT

The thesis is divided into two parts. The first is
concerned with the fully developed, two-dimensional, free
surface flow of a viscous, incompressible fluid over a
horizontal surface and down a slope at high Reynolds
number, Re. In both cases we concentrate on mechanisms for
upstream influence through branching from the relevant
basic flow. In the horizontal case it 1is found that
branching can occur and, if the Froude number is
sufficiently 1large, the solution resembles a hydraulic
jump. The branching is studied computationally and
analytically and the theory is used in a comparison with
experiments. For the half-Poiseuille flow on a slope we
consider free interactions for a range of gradients,
identify when separation can occur and, in the limit of
small gradient, find analytic solutions for the flow
forced by simple geometries. The flow on larger slopes is
addressed computationally.

The second part deals with some aspects of boundary
layer transition beneath a transonic free stream (Mach
number, M, close to unity). Again the emphasis is on high
Reynolds number theory and we concentrate on lower branch,
Tollmien-Schlichting disturbances. Two unsteady
interactions appropriate to transonic flow are studied.
The first has Mmaﬂ.~ O(Re‘ug) and is an extension of the
triple deck structure when the free stream reacts
unsteadily. This regime links previously studied subsonic
and supersonic cases. Two-dimensional disturbances are
little altered but there are new, weakly nonlinear,
three-dimensional effects including enhanced growth for
slightly oblique disturbances and novel triad
interactions. The second has M;a—l ~ O(Re'hg) and links
an unsteady, nonlinear free stream, capable of containing
shocks, and a quasi-steady boundary layer. The possibility
of a resonance linkage between shock buffetting and
boundary layer thickening is addressed, being a candidate
for a bypass transition mechanism in transonic flows.
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$1.1 Viscous-INviSCID INTERACTIONS AT HIGH REYNOLDS
NUMBERS.

This thesis covers some aspects of liquid layer flow
and transonic boundary layer transition through the
application of the ideas of viscous-inviscid interaction.
This interaction occurs when the flow is determined by an
interplay of some effects caused by viscosity and others
controlled by inviscid mechanics. The fact that the two
areas considered in this thesis are so widely different is
an indication of the widespread occurrence of these
effects in fluid mechanics. The work on liquid layers is a
study of the mechanism of upstream influence in a rapidly
moving stream and the structure of the feature most
commonly associated with it - the hydraulic jump. Upstream
influence is made possible by an' interaction between
viscous retardation of the layer and the pressure gradient
generated as the layer is caused to thicken. The sections
on transition to turbulence in transonic boundary layers
are centred on the study of the nonlinear development of
Tollmien-Schlichting waves. These are the instability
waves in an incompressible boundary layer with no external
pressure gradient and they rely on an interaction between
viscous effects close to the wall and pressure waves in
the free stream for their growth.

A second idea running through this work is the
asymptotic solution of the governing equations, making use
of the large Reynolds numbers usually associated with
these flows. A flow with a large Reynolds number is
primarily governed by inviscid mechanics, but it is by no
means possible to neglect viscous effects in such cases.
In both of the physical areas studied, these governing
equations are the Navier-Stokes equations of the flow of a
Newtonian fluid. However, these equations, although simple
in principle to derive, are very difficult to solve in
practice, especially at large Reynolds numbers. This is
due to their nonlinearity and problems associated with the
wide variation of scales which arise due to the effects of
viscosity at large Reynolds numbers. The assumption of an
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infinitely large Reynolds number leads to the possibility
of asymptotic solution of the equations. We offer no proof
of the convergence of these asymptotic solutions to a
solution of the Navier-Stokes equations but their history
of success in describing fluid flows at high Reynolds
numbers, from Prandtl’s boundary layer theory onwards,
enables us to have every confidence in the technique.

Hand in hand with the idea of a high Reynolds number
expansion is the so-called structural approaéh to the
solution. This enables the various scales of the motion to
be identified. The flow domain is divided into regions and
the governing equations capturing the dominant physics in
each region are identified. The solution in each area is
then found as an expansion in inverse powers of the
Reynolds number and these solutions are matched across the
boundaries of the regions. This is simply an example of
the application of techniques for the solution of singular
perturbation problems, of which high Reynolds number fluid
flow 1is an exceedingly important example. See, for
example, van Dyke (1964) and Stewartson (1974).

Prandtl’s boundary layer theory is an example of a
high Reynolds number expansion and of the use of matched
asymptotic expansions. This theory is used, for example,
to find the steady flow of a fluid past a body at high
Reynolds numbers. In the main part of the flow the viscous
terms in the Navier-Stokes equations are small and do not
appear, to first order, in the expansion. Near to the
body, in the boundary layer, the normal coordinate is
scaled with the Reynolds number so that viscous effects do
enter at first order. The solution proceeds as follows:
first the exterior, inviscid, solution is found and then
this is used to provide the boundary condition for the
boundary layer flow. This solution then gives the forcing
for the next term in the solution in the free stream. The
solution proceeds in this hierarchical fashion. However
this technique has its deficiencies in that the equations
governing the boundary layer motion do not necessarily
have a solution (Goldstein (1948), Stewartson (1970)). The
method has failed in determining the flow around the body

12



due to its hierarchical structure - the solution is forced
once the inviscid, exterior flow is known and this is
calculated without regard for viscous effects. There is no
mechanism by which viscous effects can act to alter this
inviscid flow, i.e. no scope for a viscous-inviscid
interaction.

The high Reynolds number structure which controls the
viscous-inviscid interaction between the boundary layer
and the external flow is the triple deck structure. See
Stewartson and Williams (1969), Neiland (1969) and
Messiter (1970). It first arose in the study of upstream
influence and boundary layer separation in supersonic flow
and most of the elements of the structure, including its
scales, are given in Lighthill (1953). The basic idea is

-1/4
)

that quite a small pressure perturbation (O(Re as

Re > » in supersonic flow) can act over a relatively small

“8)y to give a large (0(Re'®))

streamwise distance (O(Re
pressure gradient. The short scales of the motion mean
that the viscous effects are confined to a thin sublayer
of the Prandtl boundary layer situated at the wall. The
rest of the boundary layer reacts in an inviscid fashion.
However the small displacement velocity, from the viscous
sublayer response, forces, in the free stream, a
significant adjustment due to the short scales involved.
What is special about the these scalings with the Reynolds
number is that this inviscid motion in the free stream
produces a pressure of the same order as that driving the
flow, namely O(Re ). There is therefore a mechanism for
an interaction between the viscous motions within the
boundary layer and the inviscid flow outside. The essence
of the interaction is to be found in the
pressure-displacement law, P =F(4), relating the
pressure, P, to the (negative) displacement of the
boundary layer, A. The equations governing the triple deck

for steady two-dimensional disturbances are
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Uu, + VU = -P + U, (1.1.1a)

u + Vv, =0, (1.1.1b)
U=v=0atyYy=0, (1.1.1c-4d)
U>Y + A as ¥ - o, (1.1.1e)
P = F(A). (1.1.1f)

Here U and V are the streamwise and normal velocities
respectively and X and Y the streamwise and normal
coordinates. Equations (1.l1.la-e) govern the flow in the
sublayer close to the wall where viscous effects are
important. The pressure-displacement law (1.1.1f) is found
by solving the inviscid free stream equations for the
pressure response to the boundary layer displacement. The
viscous-inviscid interaction captured by these equations
can be clearly seen.

In the case of supersonic flow the
pressure-displacement law is P = -R and this allows a
self-sustaining interaction to occur which ends in the
separation of the boundary layer from the body surface. A
small adverse pressure gradient causes the boundary layer
to thicken and through the pressure-displacement law this
reinforces the adverse pressure gradient and so the
process continues. See Lighthill and Stewartson and
Williams.

These ideas have been extended to channel flows, pipe
flows,  hypersonic flows, boundary layer jets and
supercritical liquid layer flows. See, for example, the
review by Smith (1982). In all these cases the governing
equations seem to be parabolic at first sight allowing no
mechanism for upstream influence. The possibility of a
self-sustaining interaction between viscous and inviscid
effects, however, allows branching and a non-uniqueness of
the solution and so facilitates upstream influence.

In the field of boundary layer stability
viscous-inviscid interaction plays an important rble. This
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is because, as we explain in §4.1, Tollmien-Schlichting
waves, which are the stability waves in a flat plate
boundary layer, are interactive phenomena. Viscous effects
are essential for the instability as is the feedback from
the inviscid reaction to these effects as the free stream
adjusts. The governing equations of Tollmien-Schlichting
waves at high Reynolds numbers are, in fact, the unsteady
version of the triple deck equations (1.1.1). (Simply add
a UT term to the left hand side of (1.l1.la)). See Smith
(1979a&b). The use of structural, high Reynolds number
theory and the nonlinear triple deck in the study of
boundary layer stability and transition in incompressible,
supersonic and hypersonic flows has led to a great
understanding of the mechanisms of transition, although
the mechanism is by no means fully understood. See the
work of Smith (1979a&b), Smith and Burgraff (1985), sSmith
(1986a&b), Smith and Stewart (1987), Smith (1989), Stewart
(1990) and the many references therein.

81.2 A DescripTioN OF THE Work OF THIS THESIS.

This thesis starts with a study of the mechanisms for
upstream influence in fully developed liquid layer flows.
An introduction to liquid layer flows and to the hydraulic
jump, and a description of the work of other authors in
the application of high Reynolds number techniques and
viscous-inviscid interaction in the area is given in §2.1.
The governing equations contain within them the
possibility of viscous-inviscid interaction and the
structure of this interaction is identified in various
limits in §2.6. There is a strong connection with the
triple deck structure allied with the hypersonic
pressure-displacement law, P = -A. This similarity was
first identified in the work of Gajjar and Smith (1983).
The work of chapter 2 is, in fact, an extension of the
work of Gajjar (1983), Gajjar and Smith (1983), and
Brotherton-Ratcliffe (1986) on liquid layer flows to cover
motions over the long length scale X ~ O(Re). On this
scale viscous effects are important throughout the depth

15



of the layer and as a result the viscous-inviscid
interaction is strongly influenced by the non-parallelism
and simultaneous development of the basic flow. In some
limits, for example that of large Froude number, the form
of the interaction resembles the hydraulic jump. Section
2.7 is a comparison of the experiments of Craik, Latham,
Fawkes and Gribbon (1981) on circular hydraulic jumps,
formed when a vertical column of water falls onto a flat
plate, with the theoretical results of the chapter. It is
complementary to a similar comparison made by
Brotherton-Ratcliffe.

Chapter three considers an extension of the work of
chapter two to the half-Poiseuille flow of liquid layers
down a favourable gradient. The free interaction is
considered first, in §§3.2-3.5 and its structure on a
range of gradients investigated. It is found to take
different forms depending on the slope. For small slopes
it is governed primarily by lubrication theory, but on
larger slopes it takes on the structure of a hydraulic
jump and separation occurs. The downstream asymptote in
both cases has a horizontal free surface. Some of the
effects of surface tension are also considered.

The limit of small gradient is paid special attention
in §3.6. It is found that the relatively simple governing
equation, derived using lubrication theory, yields
solutions showing viscous-inviscid interaction and many of
the features of interactions seen in more complicated
flows. Numerical solution of the interactions forced by
obstacles are presented in §3.7. On sufficiently large
slopes and with severe obstacles the numerical solutions
exhibit a hydraulic jump and separation upstream of the
obstacle.

The second part of this thesis 1is concerned with
extending the work on boundary layer transition, mentioned
in §1.1, to the transonic regime. An introduction to the
use of high Reynolds number theory in transition modelling
is given in §4.1 and the introductions to Chapters 5 and 6
contain a summary of certain aspects of boundary layer
transition. The major difference between the subsonic or

16



supersonic and the transonic regime lies in the closeness
of the speed of the Tollmien-Schlichting waves to the
speed at which the free stream is able to adjust to
perturbations within the boundary layer at transonic
speeds. This leads to two significant regimes. In the
first, covered by chapters 4 to 6, the free stream
equations, as well as the boundary layer equations, are
unsteady. This occurs when the Mach number, M  is such
that |Mz—1| ~ 0(Re™™®) as Re » w. The second regime,
discussed in Chapter 7, has |M2—1| ~ 0(Re™"®) and is of
relevance to the unsteady interaction of a shock and a
boundary layer.

Chapter 4 presents a derivation of the equations and
scales governing Tollmien-Schlichting waves in the first
regime. The properties of the linearised form of these
equations are then considered in §4.3. This study is
successful in illustrating the fate of the unstable
Tollmien-Schlichting disturbances in a transonic flow as
the Mach number increases and the flow becomes more
supersonic - in supersonic flow it is known that all
disturbances, unless sufficiently oblique, are stable
(Ryzhov and Zhuk (1980)).

Chapter 5 considers a weakly nonlinear solution of
these equations and effectively extends the work of Smith
and Burgraff (1985) on some nonlinear aspects of
incompressible boundary layer transition to transonic
flows. The nonlinear growth of the disturbance is followed
through a weakly nonlinear interaction to an essentially
large-amplitude-inviscid stage (although with bursts of
vorticity possible from a viscous sublayer at the wall).
An important result in this section is that, in the weakly
nonlinear stage, a two-dimensional wavepacket is
susceptible to a rapidly growing sideband instability in
the presence of a small degree of spanwise warping.
Finally we consider the so-called Euler stage of
transition in transonic flow.

The last two chapters, chapters 6 and 7, are shorter
than the others and present results of work still in
progress. In chapter 6 we consider the extension of the
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work of Smith and Stewart (1987) on subharmonic resonance
and triad interaction in boundary layer transition to
transonic flows. Chapter 7 is concerned with flows in the
second transonic regime. In it we consider the possibility
of a self-sustained shock / boundary layer interaction, an
essentially nonlinear process, being a mechanism for
bypass transition in transonic flow.

18



CHAPTER Two

LIQUID LAYER FLOWS ON A HORIZONTAL PLATE.
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§2.1 INTRODUCTION AND THE GOVERNING EQUATIONS.

Liquid layer flows are commonly observed phenomena.
They may be seen in nature, in rivers, weirs and
spillways, for example. They are also widely used in
industrial processes, where the liquid is less likely to
be water. Common uses are in mixing processes 1in
industrial chemistry or in the manufacture of films.

In chapters 2 and 3 of this thesis we consider,
primarily, the steady two-dimensional flow of a fully
developed liquid layer. The emphasis is on the study of
the viscous forces at work in the layer and their
interaction with the position of the free surface. We hope
to develop a description of the mechanism for upstream
influence in these flows based on these ideas. The steady
hydraulic jump is the phenomenon commonly associated with
upstream influence in liquid layer flows, and it can be
seen in its many forms in situations ranging from rivers
to the kitchen sink. The form of the jump varies with the
Reynolds number and the Froude number of the oncoming
layer. It is often turbulent or unsteady, with the energy
loss required at the jump being effected by the scale
reduction and viscous dissipation in the turbulence, or
alternatively carried away in a wave train. See the theory
of Benjamin and Lighthill (1954). A description of the
possible forms of the jump can be found in Ishigai,
Nakanishi, Mizumo and Imamura (1977). Although global
considerations of mass and momentum can give useful
results (for example Lamb (1932) or Lighthill (1978)), the
internal structure of the jump remains largely
unexplained. Progress has been made by the authors
mentioned below, however, by considering the effects of
viscosity which, through interaction with the free
surface, can have a surprisingly large effect on the flow
structure. The jump is assumed to be laminar and steady,
with the viscous dissipation, therefore, being responsible
for the required energy loss.

We concentrate here on fully developed flows on a
horizontal surface (where they can be sensibly defined -
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see later) in order to complement the work in this area of
Gajjar and Smith (1983), Gajjar (1983) and
Brotherton-Ratcliffe (1986). These authors study many
aspects of steady liquid layer flow and of the stability
of such flows. Their emphasis, however, is on a flow with
a uniform velocity profile. Their results, as far as we
are concerned, can be summarised as follows. If the
velocity profile of the layer is uniform, allied with a
Blasius boundary layer at the solid surface, then upstream
influence is possible even if the Froude number is greater
than unity. This supercritical upstream influence has its
origin in the viscous-inviscid interaction between the
boundary layer and the free surface, and is governed by
the triple deck equations with the hypersonic
pressure-displacement 1law, P = -A. These hold over a
length scale L where h® << L << Reh'. Here h" is the depth
of the layer and Re the Reynolds number associated with
the flow. The effects of surface tension are neglected.
The equations have a solution with a downstream form in
which the height of the free surface increases like X',
where m = 2(vV7 - 2)/3 =~ 0.43050 as X -» », and this blunt
shape is reminiscent of the hydraulic jump studied in
experiments performed by Craik, Latham, Fawkes and Gribbon
(1981). Beneath this growing surface is a long separation
bubble, with reattachment occurring far downstream, and
the velocity profile above the bubble still uniform. The
steady experimental jumps have Reynolds and Froude numbers
both of the order of 100, and the jumps are typical of
those one may view in an ordinary sink if the flow from
the tap is not too strong. A comparison of the theory with
these experiments is presented by Brotherton-Ratcliffe and
gives good qualitative agreement, predicting both the
change in length of the separation bubble and the jump
strength with jump position, although the prediction of
the strength itself is inaccurate, being too small. He
points out, however, that a more suitable theory would be
one in which the velocity profile could be taken as being
fully developed, with the vorticity spread across the
layer. Further evidence for the importance of fully
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developed flow and the scale L ~kfRe, which would allow
viscous effects to be important across the depth of the
layer, comes from Gajjar who studies the adjustment of
fully developed flow on a slope in preparation for a small
increase 1in slope downstream. The 1length scale he
considers (O(Re“7)) is akin to that used in the studies
of Smith (1976) on fully developed channel flow, in which
the curvature of the streamlines as well as the free
surface position interacts with viscous effects. Gajjar
concludes that the return to Poiseuille flow downstream
must take place on a longer scale. We therefore
concentrate on interactions which take place on a length
scale in which viscosity acts right across the layer and
its direct effects are not confined to the wall region as
in the cases described above.

On a downward sloping surface, considered in chapter
3, the fully developed layer consists of half-Poiseuille
flow of a suitable thickness, but on a horizontal surface
the lack of any gravitational force to counter viscous
effects makes a fully developed flow difficult to define.
Indeed it is clear that, for a finite Froude number, the
equations derived and presented below have no solution as
X > o. The O(Re) scale is precisely that over which the
development occurs, and we must therefore view the
velocity profile and depth at a particular x-station to be
in the process of developing due to this viscous
retardation, whether or not it is also adjusting for any
downstream boundary condition. This leads to important
differences between the flow on the horizontal and that on
a slope, however shallow. An exception is when the Froude
number is large. As described in §2.2.2, the flow then
develops into one described by Watson's (1964) solution
with the depth increasing 1linearly and the velocity
profile being governed by a balance between inertial and
viscous forces. This may then be taken to be a fully
developed flow and is, in fact, the basic flow assumed in
the theory which is presented in §2.6 and describes the
hydraulic jump.

The physical set-up of the problem is illustrated in
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Figure 2.1.1. We consider two-dimensional motions. Let
X" =0 be the station at which we are considering the
flow, and let the depth and velocity profile here be h"
and U*(y*/h*) respectively. Here y* is the vertical
coordinate. The volume flux per unit width, Q, carried in
the layer, is independent of X’, and if the kinematic
viscosity of the fluid is v we can define a Reynolds
number for the flow as Q/v. A typical velocity at the
particular x*—station is @ = Q/h* and a representative
pressure is pﬁ'z, where p is the fluid density. We take h
as a typical length scale. If we nondimensionalise the
Navier-Stokes equations with respect to these values we
find

- _ _ R _1 o
UU; + VUY = -Pg + Re (UYY + UXX)'
-~ -~ A - _ _ 1 A R
UX+VVy' P s + Re (Vyy+VXX)’
U}*{ + VY =0,

Here y =1 + m(X) = h(X) is the unknown position of the
free surface. We define s to be the inverse Froude number
of the problem, gh’a/Qz, where g is the acceleration due
to gravity. If we neglect the stresses in the air above
the layer and assume its density to be zero we can take
the pressure at the free surface to be zero. The
conditions at the free surface, including the effects of
surface tension, are then
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(Ug =¥y ) mR) +1/2 (U + V) (1-mg®) =0,

Y
P = 2 — [ U}*{‘nxz - (U +\7)~{)n)‘~( + V ] -
Re(1 + n(X)?) Y Y
Ts %%
pgh*z ( 1 + nf{Z ) 3/2

Here T 1is the coefficient of surface tension of the
fluid/air interface. We now assume that the length scale
of the adjustment of the layer is long compared with its
depth and make the boundary layer approximation. More
specifically we scale X with Re (X = Rex) and ¥V with Re”
(7 = Re”'V) and let Re »  to get

UUX + VUy = —PX + Uyy,

P +s=0,
y
Ux + V; =0,
1+7
udy = 1,

)
Vv=0aty=0,

U =
[% =0 at y = 1+n7,
P+ Mex = 0 at y = 1+7.

See Figure (2.1.2). This assumes that surface tension
effects are strong enough to ensure that 3r==Ts/pgh*2Re2
is 0(1]) as Re » w. If this is not the case, then the
condition at the free surface is simply P = 0. If we now
write

P =-s(y-1) + p,

and neglect surface tension, we are led to the system
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UUx + VUy = -p, * Uyy, (2.1.1a)

U, +V =0, (2.1.1b)

1+7M
I udy = 1, (2.1.1c)

0

U=V=0aty=0, (2.1.14)
Uy =0 at y = 1+n, (2.1.1e)
p = smn, (2.1.1f)
U = Uo(y), n=0at x=0. (2.2.1q9)

These are the equations studied in chapter 2.

We can scale the Froude number out of the equations,
leaving it to occur only in the initial conditions at
x = 0. The scalings

30 1/35

1/3~ -1/3~ -1/3~ 2
U,s V]

- /3~ 1/
[lelnlpIUIV] ~ [S X,s Y,sS n,s P.,s

effectively replace s by unity in equation 2.1.1f, which
becomes

p =1, (2.1.2a)
and the conditions at x = 0 become
i =su(s"%) and y € (0,R) h = s"°. (2.1.2b)

In addition, 1 + m in (2.1.1c&e) becomes h + 7.

The next two sections of chapter 2 are initial
analytic investigations of these equations, and study
their behaviour as s >0, s> o and x » 0+. This enables
important scales to be identified. Section 2.4 details a
numerical solution and reveals more information about the
properties of the interaction. In §2.6 the numerical
results are explained in terms of the interaction and a
non-uniqueness in the solution of the system 2.1.1(a-g9)
which arises from it. This section also presents
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asymptotic structures which govern the non-uniqueness in
various limits. Finally a comparison, complementary to
that of Brotherton-Ratcliffe, with the experiments of
Craik et al. is made and the results support the proposal
that, in the regime of their experiments, the hydraulic
jump can be described in terms of a viscous-inviscid
interaction in a steady, laminar and fully developed flow.

§2.2 EXTREMES OF THE FROUDE NUMEBER, s-l.

§2.2.1 Large s and the lubrication theory solution.

The limit s » » corresponds to a small Froude number
and to gravity exerting a comparatively strong influence.
It takes a relatively large pressure change to raise or
lower the free surface and the effects associated with
mass continuity are therefore of a higher order. The
change in position of the free surface h is then small,
O(sqd, for some distance. We expect a half-Poiseuille
flow , U = —pX(yz/Z-hy), to develop on an 0O(1l) scale in x
under what is, in effect, a locally rigid free surface.
This flow requires a pressure p = —3x/h3 to drive it. Over
a long O(s) length scale, however, where x = sX say, the
change in depth becomes 0(1) as the pressure drops. This
slow change in depth provides the pressure to drive the
Poiseuille flow. Hence lubrication theory is appropriate.
Over the long length scale equations (2.1.1) become

-1 R
sT(UU, + VU ) = -sTp, + U,

U, +V, =0,

h
J‘Udy =1,
0
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Therefore for large s we find
U =h. (2.2.1)
Integrating this equation and applying the boundary

conditions and the condition that the total mass flux is
unity leads to

h = -3/h% (2.2.2)

with the solution
h(X) = (1-12x)%*, (2.2.3)
which becomes singular, or '"chokes'", as X -» 1/12-. This

solution is therefore not valid where x ~ s/12. If we
write X = 1/12 - X, then the terms included in (2.2.1) are
O(hx)~ O(Xﬁy4), whilst those neglected, the inertial
terms, are O(s'lUUx) ~ 0(s7'%x7¥3y .
'Us), inertial effects enter to prevent the
choking above and with the scalings (U,y.p] ~

[sh%,s'“g,sae] the full equations are reintroduced with
s entering only through the scalings for this new

problem, as in equations (2.l1l.la-e, 2.1.2a-b). The

So here, in a zone of
x-extent O(s

upstream condition for this problem is that of

half-Poiseuille flow as % - -», where x = s/12 + s °%.

The depth varies as (-12%)%*.

§2.2.2 Small s and Watson’s solution.

At the other extreme, small values of s correspond to
an inertia-viscosity ©balance with pressure effects
secondary. Equations (2.l1.la-g) with s =0 are those
solved by Watson (1964) and they predict a linear
thickening of the layer, h ~ x, with U~ 1/x, as X - .
Thus the inertial and viscous terms are O(l/xa) whereas

the neglected pressure gradient is O(s). This solution
fails therefore when X ~ O(sq/a). The rescaling
[u,y,pl ~ [s3,s7'3, 5% yields, again, the full set

(2.1.1a-e, 2.1.2a-b), with the Froude number entering only
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through the scalings.

So both the extremes of s described above lead to the
full system eventually, downstream. This emphasises the
need for tackling this full system, which is in general a
numerical task. This is done is §2.4 below.

§2.3 SoLuTIoON FOR SMALL X.

§2.3.1 The limit x - 0.
Further features of interest are brought out by an
expansion of the solution for a general starting velocity

profile, U, say, as x - 0+.
We assume that the profile at x = 0 has the form

2 3
g, ~ oy t+ay +ay + ... a5 7> 0,
and that s and the constants «, are 0(1l), with o > 0. The
expansion has the following form

P~px+ pzx”qlnx + p?».:;r"”'3 + ..., (2.3.1a)

Y31nx + w3x4’3+ e, (2.3.1b)

np~wo+w1x+z//2x
across most of the flow, where U = r//y, Uo = woy and
¥(0) =0, ¥(1 + m) = 1.

It is found that wh,~ O(l) as y->0. As a result
there is a boundary layer of thickness x'’? at the wall.
This provides the balance between viscous effects,
O(U/y2)~ O(x/yz), and inertial effects, O(%Wwwx)
~ O(y), required to reduce the slip velocity to zero at
the wall. Here the solution expands as

Y -~ a1§2x2/3/2 +x £(£) + x*1nx £,(£)+

x*3 £(E)+ ..., (2.3.2)

1/3

where £ = y/x is the appropriate similarity variable.

A viscous layer at the free surface, y =1 + n(x) =
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1 + p(x)/s, is also necessary but it is passive to our
order of working. The boundary conditions to be applied
there, namely ¢y =1 and y’'’ =0, with ‘ denoting
differentiation with respect to vy, reduce, after

linearisation about 7n(x) = 0, to

¥ (1) = -pU(1)/s, 1i=1,2,3, (2.3.3a)

v,''(1) = -p,U " (1)/s, i=1,2,3. (2.3.3Db)

Substitution of the above expansion (2.3.l1a-b) into

equations (2.1.la-f) gives, in the main part of the flow

. 1/3 1/3
where y ~ 0(1), at successive orders 1, x "lnx, x 7,

AR AR WA
W, v, - YW, = P,
U U, - Wy = -p,.

These have solutions, using (2.3.3a-b),
Ull_p
v, = U [.;dy -, (2.3.4a)

v =u | |[—9y _ (2.3.4b)

0n IW
\V]

(2.3.4c)

0 |©
w

In the wall layer the boundary conditions as £ - o
are such that a match with the solutions (2.3.4a-c) is
achieved. We find, on substitution of (2.3.2) into
(2.1.1la-g), that the governing equations and boundary
conditions take the form
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1177 2 7
£, + €3 f

- alg f1 + oa f1 -p = 0,

£,(0) = £7(0) = 0,

3
f1 ~ a2£ /3 + (pl-—Zaz)/a1 as £ - o,

(2.3.5a)

1117

2 77z 7 _
f2 + alg /3 f2 - 4a1§/3 f2 + 4a1/3 f2 - 4p2/3 =0,

£,(0) = £, (0) = 0,

fz - 2a3§/a1 + pz/a1 as £ > o,

(2.3.5Db)

r 77

2 ’
f3 + alg /3 f3

4

- 40 £/3 £ + 40 /3 £ - 4p /3 =
p, - a(£,-§ £, ),
£,(0) = £/(0) = 0,
£, - /4 £ + 6a/a £Ing + £(aK -ap {K-s'}) + p /o,

as &> »,
(2.3.5¢)

o ,, 0
where K, = :[:UO / Uo2 dy, K = {-1/ Uo2 dy and ][ denotes
1 1

the finite part of the integral.
The solution to the first of these equations is

— 3 —-—
f1 = plg /6, p, = Zaz.

This solution corresponds simply to higher terms of the
starting flow near the wall and to the pressure, p,X,
needed to drive this basic flow. The solutions at the next
order are

20 g u -y 1/3
£ 2 2% J{e U(v) _ 98 }dv, o = 27Ba3[g] ’
2 273 4/3 2

a I 0 v v 1

11
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where u = «£°/9, B =T(2/3)/I(1/3), U is the confluent
hypergeometric function, u(7/3,5/3,u) (Abramowitz &
Stegun, Chapter 13) and

00
-V
. =J{e U(v) _ 9B }dv'
1 2/3 4/3
o v 4v

Further, f3 is given by

u u
-v -v
£ = Aul/aj_e A(V)gqv + Bul/aj—e UV gy + cu'® + p /o,

V2 /3 273
1 1 v
da (a 1/3 u -y v
+ u'”? I:__3 [._1] :H J_———e ’:fZ)J e "UPw™ 2awav
BI, 9 . v 0
u -y \'4
[e_U(L)J e™u M w>dwdv },
g2/ 3
1 )

and
p, = a127BB/4,

where A, B, C are constants to be found and # is
M(7/3,5/3,u), a confluent hypergeometric  function

(Abramowitz and Stegun, Chapter 13).

§2.3.2 The case of half-Poiseuille flow and discussion.

We can calculate the <coefficients A, B, C in
particular cases from the boundary conditions imposed on
f3, (2.3.5c), but the results are of relatively little
interest. Instead we concentrate on the case of a flow
with @, =0, e.g. Poiseuille flow. In this case we lose
the logarithmic terms proportional to x*?1nx and find

_ 278 sz 973 _ _
P, =7 ¢« T1 K, = 2a,( K, 1/8) |+

4p
f — 3 U‘1/:3J‘
27Ba1

u

2/3

e”’'u 98 av
v 4V4/3

0

In the case of Poiseuille flow, which has « = 3,
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o, = -3/2 and K2 = 2a2K1, this reduces to

243 B 31’3x4/3
4 I1 s !

P~ -3 (2.3.6a)

n ~ p/s. (2.3.6Db)

We note that as s - o this behaviour mirrors the
solution (2.2.3) for large s with the pressure
predominantly being that needed to drive the starting
flow, but that, as s -» 0, the solution (2.3.6a) becomes
invalid when x ~ 0(s3). Also as @ >, p, -~ O(Ot15/3), and
so for large skin friction the expansion fails when
X -~ O(a;ﬁ). We return to this later, in §2.6, when we
consider possible branching of the solution to equations
(2.1.1a-g), and matters of upstream influence in these,
seemingly parabolic, equations.

It seems clear that there are two processes in the
solution. Firstly there is the pressure needed to drive
the starting flow. This must come from an alteration in
the depth of the layer, since the wall is horizontal.
Secondly there is the response of the flow to this change
in depth. More precisely, there is a pressure term, p.x,
driving the basic flow, overcoming viscous resistance and
this causes a change in the position of the free surface
phx/s. The inertial response in the main part of the
stream interacts with this change in depth but also
provokes a viscous boundary layer giving rise to a
pressure ;Exbg. The failure of the expansion occurs when
pz{xd'/3 alters the position of the free surface to the same
order as does px and we lose the sequential form of the
expansion, originally dominated by the pressure change
needed to provide the flow.

To investigate the downstream development of these
initial stages of the flow a numerical solution of the
full equations is required. This is performed in the next
section.
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§2.4 NUMERICAL SoLuTioN OF THE FREE INTERACTION PROBLEM.

§2.4.1 The numerical method.

We have seen in §2.2 that the full system emerges,
eventually, downstream in the 1limits of both large and
small s and in §2.3 that the nature of the interaction
between the change in position of the free surface and the

response of the flow changes as s decreases. This section
aims to shed more light on these effects with a numerical
solution of the interaction governed by (2.1.la-g).

Initially we treat the system as parabolic in x,
although part of the overall purpose of this investigation
and of the calculations is to reveal the nature of the
mechanisms for upstream influence in the equations. Here,
then, we consider the general so-called "free interaction"
problem, rather than one forced by a particular downstream
boundary condition which must, instead, be accommodated by
an elliptic method (see §3.7). Given this assumption the
solution is simply obtained by a marching scheme in x. The
solution is marched downstream from an initial profile
using a second order accurate Crank-Nicholson scheme.

In order to deal with the problem that the position
of the free surface, y=1 + 7(x), is an unknown, the

equations are rewritten by introducing

g€=(y- £)/(1 +E),

where E=m - £ and y = £(x) is the position of the plate,
obstacle or slope over which the stream is flowing. Here §
takes values only in the range [0,1], with the free
surface identified with & = 1. We also use a modified
stream function, Y(£), such that

¥
1+E

-~ -

=V'U[€Ex+fx],

giving
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b U U
uu,_ - Vule —p. + —L& (2.4.1a)

U= —>, (2.4.1Db)

YW=U=0at £€=0, U.=0, y=1at £€=1, (2.4.1c-f)
p = s7. (2.4.19)

Although the integrations in this section are all on
a horizontal surface (f = 0), £ is introduced here since
the same numerical scheme is used in §3.2 to solve for the
flow down a slope (f = -ax). Also, the equations in the
two <cases are identical when we acknowledge the
ellipticity of the problem, as we do in §3.7, and
investigate the forced interaction problem of the flow
over an obstacle on an inclined plate. It is noted that in
the above rewriting we have made use of a Prandtl shift in
Y. In chapter 3 we change notation slightly and a further
Prandtl shift is made allowing us to define the case f = 0
to be flow down a uniform slope.

System (2.4.la-g) constitutes a third order system
for yY(x,€) in €. The fourth boundary condition in £
enables us to determine the unknown E and so the depth of
the layer, which, of course, provides the pressure
gradient driving the flow. These equations are written in

finite difference form as

Uit Y| (Y™ Yias)]
X

2 A

wl,.]— wi—l,J Ul,j+1- Ui, j-1+ Ui—l,j— Ui—l,j-l + pi—pi-l
Ax 4Az Ax

_ Ui,J+1_ 2U1,5+ Ui,j-1+ U1-1,j+1— 2Ui-1,j+ Ui—l,j—l
2AZ°

=0, j=2,J-1, (2.4.2a)
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U +U U, -
[ 1,3 njﬂ] _ [ i,] u)ﬂ] = 0,j=2,J, (2.4.2b)
2 z

A
wi,J = 1' wi’1 = 0' Ul,l = 01 (2-4.2c-e)
3U19J_ 4U1,J—1+ UI,J_Z = 0’ (2-4-2f)

Az = AE(1 + (p+ p, )/s - (£+ £_)/2).

Here A£ = 1/(J-1), where J is the number of points used in
y. The method of solution and of finding the unknown E,
which appears in the above as p/s - f, is as follows. If
the solution is known at x-station i-1, the above 2J
equations are solved for the 2J unknowns, &hj, U,
j=1,J. The nonlinearity is dealt with by using Newton
iteration until successive iterates differ by less than a
specified amount, typically 10™°. This takes only 5 or 6
iterations using as an initial guess the solution at
x-station i-1. For each iteration a single (2J-1)x(2J-1)
matrix, a, is derived from the above system without
equation (2.4.2f). This is inverted for the iterates
a&hj, aUhj,j=1, J. The matrix a has a single band about
the diagonal and so this is easily performed by Gaussian
elimination. The term in the equations arising through the
unknown pressure iterate, api, is considered as part of
the inhomogenous term. Thus if g is the vector made up of
B&hj’ 8U, ,, we have

[ls

g = b+dp ¢,

where b, ¢ are vectors. The solution is written in the
form

g = g_+6p _@

The inversion of a recursively defines aj, Bj, given

that equations (2.4.24-e) imply o = 31 =a, = Bz = 0.
J’! J-1"! BJ—l 4 J-27 BJ—Z !

the neglected boundary condition (2.4.2f) and f£fix Spi.

Hence all the iterates can be calculated. This method is

Finally, knowing a, B o o we 1impose
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commonly used in computing interactive boundary layers
where the pressure is unknown and is constant throughout
the boundary layer depth. See Smith (1974).

§2.4.2 Results and discussion.

For the case of liquid layer flow along a horizontal
surface we use f = 0. Usually the initial condition used
is half-Poiseuille flow, with depth 1 at x = 0. A typical
numerical solution in this case is shown in Figure 2.4.1.
This has s =2, Ax = 10°, Af€ = 1072, and the solution
remains quantitatively similar when finer grids are used.
The most notable feature is that it ends, at some finite
¥, in a singularity in which the skin friction, Uy(O), and
pressure gradient become infinite although the pressure
itself remains finite. The structure of the solution in
the neighbourhood of the singularity is investigated in
§2.5. The singularity is attained remarkably soon
(x = 0.0373), although it is postponed for larger s and
hastened for smaller s. Figure 2.4.2 shows solutions for a
variety of values of s. The singularity itself seems to
have the same qualitative form for all s.

For values of s numerically of the order of 0.01 a
very small value of Ax (104ﬂ is needed to advance the
solution, which still attains the singular form described
above. If larger values of Ax are used (104) the
solution develops into one similar to Watson’s solution
with the depth' growing linearly. See Figure 2.4.3.
Watson’s solution is equivalent to setting s = 0, and
suppressing the interaction. However as the depth reaches
a certain value, further downstream, the method fails. We
can presume that, as explained in §2.2, at this downstream
station the depth has increased sufficiently to reinstate
the pressure term into the equations and allow the
interaction. An explanation of this small s behaviour is
offered below in §2.6.5 in terms, suggested by §2.3, of
the interactive development becoming rapid as s decreases
and the interaction being suppressed if we choose a
sufficiently coarse discretisation in x.

In addition to half-Poiseuille starting flow, smooth
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initial profiles with the vorticity confined to near the
wall and with a large skin friction were followed in their
downstream development. If the skin friction is not too
large these develop initially with the vorticity diffusing
from the wall, the skin friction dropping, and the depth
decreasing. Then, however, they attain the same singular
form as do the half-Poiseuille profiles. For a larger
initial skin friction similar behaviour to that for small
s is observed, with the method unable to advance the
solution by a single x-station. This is true whatever the
value of s. Again we offer an explanation of this below.

82.5 THE STRUCTURE OF THE EXPANSIVE SINGULARITY.

The singularity revealed by the free interaction
calculations of §2.4 is found to have the structure
described below, which is essentially that of the
expansive singularity in hypersonic flow; see Brown,
Stewartson and Williams (1975), Gajjar and Smith (1983).
This similarity is due to the relationship between the
pressure-displacement law in hypersonic interactions
(P = -A), and the corresponding law in liquid layer flow
(p = sm). We follow the analysis of Brown, Stewartson and
Williams (BSW) who consider the singularity in the
hypersonic case and expand the solution as x - 0-, where
we have assumed the singularity to occur at x = 0 after a
shift of origin.

For y ~ 0(1), viscous effects are small and the
solution for the stream function here is

a

v(y) ~ ¥y (y) + A(x) U (y) + p(x) U, Julz dy, (2.5.1)

y O

where wo is the stream function at x = 0. This develops
from the initial profile and contains information about
the history of the flow, so we expect it to depend on s.
Here a is the depth of the liquid layer at x = 0 and
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Uo = wa‘

with p corresponding to the pressure, and A the negative
displacement suffered by the main part of the flow

The unknowns A and p are O(1l) functions of x,

relative to its position at x = 0. The free surface in the
vicinity of x = 0 is given by v = a + p/s.

As y-~>0 (2.5.1) predicts a non-zero vertical
velocity at the wall unless Uo-3Ay“?/2 as y - 0, where
A is to be determined. We therefore deduce that the
velocity must develop into a profile with this form. In

this case

1/2 1/2

¥~ Ay %+ A(x) 3ay?/2 + p(x) [- 2 y"21ny + K Y“Z],

3

as y-~>0, (2.5.2)

« - |2lna, 31[ L 4 _|at =3_"][1_2dt.
oz ) lu ) et 2 Ju

[0 I ¢]

To smooth out this non-analytic behaviour as y - 0
the solution requires a boundary layer near y = 0.

Inertial effects here will be of order lf/x ~ y/x and the

172 _2 -3/2

viscous terms of order y 'y =y A Dbalance is

possible, therefore, which brings in inertial, viscous and

pressure effects near the wall if y ~ |X|ZG, Yy ~ |X|3/5

-3/5

and p -~ | x| . Accordingly we substitute a form

w . oc|x|3/5f(ay/|x|2/5), pX . 2(x4|X|3/5/5,

as x » 0-, into equations (2.1.l1la-f). The constant « is
to be determined but is related to A. This gives the

following for the function £, written in terms of the

similarity variable ¢ = ay/|x|*®,

+1/5 ( £,2+2 ) =0,

£ ¢

- 3/5 f f

444 ¢C

£(0) =0, £.(0)=0, f£-~6¢¥ (s

for some Go. A solution to this equation exists, (BSW),
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with fCC(O) = 1.398 and an asymptote as { -» o of

f o GO(C3/2 _ 2/3C1/21n(C)) + Cocl/2

G, = 1.380, c, = -1.703.

This allows us to fix a in terms of A, by matching the
term proportional to C3/2 to the solution (2.5.2). We find
o = (A/Go)aq. Matching the rest of the two solutions

gives

2
p(x) 3a 3 2 ) U, 15 | |=x]|

6 a
A(X) - 26 [Co - gln o - 3_a{—]:dt - -4—ln[ 1 ]:l. (2.5.3)

However the boundary condition at the free surface,
Y(a+p/s) = 1, applied by linearising (2.5.1) about y = a,
leads to

A(x) _ _ _1

p(x) s

The matching is complete and A and a found, but for
the slow dependence on 1n(1/|x|) in (2.5.3). This mismatch
stems from the large-{ behaviour of the boundary layer
equation, in which the second biggest term at infinity is
not the "displacement" term C%Cl/z, but the
logarithmically larger term forced by the dominant
(&Q-like behaviour of the solution. As in BSW this
mismatch can be reduced by further refinement of the
singularity structure, including an inviscid buffer region
between the boundary 1layer and the free stream. Its
thickness is 0(|x|2/5/{ln(1/|x|)}1/5), and it adjusts the
size of the pressure gradient to be
o(|x|™®1n(1/|x|)*®). However this still does not
determine A for similar reasons to those above, there
being a mismatch now of O(ln(ln(1/|x|)), and further
buffer regions are implied. This mismatch continues as
these further buffer regions are included and so, as
discussed by BSW, it becomes impossible to determine the
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actual coefficients of the expansion, a« and A, although
the structure of the singularity is clear. We have the
predictions

4/5

P, ~ Plx|7®In(1/|x )L, (|x]),

T ~ T|x|®1n(1/|x])*"

L2(|x|).

Here t is the skin friction at the wall, and L, and L, are
functions which vary more slowly than any power of Ilnx.
The values of P and T remain unknown constants.

Figure 2.5.1 shows a comparison of this singularity
structure with the numerical solutions of §2.4. Figure
2.5.1la shows the velocity profiles (in terms of the £ of
§2.4), and clearly shows the development of a boundary
layer near the wall. Figures 2.5.1b and 2.5.1c show tﬁ,
), (-p,) " *(1n(-p, )"’ against |x|
in the neighbourhood of the singularity which occurs at
x = 0.0373 in this case in which s = 2. As can be seen the
curves are approximately straight lines, as they should
be, but for the slow logarithmic behaviour, and this
behaviour is improved in the cases where some of the
effects of the buffer zone are included. Therefore we have
some degree of confidence that the structure outlined
above 1is a correct description of the singularity

t™°(1nt)® and (-p,

experienced by the numerical computations.

§82.6 THE BRANCHING SOLUTIONS.

82.6.1 Introduction.

This section aims to explain the results of the
computations of §2.4 in terms of solutions which can
branch from the basic flow. These are initially small but
grow in x and when nonlinear effects begin to enter they
can alter the basic flow. The solutions found in §2.2 do
not take this branching into account, and therefore the
solutions which we calculate are not those predicted in
§2.2.
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Solutions branching from a parallel oncoming flow are
commonly used to explain the mechanism for upstream
influence in many flows, such as supercritical 1liquid
layers (Gajjar and Smith (1983)), supersonic boundary
layer flow (Stewartson and Williams (1969), Lighthill
(1953)), and pipe and channel flows (Smith (1976)), where
the governing equations at first seem parabolic. The
branching solutions render them elliptic enabling the flow
to adjust for any downstream boundary conditions. The
non-uniqueness in flows of this type has its origin in the
possibility of a viscous-inviscid interaction in the flow.
In the case of 1liquid layers the inviscid mechanism is
that of pressure changes due to the hydrostatic effects of
raising or lowering the free surface. Viscous effects
enter as they affect the flow beneath the surface as it
adjusts to these alterations. This, 1in turn, causes a
change in the position of the free surface and so the
interaction continues. In the <case of flow over a
horizontal surface the flow is not parallel, since the
layer thins due to viscous retardation. This
non-parallelism has an effect on the form of the branching
solutions.

In the case of small s or large skin friction the
failure of our numerical method, which assumes the
equations are parabolic, and can thus march downstream in
a simple fashion, may well be due to the growth rate of
these departures being rapid in these limiting cases. The
method is unable to pick out one of the many rapidly
growing solutions and this non-uniqueness of possible
solutions causes it to fail. Increasing the size of the
x-step in the marching suppresses the branching, which
occurs on a short length scale, in the finite difference
form of the equations and the solution can proceed to that
predicted in §2.2 for small s i.e. a linear increase in
depth. The large skin friction case is associated with a
uniform flow and allied Blasius boundary layer profile.
This is known (Gajjar and Smith (1983)) to admit branching
solutions.

The singularity that the numerical results exhibit
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has been shown in §2.5 to be akin to that occurring in the
hypersonic boundary layer interaction studied by Brown
Stewartson and Williams (1975). There the flow upon which
the initially small perturbations grow is the parallel
shear near the wall in a boundary layer. In this case, of
hypersonic flow, there are two qualitatively different
departures possible. In the first the boundary layer
thickens and there is no singularity. Instead a
downstream form is attained which is described in Gajjar
and Smith (1983). This is known as a compressive free
interaction because of its relevance to upstream influence
in compressive corner flows. The second type is known as
the expansive interaction for similar reasons. Here the
boundary layer thins and continues to do - so until
attaining the singular form we have described. We see only
this expansive singularity in our computations of 1liquid
layer flows because the departure is forced by the
thinning of the layer which is needed to provide the
pressure gradient driving the original flow over the
horizontal surface. This is an effect which has its basis
in the non-parallel nature of the basic flow and it is
represented by the first term in the expansion for small x
presented in §2.3. For O(l) s the development of the
departure is slow and we can follow it with our numerical
method. It is a development which occurs through
essentially the same mechanism as described for small s
below, but which is affected by the non-parallel nature of
the starting flow.

From the small x expansion of §2.3 we can pick out
that the x-scale of the rapid growth of the departures for
small values of s is 0(33). Below we present the structure
of these rapidly growing solutions together with several
other structures relevant to departures in other related
limits, such as small depth or large skin friction, or to
alternative starting flows, such as those shown in §2.2 to
be relevant to the full set of equations in the limits of
small and large s. These are two-dimensional Watson’s flow
as x > 0+ and half-Poiseuille flow with a depth of

(—12x)“q as x - -o respectively.
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§2.6.2 Small s.
We seek a perturbation to the oncoming flow of the

form

Vvt s,

71“'170"'57711
2

p ~sp, + s p,

where wo, n,, P, represent the oncoming flow and are
functions of x satisfying equations (2.1.la-g). See Figure
2.6.1. Without loss of generality we can let n, be zero so
that the depth of the layer is initially wunity. 1In
addition, therefore, p, = n, = 0. The perturbation
m,, p, are functions of the fast variable

In the main part of the flow where

quantities, wl,

x = x/s° and p, =m.
Yy ~ 0(1) (region I in Figure 2.6.1) the rapid growth of
the perturbation dominates and the solution is governed by
inertial effects, with the pressure term reduced in
importance by the smallness of s. Therefore equations

(2.1.1a-g) reduce here to

where ’ indicates differentiation with respect to y. This
has solution W1==A1(§)¢J- Application of the boundary
conditions at the free surface which reduce to

¥, (1) = -n¥ ' (1) and y,*’ (1) = -ny (1), yields
A =-m =-p,. (2.6.1)
As y » 0 we obtain, if wo ~ Ayz/z,
v o~ Ayz/z + sAAXYy,
so a sublayer (region II in Figure 2.6.1) of thickness
Yy ~ O(s) is produced at the wall to reduce the resulting

slip velocity, sAA to zero. Here we write y = sz and
¥ = s%(z), U~ sO(z) where f1=zilz and so we obtain a
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nonlinear inertia-viscosity-pressure balance in this

sublayer,

ﬁﬁ;{ - &iﬁz =-p, +0,, (2.6.2a)
0=y, (2.6.2b)
-0(0) = ¥(0) = 0, (2.6.2c)
U~ 2A(z + 34), 2> o, (2.6.2d)
U~ 2z, x » -o, (2.6.2e)

and, from (2.6.1),
p, = -A. (2.6.2f)

The system (2.6.2a-f) consists of the equations
governing the hypersonic free interaction. Gajjar and
Smith show them to be relevant to supercritical (in the
sense Fr > 1) liquid layer flow if there is no vorticity
in the main body of the flow (unlike here). These
equations hold on a length scale L, where 1 << L << Re.
The above analysis shows that we can expect branching from
profiles with vorticity in the same fashion as from those
without, provided that the Froude number is sufficiently
large. The free interaction problem for these equations
leads either to the hypersonic expansive singularity or,
in the compressive case, to a downstream form with
separated reversed flow and the pressure (proportional to
the depth) growing like 0.94796x" where m » 0.43050. Here,
therefore, as ¥ » » we have a depth increasing like sx".
Brotherton-Ratcliffe (1986) makes a comparison of this
blunt form of the free surface with the experiments of

Craik et al. (1981) who take measurements of an
axisymmetric hydraulic jump, which, qualitatively at
least, has the same shape of free surface.

Brotherton-Ratcliffe assumes the oncoming profile to be
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essentially uniform and inviscid in his comparison. There
is good qualitative agreement, although the depth is
somewhat under-predicted. In §2.7 we take up this idea
and, believing the flow to be fully developed at the
position of the jump, we make a comparison of the above
result with the experiments.

§2.6.3 ©Small depth, h.
Related to the above is a similar structure leading

to the same set of equations (2.6.2a-f) governing the
branching for small depth, h, at some position X, This is
of relevance to the problem mentioned in §2.1, in which s
is scaled out of the equation but remains in the boundary
conditions. In this normalisation a small initial depth
corresponds to a large value of the Froude number from
(2.1.2b). We can expand on a small length scale, L << 1,
about ¥, and derive the scalings as follows. Since
wo ~ 0(1) the oncoming velocity, UO ~ 0(1/h). A velocity
perturbation of size 8 << 1/h carries a small mass flux
and so the position of the free surface is altered only by
O(hs). As a result, although the relative change in the
free surface position is 0(8), the pressure generated is
only O(hé) (since s ~ 0(1l), or is scaled out of the
equations). The main body of the flow reacts therefore as
in §2.6.2 above, leading to a slip velocity of size & at
the wall. In a sublayer similar to that in §2.6.2, but of
thickness hé and where the velocity is 0(8), this is
brought to zero. Again the response here is of the
interactive inertia-pressure-viscosity kind, of equation
(2.6.2a-f). This requires 62/L ~ 8h/1 ~ 6/h262, leading
to 8 ~h and L ~ h°>. This result also ties in with the
result that the small x expansion in §2.3 fails when
X ~ O(A's) ~ 0(h®) here.

§2.6.4 Large skin friction, a.

We now consider the case wherein the depth and Froude
number are both order unity, but the starting flow has a
large skin friction A. The analysis is valid for any
profile U0 for y ~ 0(1), provided that t% ~ 0(1) as y=> 0,
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and that it is reduced to zero at the wall. The thickness
of the sublayer which effects this reduction is O(Ad). A
simple modification of the analysis in Gajjar and Smith
shows that branching is possible on a length scale O(Xﬁ).
We put their small parameter, &, equal to A" and follow
their analysis through. In effect the analysis is similar
to that in §2.6.2. We find that, after a factoring out of
various 0(1) constants, equations (2.6.2a-f) hold in a
sublayer at the wall of thickness 0(x"%), for a
perturbation of size O(Ad). The criterion for
supercritical flow and the pressure-displacement law being
p=-A, rather than p =A, which is appropriate to
subcritical flow but does not give rise to branching, is

This reduces to s < 1 if Uo = 1, the case studied by
Gajjar and Smith.

§2.6.5 Branching from Watson’s solution.

An alternative form of branching solution, related to
the case covered in §2.6.3 above, can be used to explain
the sudden failure of the numerical solutions in §2.4
which develop into Watson’s form. These have s small but a

step size large enough so that, initially at least, the
interaction responsible for the branching is suppressed.
The flow develops into Watson’s form with a linear
increase in depth and this solution remains valid until
the increasing depth reinstates the pressure term in the
equations. A rescaling, see §2.2, gives equations
(2.1.1a-e, 2.1.2a), with a condition as x » 0+ given from
Watson's solution which may be written, on further
factoring of the variables,
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