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Abstract.

Although most of the work in this thesis is algebraic, its starting point and
examples come from differential topology and geometry. As essential background
Chapter I includes sections which describe involuted algebras and Albert’s
classification of rational positively involuted algebras; representations of finite groups

over fields; groups that embed in division algbebras and Amitsur’s classification.

The differential topology of the thesis arises in the study of how one can give

a flat compact Riemannian manifold a Kahlerian/projective structure.

In Chapter IT we outline some differential geometry and the theory of Flat
Riemannian manifolds, particularly holonomy, we include a description Charlap’s
classification. Also in this chapter we give a simple proof of a bound for the minimal
dimension for a flat compact Riemannian manifold with predescribed holonomy
(m(®) < |®|); the proof requires Amitsur’s classification. The notion of complex
structures on real manifolds is introduced in Chapter III. Some work on Riemann
matrices is required and given. In Chapter IV we parametrise the set of complex
structures which give a (real) flat compact Riemannian manifold a Kahlerian
structure. A parametrisation is also given for complex structures which give a
projective structure for certain manifolds with a fixed polarisation. This involves
Siegel’s generalised upper half plane. In Chapter V we give some examples and give
the above parametrisations for certain holonomy groups and representations. Some of

the working involves integral representations and cohomology of finite groups.

Finally, the subject of Chapter VI is essentially independent of previous
chapters in respect to the work we have done. The chapter concerns subgroups of a
product of surface groups, by which we mean the fundamental group of an oriented
surface of positive genus. We consider the simultaneous equivalence relations of

commensurability and automorphism. In particular, we show that, in a product of



two surface groups in which one factor has genus greater that one, there are infinitely

many equivalence classes of normal subdirect products.
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Chapter I: Representations of finite groups.

§1 Involuted algebras

Let k be a field of characteristic zero. All algebras will be associative and
unitary. Let A be a finite-dimensional algebra over a field k. Let RTrp ,, (RN ;) :

A — k denote the reduced trace (norm) of A /k.

Definition : Let A be a k-algebra. By an involution for A we mean an anti-
automorphism o : A — A (that is o is klinear and o(xy) = o(y)o(x) for all x,y €
A) such that 6> = 1. Given sucha 0 : A — A, A = (A, o) is an tnvoluted algebra.
An involuted k-algebra homomorphism a:(A,¢) — (B,7)is a k-algebra
homomorphism « : A — B satisfying cooc = roa. We then have a category of
involuted k-algebras containing products given by
1(A.00 = (A, Tl

Fix k C R a real field and let (A,0) be an involuted k-algebra. We say that
o is a positive involution when RTrA/k(x.x") > 0 for all non-zero x ¢ A. Let (A, o)
be an involuted division algebra over k. Then, for each n we may define an involuted
k-algebra Mn(A,0) = (Mn(A),7) where

& : Mp(D) — M,(D)

by

(dij)a = ((dji)¢7 )-

Proposition (1.1) : Let (A, o) be a positively involuted k-algebra and suppose that A

is also finitely generated and k-semisimple, with the following Wedderburn

decomposition

A = Mml(Dl) X....X an(Dn),
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where each D; is a division algebra over k. Then there exists involutions o; : D; —
D; such that
(A,U) = Mml(Dl,al) X....X an(Dn,Un)-

Moreover, each (D;, ;) is positive.

Let a,b ¢ k then denote by ( a—,’cb ) the quaternion algebra over k which has

as its basis 1, i, j, k and multiplication given by
iZ =al, j? =b1, ij=—-ji=k

Then (%) is a central simple algebra over k when a, b # 0, and admits

essentially only two involutions: conjugation (—) and reversion (~), see [Po]. Let x

= xq.1 + x;3.1 + X35 + x3.k, then

X = XU-l - xl.i - X2.j e XS.k,

3{ = Xo.l -_ xl-i + X2.j + X3-k-

A proof for the following may be found in [Pi] or [O’M].

Proposition (1.2) : Let Q = a,b , then the following are equivalent:
k

(1) Q is a division algebra;

(i) xX #0for0 # x ¢ Q;

(iii) the quadratic form @ : k* — k, given by Q(xq,%;,%X;) =
1

x2 — a.x? — b.x2, is anisotropic over k.
0 1 25

Over R there are only three finitely generated division algebras, namely R, C,

_———ln’!—l ), the classical quaternions. Each has a unique positive

involution ¢ given by: ¢ = 1ps complex conjugation and quaternionic conjugation

and |H|=(

respectively.

We identify C c H by C = spanR{l,i}. Thus H can be considered as a C-
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space, by H = C + C.j . This induces the standard embedding ¢ : Me(H) — M, (C)

of involuted algebras

B

X A
t:X=A+Bj+— -
AR - I y

where A, B ¢ Ms(C).

Over the rationals the positively involuted division algebras are classified by
Albert, [All]. Let G be a finite group and A an abelian group (written
multiplicatively) on which G acts by automorphisms. By a 2-cocycle of G with values
in A we mean amap o : G x G — A satisfying

a(x,y).a(xy,z) = a(y,z)”.a(x,yz) for all x,y,z ¢ G,
(the 2-cocycle condition). A 2-cocycle a : G x G — M is normalised when
a(l,x) =1 = a(y,1) for all x,y ¢ G.

Let B2(G,A) denote the set of normalised 2-cocycles of G with values in A. Note
that %%(G,A) is an abelian group with multiplication defined pointwise from A. Let
k be a field and E/k a finite Galois extension with Galois group G. Fix a ¢
%2(G,IE*), where E* denotes the multiplicative subgroup of E. By the crossed
product of E and G with respect to the 2-cocycle a we mean the k-algebra having

basis {es}, g over E and multiplication defined by

(Eax.ez).(zby.ey) = Z az.by.ex.ey (ax,by € E V X,y ¢ G)
zeG yeG z,yeG
with
eza=2a"ez (ae E) and es.ey = a(x,y).ezy {1.1}

We denote this k-algebra by (E/k,G, ).

Definition : Let A be a k-algebra. By a splitting field for A we mean a k-algebra E

such that A® E = Mn(E), for some n.

Proposition (1.3) : The crossed product (E/k,G,a) is central over k of degree |G|,

with E as a self-centralising subfield. E is also the splitting field for (E/k,G, a).
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We will consider the special case where E /k is a cyclic extension. Let E/k be
a cyclic extension with cyclic Galois group G. Let |G| = n. Let x generate G, then

for any a ¢ B%(G,A) there exists £ ¢ E* such that
1 if 0 <i+j < n,

a(xi,xj) ={

¢ ifn <i+j < 2n — 2

Let {ez},.g = {e(o),e(l), . ,e(n_l)} where ¢ = e, then the conditions {1.1}

reduces to
.z n__ ¢ (0)
ea=a"e(ackE) and e” = {.e {1.2}.
We denote such a cyclic k-algebra by (E/k,x, &). Note that the quaternion algebras

are precisely the cyclic algebras defined by an extension of degree two.

Theorem [All] (1.4) : Let (D,c) be a finitely generated positively involuted division

algebra over Q; let F denote the centre of D and E denote subfield of F fixed by ¢;
and let d% = dimgD and g = dimQ!E. Then (D,o) has one of four types:
(I) D = E is a totally real algebraic field, o is the identity,

IR®QD =ZRx...xR (g copies) {1.3}

Iy D= ( a_+_Eb ) , E is a totally real algebraic field, a is totally

negative, b is totally positive and ¢ is reversion,
R®QD = M,(R)x...x My(R) (g copies) {1.4}
“with involution
(A - .. Ae) — (AL ... ,Ad);
(I D= ( ité ), where E is a totally real algebraic field, a, b ¢ E are
totally negative and o is quaternionic conjugation
|R®QD ZHx...xH (g copies) {1.5}

with conjugation as involution;

(IV) E is a totally real algebraic field, F is totally imaginary and
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quadratic over E, D = (K/Q,a, ) where K is an algebraic number
field, and F is the fixed field of a,

IR®QD = My(C)x...xMyC) (g copies) {1.6}
with involution

(A - .. Ae) — (AL, ... KY).

A convenient reference for this result is [Mu].

§2 Representations of finite groups

Let @ be a finite group and R be a commutative ring. The group ring of ®
over R is denoted by R[®]. All representation spaces will be left modules over the

group ring.

For V, W R[®]-modules, let Hom ](V,W) denote the group of R[®]-

R[®
homomorphisms of V to W; that is, R-module homomorphisms which commute with

the action of ®. Let EndR[(I)](V) denote the group of R[®]-endomorphisms.

Let k be a field. By Maschke’s Theorem [®] is semisimple if char k = 0 or
char k X | ®|. If [®] is semisimple we have the Wedderburn decomposition
K®] = Mm,(D;) X . . .X Mmp(D») {2.1}
where D; is a finitely generated division algebras over k. In such a decomposition,
each factor Mm,(D,) there corresponds to a simple A{®]-module, V,. Identify V,; with
the first column of Mm(D;). In which case,

D; = Endyrgy(V,).

Lemma (2.1) : Let k C E be an extension of fields, and W a k[®]-module. Then

EndE[q)]( E®, W ) = [E®kEndk[q>](W).
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Proof : We clearly have that
E
To prove the reverse inclusion, let {e;} be a basis for k, over k;. Since
Endkz( E®kw ) = k2®k1Endk1(W).
We may write any g ¢ End k| @]( E®,W ) as follows
g = D e;®f;
where f; ¢ End kl(W). Also, by comparision of coordinates, it is clear that g
commutes with x ¢ ® precisely when each f; commutes with x ¢ ®; that is each f; ¢

End k, [<I>](W) Hence the result follows.

Proposition (2.2) : Let k¥ C E be an extension of fields of characteristic zero or

coprime to | ®|. Let V and W be k[®]-modules having no common isomorphic simple
submodule. Then E® A and E® WV also have no common isomorphic simple

submodule.

Define

o : k[®] — kP] {2.2}
by

(Tagg)” = Yagg™
Then it is clear that o is an involution of k[®], and furthermore if k is a real field
then o is positive since
Trye11( (29-8)-(3o24.8)7 ) = Yaj

> 0if Yag.g # 0.

Hence, by (1.2), each of the division algebras D; admits a positive involution,
o; : D; — D, such that

(k[@],o') = Mml(Dl,al) X...X an(Dn,Un).
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If k= Q, then each positively involuted division algebra (D;, ;) in the

above decomposition appears in (1.4).

By a CM-algebra, we mean a quadruple A = (A,E, 7, &) where
(i) E is a totally real algebraic number field of finite degree over Q,
(i)  (A,7) is a finite dimensional positively involuted E-algebra,
(iii) € € A such that £2 is a totally negative element of E, and

moreover E(£) is totally imaginary,

(iv) T/IE = 1f, but T/IE(E) #* 1|E(£)'

Proposition (see (1.2) of [Jo5] ) (2.3) : Let (A,7) be a positively involuted finite

dimensional Q-algebra of type (II), (III) or (IV) in Albert’s classification. Then there

exists a subfield E C A and £ ¢ A such that A = (A,E,7,£) is a CM-algebra.

Let E be a totally real field and E/Q be a finite extension with dimQIE =g.
Let g = { o) : E — R },<,<, denote the set of embeddings of E into R. For each
A=1—g, let R, denote the field R considered as an algebra over E, via the
embedding & ,. Then
IE®Q|R =ZR;x...xRy {2.3}.
Let W be a finite dimensional E-space. Then

W®QIR = W®ER1 d...D W®|ER9.

Let W=V be an isotypic Q[®]-module (V simple), and D =

End (V). Then, if W is of type (I) let E = D; otherwise we write D = (D,E,7,¢),

Q[2]
a CM-algebra, and F = E(§). Let g = dileE, and for types (II), (IIT) and (IV) let

d? = dimpD, where d = 2 for (II) and (III). Fix an isomorphism as in {2.3}. With
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this notation,

Proposition (2.4) : The decomposition

V®QR = V®|ER1 @ .« o @ V®IERg
is R[®]-isotypic and, for each A
VegR, = ()

where ., is a simple R[®]-module and

1 type (I) or (III)
f= { 2 type (II)
d type (IV).

Proof : Let D = EndQ[q)](V). Then

Rx...xR type (I)

M,(R)x . . . x My(R) type (II)
R®QD = {

Hx ...xH type (III)

M;(C)x . . .xMyu(C type (IV)

Identifying V with the first column of M, (D), for some n, corresponding to the factor
Mn(D) in the Wedderburn decomposition of Q[®]. Hence VR, may be identified

with the first f columns of

Mn(R) type (I)
{ M,,(R) type (II)

M. (H) type (III)

M;..(C) type (IV)

where f is given above.

$3 Groups that embed in division algebras

Let & be a finite group. We say that ® embeds in a division ring R when it
appears as a subgroup of the multiplicative group of R. Let § denote the set of all

finite groups which embed in a rational division algebra.
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We say that ® has periodic cohomology when there exists n € N such that
H'*"(®,Z) = H'(®,Z) for all i>1. A generalised quaternion group, Q(2*) of order 2°
(a>3), is a group with the following presentation

-2
Q) =< X, Y: X2 =Y,Y'=1YXY!=X1> {3.1}.

Theorem [Ca-Ei] (3.1) : For a finite group G the following statements are equivalent:

(i) G has periodic cohomology;

(ii)  every abelian subgroup of G is cyclic:

(iii) every p-subgroup of G is cyclic or a generalised quaternion
group;

(iv) every Sylow subgroup of G is cyclic or a generalised

quaternion group.

Proposition (see [Sm] ) (3.2) : If G ¢ §, then G has periodic cohomology.

Proof : We shall show that G satisfies (ii) of (3.1). Let H be an abelian subgroup of
G. Let G C R*. Then the division subring of R generated by H is commutative, and

hence a field. Since H is finite and embeds into a field it must be cyclic, see [He].

Not all finite groups with periodic cohomology embed in a division ring. For
example, D,,, has cohomology of period 4 if m is odd, but does not appear in
Amitsur’s classification, (3.7). We note that this group also provides an example of a
finite group with periodic cohomology which does not act freely on a (3-)sphere. This

was first indicated by Milnor and is a consequence of the following.
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Proposition [Mi] (3.3) : Suppose that a finite group @ acts without fixed points on a

manifold M” having the mod 2 homology of the sphere. Then any element of order 2

in @ belongs to the centre.

Define the polyhedral groups, D,,, (m>1), Ty, Oy, and I, as follows:

D,,, = <A,B:A"‘ — B2 = 1,BAB™! = A"!
T, =<A,B,C tA>=B2= C2=1,ABA™! = C,ACA™! = BC>

0,, =<A,B,C,D :A% = B2 = C2 = D? =1, BC = CB, DAD™! = A™!

ABA~! = C, ACA~! = BC, DBD"! = CB, DCD! = C-! )

160=<A,B,C:A3=B2=C"’=ABC=1>

The dihedral group Dm acts on the two sided polygon with m sides; the
tetrahedral group T,, acts on the regular tetrahedron (4 vertices, 6 edges, 4 faces);
the octahedral group O,, acts on the regular octahedron (6 verices, 12 edges, 8 faces);
and the icosahedral group I, acts on the regular icosahedron (12 vertices, 30 edges,

20 faces). For details of the actions see [Wo).

Proposition (see [Wo] ) (3.4) : Every finite subgroup of SO(3) is a cyclic, dihedral,

tetrahedral, octahedral or icosahedral group.

Let — : H — H denote conjugation of the classical quaternions. Consider a
norm on H given by |x|2 = xX. Identify S®> = {x ¢ H: |x| = 1} and R® with the
space of pure imaginary quaternions. The Euclidean norm of R® then corresponds to
the restriction fo the norm of H. Let 7 : S* — SO(3) be the map defined by =(x)(y)

= x.y.x"'. The kernel of 7 is then {+1, —1}.
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Define the binary polyhedral groups as follows:
(i) the binary dihedral group, of order 4m, by
Dim = 7 (Dam)
(ii) the binary tetrahedral group, of order 24, by
T* = 77Y(Ty,)
(iii) the binary octahedral group, of order 48, by
D* = 77(0,4)
(iv) the binary icosahedral group, of order 60, by

I = 77 (Iso)-

Apart from cyclic groups, the binary polyhedral groups are the only finite

subgroups of the classical quaternions: see Theorem 11 of [Am].

Clearly the binary polyhedral groups also act without fixed points on S3 by

the multiplication in H.

We now describe the classification of finite groups which embed into division
rings, given by Amitsur.

Let m and r be positive integers such that (m,r) = 1, and put n = the order
of r (mod m) and s = (r—1,m). Denote by Gm,r a group having the following
presentation

Gmyr =< A,B:A™=1,B"=A"BAB'=A"> {3.2},
where t = m/s. This group has order m.n and is clearly metacyclic.

A synthesis of a result of Zassenhaus, [Za] and Lemmas 1-2 of [Am] give the

following:
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Lemma (3.5) : Let G be a finite group. If all the Sylow subgroups of G are cyclic,
then G has a presentation {3.2} with (n, t)=1. If G has a presentation {3.2} then all
the odd Sylow subgroups of G are cyclic and the even Sylow subgroups of G are
generalised quaternion if and only if n = 2.0/, m = 2°.m/, s = 2.s' with & > 2, m’,

s', n’ odd numbers and such that (n,t) = (s,t) = 2, andr = —1 (2%).

Let Gm,» have presentation {3.2}. For a prime p|m we introduce the
following notation

4

(i) let ap be the integer such that pa is the highest power of p|m;

(ii) let n = np be the minimal integer satisfying rf=1 (mp_ap );

.. . o 6 -
(iii) let 6, be the minimal integer satisfying p = 1 (mp or ).

With s defined as above, let U, » denote the the following cyclic algebra
Um,r = (Q((m),0or,(s)
where {m is a primitive m** root of unity, ¢ = o, is the automorphism of Q(¢m)
given by (m — (M, and (, is a primitive s*® root of unity contained in the fixed
field of 0 in Q({m). Gm,» embeds in a division ring if and only if Unm - is a division
algebra, and then the linear span of the elements of G, r is isomorphic to Uy, », see

Theorem 3 of [Am). In all cases Um - is central simple of degree n over the fixed field

of ¢ in Q(¢m).
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Theorem [Am] (3.6) : Let Gm,» be a finite group having presentation {3.2}; Gm,r €

$ if and only if Gm,» has periodic cohomology and one of the following holds
(i) n=s=2andr=-1(m)
(ii)  For every prime q|n there exists a prime p|m such that
q X np and that either
@ p#2and(g (" -1)/s) =1
or (b) p = q = 2 Gm,, contains a non-cyclic Sylow subgroup

and m/4 = 6, =1 (mod 2).

We give Amitsur’s classification as follows.

Theorem [Am)] (3.7) : Let G be a finite group. G ¢ $ if and only if

(i) G = G, satisfying one of the conditions of (3.4);
(il) G = I* x Gm,r where Gy as in (i) and 2 has odd order mod m;

(i) G = R* or I*.
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Chapter II: Flat manifolds.

Let M be a real manifold and let $(M) denote the set of smooth functions on
M. The field structure of R induces an R-algebra structure on $(M). (M) is known
as the algebra of smooth functions on M. Let p ¢ M, then a tangent vector to M at p
is a derivative of (M) at p. Let TpM denote the tangent space of all tangent vectors
to M at the point p. If M has real dimension n then T,M is a real vector space of

dimension n.

Let X£'(M) denote the set of vector fields of M. Then X*(M) is a module over
$(M) defined pointwise. Recall that by a Riemann metric, g, on a smooth manifold
M, we mean a tensor field of type (0,2), g : /(M) x £(M) — $(M), such that the

associated R-bilinear form g : TpM x T,M — R is symmetric and positive definite.

By a connection on M we mean an $(M)-linear map from ¥'(M) into the
derivations of £'(M); that is, if we denote the connection by X — Vy, then
Vx(£Y) = £V (Y) + X(f).Y for all f ¢ $(M), Y ¢ E(M).

V is known as the covariant derivative at X.

Let M be a smooth manifold and V a connection on M. Let T denote the
torsion tensor field and R denote the curvature tensor field R of V. These are tensors
of type (1,2) and (1,3) respectively. On vector fields and one-forms they are given
by

T(X,Y) = Vx(Y) = Vy(X) = [X,Y]

R(X,Y,Z) = VxVy(Z) — VyVx(Z) — Vix v (Z)-

A connection is said to be torsion-free if T(X,Y) = 0 for all X,Y ¢ (M)

and flatif R(X,Y,Z) = 0 for all X,Y,Z ¢ E}(M).

On a riemannian manifold there exists a torsion-free connection. This
connection is uniquely determined if we want parallel translations to preserve the

Riemann metric. We shall not go into this at this point, but direct the reader to
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[Wo]. This unique connection is known as the Levi-Civita (or riemannian)
connection. A flat riemannian manifold is then a riemannian manifold with flat Levi-

Civita connection.

§1 Flat manifolds

We shall give a brief account of some of the theory of flat riemannian

manifolds. For a more detailed account we again direct the reader to [Wo)].

For n > 0 let E(n) denote the group of rigid motions of n-dimensional
Euclidean space. We may topologies E(n) in the obvious way, we get E(n) = O, x
R™, where = denotes homeomorphism. Rotations correspond to On and translations
to R". A subgroup G of E(n) is said to be uniform when IR'/'G is compact. A
subgroup G of E(n) is said to be a Bieberbach group when G is torsion-free, uniform

and discrete in E(n).

Let M be a compact riemannian manifold of dimension n and let G =
7,(M), the fundamental group of M. Consider G as a subgroup of E(n) through the
action of G on the universal covering of M. We have M = 7G’ but M is a compact

riemannian manifold, hence G must be torsion-free, uniform and discrete. Hence G is

a Bieberbach group.

Let N denote the subgroup of G of translations in E(n). Then, [Bi], N is a
free abelian group generated by n linearly independent translations. Let & = ®(M)
denote the holonomy group of M. It is well known that @ is finite, since M is flat,

and that G/N = P, see [Au-Ma).
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Theorem (see [Au-Ku] ) (1.1) : Let G be a finitely generated group. Then G is the

fundamental group of a compact flat riemannian manifold of dimension n if and only
if G is torsion free and fits into a short exact sequence
6 - N - G —- & — 1 {1.1}
where
(i) N is a maximal free abelian subgroup of G,

and (ii) @ is finite.

If M is a compact flat Reimann manifold such that G = =,(M), the {1.1} is
called the holonomy short exact sequence. Let p : & — GLZ(N) denote the operator
homomorphism of {1.1}. Then, N is maximal abelian in G if and only if p is faithful.
It is well known that the realisation of p corresponds to the holonomy representation

pl:d— GLR(ﬁ), where M denote the universal covering of M.

Theorem [Au-Ku] (1.2) : Any finite group can occur as the holonomy group of a

compact flat riemannian manifold.

Let ® be a finite group, write & = F /R where F is a finitely generated free
group, R is the group of relations of ® and both F and R are non-abelian. Let G =
F /[R,R] and N =R /IR,R] Then we have a short exact seqence,

0 - N - G —- & — L
The result follows by verifying that G is torsion free and the conditions (i) and (ii)
of (1.1) are satisfied. See [Au-Ku] or [Wo] for details. A proof of this theorem is also

contained in [Ch].

Let & be a finite group. Denote by m(®) the minimal dimension of a
compact flat riemannian manifold have holonomy group isomorphic to ®. By (1.1)

m(®) equals the minimal rank of a Z[®]-module N which has a torsion-free extension
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{1.1} satisfying conditions (i) and (ii).

The minimal dimension is finite for all finite groups, and we may give a
simple bound for m(®) using (1.1): let d denote the minimal number of generators for
F, then by the schreier’s formula, see [Ma-Ka-So], R is free on |F /Rl.(d -1+ 1,

hence m(®) < |®|.(d—1) + 1.

Fix ® a finite group, and let A be a subgroup ¢ : A — & the injection map.

Denote by ¢* (= Res%) : H(®,N) — H2(A,N) the restriction map induced from ¢.

Definition [Ch] : Let N be a finitely generated Z[®]-module. We say that « is special
when ¢*(a) # 0 for all cyclic subgroups A of ® which have prime order. Such an « is

called a special point for N.

Let a ¢ H%(®, ,N) denote the cohomology class corresponding to {1.1}. G is
torsion-free precisely when a is special, [Ch]. By a ®-manifold we mean a compact
riemannian manifold which has holonomy group ®. The manifold must be flat since

& is finite, [Ch].

Let §(®) denote the category, whose objects are pairs, (M,a), with M a
finitely generated Z[®]-module and a ¢ H?(®,M) a special point. Let (M, a),(N, 3)
¢ &(®), then by a morphism in §(®), (f,A) : (M,a) — (N, 3), we mean a pair of
group homomorphisms f : M — N and A : & — & such that

f(x.m) = A(x).f(m) forallx e &me M
f.(a) = AL(B).
Where A, :H?(®,N) — H%(®,N,) and N, is the Z[®]-module with ®-action

factored through A.
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Theorem [Ch] (2.3) : There is a bijection between the isomorphism classes of the

category &(®) and the isometry classes of ®-manifolds. A manifold in the isometry

class corresponding to (N, a) has dimension equal to rk4(N).

Let p be a prime and let Z, denote the cyclic group of order p generated by
x. We describe the indecomposable Z[Z,)-modules are as follows, [Cu-Re] and [Re].
Let ¢ be a primitive p** root of unity and Z[¢] denote the ring of integers in Q((),
the cyclotomic field of order p. Let C = C( Q(¢) ) denote the ideal class group of
order h = hp. Let A;, ..., A, € C be a set of representatives for the ideal classes.
We consider each ideal as a Z[Zp]-module by defining
x.a = (.a

for all a € A ;, for all i. Also, for each i choose an a; ¢ A; and let (A;,a,;) denote the
Z[Z,}-module such that (A;,a;) = A;®Z and

x.(a,0) = (x.a,0)

x(0,1) = (a;,])
for all a € A; and n ¢ Z. This definition makes sense because the action of Zp on A;

satisfies
-1

Ex":().

r=0

Then a full set of indecomposable Z[Z y]-modules is
Z, Al’ « e ey Ah’ (Al,al), o e ey (Ah,ah)

for a; € A;, see [Cu-Re]. Where Z here to denote trivial module of rank one.

So let
_ ga h o Bi h i
M=1 69(4'631 A )@ (;91 (A:r2) ) 3.1}
B h
be an arbitrary Z[Z,]-module. Put 3 = Y 3, and ¥ = }_ ;. Then, [Ch],
i=1 i=1
H%(Z,,M) = Z3.
Hence, there exists torsion-free extensions of M by @ if and only if a > 0. Also, it is

clear that M is faithful if and only if 8 + v > 0.
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§3 The minimal dimension problem

The minimal dimension problem for flat riemannian manifolds is as follows:
for each finite group ®, what is the minimal dimension, denoted m(®), in which a &®-
manifold can appear? It is clear from the end of the last section that we may
compute the minimal dimension, for cyclic groups of prime order, as m(Z,) = p;
which corresponds to a = 8 = 1. To improve the bound on m(®) given in

the last section for solvable groups we have the following result proved by Symonds,

[Sy)-

Theorem [Sy] (3.1) : Let ® be a finite group. If ® is solvable then m(G) < | ®|, with

equality if and only if G is cyclic of prime order.

Proof : We first consider some special cases. If | ®{ is prime then the result follows by
[Ch]. If | ®| = p.q, p and q primes, then ® is one of the following three types ® =
CpxCy, C p2 OF Dpg. Where Dy is the non-abelian metacyclic group of order pq. If
® = C, x C, consider the Z[®]-module M = Z & Z[{p] & Z[({4], where {p (resp. (g
) is a primitive p** (resp. q'*) root of unity. Then, by the results in Table 1 of
Chapter V, H?(®,M) contains a special point; also M is clearly faithful, hence m(®)
<p-1+q—-1+1=p+q—-1<pgq.If &=C, consider the Z[®]-module
M=Z¢9 Z[CPZ], where ¢, is a p2** root of unity. ® has only one subgroup of
prime order, namely C,, hence again by Table 1, H*(®,M) contains a special point.
M is clearly faithful and so m(®) < p(p — 1) + 1< p2. In fact, it can be shown
that m(®) = p(p — 1) + 1, [Sy]. Finally suppose ® = Dp,, then let M =
indg:q(Z) ® indgf Y(Z). 1t is easily verified that in this case H?(®,M) contains a

special point, M is faithful and hence m(®) < p + q < p.q.

We complete the prove by induction on | ®|. Let H be a normal subgroup of
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® such that ®/H is cyclic, such a subgroup exists since ® is solvable. We may
assume that m(H) < |H| — 1, otherwise the result follows by the special cases. Let
M be the Z[H]-module realising the minimal dimension for H. Let N = indg(M) ® Z.
N is a faithful Z[®]-module, since indg(M) is faithful and H%(®,N) admits a special.

But 1k5z(N) = |®/H|.(|H| — 1) < |®| — 1. Hence m(®) < |®| — 1.

We shall extend this result to all finite groups.

For a finite group ®, we say that two Z[®]-modules, M and N, are Q-
isomorphic if Q®ZM EQ[Q] Q®ZN’ We say that a Q-isomorphism class, C, of
Z[®]-modules is special when there exists an M ¢ € such that H?(®,M) admits a
special point. Let U(®) denote the class of coverings of ® that have finite abelian
kernel; to be more precise, let

‘.D(<I>)={(\Il,0): 0 - T - ¥ % & - lisexactand T

is finite abelian }

If M is a Z[®]-module and (¥,6) ¢ D(®) denote by °M the Z[¥]-module

induced from M by 4.

Proposition (3.2) : Let ® be a finite group and let C be a Q-isomorphism class of

finitely generated torsion-free Z[®]-modules. Then,
C is special & (VN e €)(3(¥,0) ¢ N®)) HY(T;°N)

contains a special point.

Proof (Compare Chpt. 4 §3 of [Sy] ) : (=) Let M, N ¢ C, and let H?(®,M) contain

a special point. Let ¢ : M — N and 7 : N — M be Z[®]-injections, these clearly exist
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since Q®ZM EQ[Q] Q®ZN‘ Since H?(®,M) contains a special point there exists a
torsion free group G which fits into

0 - M - G - ¢ — 1
Hence,

0 — M - & — 1

jr®) = Gy
is exact. Let T = M/T(N) and ¥ = G/T(N)' Note that T is finite abelian. Thus we
have the following short exact sequence

0-T—-v %o 1
and (¥,8) ¢ D(®). The result then follows, since H?>(¥,°N) has a special point
corresponding to

0 - N - G — V¥ — 1
(&) Suppose we have (¥,6) ¢ 9(®) and a Z[®]-module N ¢ € such that H*(¥;°N)
contains special points. Let this point correspond to the sequence

0 - N -G X v - 1L
Let M = ker(fow), then we have a short exact sequence

0O - M - G —» ¢ — 1
That M is abelian and torsion-free is clear. So M is a well defined Z[®]-module. Also,

M®ZQ = N®ZQ, hence M ¢ €. Since G is torsion-free H?(®, M) contains a special

point.

Fix & a finite group. Let M, . . . , /b, be a complete set of irreducible Q[®]-

modules, hence,
Q[‘I’]EA?@---@%;" for some €;, ..., en

and
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Proposition (see (73.6) of [Cu-Re] ) (3.3) : Let R be a principal ideal domain with

quotient field k. Then every k[®]-module is the extension of scalars of an R[®]-

module.

Thus the problem of finding Z[ ®]-modules with special points does not require a
classification of Z[®]-modules, but only a classification of the cohomology group
H(T, ®) where T is finite abelian. This is by no means an easy problem either, but
it is hoped that this will prove useful, for instance in finding bounds for the minimal
dimension for all finite groups. The author hopes to explore this in later publica-
tions. ‘
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Chapter lll:  Complex and projective manifolds.

§1 Complex manifolds

Let M be a complex manifold. By a smooth complez (resp. holomorphic)
vector bundle & we mean a quintuple (E,M, 7 ,F) where

(i) E is a complex manifold and can be written

E=U E,

peM

with E, a complex vector space for each p ¢ M;
(ii) The projection map = : E — M given by = /E,’ E, — {p}is
smooth (resp. holomorphic);
(iii) F is a complex vector space;
(iv) there exists a locally finite covering {U;} of M such that for each
p € M there exists a U, containing p and a smooth (resp. holomorphic)
equivalence h; : #71(U;) — U, x F for which hi/Ep: Ep —» {p}x Fisa

vector space isomorphism.

For all p ¢ M we may give sets 7~ (p) the structure of a complex vector
space; this follows from (iii) of the definition. The vector spaces 7~'(p) are the fibres

of the vector bundle.

Let M be a complex manifold. By a vector bundle map a : § — g &=
(E,M,7,C™) and 8' = (E',M,p,C") we mean a holomorphic map o : E — E'
such that

(i) * = poa
(ii) a J7=Y(p) is C-linear for each p ¢ M.
Note that (ii) is a correct definition because (i) implies that o maps fibres in

8 to fibres in &'. Let B (M) denote the category of (holomorphic) vector bundles

over M.
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The transition maps for a holomorphic vector bundle & = (E,M,r,C™) are,
hij H Ui n UJ"') GLm(C)

defined by, h;; = h;o (h j)'l. We have the cocycle condition,

ij
h;, =h;;hy, U;nU;nU, #0.
In B (M) we have the following constructions:

(i)  the Whitney sum &;

(ii)  the tensor product ®cs

(ili)  the exterior product A;

(iv)  the complex dual *;

(v)  conjugation —;

(vi)  the mixed dual e.
Each is well defined by corresponding complex vector space constructions, [At]. If V
is a complex vector space then the complex dual is given by

V* = Hom(V,C),
and the mixed dual by
Ve = Homp(V,C)
Corresponding to the vector space isomorphism
A"V & V) “=;+?=HA"(V)®A“(V’)
(see chapter 4 §5 of [Bo]) we have the following isomorphism holomorphic vector
bundles
A& @ &N Ep)f?:n/\"(S)@/\’(s’).
Similarly, for vector spaces we have,
Ve =V* o V¥,

hence,

g®* =g ¢ &

Let M be a smooth real manifold. By an almost complex structure for M we

mean a tensor field J : £/(M) — E!(M), of type (1,1), such that J2 = —1. Clearly
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M must have even real dimension for there to exist an almost complex structure.
However, this is not a sufficient condition: S*” (n > 1) does not admit an almost
complex structure, see (41.20) of [St]; in this reference a quasi complex manifold is
smooth real manifold admitting an almost complex structure. Note that a smooth
real manifold admits an almost complex structure if and only if the smooth tangent

bundle TM admits the structure of a smooth complex vector bundle.

By identifying C"® with R?® as real vector spaces we may consider an
underlying real manifold of M. We have a well defined almost complex structure on
this real manifold. By a complez structure for M we mean an almost complex

structure which induces the local complex coordinate system of M.

Let M have complex structure J. By a Hermitian structure on M we mean a
Riemann metric g : £'(M) x ¥}(M) — $(M) on the underlying real manifold such
that g o (JxJ) = g. A Hermitian manifold is a complex manifold admitting a
Hermitian structure. By a Kdhlerian structure we mean a Hermitian structure such
that Vy(J) = 0 for all X ¢ £'(M), where Vx is the (Levi-Civita) connection of g.
Equivalently, we could say that J is uniquely determined by J,, at some point p ¢
M, by parallel translation. Again a Kahlerian manifold is a complex manifold
admitting a kdhlerian structure. We note that the kahlerian condition is defined only

locally, hence any complex submanifold of a kahlerian manifold is kdhlerian.

We say that a complex manifold is flat if its underlying real manifold is flat.

Let M be a compact flat kdhlerian manifold of complex dimension n, let G= =,(M)

be the fundamental group of M and & = ®(M) be the holonomy group of M. We
have the following short exact sequence of groups

0 - N - G —- & — 1 {1.1}

where:
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(i) N (2 Z?")is a faithful Z[®]-module {1.2};
(i) G is torsion free {13}

(iii) @ is finite {1.4}.

We shall describe the nature of such short exact sequences associated to
compact flat kihlerian manifolds and later to compact flat complex projective

manifolds.

Let @ be finite group and N a Z[®]-module (torsion free, as usual). Let Np
= N®ZIR. We say that N admits a complezr structure when there exists a map t ¢

EndR[@](NR) SUCh tha.f. tz = -'1.

Theorem [Jo-Re] (1.1) : Consider the short exact sequence of groups {1.1} satisfying

conditions {1.2} — {1.4}. G is the fundamental group of a (compact flat) kihlerian

manifold with holonomy group & if and only if N admits a complex structure.

Let @ be a finite group and N a Z[®]-module. We clearly have a complex
structure on the Z[®]-module N @ N; t: Ng @ Ng — Ngp @ Np defined by t(x,y)
= (y,—x). Thus, if N occurs in a short exact sequence {3.1}, of a compact flat
riemannian manifold the, then we can construct a torsion free group G' to complete

the following diagram

0 - NeN - G - & - 1 {1.5}

where A is the diagonal map A(x) = (x,x) for x ¢ N. Hence, the short exact
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sequence {3.5} corresponds to a compact flat kihlerian manifold. We have prove the

following

Theorem [Jo-Re] (1.1) : Any finite group is the holonomy group of a compact flat

kdhlerian manifold.

Recall the definition of n-dimensional complex projective space P,(C). Define
~ on C"'— {0} by (215« + + vZpy1) ~ (€1« -« €pyy) if and only if z; = A.(; for
some A ¢ C for all i. Then

P.(C) = C™"*'— {0} /o~
The Fubini-Study metric gives P,(C) the structure of a complex manifold of
dimension n. Let U; = {(z;) € Pn(C) :2; # 0}. Then {U;},c;<, is an open
covering of Pn(C). Define ¢; : U; — C" by
621y« o v Zpy) = (zl/zj’ .- ’zj—l/zj’ zj+1/zj’ .- ’zn+1/zj)'
It is easily checked that these are local coordinates for a complex manifold.

By a projective manifold we mean a complex manifold which can me
holomorphically embedded into P»(C) for some n. It is well-known that the Fubini-
Study metric gives P,(C) the structure of a kdhlerian manifold, see for example [Mo-

Ko]. Hence any projective manifold is also kahlerian.

Consider again the short exact sequences {1.1}, satisfying {1.2} . . {1.4} with
G the fundemental group of some compact complex manifold with holonomy group

$,N= ZZ", where n is the complex dimension of M. Let NIR = R®ZN'

Suppose N does admit a complex structure, t. Let (NR)t denote the complex
vector space which has underlying real space Ng and complex scalar multiplication
given by (x + yi).v =xv + y.t(v) for all ve Ng. We say that N admits a

projective structure if, in addition to its complex structure, the complex torus
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(NR)’ /N is projective as a complex manifold. We say that a complex torus is

algebraic when it is projective as a complex manifold.

Theorem [Jo4] (1.3) : Consider the short exact sequence of groups {1.1} satisfying

conditions {1.2} — {1.4}. G is the fundamental group of a compact flat projective

manifold with holonomy group & if and only if N admits a projective structure.

For use in the next section we state the Kodaira embedding theorem.

Let M be a complex manifold. In B = B (M) we have the obvious notion
of isomorphisms, denoted a:8& S &' where & = (E,M,n,C™) and g =
(E' ,M,p,C"). We must have m = n. Let the vector bundles & and &' have
transition maps h,; and hf ;1 Tespectively, with respect to one locally finite covering
of M, (such a covering exists by refinement). Then, & = &' if and only if n = m and
there exists a holomorphic maps a; : U; — GLx(C) such that

hy;(P) = @;(p)-hy;(p)-(o;(p)) ™ forallp e U; nU,.

Let M be a complex manifold. By a (holomorphic) line bundle over M we
mean a vector bundle & = (E,M, r,C). Let
Pic(M) = { holomorphic line bundles over M} =

This has a natural group structure: let 8 and &' be represntatives for classes in
Pic(M) with transition functions h; ;j and hf ; respectively with respect to one locally
finite covering, on transition functions the group structure is given by,

(i) {hij}'{hsj} = {hz‘j'hgj b

(ii) {hij}-l = {hifl}

(iii) and with identity the trivial line bundle (C x M, M, C, my,).
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Let M be a smooth manifold and k¥ a commutative ring. A sheaf ¥ (of k&
modules) on M is a triple § = (S,M, 7) where
(1) S is a topological space;
(ii) = is a local homeomorphism of S onto M;
(iii) 7~ !(p) is a k-module for all p ¢ M;
(iii) the map (s,t) — a.s + B.t is continuous on 7~(p), where o, 3 ¢ ¥,

for all p ¢ M.

The k-module S, = 7~ '(p) is called the stalk in ¥ over p. A sheaf
homomorphism o : § — #' is a continuous map of ¥ into ¢’ such that
(i) 7'oa = m;

(i) a /S is a k-module homomorphism.

Note that (ii) is a correct definition because (i) implies that a maps stalks in

# to stalks in ¥'. Thus we have a category of k-sheaves over the manifold M.

With the above notation let H"(M ,¥) denote the i*? cohomology group of M

with coefficients in ¥. For details we direct the reader to [Mo-Ko)].

Let O, (O}) denote the set of germs at p of all (non-vanishing) holomorphic

functions. Let

o=y 0, (0*={ 03 ).
pEM PeEM
Then O (0*) is a sheaf, the R-sheaf of germs of (non-vanishing) holomorphic
functions on M, with topology generated by the following open sets: let ¢ ¢ Op (O});
for each holomorphic function f, with f, = ¢, and neighbourhood U of p define an
open set by

U(¢,f,U) = {f;:q ¢ UL

Complex line bundles and sheaves are connected by the isomorphism
Pic(M) = H'(M,0*)

which is immediate from the definition of sheaf cohomology.
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The notion of complexes and exact sequences exists in the category of

sheaves. We have:

Theorem (Long exact sequence) (1.4) : Let M be a smooth manifold and

oq%ﬁyﬁﬂ‘ﬁo

a short exact sequence of sheaves over M. Then there exists a map 6 such that

S oPMe) % oM,y B omme) L mM,®)
- HM,%) % =®HM,9) B,

is an exact sequence of groups.

Let Z denote the sheaf of germs constant integer valued functions on M. The
sheaf cohomology of M with coefficients in Z is the the same as integer cohomology
of M, [Sp]. We the following exact sequence of sheaves

0 - Z -0 - 0" >0
where the map O — O* is given by f — e’™/. Hence by applying the Long Exact
Sequence Theorem we have an induced map 6 : H'(M,0*) — H%(M,Z). Let & be a

complex line bundle on M. We call its image §(8) ¢ H%(M,Z) the Chern class of 8.

Define
A"(M) = { smooth sections of A"(TM®) }
A"’ (M) = { smooth sections of A*(TM*) ® A'(TM"},
the sets of n-forms and (r,s)-forms respectively.
We have the following identity,
rys

AM)=o A

r+s=n

(M).
To define exterior differentiation d : A®(M) — A”*'(M) (locally) we introducing

bases

o
gz " Bz for TpM,
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i)

9 9

RIS for T,M
and dual bases

dzy, . . . ,dza for T,M*

dz,, . . . ,dza for T,M*.

Then, for r + s = n, define
d: A" (M) — AT (M) @ ATCTI (M) C AT (M)
on local basis elements of A"*(M) by,

d( fi : .dzi

i

1/\ .. /\dz.'r® dz—jlf\ . Adij’)

n
= ¥ %;(fii).dzaAdz,.lA . adz; ®AT; A . . ADE

J
a=1 s

n
o)
+ (—l)raz=:1 ﬁl(fij_)'dzﬁ" c . adz; ®@dZoAdZ ;A .. Adfj’

It is easily verified that,
d* =0.
We have now a complex {A"(M), d}, with which we define the de Rham

cohomology of M as

ker(d : A®(M) — A™*'(M))

Hr(M) = im(d: A" (M) — A"(M))

Theorem (de Rham, see [Mo-Ko] ) (1.5) :

Hjr(M) = H"(M,C).

Let w be a Hermitian metric of M: then w uniquely determines a (1,1) form
of M. We denote this again by w ¢ A'(M). Then it can be shown that the earlier
conditions for such a metric to be kihlerian are equivalent to d(w) = 0. Suppose that

M is kihlerian with metric w. Then w induces a class [w] ¢ H*(M, C), by (1.6).

Let 8 be a holomorphic line bundle on M. We say that the line bundle § is
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positive when there exists kdhlerian metric w on M such that
5(8)®1 = z5lwl,

where 6(w) ¢ H?(M, Z) is the chern class of §, and 6(8)®1 ¢ H*(M, C).

Theorem (Kodaira’s Embedding Theorem, [Ko] (1.6) : Let M be a compact complex

manifold. M is projective if and only if M admits a positive line bundle.

§2 Riemann matrices and projective embeddings

We shall work with Riemann matrices: the notions of complex tori and
Riemann matrices are equivalent for our purposes. For convenience in later sections,

we shall work over a commutuative ring k contained in the real number field.

Let V a kmodule of finite rank. By a lattice in V we mean a free abelian
group, A, of maximal rank contained in V, so rkZ(A) = m. For a k-module V let Vo
denote the R-space R® V. By a Riemann matriz over k we mean a triple (V,A,t)
where

(i) V is a k-module;
(ii) A is a lattice in V;
(iif) t : Vg — Vg such that t* = —1.

For a Riemann matrix (V,A,t), let (VR)t denote the complex vector space
with underlying real space isomorphic to VIR and with complex multiplication given
by

(x + yi).v =xv + yt(v) forall v e Vp.

We naturally identify V with k®ZA‘
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By a map of Riemann matrices ¢ : (V,A,t) — (U,Q,s) we mean a k-linear
map ¢ : V — U such that
() ¢(A) C @
(ii) (1®¢)ot = so (189)

where 1®¢ : R® k¥ — R®,Vis the induced map.

We have a category of Riemann matrices over k, which we denote by R E
Over Z we consider Riemann matrices as pairs (A,t). To any (V,A,t) ¢ R, we
associate the complex torus (VR)7 A+ We say that (V,A,t) € Ry is algebraic when

the complex torus (VR)'/ A is algebraic.

Let ¥ be a complex vector space. By a meromorphic function, F : ¥ — C,
we mean a quotient of holomorphic functions f,g : ¥ — C,

F=f
/8

where g is not identically zero.

Let (V,A,t) e Ry, let L : (Vp)' x Vp — Cand J : A — C satisfy:
(i) L is C-linear in the first variable and Z-linear when the second variable
is restricted to A C VRi

(if) L(A,p) = L(y,A) (mod Z)V A, u € A;

(i) JA+p)—IJN) =I(p)=LA,p) (modZ) V A, pu e A.
Then, by a theta function of (V, A ,t) of type (I.,J) we mean a non-zero meromorphic
function © on VR such that

O(x + A) = O(x).e T ILC ) + JR] x ¢ Vgi A € A.

The theta functions of a fixed type (L,J) form a real vector space, [La].

Let (V,A,t) € R, then by a Riemann form for (V,A,t) we mean a non-
degenerate alternating bilinear form B : V x V — k such that, if B : Vrx Vg — R

denotes the realisation of B, then
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(i) B(A,A)CZCk

(ii) & : Vg x Vg — R defined by
B(x,y) = B(t(x),y) Vxy

is symmetric and positive definite.

Suppose (V,A,t) ¢ !Rk admits a Riemann form, B: VxV — k. Then we
may define a type for (V, A,t). Define a Hermitian form on (VR)‘ by
H(x,y) = B(ix,y) + iB(x,y)
where, again B is the realisation of B. Define L : (VR)' x Ap — Cby
L(x,y) = 3.H(x,y),
andJ: A — Cby
JA + p) — J(X) — I(p) = L(A,p) (mod Z) for all A, p e A.

Then (L,J) is a type.

If © is an entire theta function of type (L,J) on (V,A,t) € !Rk, then for x,y
€ (VR)t define
B(x,y) = L(x,y) — L(y,x).
Then B is R-bilinear, alternating and real valued and the form F = Bo(t x 1) is
symmetric. Also, B takes integer values on A. Let B =1 ® (B /A x A) :VxV —
k. We say the theta function is non-degenerate when the associated form B is non-

degenerate. In this case the form B : V x V — kis a Riemann form for V.

Theorem (2.1) : Let (V,t,A) ¢ R;. The following are equivalent:
(i)  (V,t,A) is algebraic;
(i) (V,t,A) admits a Riemann form;

(iii) (V,t,A) admits a positive entire theta function.
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We have already shown the equivalence of (ii) and (iii). We give a brief
outline a proof of (i) = (ii) and (iii) = (i) using the Kodaira embedding theorem.

Let & be a positive line bundle on X = V /A" Then the chern class of & gives
a 2-cocycle ¢ ¢ Z®(A,Z). We are using the natural isomorphism H?(A,Z) =
H%(X,Z). Define B: A x A — Z by B(x,y) = {(x,y) — {(y,x) and extend to k.

Then B is non-degenerate and alternating, and Bo(1 x t ) is symmetric and positive

definite, where B is the realisation of B.

Now let © be a positive entire theta function on (V,t,A). Define an action
of AonCxV,a: Ax(CxV) — Ax(CxV), by (A, (z,x)) — (O(x).z,z + A). Let

E=Cx V/a' Then, 8 = (E,X, 7,,C) is a positive line bundle on X.

The implication (iii) = (i) is essentially a theorem of Lefscetz. For a positive
entire theta function © on a Riemann matrix (V,t,A) € Ry, let £(O) denote the
space of all entire theta functions which have the same type as ©. Let {©;, . ..,0s}

be a C-basis for £(©), then,

Theorem ( [Lefl], see [La] ) (2.2) : The map

x = (01(x); - . . ,0n(x))

is an embedding of V /A into PA(C).

Finally, we briefly describe the notion of the ring of endomorphisms of a
Riemann matrix, this ring is classically known as the ring of complex multiplications

of the Riemann matrix.

We say that a Riemann matrix (V, A ,t) over k is simple when V contains no
k-submodule U such that t(UR) C Up- Let X and Y be complex tori, by an isogeny

¢ : X — Y we mean a surjective holomorphic map which has finite kernel. We say
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that Riemann matrices (V,A,t), (W,Q,s) are isogenous, written (V,A,t) ~
(W,Q,s), when there exists an isogeny ¢ : (VR)t/ AT (WR)7Q ¢ induces, and is

induced form an R-isomorphism ¢’ : VR — Wp such that ¢'(A) C Q, see [La).

Proposition (Poincaré’s complete reducibility) (2.3) : Let (V,A,t) be an algebraic

Riemann matrix over k. Then,

(VA ) ~ (Vi AL t) 1@ . oo @ (Viny Anytn)™
where (V,,A;,t;), for 1 <i<n, are pairwise non-isomorphic simple algebraic
Riemann matrices over k. Moreover, the isomorphism types (V;,A;,t;) and

multiplicities e; are unique up to order.

For (V,A,t) ¢ R k let Endmk(V y A, t) denote the ring of R k-endomorphisms

of (V,A,t).

Corollary (2.4) : If (V, A,t) is algebraic then Endmk(V,A ,t) is semisimple, let D; =
EndiRk(Xi’t"')’ then D; is a division algebra over k, and

Endmk(V,A,t) = Mel(Dl) X...X Men(Dn).

Let (V,A,t) ¢ R, be algebraic. It is well known, see [Mu], that
Endmk(V,A,t) admits a positive involution o. This involution is the Rosati
involution and can be constructed as follows. To (V,A,t) ¢ R k define the dual
Riemann matrix (V,A,t)* = (V*A*,t*) ¢ R;, where V™ is the k-dual of V, A* is
the Z-dual of A and t* is the R-dual of t. Let B: V x V — k be a Riemann form for
(V,A,t). We then have a map B:v-wv given by ﬁ(x)(y) = B(x,y). It is easily
verified that B is a Riemann matrix isomorphism, B: (V,t) S (V,t)*. Define the

Rossati involution by
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o’ = ﬁ_loa“oﬁ,
where a* is the k-dual of a. Let A = Endmk(V,A,t). Using results on positively
involuted algebras, it can be shown that we have the following decomposition of
involuted algebras
(A,0) = Mg (Dy,01) x. .. x Me,,(Dn,G n)

where o; is the Rosati involution of D; (= Endmk(V,. s A, t)).

§3 The existence of complex and projective structures

We fix & a finite group and a commutative ring ¥ C R. Let W a finitely
generated k[®]-module, and put Wp = W@ R which we consider as a R[®]-module.
We say that W admits a complez structure when there exists a map t ¢
EndR[Q](WR) such that t* = —1. Denote by J 1(W,®) the set of all such complex

structures on W. Note that, J,(W,8) = SR(WR’(I)) C EndR[q;](W)-

Let k C E C R be a tower of rings. Put U = W®kIE and let Uy, ..., Uf be
E[®]-submodules of U such that U = U;®. . .®U,. Then we have an injection
fJI:SE(Ui»‘I’) - Sk(W,Q). {3.1}
given by -
(bye oo sty) = 4@ ... Bty

Proposition (3.1) : Suppose ¥ C E C R is a tower of fields. Let V be a k{®]-module

and U = W, E. If Uy, ... ,U; are the isotypic E[®]-components of U then

!
Sk(W,Q) = HSE(U“‘I’)-
i=1
Proof : Let t: Wp — Wp, then by (1.2.2) R®U; and R®gU; have no common

simple submodules. Hence, t([R®|EU,-) CRgU; Thust =t; & ... &t; where t; :

ROpU; — R®EU;. Also it is clear that
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t £ sk(W,Q) =2 t" € SE(UI’Q) fOI' all i.

Hence the result follows.

We have the following special cases,

Proposition (3.2) : f W = W, &...® Wiy, is the isotypic k[®]-decomposition of W,

then

3,(W.9) = [[5,00,9)

Proposition (3.3) : If Wp = W, &...® Wn the isotypic R[®]-decomposition of

WR’ then
7
I (W, @) = [[SR(¥:,9).
i=1
We say that a simple R[®]-module ¥ is of R-type if EndR[q,](‘V) = R. Let T
=1, I, III or IV and let V be a simple Q[®]-module. We say that V is of type T if
EndQ[q)](V) is of type T in Albert’s classification of positively involuted rational

division algebras. We extend these definitions to isotypic modules in the obvious way.

Let W=V be an isotypic Q[®]-module (V simple), and D =
EndQ[q)](V). If W is of type (I) let E = D, otherwise we write D = (D,E,7,£), a
CM-algebra, and F = E(¢). Let g = dimgE, and for types (II), (III) and (IV) let d?

= dimgD, where d = 2 for (II) and (III).
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Theorem (see (3.1) of [Jo4] ) (3.4) : Let N be a Z[®]-module, W = Q®;N and Wp

=R® zW- The following are equivalent:
(i) N admits a complex structure;
(ii)  each Q[®]-isotypic component of W admits a complex structure;
(iii) each R[®]-isotypic component of Wp admits a complex structure;
(iv) each Q[®]-simple summand of type I in W occurs with even multiplicity;

(v)  each R[®]-simple summand of R-type in W occurs with even multiplicity.

Proof : By (3.2) and (3.3) we have (i) < (ii) < (iii). We will show that (iv) < (v),
(iii) = (v) and (iv) = (iii). It is clear that at each stage in the proof we may assume
the module to be isotypic.

(iv) © (v) : Assume that W = v s Q[®]-isotypic (V Q[P]-simple). If W is of
type (III) or (IV) there is nothing to prove, by Albert’s classification. If W is of type
(II) then the multiplicity of the R[®]-simple module in W is 2e, by (I.2.4). Hence
we are reduced to consider the case of W being type (I), but then the result follows
by hypothesis.

(iii) = (v) : Assume that Wr = v s R[®]-isotypic (¥ R[®]-simple) and of R-
type. So EndR[(P](‘V) =R and EndR[Q](WR) = M,(R). Suppose their exists T ¢
M;(R) such that T2 = —1. Then we could give R’ the structure of a complex vector
space. Hence f must be even.

(iv) = (ii) : In chapter IV we shall give a complete parametrisation of SQ(W,Q) for
any W, and this implcation will follow form that. For now, we shall indicate the
existence of a single complex structure. Again we may assume that W = V(e) is
Q[®]-isotypic (V Q[®]-simple).

If W is of type (I) then by hypothesis e is even. Write W = (V @ )/,

hence W[R = (VIR ® VR)(elz)' Define t : (VR ® VR)(e/z) - (VR ® VIR)(.3/2) by ¢

Xy Y1)y e v ey (Xes21Y¥es2)) = (Y15 =%X1)s -« - s (Yey21 —Xe/2) ). This clearly is a
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complex structure for W.

Now suppose W is of type (II), (IIl} or (IV). Corresponding to the simple
Q[®]-module V there is a unique factor in the Wedderburn decomposition of Q[®].
Let this factor be A ( = Mm(D), for some m). Identify V with the first column of A,
with coefficients in D. Fix isomorphisms V =D and W = D™ and consider V

and W as a right D-spaces. Let 9 = R®QD, then Wp = 9™ We define t :

Wp— Wg by t(1®x;, ... ,1®%em) = (%ﬁz@ £xy. .. ,%g@e.xem). Then t2 =
—1, since £2 = —1 and t is a complex structure since £ ¢ D = EndQ[Q](V). This

completes the proof.

Let W be a k[®]-module and t ¢ EndR[q)](WR) a complex structure. By a
Riemann form for the pair (W,t) we mean a non-degenerate alternating k-bilinear
form

B:WxW — k
with realisation B : VR b'¢ VfR — R, such that
':'.VB:VRXVR — R defined by %(x,y):?B( t(x),y ) for all x,y

is symmetric and positive definite.

This definition is justified by,

Proposition (3.5) : Suppose k is an algebraic number field with R as a ring of

algebraic integers. Let W be a k{®] module and t ¢ End[R[(I)](WIR) a complex
structure. The pair (W,t) admits a Riemann form if and only if there exists a R[®]-

lattice A C V such that the Riemann matrix (W,t, A) admits a Riemann form.
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The reverse implication is trivial. The foward implication will follow from a

Lemma.

Lemma (3.6) : Let k be an algebraic number field. Let A; and A, be Z-lattices in a
finite dimensional kspace V, and let t ¢ Endp(Vp) such that t? = —1. The
Riemann matrix (V,t, A,) admits a Riemann form if and only if (V,t, A,) admits a

Riemann form.

Proof : Since k is finite dimensional over @, there exists integers n, m such that m.A,
C A, and n.A; C A,. Suppose that (V,t,A;) admits a Riemann form 8, :VxV
— k Let 8 =m?3,:VxV =k we claim that 8 is a Riemann form for
(V,t,Ajy). We need only verify that 3 takes integer values on A, x A,. Let x,y €
A, then  fB(x,y) = m?.8,(x,y) = fi(m.x,m.y) ¢ Z, since m.x,m.y ¢ A,.
Similarly, if (V,t,A,) admits a Riemann form f,, then (V,t, A;) admits a Riemann

form n?.3,. The result follows.

Proof of (3.5) : R is a P..LD with k as the field of fractions, hence, by(1[3.3), there
exists an R[®]-lattice A in V. Since there exists a Reimann form on (W,t) their
clearly exists some Z-lattice, A’, such that (W,t,A' ) admits a Riemann form. The

result now follows from the Lemma, since we may consider A as a Z-lattice.

Let W be a k[®]-module. By a projective structure for W we mean a complex
structure t such that the pair (W,t) admits a Riemann form. Let & k(W,‘D,B) denote

the set of projective structures on W such that (W,t) admits a Riemann form B.

As an immediate corollary to (3.5) we have,
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Proposition (3.7) : Let N be a Z[®]-module. Then, N admits a projective structure if

and only if Q®4N admits a projective structure.

For any Q[®]-module we shall define a “canonical form” determined by its
rational endomorphisms. Let W = v be an isotypic Q[®]-module (V simple), and
D= EndQ[q,](V). Recall our previous notation. If W is of type (I) let E = D,
otherwise we write D = (D,E,r,£), a CM-algebra, and F = E(§), as in (1.3). Let g

= dimQE, and for types (II), (III) and (IV) let d® = dimD.

We define a canonical form B : Wx W — Q for W as follows.
If W is of type (I) and e is even then let
S:VxV - E
be any positive definite symmetric E-bilinear form and define
SP:(VeV)x(VeV)—E
by
SP((x1,%:),(y12¥2)) = S(x1)S(v2) — S(x5).8(y;)
( SP is then a non-degenerate skew symmetric E-bilinear form).
Define 3 by
(W,8) = ((V & V),s7)/2.
If W is of type (II), (III) or (IV) define
n:DxD—E
by
n(x, y) = Trp(x"y§).
Corresponding to the simple Q[®]-module V there is a unique factor in the
Wedderburn decomposition of Q[®]. Let this factor be A ( = M (D), for some m).
We may identify V with the first column of A, with coefficients in D. We fix an

isomorphisms V ED(m) and W £ D(em) and consider V and W as a right D-spaces.
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Define 3 by

(W,8) = (D,n)“™
For isotypic Q[®]-modules of define the canonical form to be B = R /Q(ﬂ) :Wx
W — Q. For an arbitrary Q[®]-module we define a canonical form by defining forms
on its isotypic components. The canonical form is an non-degenerate alternating Q-

bilinear form.

Lemma (3.8) : Let W be a Q[®]-module with canonical form B: Wx W — Q. If

summands of type (I) in W occur with even multiplicity then GQ(W,Q,B) # 0.

Proof : Since the canonical form is defined on the isotypic components of W and the
set of complex structures on W splits on the isotypic components of W we may
assume W is isotypic. In chapter IV we shall also give a parametrisation of
GQ(W,Q,B) for the canonical form. For now we indicate the existences of a single
projective structure on W. Let W = V(e), V simple. Consider the complex structures,
t, constructed in (3.4). Let B : W x Wp — R denote the realisation of B. We need

only verify that Bo(t x 1) is symmetric and positive definite for each type.

Suppose that W is of type (I), then e is even by hypothesis. Let ¥ : VR x Vg
— R denote the realisation of S : V x V — Q. Then it is easily verified that
Bo(txl)=¢L... LY (e copies).

Hence Bo(t x 1) is symmetric and positive definite, by the definition of S.

Now suppose that W has type (II), (IIT) or (IV). By the constructions of B
and t we may restrict our verification to 9 = R®QD. Let 8: 9 x 9 — R denote
the realisation of %E/Q(n) :DxD — Q. Then

8o(t x 1) = Trp( t(18x)".(18y).(18¢) )
= Trg( (,/—.1{2@’ £x).(10y).(18€) )

= Trp( (18%)".(1®y) )
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Since,
(10€x)".(10¢) = (18£).(19&.x)"
= (—18¢)".(1®&x)"
= ((1®&x).(18¢) )"
= (1®x)".
Hence, Bo(t x 1) is symmetric, and positive definite since 7 is a positive involution.

u}

By (3.4), we have,

Corollary (3.9) : Let W be a Q[®]-module. Then W admits a complex structure if

and only if W admits a projective structure.

Denote by %,;,; (P,:) the class of fundamental groups of compact flat
kihlerian (complex projective) manifolds. Let G ¢ %;,,, then G fits into a short
exact sequence

6 - N - G —- & — 1
such that the Z[®]-module N admits a complex structure. Hence Q®4N admits a
complex structure. By (3.8), Q®y7N admits a projective structure. N also then

admits a projective structure by (3.6). Finally G ¢ P, by (1.4). Hence, we have,

Theorem [Jo5] (3.10) : We have the following equality,

%ﬂat = <EP,fun:-
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If we were to consider fundamental groups which have a type of certain finite
holonomy group then the result follows by much simpler considerations. We shall
consider the special case of nilpotent holonomy groups. We shall only need to
consider the notion of a field of CM-type rather than the more general notion of a

CM-algebra.

By a field k of CM-type we mean a totally imaginary algebraic number field
quadratic over a totally real field, see [Sh-Ta). Let k¥ C R be a field and A a finite
dimensional k-algebra. Let t ¢ Enle(AlR) be a complex structure, t2 =+1. We say
that t is a complez algebra structure when we can consider (AR)’ as a complex

algebra with imaginary scalar multiplication given by t.

Proposition (3.11) : Let K be a field of CM-type and quadratic over the totally real

field E. Let dimQE = g. Let R denote the ring of algebraic integers in K. If t is a

complex algebra structure for K then the Riemann matrix (K,t,R) is algebraic.

Proof : Let dimQ(IE) = g. Then

R®QE=RIX o e . ng
where g = dimQIE, and

R®QK = R1®EKX .+« X Rg@EK-
Each R, oK =C, A=1,..,g hence K has exactly 2’ complex structures,
corresponding to the g choices of +i ¢ C. By fixing a choice of complex structure we
fix isomorphisms aj : IR)‘®|EIK = C. Write k= Q(&), where €2 ¢ E and ( is
choosen so that a,(§) = 7,.i where 7 ¢ R and > 0. Define B: x K — Q by

B(x,y) = Tr (X.y.6).

/Q

B is skew symmetric and it may easily be verified to be a Riemann form for our fixed

complex structure.
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Lemma (3.12) : If C,» denotes the cyclic group of order m, then

Q[Cm] = ] Q(&r),
rlm
where, for each r|m, &, is a primitive r‘? root of unity. Moreover, for each r > 3,

Q(&,) is totally imaginary and quadratic over Q(¢r + €r).

Corollary (3.13) : Let C be a cyclic group and W be a Q[C]-module. Then any

complex structure for W is a projective structure.

Proof: It is clear that we need only show that any irreducible Q[C]-module of
dimension greater than 1 (if one exists) admits a projective structure. We may
identify such a module with Q(¢), where ¢ is a primitive root of unity. We claim
that any complex structure for Q(¢) is also a complex algebra structure. We need
only verify that x.t = t.x for all x ¢ Q(£)g. But t is R-linear so this is equivalent to
(1®&).t = t.(1¢).

However, multiplication by 1®¢ is just the C-action on Q(¢ )R’ and t commutes with
this C-action, so any complex structure gives Q(£) the structure of a complex

algebra. The result now follows from (3.11).

Proposition (3.14) : Let ®, © be finite groups and = : & — © a group epimorphism.

Let W be a Q[®]-module. Suppose that the action of & on W factors through =. Let
V be the corresponding Q[©]-module. Then

(i) W is irreducible < V is irreducible

(ii) W admits a complex structure <> V admits a complex structure

(iii) W admits a projective structure <> V admits a projective structure.
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Corollary (3.15) : Let ® be a finite abelian group and W a Q[®]-module. Then any

complex structure for W is a projective structure. Any irreducible Q[®]-module of

dimension greater than 1 admits a projective structure.

Proof: We may assume W = v s isotypic (V Q[®]-simple). Let p: ® —
GLQ(V) denote the action of ® on V. Let C = ®/ker(p). Then V factors through a
faithful irreducible action p':C — GLg(V). C is finite abelian and p! embeds C

into a division ring, hence C is cyclic. The result follows from (3.13) and (3.14).

Proposition (3.16) : Let © be a subgroup of a finite group ®. Let V be a Q[O]-

module. Let W = IndZ (V). Then
1) V is faithful = W is faithful
(ii)  V is irreducible = W is irreducible
(iii) a complex structure on V induces a complex structure on W

(iv) a projective structure on V induces a projective structure on W.

Proof : (i) and (ii) are well known, see [Se].
(iii) We make the following identification Wgp = R[®] ®IR[®]VR' Let t ¢ I(V,0)
and define T: W — W by

T(x®V) = xQ t(¥).
Clearly, T ¢ (W, ®).
(iv) Let t £ &(V,©,B) with B: Vx V — Q a Riemann form. Let C = {c;, . . ,¢r}
be a set of coset representatives for ®/© and {e,, . . ,em} an Q-basis for V. Then {

¢;®e;:1<i<r51<j<m}isaQ-basis for W. Define F: Wx W — Q by
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0 ife # ¢
F(c®e;, c/'®e;) =
(€@ ) { E(eje;) ifc=c
where ¢, ¢/ € C. Then F is a Riemann form for (W,(t)). If A is a Z[©]-lattice such
that (V,t,A) is an algebraic Riemann matrix, then @ = Ind$ (A) = Z[®] ®Z[®]A

is a lattice in W such that (W, ¢(t), ) is algebraic.

We introduce some finite groups. For o > 4 let Do denote the dihedral
group with presentation
Do=(X,Y:X"=Y=1, YIXY=X"" ); r=2""L
For a > 4 let SDza denote the special dihedral group with presentation
SD,e =(X,Y:X"=Y?=1, YIXy =Xy r =21,
For a > 3 let Q(2%) denote the quaternion group and define

Qo=(X,Y:X* =Y, Y'=1, Y XY =X"" ) s = 2°72,

Proposition [Ro, Ec-Mu] (3.17) : Let ® be a finite nilpotent group and let V be a

faithful irreducible Q[®]-module. Then V is induced from a representation of a
subgroup H of ®, which can be written H = ©x ¥, where ¥ is a cyclic group of odd
order and © is a cyclic dihedral special dihedral or quaternion group. If ® is a p-
group (even with p = 2) then V is induced from a representation of a cyclic

subgroup.

Theorem (3.18) : Let ® be a finite nilpotent group and W a Q[®]-module. Then
every irreducible Q[®] module of Q-dimension greater than 1 admits a projective
structure. Thus, W admits a complex structure if and only if W also admits a

projective structure.
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Proof: Let p: & — GLQ(W) denote the action of ® on W. Let © = & /ker(p).Let
W/ denote the Q[6]-module through which W factors. © is also nilpotent. We first

consider two special cases:

Suppose ® has odd order and W is irreducible. Then W’ is a faithful and
irreducible and so is induced by a faithful irreducible representation of a cyclic
subgroup of ©, by (3.17). This representation of a cyclic group admits a projective

structure by (3.13). Hence we have the result by (3.16).

Now suppose ® is a 2-group. We show that every irreducible Q[®}-module of
Q-dimension greater than 1 (if one exists) admits a projective structure. Suppose W
is such a module, then |©| > 2 by the definition of W. By (3.17) W/ = Ind2(V)
where C is a cyclic subgroup of © and V factors through a representation of a cyclic
group of order 2. But V must be faithful, hence C has order 2. Let D be a subgroup
of © of order 4 containing C. One must exist. We claim that D is cyclic. Otherwise D
= C(2)xC(2). Put U = IndE(V), then U is not irreducible. This is a contradiction
since. W' (= Ind3(U)) is irreducible. Thus W' is induced from the faithful
irreducible representation of a cyclic subgroup of order 4. Hence we again have the

result by (3.16).

We return to the general case in the theorem: let & be a finite nilpotent
group. Write ® = © x ¥; where © is a 2-group and 2 does not divide the order of ¥.
Any irreducible Q[®] module, U, then has the form V®q W; where V (resp. W) is an

irreducible O (resp. ¥) module.

If dimQ(V) =1 then U admits a projective structure with respect to the
action of ® if and only if W admits a projective strucure with respect to the action of
W¥. Hence we consider the case where both V and W have Q-dimension greater than
1. Let p denote the action of © on V; put O = ©/ker(p) and let p’ denote the

faithful action of ©y on V. Let ' = <X> C ©, denote the cyclic subgroup of
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order 4 from which p' is induced. Let 7 : © — O, denote the canonical projection.
Choose x ¢ © such that n(x) = X. Let s: Vp — Vp by s = p(x)® 1. Then s is a
projective structure for V. Let E: VxV — Q be a Riemann form for (V,s), let §
denote its realisation. Let t : Wr — Wpg be any projective structure for W. Let F :
W x W — Q be a Riemann form for (W,t), let F denote its realisation. Identify UR
= VR®prWg, and let T: Up — Ur by T(v®w) = v®t(w). This is a complex
structure for U. Let {e;,..,em} and {f},..,fn} be Q-bases for V and W
respectively. Identify these with the R-bases for VR and WIR' Consider the form G :
UxU—Q by G(ofp,e;0f) = E(e,—,ej).F(fp,fq), where  E(v;,v,) =
E(s(v,),vy) for all v;,v, € V. G is skew symmetric since E is symmetric while F is
skew symmetric. Also, the associated form G is positive definite; this follows from
Ge;®fp,e;® 1)) = G(T(e;®15),e;01y)
= G(e;®@ t(fp),e;® 1))
= E(e,-,ej).f‘(fp,fq).

Thus  is a Riemann form for (U, T), and hence U admits a projective structure.

Let A be a Z[O]-lattice of V such that the Riemann matrix (V,s,A) has
Riemann form B and let  be a Z[¥]-lattice in W such that (W,t, ) has Riemann
form F. Let € = A®ZQ, then 8 is a Z[®]-lattice for U. Also, (U,T,8) is an
algebraic Riemann matrix with Riemann form G: it is easily checked that G takes

integral values on 8x &.
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Chapter IV : Complex structures.

Let M be a flat compact riemannian manifold of dimension n. Then M is
covered by a flat n-torus T — M, and the group of deck transformations of this
covering is isomorphic to the holonomy group, ®, of M. Let

0 -— N - G —» & — 1,
denote the holonomy exact sequence of M, and let M denote the universal covering of
M. Then T = M /N A complex structure for M induces a complex structure for T,
and any complex for T which commutes with the action of ® induces a complex
structure for M. Moreover, if M is a complex manifold then T — M is a holomorphic

covering.

The following is well-known.

Proposition (0.1) : Let M' be a holomorphic covering of a connected complex

manifold M. Then,
@) M is kihlerian if and only if M’ is kihlerian,
and, if M’ is a finite covering, then

(i) M is complex projective if and only if M’ is complex projective.

Hence we have bijections,
{kéihlerian (projective) structures for X}

A
— {kéhlerian {(projective) structures for X which are @-invariant}.

Now let M be a flat compact complex projective manifold. T is a flat
algebraic torus. By a polarisation for M we mean a polarisation for the complex torus
T. Write T = Vt/N’ where V2 M and t: V — V is a complex structure on V

induced form the complex structure on M. Then we shall think of a polarisation of M

IV.58



as just a Riemann form for the Riemann matrix (V,N,t).

In this chapter we shall parametrise the kahlerian structures of a flat
riemannian manifold and the projective structures for certain manifolds with respect

to a canonical polarisation.

Let G be a Lie group (real or complex), X a topological space and o : G x X
— X a smooth group action. Fix x, ¢ X and let H denote the stabiliser of x, under
the action of G on X. If « is transitive then we may identify X with the homogeneous

space G JH' We say that X has parameter space G /H’ and write X = G JH’

§1 Complex structures

Let ® be a finite group and N a finitely generated torsion free Z[®]-module.
Put W = Q®4N. We shall first parametrise S’Q(W,Q). We introduce some

notation.

For a ring R let

IR ={xe R:x*=-1}.

Proposition (1.1) : Let e > 0, then we have the following parametrisations,
0 if e is odd

O S(M®) = { o
SLe(R)/SLC/Z(C) if e is even

(i)  I(M(C))

U (SL(©) /g1, cpsr©)

r4+s=e

(i) (M) = {AcMa(H): (A) ¢ S(MLO)) }

where ¢ : Mu(H) — M,,(C) is the standard embedding.
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Proof : (i) Firstly suppose e is odd then if S( M(R) ) # @ we may give R® with the
structure of a complex vector space, but this is clearly impossible. Let e be even, and
write e = 2n. Then F( M,,(R)) is clearly non-empty, since Jn & F( M,,(R) ),

where,

J, = (2.1}

0[]

Moreover, any J ¢ J( M,,(R) ) has minimal polynomial m(t) = t? + 1.
Thus, all such J have Normal Form J,. This follows from the Jordan normal form

over C since if

then

o a=[d 0]

Thus we have a transitive action
SLn(R) x S( Mpn(R)) —  S( Mpa(R))

given by

(A,J) — AJAL
Also, the Cauchy-Riemann embedding of M.(C) C M,,(R) corresponds to
identifying

Ma(C) = {A ¢ M, (R): AJn =JaA }.
Thus Stab(Jn) = Ms(C), and we have the result. Note that by a simple
rearrangement of coordinates we could take the following matrix as a Jordan normal

form
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JI 0 s
-tlp, 0

instead of J,.

(ii) Let J ¢ I( M(C) ) then it is easily seen that the Jordan normal form for
Jis
in 0
0 -

for some p and q such that p + q = e. Hence the action
SLe(C) x S(M(C)) — S(Mc(C))
given by
(A,J) = AJAT!
has a unique orbit space corresponding to each pair (p,q) with p + q = e. It is easy

to shown that for A ¢ M¢(C) we have

A. in 0 _ i[p 0 .A
0 - 0 -
if and only if
0 A,

for A;; € Mp(C) and A,, ¢ My(C). That is, A € Mp(C) x My(C). Again the result

follows.

(iii) This case follows trivially from (ii).

Let k ¢ R be a commutative ring. If V a k-module then as before define

where VIR = R®kV.

As an immeadiate corollary to (1.1) we have,
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Proposition (1.2) : Let V be a finitely generated free k-module of rank e. Then,

0 if e is odd

SLe(R)/SLe/Z(C) if e is even.

Proposition (1.3) : Let W be an isotypic Q[®], W = V(®) where V is irreducible. Let

D= EndQ[Q](V). Then,

(i)  if W has type (I)

] if e is odd
SH(W,Q) = {
@ (-‘3( M, /»(R) ))g if e is even,

(ii)  if W has type (II)
TeW.2) = (S(M(R)))E,
(iif)  if W has type (III) then
TQW.2) = (S(Mm))E,
(iv) if W has type (IV) then
FgW.d) = (S(M.4(0))

where d is the degree of D over its centre.

Proof : Let W = W®Q|R and ¥ = V®Q[R, so W = v, For types (II), (IIT) and
(IV) fix D = (D,E,r,a) and for type (I) let F = E = D. Then

T=9,0...0%,
where ¥, = V@R, is an isotypic R[®]-decomposition of ¥. Thus we may write

I(W,®) = Fp(+17.@) x . .. x Fo(¥5,@)

Moreover,
R (M
End ) = { M,(R) (IT)
Rfe| "~ H (111)
M,(C) vy

Hence,

IV.62



J(M(R)) Wy

“ I(M(R)) ()
SR(‘V" ®) = {
J(Me(H) ) (1mm)
J( M.q(C) ) (Iv)

Hence, the result follows from (1.1).

Recall our original notation: let N be a finitely generated Z[®]-module, W =
Q®4N. Let T denote the torus Wi /N. We are now in a position to parametrise the
set of complex structures on T which commute with the & action, denote such a set

by (T, ®).

Fort ¢ SQ(W,Q), let T, denote the complex torus
—_ t
Fix ty ¢ SQ(W, ®), then for any t ¢ S‘Q(W,Q) there exists an a ¢ SLp(Wp) such
that t = a.tg.a™, by (IIL.3.3). We clearly have,
- W'
Te=W/ay

and,

Theorem (1.4) : Let N be a finitely generated Z[®]-module, and W = Q®4N. Let T
= Vg /N, then

I(T,®) = Aut (N)\fo(W,Q).

Z[®]
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§2 Projective structures I.

Let ® be a finite group and N a finitely generated Z[®]-module. Put W =
Q®ZN' Recall the definition of the canonical form for a Q[®]-module, see chapter
ITII. We introduce a canonical form (again see chapter III) on W as follows. Split W
into its Q[®]-isotypic components

W=W, o...0 W,
we split each W; by its simple factor

w, = v,
Let D; = EndQ[CI»](V")' Write D; = (D;,E;,7;,§;), a CM-algebra, if D; (and
therefore V;) is of type (II), (III) or (IV) otherwise let E; = D;. We define a
canonical form 8; : W; x W; — E; as in chapter III. Let B; = ®¢ /Q(ﬁi) : W, x

i
W, — @, and put
B=B L...LB;:WxW—Q.

Then as a corollary to (111.3.2) we have,

Proposition (2.1) :

f
Gg(W,2,B) = HGQ(W,-,@,Q,.).

i=1

Hence, to parametrise EQ(W, ®,B) for B canonical, we may assume that W

is isotypic.

Let E be a totally real field and E/Q be a finite extension with dimQIE = g.
Let %‘IE ={o,:E—-R }1959 denote the set of embeddings of E into R. Write

|E®QR ZR;x...xRy {2.1}.

where R, denotes the field R considered as an algebra over E, via the embedding o

foreach A =1,...,¢.
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Proposition (2.2) : Let W be a finite dimensional E-space. Write W = |T\’®QW and

WR,‘ = Ry\®@pW. Let #: Wx W — E be an E-bilinear form and put
B, = : —+R
A SRA/ (ﬂ) WRAX WIRA
E
and
Then we have the following orthogonal decomposition

(WR,eB) = (WRI’E;B]') l...1 (WRg,%‘q).

Proof : Let

l=e¢ +...4+ ¢
be the decomposition of 1 ¢ IR®QIE by central idempotents corosponding to {3.1}.
Since {e;, ... ,e;} is a R-linearly independent set and dimR(R®QlE) =g, {e}...
,eg} is an R-basis for IR®Q|E. Let {w;,...,wn} be a basis for W / E. Then
{ex.(1®wy),...,e5.(1Qwn)} is an R-basis for W,. Also B = 1®TrE/Qo
SR/E(ﬂ) and BR/E(,B) are R®Q[E-linea.r. The result follows since {e,, . . . ,e,} are

mutually orthogonal.

We fix the following notation. Let W = v be an isotypic Q[®]-module (V
simple), and D = EndQ[q)](V). Then, if W is of type (I) let E = D, otherwise we
write D = (D,E,r,£), a CM-algebra, and F = E(§), as in (1.3). Let g = dimQ[E,

and for types (II), (III) and (IV), let d*> = dimp-D.
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Corollary (2.3) : Let W be an isotypic Q[®]-module and B: WxW — Q a
canonical form for W. By the definition of B we may write B = % /Q(,@) where 3 :

W x W — E be an E-bilinear form. Define

G.BA = SRA/E(ﬂ) H WRAX WR)‘ hand RA
Then,

g
©q(W,®,B) = EGR(WRA,Q,%A).

§3 An elementary device: tensor products.

Let A=R, C or H, and let —: A — A denote the standard positive
involution. We denote by (U, ) a finite dimensional A-space U with an A-form 3,
(that is 3 is either symmetric, skew symmetric, Hermitian or skew Hermitian). Note
that by Hermitian we mean (i) 8 A-linear in the second variable and (ii) A(x,y) =
B(y,x) Vx,y € U. A morphism between two such objects («u,s), (q..l.' ,ﬂ') is an A-
linear map o : U — A’ such that the forms are preserved. If A : A’ x A? -~ Ais
an A-form then we identify A = (a; ;)i<;, j<p» the matrix for A with respect to the
standard basis for A”. We have a coproduct for the above as follows. Define

AVE:UP x U — A
2
by AVB(((x1y -+ Xp) s (Y15 -+ > ¥p) ) = z a; j-B(xs¥j)-

i,j=1
(Note that in terms of matrices this product is just the tensor product.)

And let

(U, f)VA = (UP, AV).

Proposition (3.1) : The form AVS is non-degenerate precisely when A and 3 are

non-degenerate.
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Proof : («=) is easy.
(=) Firstly it is clear that 8 is non-degenerate. Suppose A is degenerate, then we

may choose A = (A, ..., Ap) # 0 such that

A4 =0.
Lety = (yy5 ..+ ,¥p) € U. Then, for 0 # x ¢ U,
-AV,B( (Al-xv ee ey AP'x) ’ (YI’ L ’yP) )

P

= E a; ;-B(A;x,y;)

i,j=1

= E ( ZAia‘i,j)'ﬂ'(xay]’)

j i

l
)

But this contradicts AV j being non-degenerate. Hence no such A exists, and hence

A is non-degenerate.

Let ¥ be an A-space of dimension m, and 3: ¥ x ¥ — A an A-form. By a

frame F = (U, ', A) we mean a triple with (U, ') an A-space with an A-form B!

and A £ Mp(R). We say that (¥',3) is framed by (U, B',.A) when there exists an
isomorphism

(V,8) = (u,8)v4 {3.1}.

Thus if U is of dimension n, n|m, and if we let m = p.n then A ¢ My(R). If g is

Hermitian (skew Hermitian) then we take 8’ to be Hermitian and then A is

Hermitian (skew Hermitian).

Fix a frame ¥ = (U,B',4) for a pair (¥,58) . Let § ¢ Endy(¥) and
suppose @ has the following form

0(xqy - -« xp) = ( (;Olla.xa, e ,%:0p,a.xa) )

for (xy,...,xp) € ) - ¥, where each 6, ; is scalar, then we say that 6 is an ¥-
morphism. Let Scal,(A) denote the ring of p x p scalar matrices. Then Scalnm(A) =

A, hence if 6 is an F-morphism then we may identify 8 = (8, ;) ¢ Mp(A).
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Proposition (3.2) : We continue with the above notation, suppose (B is skew

Hermitian and 6 ¢ Endy(¥) is an F-morphism. Then

Ao(f x 1) is Hermitian if A is skew Hermitian
Bo(f x 1) is Hermitian & { or :
Ao(f x 1) is skew Hermitian if A is Herm}ian.

Proof: Let x = (X1, ... Xp)y ¥ = (Y15 - - s¥p) € u® — 4. Then

B0,y = B((Thraxa - - - T0pexa), (¥, - - - ¥7))
= Zai,j'ﬂ’(gai,ax“’yj)
)
= Zai’j . ;95,0,. . ,B’(XOHYj)
$J

= E (Zgi,a’ai,j) . ﬂ’(xa,yl')
a,j 3

Hence the result follows, since Ao(f x 1) = (Zei,aa‘i,j)lsa,jsr

Proposition (3.3) : Suppose there exist an F-morphism 6 ¢ End A(‘V). If Bo(Bx1) >

0 then B’ is definite and by choosing B’ >0 we must have Ao(f x 1) > 0.

Conversely, if 3’ is Hermitian and Ao(f x 1),ﬂ’ > 0 then fo(f x1) > 0.

Proof : If f0o(© x 1) >> 0 then it can be seen that § ! is definite by the proof of (3.2).
So suppose 8’ > 0, and take x = T(Al.x, vy Ap.X) . Then
B(6(x),x) = (; A (6i02,) )\j) . B'(x,%).
So A'(x,x) > 0, thus ,;( f(x),x) >0 = (Z Ao (;Gi’aa,—’j) . Aj) > 0.
Hence Ao(6 x 1) > 0. The remainder of thszroposition follows simply by choosing

an orthonormal basis for U.

IV.68



For A € Mp(R) let A® denote the following matrix

A 0
4® = e M;,(A).

0 A

Then, we easily have the following.

Proposition (3.4) : Suppose (¥, 8) = (U, B')VA where A ¢ My(A).

@ I (W,A)= (U, 80 L... L (Ua,Bh),
then
(¥,8) = (U, B)VA L... L (Un,fR)VA.
In particular,
G if (@u,ghy=z@,8"yL...L(W,8") (kcopies),
then
(¥,8) = (w,8")va®
(i) I (W,B)Z(¥,8)L...L (V5 (e copies),
then
(W,B) = (7,8 v4

= (7,8)vA®.

§4 Complex structures II

Recall the notation of §§1-2: let ® be a finite group and let N be a finitely
generated Z[®}-module. As before put W = Q®zN and let T = Wp /N2 real
torus. Let B: W x W — Q denote a canonical form. In this § we shall parametrise
the projective structures of the T which have Riemann form B, we denote this set by
&(T,®,B). We first give a parametrisation of GQ(W,Q,B) for W isotypic of type
(I), (II) and (IV), for W of type (III) a parametrisation of GQ(W,Q,B) seems slightly

beyond our grasp.
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Write W = (V)® (V Q[®]-simple). Let D = EndQ[Q](V) and write D =

(D,E,7,&) if D is of type (II), (IIT) or (IV) otherwise let E = D. By definition, we

may write B = %E/Q(ﬁ) where 8 : Wx W — E.

Let dimlEV = n, then we have the following natural embedding given by

tensor product,
GLe(E) C GLen(E) = GLE(W)

A — A®In

where ® denotes the tensor product of matrices. Fix an identification

E®QR=RIX"‘XR9

and for ease of notation let V, = R,®gV and Wy, = R,@gWiord =1,...,¢

If W is of type (I) or (III) then each V, is a simple R[®]-module; otherwise

we have the following R[®]-simple decomposition
v, =,

where,

f— 2 type (II)
- d type (IV)

For E c k c R, define

G(k) = M.(D) n SU(k@EWa]-@ﬂ)

G is clearly an algebraic group defined over E. Let H = G‘R’IE/

Hg act on QQ(W,Q,B) by
HR X GQ(W,Q,B) ad GQ(W,Q,B)

G t) —  a lta.
We have

Hg = Me(R® D) N SU(Wp, 1@B)

But

SU(WR,10B) =SU(V{" & ... @ Vi), 3, L ... L B)
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and

M.(R) x . . . x M(R) type (I)
M, (R)x...xM,(R) type (II)

Me(IR®QD) = {
Me(H) x ... x M(H) type (III)

Med(c) X...X Med(c) type (IV)

So let

M.(R) N SU(VS,B,)  type (1)

2
Ma.(R) N SULY”,B,)  type (1D
(HR)A = {

M.(H) N SU(VSY,B,)  type (III)

M,4(C) N SUUSD,B,) type (IV)
then

HR = (HR)I X .. X (HR)y.
We consider types (I), (II) and (IV), leaving a discussion of type (III) to the

end.

Type (I) : Suppose W is of type (I). By (II1.3.4) and (III.3.9) e must be even for there

to exist a complex structure, write e = 2n. Let A = J, ¢ R?” and B} = SIRA (S)

: Vy, xV, — R,. Then by interchanging coordinates it may easily be verified tha!tE
(Wy, By) 2 (V,, BYVA.

Fix the frame ¥ = (V,,B},4) for (W,,®,). Identify R*® with rows of 2n

elements of R. Let {x;, ..., X,,} be a symplectic basis for R*" with respect to the

form A, that is,

1 i=j+n;
.A(x,.,xj)={—1 i=j—mn

0 otherwise.

Any R[®]-Endomorphism of W, is clearly F-framed. Let t ¢ GR(W,,2,B,), t is F-
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framed, so we may give R2” the structure of a complex vector space by defining
(a + b.i).x = a.x + b.t(x) for x ¢ R?",
Hence we consider each x; ¢ C™. Let X; = "(x; | ... | Xn) and X, = T(x,,+1 ...
Xg,) then, for i = 1 or 2, X; € Ms(C) and is invertible since the rows of each X;
form a C-basis for C"*. Let X = [%] and define © ¢ M,,(R) by
iX =0X.
Then by (3.2) and (3.3), t & Gp(W,,®,B,) if and only if T@.4 ¢ My, (R) is
symmetric and positive definite. If T©.A is symmetric then 0.4 = T(TO.A) =
—A.0 and (A.0)"! = ©.A. Hence, t ¢ GRr(W,,®,B,) if and only if (—©6).4 is
symmetric and positive definite. In the notation of Weyl, see [Weyl], [Wey2] or [All],
—© is a generalised Riemann matrix with principal matrix A. Let H = -i.TX.4.X.
Then H is hermitian,
TH = T(-i.TX.4.X)
= —i."X.TaX
=i X.AX
= (-1i.7X.4.X).
By the classical theory of Riemann matices (—0).A is symmetric and positive
definite if and only if
TX.AX =0 {4.1}
and H is positive definite {4.2}.
With X = [}XT:], {4.1} may be written
X TX, - X,.TX; =0 {4.3}
and {4.2} may be written
(X, Xy — X1.TX,) > 0 {4.4}.
Let & = X,.X5", then {4.3} is equivalent to

T =% {4.5}
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and {4.4} is equivalent to

ImZ >0 {4.6}.

Conversely, let % ¢ Ms(C) and put X = [%], Then R?" is given complex
coordinates and so we have a uniquely defined complex structure on R%". If we again
define © ¢ M, (R) by

iX=0X
then conditions {4.5} and {4.6} imply that '©.4 ¢ M,,(R) is symmetric and

positive definite, by the reverse of the above argument.

Let
(Ill)) = { B e Mp(C) : T% = B and Im(B) > 0 }.
(IIy) is sometimes written in the form $, and is known as the generalised Siegel
upper half plane or the Siegel space of type (III). We have the following
identification,
6R(WA7¢’€BA) = (Il /2)

where e is defined as above.

The classical theory of Riemann matrices and the importance of Riemann
matrices to algebraic geometry, as here, may be found in a paper by Lef schetz [Lefl].
For a description of the connection between Riemann matrices and generalised

Riemann matrices the reader is directed to [Weyl—2] and [All], as decribed in [Al2].

With respect to the basis given by the rows of X it is now clear that
(Hg)x = SU(VS”, B,) N GL(R) = Spa(R).
We describe the action (HR), on Gp(W,,8,%,) as an action on (IIIa). Let t ¢
GR(W,,2,%,) and define X and © as above. X satisfies {4.5} and {4.6}. Let & ¢
(HR))‘ = Spn(R), then a(t) = a.t.a™. Let t' = a.t.a™?, then it is easily verified

that the matrix of complex coordinates is given by X' = aX. Write



where a,b,c,d € Mu(R). Then
aX = (aX; + bX,,cX; + dX,),
hence the action of & on (III,) maps % to B', where
%' = (aX; + bX,)/(cX; + dX,)?
= (a% + b)/(cB + d)7.
Hence (HR), acts on (IIl,) as the group of fractional transformations; in particular,

the action of (Hp),is transitive, [Si]. This corresponds to the usual identification of

Fix A =R,H or C according to W being of type (II), (III) or (IV)
respectively. Let 9, = EndR[q)](V 2 D, has a positive involution induced from the
group algebra R[®], and by proposition 4 of [We] we may fix an isomorphism

(D7) = (M4(R),0) {4.7}

where o denotes the standard involution of M (A).

Corresponding to the identification of V as the first column of A, we identify

V) with the first f columns of AQ R, = M,,,,(R). Let,

X=[X...]X;]0...0]
€ M;,(B) {4.8)
Y=[Yy]...1Y,]0...0]

and B, denote the restriction of B, to V,; we clearly have,
B} (X,Y) = Trp(X.2."Y) {4.9}
where = £ M;,,,(R). In fact = is the matrix corresponding to the action of £ € D on

V. Thus

= 0

U]

{4.10}

0 =

where Z/ ¢ M #(A) is the image of { ¢ D under the isomorphism D®|EIR = M,(R).
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Type (IT) : Let W be of type (II). Then we have U, identified with the first column
of M,,,,(R). Let
F:U,xU, — R
by (X, Y)=xpy1 + -0 + XomYom
where X = T(Xy,...,Xy,)and Y = T(¥1s e ey Yom)-
Let 2/ = (65,,- )i<i,j<2 € Ma(R), then 51,1 = 52,2 =0, 54,2 = —52,1 and
BY (X1,X3)5(Y1,Y3) ) = $(X1,Y,) 801 + $(X,,Yy)-E1
Let A' = T='and 4 = TZ, then,
(V,,3) = (u,,?,)v4.
And, by (3.4),
(Wi, By) = (Uy,9)VA
Let F = (U,,¥,A) be the framing. Any R[®]-endomorphism of W is F-framed. Let
te GR(W,\,Q,?B,\), t is F-framed, so we may give R?® the structure of a complex
vector space. Let {x;,...,X,,} be a symplectic basis for R?® with respect to A.
Hence we consider each x; ¢ C°. Let X, = "(x; | ... |xe) and X, = T(x,H_l [...]
Xy.) then, for i = 1 or 2, X; € M¢(C) and is invertible since the rows of each X; form
a C-basis for C°. Let X = [%ﬂ and define © ¢ M,,(R) by
i.X =0.X.
Then by (3.2) and (3.3), t ¢ Gr(W,,®,3,) if and only if TO.A € M,,(R) is
symmetric and positive definite. Thus to similar working to type (I) we may identify
Ggr(W,,2,3,) = (IlL).
Also, it is clear that (Hg), = Spe(R) and acts transitively on (IIl) as the group of

fractional transformations as in type (I).
Type (IV) : Let W be of type (IV) and define

Jﬁ,\:WAXW,\—>C

by j{;,\(x,y) = ‘:-BA(X’Y) + i‘.B,\(iXay),
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and
¥V, xV, = C
by BAxY) = Br(xy) + iB,(ix,y).
It is clear that
(W, %y) 2 (V;, %)

and is easily verified that 36} is skew-Hermitian.

Proposition (4.1) : Suppose t is complex linear, then

(i) Byo(t x 1) is symmetric < 36, o(t x 1) is Hermitian

(i) Byo(t x 1) > 0 <> H,0(t x 1) > 0.

Proof : Since B, = Relb,, (ii) and “<=” of (i) are clear. Suppose that B,o(t x 1) is
symmetric, then
Ka(ty,x) = B,(ty,x) + iB,(ity,x)
= By(tx,y) + iB,(ix,ty)
= B,(tx,y) + iB, (¥, tix)
= B,(tx,y) — iB,(itx,y)
= F(txy).

The result follows. O

Relative to the identifications given in {4.8} and {4.9} it is easily verified

that
HYX,Y) = Tre[ "X.Y.E]
We may carry out the working as follows:
Trel 'Y XE] =Tl T2TXY ]
= Tre[ "X.Y.TE ]

———
=Tre X.Y.'E |
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T -
= Tre[ 'X.Y.E]

Hence,
T —_ To —_
TrIR[ Y.X.2] = Re Trc[ Y.X.E ]
TE v~ =
= Re Trc[ X.Y.E]
Thus,

BYX,Y) = ReTrg 'XYE],
and  BYiX,Y) =ReTrg[ X.Y.Z]
. T rm
= Re —iTrc[ XYZ]

Ty
=Im .Trg[ XYE ]

Now let ¥ denote the standard Hermitian form on ,, that is $(X,Y) =

TKY, also let A = TZ, then,
(Wi, 36,) = (U,,9)VA
Let & = (U,,¥,A) be the framing. But Z is central in M, ;(C), and so scalar.
Thus, the signature of i.A is (0,ed) or (ed,0). Choose a C-basis {x,, . . . X4} so that
A = #il, ;. Again any R[®]-endomorphism of W, is §-framed. Write X = T(x1 | .
oo | Xeq). Let t € Gp(W,,®,B,) and define © ¢ M,4(C) by
t(X) = 0.X.

Hence, '©.A is Hermitian and positive definite.
As described by Satake in an appendix of “Algebraic structures of sym;netric

domains’, this is a bounded domain of Siegel type I, which is identified with a single
point since A is diagonal.

Hence we have proved the following.
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Theorem (4.2) : Let W = v® be an isotypic Q[®]-module and B: VxV — Q a
canonical form. Then,

(i) if W has type (I)

((IIIe/z))g if e is even
Go(W.2,B) = { {4.11}
if e is odd
(ii) if W has type (II)
Go(W,2,B) = ((me))g {4.12)

(iii) if W has type (IV)
GQ(W,Q,B) has one element.

Moreover, IHIR act trasnsitively on the parameter space for each type.

Finally, we remark on the remaining case of type (III). Here each V), is
simple and we may identify V, with the first column of Mm(H). As before let ®}
denote the restriction of B, to V,, then for X,Y ¢ V,, we have,

BY(X,Y) = Trp(X.2."Y) {4.13}
where = ¢ M, (H). Also

(Hg)x = Me(H) N SU(VS?, B,)

Consider H® as rows of e elements. Let J6 : H® x H* — H denote the skew

Hermitian form
¥(x,y) = x.2.Ty.

It is clear that SU(H®,36) C (HR),. By the usual injections H° c C?°, and ¢ : Ma(H)
— M,,(C) we may idenify 3 with a skew Hermitian form 3 : C** x C?¢ — C. We
have, SU(H®,%) c SU(C?*,%) = SU(n,n). We may identify SU(H®,}) =
SU(C?¢,%) N O(C®,¥) where ¥$:C%*xC? — C by 9$(x,y) = ¥(xj,y) is
Hermitian, [Po].

Let
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(1) ={Z e Mn(C): TZ = —Z,1 — Z'Z > 0 and is Hermitian }.
(ITn) is the Siegel space of type (II), it is a bounded symmetric domain. Then modulo
its centre SU(H®,J6) acts transitively on (Il) as the group of fractional
transformations, see [Si]. As a subgroup of (Hp),, SU(H®,3) acts without fixed
points on Gp(W,,®,B,). Hence we may write Sp(W,,2,B,) as a disjoint union
SR(W»,2,3,) = UA (IL.)
ae

of copies of (Ile) over a, possibly infinite, index set A. The elements of A correspond

to orbits under the action of SU(H*, J6) on Sp(W,,®,B,).

To apply the work of Shimura, [Sh], we considered only those projective
structures t on W = V(¥ (V Q[®]-simple) where there is an embedding of
EndQ[q)](V) into the endomorphism algrebra A,(W,N,t) which is compatible with
the involutions and the projective structure. Let t ¢ GQ(W,'IP,B) and write

t=1t,®...® te,
where t, € Gp(W,,2,B,) for each A. The involuted algebra EndQ[q)](V) embeds in
Ao(W,N,t), as above, if and only if each t, commutes with the right action of H on
W,; which is equivalent to t, ¢ M(R) for each A. Hence we at least must have e
even for any such projective structures to exists. However, a simple application of
(3.2) to a framing F = (VA,‘.BQ,A), with A Hermitian, shows that no projective

structures with such an embedding of endomorphism algebras exists.

Recall our original notation: let N be a finitely generated Z[®]-module, W =
Q®zN. Let T denote the torus WIR/ N. Because of the problems just described we
suppose that W has no summands of type (III). We are now in a position to
parametrise the set of projective structures on T which commute with the ®-action

and have Riemann form B, the canonical form. We denote such a set by &(T, ®,B).

Essentially the work has been done in §1: let T' ¢ IHIR denote the maximal
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arithmetic subgroup such that I'(N) ¢ N. As in §1, it follows easily that,
Theorem (4.3) : We have the following parametrisation,
&(T,®,B) = I‘\C'BQ(W,(I>,B).

Moreover, &(T,®,B) is then an irreducible bounded symmetric domain.

Proof : We need only verify irreducibility, but this follows from (3.4) of [Jo2].
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Chapter V:  Holonomy groups and representations.

§1 Integral representations and cohomology of finite groups

Let G be a group and R a commutative ring. Let N be an R[G]-module. We
say that N is decomposable when we can write
N=N, ®N,
for non-zero R[G}-modules N; and N,. Otherwise we say that N is indecomposable.

The following is well known.

Theorem [Jon] (1.1) : Let G be a finite group. Then, the number of isomorphism

classes of indecomposable Z[G]-modules is finite if and only if every Sylow p-

subgroup of G is cyclic of order p or p2.

Let p be a prime and let Z, denote the cyclic group of order p. Let { be a
primitive p‘® root of unity and Z[¢] denote the ring of integers in Q((), the
cyclotonic field of order p. Let C = C( Q(¢) ) denote the ideal class group of order h
= hp. Let A;, ..., A, ¢ C be a set of representatives for the ideal classes. Then a
full set of indecomposible Z[Z ;]-modules is

Z, A, ..., A, (Ava), . . ., (Ar,a)

for a; € A;, see §2 of Chapter IIL.

So let
_ pa L H h i
N=12 EB(;‘€=B1 = )@ (5621 (A:2,) ) {11}
h h
be an arbitrary Z[Z,]-module, put 3 = }_ 3, and ¥ = Y_7;. Then, [Ch],
i=1 i=1
H%(Z,,N) = Z5.
Hence, there exists torsion-free extensions of N by ® if and only if & > 0. Also, it is

clear that N is faithful if and only if 8 + v > 0.
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Again let p be a prime, denote by D, , the dihedral group of order 2p,
D2P=<a,b:a2=bp=1,bab=a> {1.2}.
Then,
0 - Z, - Dy, = Z, — 1 {1.3}
is a split short exact seqence. Although the first example of a dihedral group is the

Klein 4-group (p = 2) we do not discuss this group in this section because of (1.1).

Let p > 2. We may describe the indecomposable Z[D,,]-modules as follows,
[Le] and [Ch-Va3). Again, let ¢ be a primitive p** root of unity. Put R = Z[¢] and
Ry = Z[¢ + (], let Cy = C(Q(¢ + C)) the ideal class group of Q(¢ + ¢) and let
Vi, ..., Vr be a full set of representatives for these ideal classes, r = rp (= |Cy| )
the ideal class number. Also, for each i =1 — r, choose v; ¢ V;R not in (1 —

¢).V,;R. We describe the indecomposable modules in ten types N; — N,,, see [Ch-

Va).
N, EZ y the trivial module of rank one;
N, ."—12 YA a.n = —n, b.n = n;
N3 =5 2012 a.(n;,ny) = (ny,ny),
b.(ny,n;) = (n;,ny);
fori=1,..,r,
N EZ VR ax =X, bx = (.x;
Ng EZ V.R ax = =X, bx = (.x;

N§ ZsViRo1Z a.(x,n) = (=X + n.v;,n),
b.(x,n) = ({.x + n.v;,n);
N% =, VRN, a.(x,n) = (X — n.v;, —n),
b.(x,n) = (¢.x + n.v;,n);
Ng EZ V.R & N, a.(x,n;,n,) = (X + (n; — ny).v;,n,,n,),

b.(x,ny,n5) = ({x + [0y + n5.(1 —2¢)).v;,ny,m5);
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N§ =7 ViR & N3 a.(x,n;,n,) = (=X + (n; + ny).v;,n,,1n,),
b.(x,n;,n;) = ({-x + (ny + np).v;,ny,105);
Nio =7 V;R® V,;R © Ny
a.(X1,Xz,01,05) = (X + (n; — n,).v4,X + (n; + ny).vy,ny,14),

b.(x;,Xp,n1,05) = ({.x; + [n; + ny(1 = 2¢)].v;,¢xp + (ny + ny).viymy ,Dy).

Let N be an arbitrary Q[D,,]-module. Then the Z[D, ]-isomorphism class of
N is uniquely determined by the following invariants [Ch-Va],
rky N, H'(D;,,N)i =1 — 4, E(N)and I(N),
where
E(N) = total number of modules of type N4, Ng and N;, that occur
in the indecomposable decomposition of N.
I(N) = the product, in Cg, of all the ideals occuring in the

indecomposable decomposition of N.

Proposition (1.2) : Let G be a finite group, and K a normal subgroup such that (

|K|,|G/K| ) = 1. Let N be a Z[G]-module and [N] denote the restriction of N to
K. Then

/K

H'(G,N) = H"(K,[N]K)G ® H(G/K,NK),

This is well known and follows from the Lyndon-Hochschild-Serre spectral

sequence for the short exact sequence

0 - K -G - G/K — 1 {1.4}.

We continue with the notation of (1.2).
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Proposition (1.3) : Let ¢ : K — G be injection and s : G/K — G be a right splitting

for {1.4)}. Let s*: HY(G,N) — B'(G/K,[Nlg k)

denote the induced map in cohomology. Then s* is surjective.

Proof : That s* is surjective follows immediate since s is a right splitting for {3.5}.

The rest is a corollary of (1.2).

There is a unique cyclic subgroup of D,, of order p, denote this by Z,, and
precisely p subgroups of order 2; the order-2 subgroups are all conjugate, since they

Sylow 2-subgroups, in this way Z, acts transitive on the set of Sylow 2-subgroups.

For a Z[D,,)-module N let [N], ( [N], ) denote the retriction of N to Z, (A

= <ab£ : (ab*)? = 1> a 2-subgroup of D,,).

Lemma (1.4) : Let N be a Z[D,,]-module. Let [N], and [N]A, denote the restriction

of N to any two 2-subgroups of D, ,. Then [N], = [N]A, as Z[Z,]-modules.

Proof : The proof is by a simple case-by-case analysis using the classification of

Z[D,,)-modules.

Let tp:Zp — Dy, (1p:A — Dy,, A =1Z,) be injection and let ¢3:
H3(D,,,N) — H%(Z,,[N];) (th : H¥(D,,,[N]) — H?(A,[N]5)) denote the
induced map in cohomology, for any Z[D,,]-module N. Let A and A’ be 2-subroups
of D,,, then by (1.4),

H*(A, [N]y) = H*(A,[N] ).
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Also, by (1.3),

A Hz(sz,[N]A) — H?(A, (N]a)
is surjective for any A. Let Z, = <a ral = 1> and ¢y = 'z, Z, — D,,. Thus, to
find special points for a Z[D2p]—module N we need only consider the cyclic subgroups

Z, and Z; of D,,,

Recall the classification of indecomposable Z[Zy]-modules as given above. We
shall say that an indecomposable Z[Z,]-module N has type Z if it is trivial, has type
a if N = A; for some i, and type 8 if N = (A;,a;) again for some i. Table 1 gives
the types in the restrictions of indecomposable Z[D,,]-module to Z, and Z,. For

working see [Ch-Va] and [Le].

Table 1
N} [N3l2 (Nile
i= 1 z z
2 o Y4
3 B8 VA
4 Yp-1).8 a
5 Y(p-1).8 o
6 3(p-1).602 B
7 ip-1).00a B
8 ip+1).8 poI
9 %(pl).ﬂ el
10 p.8 2.8
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These fully determine the 2™¢ cohomology of the restrictions, see [Ch].

In Table 2 we give the 2™¢ cohomology groups of the indecomposable Z[D, o

module and their restrictions to Z, and Z,. The 1°* column is from [Ch-Va).

Table 2
N} H*(D,,,Nj) H*(Z,,N}) B*(Z,,Nj)
i= 1 z, z, z,
2 Z, 0 z,
3 z, 0 Z,02,
4 0 0 0
5 0 0 0
6 z, zZ, 0
7 0 0 0
8 0 0 Z,
9 z, 0 Z,
10 0 0 0

Hence, from table 2 and the remarks proceeding table 1, we may deduce the

following.

Proposition (1.5) : Let N be a Z[D, ]-module then H?(D,,,N) has special points if

and only if the 2-torsion and p-torsion of H2(D2p , N) is non-zero.
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§2 Examples

We first consider trivial holonomy: up to a connection preserving
diffeomorphism the flat torus is the unique flat compact riemannian manifold in each
dimension, [Ch]. It follows that the set of Kihlerian structures on a 2n-dimensional
torus T is parametrised by (T, 1) as follows

ST = 51, @\ ®)siq(cy
Let B : R?® x R?® — R be a non-degenerate skew symmetric bilinear form. Since the
holonomy representation is trivial we may consider B as a canonical form for the

torus T. Hence, the set of projective structures on T is parametrised by &(T,1,B),

&(T,1,B) = Spn (Z)\Spn(R) /U(n

In dimension 2 we have
3(T,1) = &(T,1,B).
This is the well known result that any Kéahlerian structure in real dimension 2 is a
projective structure. The torus is the only flat riemannian manifold which admits a

admit a complex structure in dimension 2.

Let p be a prime, we now consider cyclic groups of prime order as holonomy
groups. Let ¢ be a primitive p'® root of unity and let C denote the ideal class group
of Q(¢), as in §1. Let C, denote the set of orbits under the action of the Galois group
Gal(Q(¢): Q) on C, also if p is odd let C} denote the orbit set of the action of Z, (C
Gal(Q(¢):Q) ) on C, if p = 2 then C is trivial, and we take C, = {1} also. We

have the following classification.

V.87



Theorem [Ch] (2.1) : There is a bijection between the isometry classes of Z,-

manifolds and the set of 4-tuples (a,3,v,A) ¢ Nx N x N x C such that
a,y+8>0,

also A e Chif(a,y) = (1,0),and A ¢ C, otherwise.

For such a 4-tuple, (a,3,v,A), satisfying the condition of the theorem let

Xp(ayB,7,A) denote a representative for isometry class corresponding to

(a,,B,')/,A).

Again let N be an arbitrary Z[Zp]-module as defined in {1.1}. Then it is

easily seen that
Q®,N = Q™ o g™’ {2.1}
where Q denotes the 1-dimensional trivial Q[Zp]-module. If p is odd then the simple
summand Q(¢) (which we identify with its endomorphism ring) is totally imaginary

and quadratic over the totally real field Q({ + (), and hence is of type (IV).

Hence, from (III.3.4) and (IIL.3.8), we have,

Corollary (2.2) : Let (e,3,v,A) be a quadruple satisfying the conditions of (2.1),
then we may choose the representative X,(a, 3,7,A) to be complex projective if and

onlyif  + yiseven and also y + Bif p = 2.

Let (a,8,v,A) be a quadruple as above. Let N = N(a,3,7v,A) denote the
Z[Z,)-module corresponding to the holonomy representationand put W = Q®,4N.
Suppose a + v is even and if p = 2 suppose ¥ + 3 is even. Let m = (a + ﬂ)/2
and n = (y + ,6‘)/2 fp=2org=(p — 1)/2 if p # 2. Then, by (IV.1.3) and

(IV.1.1), the set of complex structures of W is
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SL m R x SL n [R) ifp=2
IQ(W,Zp) = { B sLn(©) * St sty P

SL2m(IR)/SLm(C)x( U “':’L*1+/3(‘C)/SLr(C)xSL,(C))g

r+s=vy+p
otherwise.

Let B: Wx W — @ be a canonical form. Then, by (IV.4.2), the set of projective

structures of W having Riemann form B is

Spm(R Spa(R ifp=2
eQ(w,z,,B)___{ Pn(R) 1y (m) X SPa(R) /5y if p
Spm(R) /U(m) otherwise.

We note that the minimal dimension for a flat complex projective Zp-

manifoldisp + lifpisodd andis 4 if p = 2.

Let p be an odd prime. It is clear from the classification that, a Z[D,,]-
module is faithful if and only if there is an indecomposable of type N, — Ny, in the
decomposition of N. We do not find it convenient at this point to give a criterion for
this in terms of the invariants for N listed above. However, for any prime p, the
minimal dimension for a flat riemannian D, -manifold is p + 1, [Ch-Va3]. For p #

2 this is easily seen from above.

We consider kdhlerian and projective structures as before, we determine the

Q-points of the indecomposable Z[D,,]-modules for p # 2 as follows.
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Nj Q®zN;

. Q

2 Q

3 Qo Q

4 Q<)

5 Q<)

6 Q@ Q)

7 Q & Q)

8 Qe Qo Q)
9 Qe Q9 QU
10 Q[D,,]

where Q (9) is the trivial (non-trivial) 1-dimensional Q[D,,]-module.
If p # 2 then we have,
QD] =Q o Qo Q) & QY
otherwise Q[D,] has four non-isomorphic irreducible modules of rank one, each is
obviously totally real.
If p # 2, then
Frdqpp,, @) = @

and

EndQ[sz]( Q)= QUK + 7).
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These are of type (I) in Albert’s classification. Thus, from (III.3.4) and (IIL.3.8) we
see that the minimal dimension for a flat complex projective D, ,-manifold is 2.(p +
1). Let N be the Z[D, ]-module corresponding to the holonomy represenation for a

manifold of this minimal dimension. Put W = Q®yN. Then

{ Q¥ o @@ o @@ ifp =2
W= ~ ~

Q(z) ® Q(z) & Q(C)(z) otherwise.

where Q and Q are distinct non-trivial modules of dimension 1.

Ifp#2thenlet g = (p — 1)/2. Then, by (IV.1.3) and (IV.1.1), the set of complex

structures of W is

QW:Dsp) =
qu(R)/Ct X CLZ(R)/C* X (qu(R)/C*)g.
Let B: Wx W — @Q be a canonical form, then, by (IV.4.2), the set of projective

structures of W having Riemann form B is
p-1
SqW,Z,,B) =Sp,(R) xSp,R) x(Sm(®) )7

Note that any minimal dimension flat compact Kihlerian manifold with holonomy

group D,, (p any prime) is projective.

For our last example in this section we consider the groups having the
following presentation

Gmr =< A,B:A™=1,B°=A}, BAB'=A"> {2.2},

where m = a.b, a and b # 2 distinct primes. These are a special case of the groups

introduced in §3 of chapter I. With a = 3, b = 7 and r = 4 we have the group of

order 63, which is the smallest non-cyclic odd order group which embeds into a

division ring, [Am]. Groups which embed into division algebras give convenient
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examples were there exists irreducible rational representations of type (IV). The
group Gm,r embeds into a division ring if and only if either
(i)a=2andr = —1 (m),
or
(ii)r=1()anda®)b — 1.
These conditions follow from (1.3.6), infact from (I.3.7) it can be deduced that any
group of order a’.b which embeds into a division ring has a presentation {2.2}

satisfying (i) and (ii). All Sylow subgroups of such a Gm,r are cyclic.

Lemma (2.5) : If Gmm,r is not cyclic then there are precisely 5 conjugacy classes of

cyclic subgroups of Gm r. If Gm,» is cyclic then there are 6.

Proof : If Gm,r is cyclic then the result follows easily. So suppose Gm,r is not cyclic.
By the Sylow theorems there is one conjugacy class of subgroups of orders a? and b.
Also, since any subgroup of a cyclic group is characteristic there is just one conjugacy
class of subgroups of order a. It is easily verified that the subgroup <A> = C,, is
invarient under conjugation, hence so are its subroups of order a and b. Since there is
one conjugacy class of subgroups with these orders they must be the only subgroups
in Gp,r of orders a and b. Hence there can be only one subgroup of order a.b, which

is clearly <A >. Thus there there are 5 conjugacy classes of cyclic subgroups.

Corresponding to these conjugacy class there are five irreducible Q[Gm, r}-
modules. We have

QIGm,r] = @ x Q(Ca) x Q((2) x Ma(K) x U s {2.3}
where:

(i) Q is the trivial module which is clear of type (I);
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(i) Q(¢a) and Q(Caz) are modules factored from the following exact sequence
I - C = Gmr — C, — 1 {2.4}
C,=x< A%> they both are of type (IV);
(i) K C Q(¢,) with [Q(¢,) : K] = a, K is of type (I) if a = 2, and of type
(IV) otherwise;
(iv) Um,r is a division algebra over Q of type (III) if a = 2, and of type (IV)

otherwise.

Although there are only finitely many isomorphism classes of indecomposable
integral representations of Gm,» (this follows from (1.3.1) and (V.1.1), since |Gm,r| =
az.b), a classification of such modules is not known. However, we need only consider

the rational representations of Gm r to describe complex and projective structures.

Let W3 denote the Q[G]-module corresonding to the factor Ma(K) in {2.3}.
We may write an arbitrary Q[G]-module as

W =0 e Q) @ Q¢ ) @ WS @ U,

(eq)

Then W is faithful if and only if e, + e,, e5 + ¢, > 0 and W admits a complex
stucture if and only if e, is even and e;, e3 are even if a = 2 . Let these last
conditions be satisfied and put e; = 2.m and e; = 2.n, e3 = 2.qifa = 2. Let g =

a.(a—1) /2 which is the dimension of the totally real subfield contained in the

centre of Am r and let d = a? which is the degree of Uy, » over its centre. Also let

h={ (b—l)/4a ifa=2
(b-1) /2a otherwise.
Then, by (IV.1.3) and (IV.1.1), the set of complex structures of W is

39(W,6) = 36(Q“7,G) @ ()Y, 6) @ T(Q »)?.6)
® Sg(Ws™,G) @ Sg(Um, ¥,G)

where

3q(Q(eo),G) = SL?m(R)/SLm(C)
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3(@a),0) = { S |
r+QeISLel(C)/SL’(C) x SL,4(C) otherwise

3@ )P0 =( |

r+s=eq

SLea(C)/§1,.(C) x SLo(C))

SL,. (R ifa=2
S‘Q(Ng"a),(}) = { 02"( )/SLy(©) .
r+geSSL33(C)/SLr(C) % SLy(C) otherwise
o F(Me,(H) )P ifa=2
RUICZRC R
otherwise

Let B=By L... 1 By:WxW — Q be a canonical form for

(e0) (eq)

W =0 e Q) & Q¢ ) & Wi © U,

Then, by (IV.4.2), the set of projective structures of W having Riemann form B is

8o(W,G,B) = 64(Q"”,G,By) @ 6¢(Qa) .G ,B))
® 64(Q(¢ 2)?,G,By) ® G(W5™,G,By)
® &g (U, G,By)
where

(eg)
GQ(Q 0 ,G,Bg) = SPM(R)/U(m)

) Spa(R) ifa =2

6q(Q(¢)",G,B) = { /o .
1 otherwise

. Spe(R) ifa=2

SQ(Q(¢ »)?,6,By) = { o .
¢ 1 otherwise

Ga(WS?,G,By) =1
Q 3 M3 —
Go(m4,G,B,) =1 ifa 2

Here 1 denotes the set with one element.
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Chapter VI :Subgroups of a product of surface groups.

By a surface group of genus g, denoted ©;, we mean the fundamental group

of the oriented surface of genus g > 1. £} has the following presentation

7 =(Xp. .., Xag :klill[Xk ) Xg,-+k] )
where [X,Y] is the commutator [X,Y] = X.Y.X"L.Y"!. We consider normal
subgroups of a product of two suface groups © = 7, x I7,. Although the work in
this chapter will be independent of other chapters, there is a well known connection
between surface groups and discrete groups. The fundamental group of an oriented
surface of positive genus g, act as the group of deck transformations on the universal
covering which we identified with the hyperbolic plane, J6. The fundamental group
acts discontinously and so is Fuchsian, [Be]. If we take the upper half plane model for
%,

¥={zeC:Imz > 0},
then T} acts as a subgroup of the group of fractional transformations of 3. Ty is a

discrete subgroup of Sp,(R) [{£1) = PSL,(R).

Definition: Let G = G, x...x Gn be a product of groups and let 7;: G — G;
denote the natural projections. Then by a subdirect product of Gy x...x Gn we

mean a subgroup H such that =,(H) = G;.

Fix © = £j, x £, a product of surface groups, let =, : © — 2;". denote
projection. Let H be a normal subgroup of ©. If 7,(H) has finite index d; in T, then
we may identify this image with a surface group with genus h; = 1 + d;(g; — 1). If
7;(H) does not have finite index, then we may identify x;(H) = Foo, the free group
of infinite rank. We shall only consider the finite index case, and we are then reduced

to consider H as a subdirect product of a product of two surface groups.
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Definition : Let H, H' be subgroups of a arbitrary group G. We say that H and H’
are commensurable when H n H' has finite index in both H and H'. If H and H' are
both normal in G then H and H' are commensurable if and only if both H and H'
having finite index in H.H'. Let /b be a subgroup of the group of automorphisms of
©. We say that H is M-commensurable to H' when there exists an o ¢ b such that

o(H) is commensurable to H’.

Note that, if H is maximal in its commensurability class then so is a(H) for
any group automorphism o of ©. Hence two maximal normal subgroups are b-

commensurable if and only if they are Ab-equivalent.

We will show that there are infinitely many Aut(©)-commensurability class
of normal subdirect products in a product of two suface groups. In a product of two

free groups it can be shown that there are only finitely many such classes, see [Jo3].

§1 Symplectic modules.

By a symplectic module (A , (,)) over Z we mean a finitely generated free

abelian group A with a skew symmetric bilinear form {, ): Ax A — Z.

Let A denote the category of symplectic modules, with as its morphisms all
group isomorphisms that either preserve or negate the forms. That is, for
(A1, (s 1) (Az,(,)2) e Landa e Hom_A(Al v As)

(a(x), a(y) ) = e(a).{ x,y ) for all x,y € Ay,
where e(a) = +1. We will often write A for (A ,(,)) ¢ A when the form is fixed.
As a matter of notation, if A ¢ A and A = B @ C with B orthogonal to C, we write
A=B 1lC.

For A e A let rad(A) = {ac A:(ax) =0V xe A} Wesaythat Ae Ais

non-degenerate when rad(A) = 0. If B is a submodule of A ¢ A then let

VI1.96



Bl ={xecA:(x,b)=0VbeB}

The following is standard.

Proposition (1.1) : Let A € A, then A = A L rad(A), where X is non-degenerate and

unique up to an A-morphism of A.

We say that H = (H , (, )4) € A is a hyperbolic plane of length a when H

has a basis e,, e, such that  e,, e, ),; = a. The following result is due to Frobenius.

Proposition [Fr] (1.2) : For A ¢ A there exists a sequence of positive integers (a,, . .

;ap) such that
(D A=, H(@)Ll . . LHap) Lrad(A)

where each H(a;) is a hyperbolic plane of length a; and these lengths satisfy
(I) a;}a;,;forl<i<p-1

Moreover, A uniquely determines a sequence with these properties.

Proof: To prove existence it suffices to consider A = (A,(,)) non-degenerate.
Choose e,e’ ¢ A such that

(e,e') = min{(x,y) > 0:x,y ¢ A}.
Let a; = (e,e' ), and the a, is the length of the hyperbolic plane

H(a,) = spanz(e,e').
We claim that A = H(a;) 1 H(al)'L. Since H(a,) is non-degenerate we need only
show that A = H(a,) + H(al)'L. Let x ¢ A, then

(x,e) = k(x).a; + r(x),

(x,e) = k'(x).a; + 1'(x)
where k(x), r(x), k'(x), t/(x) ¢ Z and |r(x)], |t'(x)] < a;. But this contradicts the

definition of a,, unless r(x) = t/(x) = 0 for all x. Define

VI.97



y =x + k(x).e — k/(x).e,
then y ¢ H(al)J'. Hence x ¢ H(a;) + H(al)J' and the claim follows. Hence we may
inductively define a sequence satisfying (I); define a basis {e;, ..., e;,} for A; by
H(a;) = spang(e;,e,,;). For 1 <m < p let gm = g.c.d.(am, . . . ap). So gm < am

for all m. Write gm = Am.am + ... +Ap.ap and let
2

P
X = Z A".e" ) Yy =E ep+".
i=m i=m
Then am < (X,y) = Am.am + ... +Ap.ap = gm. Hence, am = g.c.d.(am, ... ap)

and so condition (II) follows.

We prove uniqueness, again it suffices to consider A = (A,(,)) non-
degenerate, since all complements to rad(A) in A are A-isomorphic. Let (ay, ..., ap)
and (al, . .., a}) be two sequences saisfying (I) and (II). Let m ¢ {1, ..., p} be the
least integer such that am # am. Asume that am, > ah. Let X = A®zZ,a, and
<,=:XxX —Z,,  be the skew symmetric Z /5 -bilinear form induced form (, ).
Note that X is a finite set. Define

R={xeX:<x,y» =0V yeX}L
The cardinality of R is determined by the sequences (a,, . . . , ap) and (af, . . ., ah).
But the condition am > al, gives two different values for this cardinality. Hence we

must have am = al and (a;,...,ap) = (al, ..., ap).

For each A ¢ A, let ©(A) denote the sequence of integers for A as given in

(1.2). We have the following corollary.

Proposition (1.3) : Let A;, A, € A, then

- k,(A,) = tk,(A,)
nzm o {ETE)
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For A =(A ,(,)) e Alet A* = Homy(A , Z) and Ay: A — A" the map
given by A, (x)(y) = (x, y) for all x,y ¢ A. Hence rad(A) = ker(), ). We say that A

is non-singular when A A is an isomorphism. Note that,

Proposition (1.4) : A € A is non-singular < &(A) = (1, ..,1) (p copies) where

rk;(A) = 2p.

The category A is of particular interest because of the following example. Let

T4 denote the surface of genus g. Consider the following ho mology and cohomology
groups, Hn(Z4,Z), H*(£4,Z). It is standard that, H,(£{,Z) = (Z})*® and
H%(2],2) = Hy(Z%,Z) 2 Z for all g. Fix a generator p, for Hy(X5,Z). Let N
(resp. U) denote the cap (resp. cup) product, and p = (-)Ng, : HY(Z],Z) —
H,(Z%,Z) the Poincare’ Duality map. Consider the form

() Hl(}:i’l) X H1(2§-’2) -1
given by

(x,¥)g = (P (x)UPT'(¥) )Nty

This form is skew symmetric (and non-singular) so we consider H,(X%,Z) ¢ A.

Let o ¢ Aut(H;(Z%,Z)). We say that o has a lifting to Aut(X3) when there

exists an & ¢ Aut(X7) such that the following diagram commutes

)34 ¢ . =}
lso ¢
H,(=4,2) & H(Z%,2)

where ¢ denotes the abelianisation map.
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Let & :X; — X7 be an automorphism. Since T = K(Zj,1) it follows
that o is realisable by a homeomorphism & : £ — X% , see [Ep], and the induced
map of a on Hl(Ei,Z) is a morphism in A. Conversely, any automorphism of
H,(Z%,2), which is also a morphism of A, can be expressed, using a result of Hua-
Reiner [Hu-Re), as a product of a,utomo,;hisms which are realisable geometrically as

homeomorphisms of £%. Thus we have the following well known result.

Proposition (1.5) : o ¢ Aut(H,(g)) has a lifting to Aut(Z}) & a ¢

Aut ,(H,(Z%,2)).

An alternative proof, which is algebraic, may be found in [Ma-Ka-So).

Fix A = (A, (,)) ¢ A, non-singular of rank 2n. Let C = C(A) denote the
category of pairs (N, C) ¢ A x Asuchthat A=N& C.If(N,C), (N,C)e €
then a morphism o : (N, C) — (N', C") of Cisamap a ¢ Hom ,(A , A) such that
a(N) = N’ and a(C) = C'. For arbitrary submodules N of A there is no ré:’t.riction on
the sequence G(N) eN”, p < n. For direct summands of A the situation is slightly

different.

Proposition (1.6) : Let N be a direct summand of A, and let L denote the number of

non-unity entries in &(N). Then,

0<L< tk,(A) — rkz(l;l) — rkrad(N) {L.1}.

Proof : If L = 0 the result is trivial, so assume that L > 0. Let (b;, . . ,b;) denote
the sequence of non-unity entries in &(N). Choose a basis {e;, . . . , €5,,5} for N such
that

N=Hyb)L..LH ) LH (1) L. . LH,y(1) L rad(N),

where,
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(i)  Hi(b;) = spang(e;,e,,;) 1<i<L
(ii) H;(1) = spang(e;,e,, ;) L+1<j<p
(iif) rad(N) = SPanz(ezpn, ) eZp+6)
Fix k ¢ {1,...,2p+6}, and let ¢, ¢ A* be any map which extends the map ¢, ¢

N* given by

1 ifi=k
or(e;) = {

0 otherwise.

Since A is non-singular, we may choose f, ¢ A such that
¢, (x) = (x,f,), forallx e A.

That is, the f, satisfy,

1 ifi=k
(e;,1x) ={

0 otherwise.

Let
Oo = {egs - - - 1 €3p45}
0, = {f2p+17 e f2p+6}
0, ={f, ..., 1)}
O3 = {fp+1a ce fp+L}'

We claim that

3
o=Jo;

i=1

is a linearly independent set of elements in A. For suppose

2p+4 § L L
Yopie D Agpuifapei + O Aefi + Y Appfpy =0 {1.2}.
i=1 j=1 k=1 =1

By simple arguments we will show that all coefficients are zero.
(1)  Forl < n < éapply (epns —) to {1.2}. Then,
/\n = 0

since in each case e, ¢ rad(N). We have reduced {1.2} to
2p+6 L L
Z /,L,-.ei + Ak'fk + Z Ap+l'fp+l - 0 {1-3}.
k=1 =1

1=1

(2)  Suppose there exists Ay, ..., A, Appn..as ALy satisfying {1.3} for
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some y; not equal to zero. Choose Ay, . .., Ap, Apiq, - -t ’\p+L such that

L L
Z el + E |Ap41l is minimal.
k=1 =1

Note that this sum is non-zero: not all the A;, A,,; can be zero since the e; are
linearly independent. For 1 < n < L apply (en, —) and (ep4n, —) to {1.3}. Then we

have

ﬂp+n-bn +An=0
} 1<n<L
ﬂn.bn e Ap+n = 0

But b; # 1 and divides by for all n, hence b, divides An and A,,, for all n. Let

I _
’\"—A"/bl 1<k<IL,
1
’\p+l—’\p+1/b1 1<I<L.
Hence by the choice of A;, ..., A, Aptls e+ os ’\p+L the coefficients /\{, cee /\"L,

)\;,_H, cee ’\::+L do not satisfy {1.3}. Hence,

L L
X=) AL+ ) Ay f
k=1 =1

is not an element of N. However b,.x is an element of N, and this contradicts th fact
that N is a direct summand of A. Hence u; = 0 for all i.
(3) Finally, we see that the rest of the coeficients of {1.2} are zero by applying

(en,—) and (ep4n,—)for1 <n < L.

Since O is an independent set containing 2.(p + 6 + L) elements we have
2.(p+ 6 + L)< 2
Hence,
2L <2n — 2p — 246

= tkz(A) — 1k4(N) — rkyrad(N)

For S = (a;, . - , ap) € N let £(S) denote the number of non-unity entries
in S, and £(0) = 0. Let p, q,d ¢ N such that p + q < n and 2p + d < 2n. Then

for any sequences S = (a;, . . ,ap) ¢ N” and $' = (al, . ., a}) ¢ N’ with £(S) <
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min(d + p - n,p) and £(S’) < min(n + q - 2d,p) then we may construct a (N,C) ¢
C such that 1k4(C) = d, &(N) =S and &(C) =S'. We indicate a verification for N,
the rest follows similarly. Fix ¢,, . . ,e,, as a symplectic basis for A, that is

1 ifj=n+i
(fi’€j>={_1 ifi=n+j

0 otherwise

/

Let (b;, . . ,b;) be the sequence of non-unity elements of S, L = £(S); if every entry
is equal to one let L = 0. Define
€ =€ + €pis41 for1 <i<L
€nsj = €; + (b; — 1)€,4pps4; for1 <j<L
Let

N= spanz(el, €Ly €Lty e €py €ppty ey €y €0 T 1y ey Endps

€p+1, .0y 6P+6)

Then N is a direct summand of A and it is easily verified that S(N) = (ay, . . , ap).

§2 Symplectic product structures.

By a (2-fold) product structure ® of a group G we mean a 3-tuple ? = (G ;
G, , G,) with G, and G, subgroups of G such that G = G, 0 G,. For such a product
structure let 7; : G — G; denote the obvious projections. Then by a subdirect
product of P we mean a subgroup H of G such that =,(H) = G;. Let N(P) denote
the class of subdirect products of ® that are normal in G. Also for P let P?° denote
the product structure (Gg%, GS%) for the abelianised group G®°. Abelianisation

induces a bijection ¢ : N(P) — N(P?), by p(N) = N, see (1.2) of [Jo3]. Define

Aut(?) = {a : G — G group automorphism : a(G;) C G, fori=1, 2}.
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Definition: For i = 1,2 let (A;,(,);) ¢ A be non-singular. By a symplectic
product structure Q = (A, (,); A;, A,) we mean a product structure (A ; A; ,
A,), with (A, (,)) € A where (,) = (,); L (, ), Define

Aut( Q) ={ac Aut (A):a(A;)) CA; }

Let N'(Q) denote the class of (normal) subdirect products of a symplectic
product structure Q. For the remainder of this section fix a symplectic product

structure Q = (A, (, ) ; Ay, A;) with tk5(A;) = 2.n; > 0.

We say that a subgroup H of A is framed in Q when there exist
(i)  subgroups N;, C; with A; = N;® C;
(ii)  a group isomorphism ¢ : C; — C, such that
N=N, & N, & A(¢)

where A(¢) = {c+ ¢(c):ce C; }.

We call the 5-tuple (N,,N,,C,;,C,,¢) a framing for N. Note that N; = N n

A, fori =1, 2. Clearly any such framed subgroup is a subdirect product of Q.

Let F = F(Q) denote the category whose objects are the framed subgroups of Q.
If N,M ¢ ¥ then a morphism a : N — M in ¥ is a map a ¢ Aut(Q) such that there
exist framings ¥y = (N,N,,C,;,C;,9) , Fpy = (M;,M;,D,,D,,%) for N and M
with
(i) a(N;) = M;, o(C;) = D;
(ii) and
G

ﬂ1l
¥

D—— D,

Cy

B2

a commuting diagram for 3; = « /C; "
i
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Proposition (2.1) : Let N, M ¢ ¥ with (N;,N,,C;,C,, ) a framing for N. Then N is

Aut(Q)-equivalent to M if and only if there exists a frame (M;,M,,D;,D,,¢) for M

and a morphism « in ¥ satisfying (i) and (ii) above.

Definition : For H ¢ N(Q) define the diagonal rank to be

drk(H) = tkp(H ) 4 | | oAy

Proposition (2.2) : For any H ¢ N(Q) there exists an N ¢ F containing H with finite

index. Moreover, drk(H) = drk(N).

Proof : Let m; : A — A, denote projection. Let H; = H n A;. Since A, is free abelian
there exists a unique direct summand N; of A; containing H; with finite index. Let
N=H® N;® N,,
then Nn A; = N,. Since N;® N, is a direct summand of A and N;® N, C N we
may write
N=N,®o N, A
for some A. Note that,
AnA;=AnNnA; =AnN; = {0},
hence the maps Ti/p 2T injective. Let C; = 7;(A) and ¢ = rzo(rl/A)'l. Clearly
¢ : C; — C, is an isomorphism and
N =N;® N,& A(9).
Since H is a subdirect product of @,
A; =N; + C,.
Also, if x ¢ N; n C; then 7;7*(x) ¢ N; n A = {0}. So N; n C; = {0} and
A;=N; 9 C,.
It follows that (N, , N, , C,, C, ,4) is a framing for N. Hence N ¢ F(Q) contains H

with finite index. The result now follows since drk(N) = drk(H) = rk4(A) =
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rkz(C'), i= 1, 2.

If H ¢ N(Q) is maximal in its commensurability class, then by (2.2) H is
framed. Conversely, suppose H is framed by (H, , H, , C; , C, , ), then H is a direct
summand of A since C; is a complement. Hence H must be maximal in its
commensurability class. Thus two framed subgroups of A are Aut(Q)-commensurable

if and only if they are Aut(Q)-equivalent.

For 1 < d <min(n;, n,) let B(Q,d) denote the set of all Aut(Q)-
commensurability classes of subdirect products of Q that have diagonal rank equal to

d.

Proposition (2.3) : If d = 0, 1 then |%(Q,d)| = 1.

Proof : Clearly %(Q,0) = { A }. Suppose H' ¢ N(Q) with drk(H') = 1. Let H ¢ 9
contain H' with finite index. Put H; = HnA, then we may choose ﬁi C H; such
that

(i) H; =H, L rad(H,), and,

(i)  there exists a framing &, = (H; , H,,C, , C,, ¢) for H

with C; orthogonal to ﬁ,-.

This implies that C;® rad(H;) is a hyperbolic planes of length 1. The result follows
since there is clearly only one automorphism class of framed subgroup of diagonal

rank equal to one.

Proposition (2.4) : If 2 < d < 2.(min(n, , n,) — 1) then |B(Q,d)| = oc.
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Proof : Without loss we may assume that 2 < n, < n;, henced < 2.(n, — 1). Let k
e N*. Let (N®, ™)) € €(A,) for i = 1,2 such that,

. k

(@) rkz(C{”) = d

) sy =q@,...,1)e N

and SN =(,...,1,k e N2,

Let N(k) ¢ ¥(Q) with framing (Ngk),Ngk),CEk),Cgk),¢(k)) for some group
isomorphism ¢(k) : Cgk) — Cgk). Suppose N(k) is Aut(Q)-commensurable to N(k').
By the remarks preceeding (2.3), N(k) is then Aut(Q)-equivalent to N (k"), since each
is framed. Then since Ngk), N(zk) and Ngkl), Ngk') are uniquely determined by N(k) and
N(k') we require that G(Ngk)) = G(Ngk')) by (1.3) and the definition of Aut(Q).
This is a contradiction unless k = k’. Hence {N(k)}k ¢N Tepresents an infinite set of

Aut(Q)-commensurable classes in %(Q ,d).

0

For r € N*, let I, denote the r x r identity matrix and let O denote the zero

matrix whose size will be determined by its position. Fix

o I
-1, O

A=

Let Sp3,(Z) denote the full symplectic group of 2r x 2r matrices, that is Z ¢ Sp3.(Z)
satisfies
Z.A.Z' = £ A

Let K, denote the following set of double cosets,

Kr = gp1,@)\ B px (2) -

Lemma (2.5) : For allr > 2, | K;| = o0.
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Proof : Let E; ; denote the (i , j) elementary 2r x 2r matrix. Define
YA) =1, + A.(E; , +Ep, 0y)
and XA =A+X.(E;,, + Eyp ;)
for any A ¢ Z. Then,
Y(A).A.Y(Q) = X(2)).

Let Z ¢ Sp3.(Z) and ), p be distinct primes. Then, by a comparison of the (1, 2n)
entries, it can be seen that

Z.X(2)).Z' # +X(2p).
Now suppose that there exist S, T ¢ Sps,(Z) such that S.Y(A).T = Y(u). Then

S.Y(N).T.A.TLY(A)E.S' = £Y(p). A.Y(p)!
= S.Y(A).A.Y(N'.S' = £Y(p).A.Y(p)
= S.X(2)).S! = +X(2p)
But this is a contradiction, thus no such S and T exist, and {Y()\)} A prime is an

infinite set of coset representatives in K.

Proposition (2.6) : Suppose 2n; = 2n, (= 2n). Then

(a) 15(Q,2n—1)] = 00 and (b) |B(Q,2n)| = oo.

Proof : Let {‘PA}M 4 be a complete set of coset representatives in Kn. So |A| = oo
by the Lemma. Fix a symplectic basis {e], - . ,e5,} for A;, i = 1, 2. We first prove:

(a) For each A ¢ A we construct a M» ¢ N(Q) with drk(M(A)) = 2n — 1. Let
Mg'\) = span g( el ) and DE'\) = span 4( eh, .., eb, ) and define ¢(A) : Di” — Dgx)
such that 1/10)( e;) = e2 and t,b()‘) restricted to span ,( el, .., eb, ) has matrix ®,
with respect to these bases. Let M» = Mg}‘) & M(z'\) ® A(z/)()\)) which has framing (
Mg'\) , M(z'\) , Dg)\) , Dg)\) , ¢('\) ). If M™ s Aut(Q)-commensurable to M(”) then A

= p, since condition (ii) in the definition of a framed automorphism implies that ®,
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and ®, must be in the coset in K,. Hence {M(A)} A is an infinite set of
representatives for classes in %(2n — 1).

(b) For A ¢ A let ¢(A): A; — A, be the isomorphism which has matrix ®, with
respect to the fixed bases. Let N = A(¢(>‘)), which has unique framing (0,0, A, ,
A,, ¢ ,\), where 0 is the trivial group. Again, it is seen that {N A} A is an infinite set

of representatives for classes in %(2n).

We summarise our results as follows.

Corollary (2.7) : For 0 < d <Jmin(n,, n,)

1 ifd=0,1
15(Q,d)| ={

00 otherwise

§3 Normal subdirect products of a product of two surface groups.

Fix g, g, ¢ N and then let P denote the product structure (© ; £3,,X3,)),
g; > 1. We suppose that min(g;, g,) > 2. Let Q = P2 which we consider as a
symplectic product structure with form (, ): ©* x ©?® — Z given by (, ) =(, );

L (,); where (,); = (, )y, : H,(Z5,2) x Hy(E3,Z) - Z, see §1.

We clearly have,
Aut(?) = Aut(T}) x Aut(Z7,
So, by (1.1) and (1.6) of [Jol] we have,
(i) it & # g, then
Aut(P) = Aut(©)

otherwise,

(ii) if g, = g, (=g) then Aut(?P) is contained with index 2 in
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Aut(©) = Aut(Z7) [Z,
In (ii) the non-trivial coset is represented by the swap map (X ,Y) — (Y , X), which
we denote by 7. It is clear that the image of a (normal) subdirect product of ?, by 7,
is also a (normal) subdirect product. Hence, from above, it is also clear that the class
of normal subdirect products of ¥ is invarient under the action of Aut(®). The

following is now clear.

Proposition (3.1) : Let N, N' ¢ N(@). If N is Aut(© )-commensurable to N’ then

one of the following holds
(i) N is Aut(? )-commensurable to N’
(ii) N is Aut(?® )-commensurable to 7(N');

(ii) can occur only when g, = g,.

If g, = g5 then let 7 also denote the swap map in Q = %% Then for N ¢

N(@Q) we have 7(N)?® = 7(N°®). The following is clear.

Lemma (3.2) : If g, = g, and N ¢ F(Q) is framed by (N; ,N,,C,;, C,, ¢) then

7(N) e ¥(Q) is framed by (N,,N,,C,,C,, ¢71).

Proposition (3.3) : Let H, N ¢ N(%®). Then

H is Aut(? )-commensurable to N < H® is Aut(Q )-commensurable to N’ .

Proof : Let 3 : ©°® — ©%° be a group isomorphism; the result will follow if we show

that the following diagram
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e ~ O
‘| .
o P o (¢ the abelianisation map)

can be completed with 3 ¢ Aut(%P) only when 8 ¢ Aut(Q). But this follows from

(1.5).

By (3.1) we have the following.

Corollary (3.4) : Let H, N ¢ N(?). H is Aut(© )-commensurable to N if and only if
either

(i) N* is Aut(Q )-commensurable to M*®
or (ii) N is Aut(Q )-commensurable to 7(M)®’.

Again, (ii) can occur only when g; = g,.

If N ¢ N(P) then, by the remark at the beginning of §2, the abelianisation
N® ¢ N(Q). We define the diagonal rank in N(?) by drk(N) = drk(N°®). Let
%(0,d) denote the set of Aut(© )-commensurability classes of the normal subdirect
products of © that have diagonal rank equal to d. By combining (2.7) and (3.4) we

have,

Theorem (3.5) : For 0 < d ﬂ,,min(& 182))

1 ifd=0,1
1%5(0,d)| ={

o0 otherwise
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At this point it seems quite difficult to construct representatives for all the
classes in %(d) for d > 1 because a solution to this problem must include, at the very
least, a full set of coset representatives for K,. However, since any class in %(0,d) is
represented by the pre-image ( in ©) of a framed subdirect product of 0%, we may

construct an infinite number of representatives.

To illustrate we give a representative for the single class of $(0,1).
Fix presentations
B = (X X, TLXE X )

for i = 1,2. Let ¢ denote abelianisation and let ¢i = p(X}) for all k. Then { €}
}1Sk52y.~ is a symplectic basis for Hl(Zf_i,Z). Let H; = span 4( e, .- ,e{,_,,'._l )and A
= span ,( eégl + c%h ). By (2.3) it is clear that H = H;, @ Hy & A is a
representative for the class in (@, d). Let N denote the subgroup of © generated by

Xz 1) 1<k<2 -1,

(1, X3) 1<k<2,-1,

(X2gy » X34, »
and  ([Xi, X3,), 1) 1<k<2;.

Then N is a representative for the class in $(1), since clearly N = ¢~}(H) .

VI.112



[Al1]

[Al2)

[Am]

[At]

[Au-Ma]

[Au-Ku]

[Be]

(Bi]

(Bo]

[Ca-Ei]

[Ch]

References
Albert, A. A. : Involuted simple algebras and real Riemann
matices. Ann. of Math. 36 (1935) 886 — 964.
Albert, A.A. : Structure of algebras. Coll. Publ. Amer. Math.
Soc. Providence (1939)
Amitsur, S. A. : Finite subgroups of division rings. Trans. AMS 80
(1955) 361— 386.
Atiyah, M. : K-theory. Benjamin, New York Amsterdam (1967).
Auslander, L. and Markus, L. : Holonomy of flat affinely connected
manifolds. Ann. of Math. 62 (1955) 139-151.
Auslander, L. and Kuranishi, M. : On the holonomy group of
locally Euclidean spaces. Ann. of Math. 65 (1957) 411— 415.
Beardon, A. F. : The geometry of discrete groups. Graduate texts in
mathematics 91. Springer-Verlag (1983).
Bieberbach, L. : Uber die Bewegungsgruppen der Euklidischen
Raiime. Math. Ann. 70 (1911) 297 336
Bourbaki, N. : Eléments de Mathématiques. Algébra.
Herman Paris 1958.
Cartan, H. and Eilenberg, S. :Homological algebra. Princeton
University Press (1956).
Charlap, L.S. : Compact flat Riemannian manifolds I. Ann. of

Math. 81 (1965) 15— 30

R.113



[Ch-Val]

[Ch-Va]

[Cu-Re]

[Ec-Mu]

(Fr]

[He]

[He]

[Hu)

Charlap, L.S. and Vasquez, A.T. : Compact flat Riemannian
manifolds III: the group of affinities. Amer. J. Math. 95 (1973)
471 —494.

Charlap, L.S. and Vasquez, A.T. : Multiplication of integral
representations of some dihedral groups. J. Pure and Applied
Algebra 14 (1979) 233 — 252

Curtis, C. and Reiner, 1. : Representation theory of finite
groups and associative algebras. Wiley-Interscience, New York
(1962).

Eckmann, B. and Mislin, G. : Rational representations of finite
groups and their Euler class. Math. Ann. 245 (1979).

Epstein, D. B. A. : Curves on 2-manifolds and isotopies. Acta Math.
115 (1966) 83-107.

Frobenius, F. G. : Theorie der linearen Formen mit ganzen
Coefficienten. Jour. Fiir die reine und angewandte Math. 86 (1879)
146 - 208.

Helgason, S. : Differential geometry, Lie groups, and symmetric
spaces. Acad. Press, New York-San Francisco-London (1978).
Herstein, I. N. : Finite multiplicative subgroups in division
rings. Pacific J. Math. 3 (1953), 121—126.

Hua, L.K. and Reiner, L.: On the generators of the symplectic

modular groups. Trans. A.M.S. 65 (1949) 415 - 426.

R.114



[Jo1]

[Jo2]

[Jo3]

[Jo4]

[Jo-Re]

[Jon]

[Ko]

(Ku]

[La]

[Le]

Johnson, F.E. A. : Automorphisms of direct products of groups

and their geometric realisation. Math. Ann. 263 (1983) 343-364.
Johnson, F.E. A. : On the existence of irreducible discrete subgroups
in isotypic Lie groups of classical type. Proc. London Math. Soc. (3)
56 (1988) 51-77.

Johnson, F. E. A.: On normal subgroups of direct products. Proc.
Edinburgh Math. Soc. 33 (1990).

Johnson, F.E. A. : Flat algebraic manifolds. (To appear).

Johnson, F.E. A. and Rees, E. G. : Rigidity phenomena, group
extensions, and the fundamental group of a complex algebraic
manifold. (To appear).

Jones, A. : Groups with a finite number of indecomposable

integral representations. Michigan Math. J. 10 (1963) 257— 261.
Kodaira, K. : On Kéahler varieties of restricted type. Ann. Math. (60)
(1954) 28-48.

Kuranishi, M. : On the locally complete families of complex
structures. Ann Math. 75 (1962) 536 —577.

Lang, S. : Introduction to algebraic and abelian functions.

Graduate Texts in Mathematics 89, Springer-Verlag (1982).

Lee, M. P. : Integral representations of non-abelian groups of

order 2p. Trans. Amer. Math. Soc. 110 (1964) 213 — 231.

R.115



[Lefl]

[Ma-Ka-So]

[Mi]

[Mo-Ko]

[Mu]

[Ne-Ni]

[O°M]

[Pi]

[Po]

Lef schetz, S. : On certain numerical invarients of algebraic varieties
with applications to abelian varieties. Trans. Amer. Maths. Soc. 22
(1921) 327—482.

Magnus, W. , Karrass, A. , Solitar, D. : Combinatorial group
theory. New York. Wiley 1966.

Milnor, J. W. : Groups which act on S™ without fixed points.
Amer. J. Math. 79 (1957) 623-630.

Morrow, J and Kodaira, K : Complex manifolds. 1971. Holt,
Rinehart and Winston 1971.

Mumford, D. : Abelian varieties. Oxford University Press

(1974).

Newlander, A and Nirenberg, L. : Complex analytic coordinates

in almost complex manifolds. Ann. of Math. 65 (1957) 391-404.
O’Meara, O.T. : Introduction to quadratic forms. Springer

Verlag (1963) 117.

Pierce, R.S. : Associative algebras. Graduate Texts in
Mathematics 88 (1982).

Porteous, 1. R. : Topological geometry. Cambridge University
Press (1981).

Reiner, 1. : Integral representations of cyclic groups of prime

order. Proc. Amer. Math. Soc. 8 (1957) 142— 146

R.116



[Ro]

[Se]

[si1]

(Sh]

[Sh-Ta]

[Sm]

(Sp]

[St]

[Sy]

[We]

Roquette, P. : Realisiering von Darstellingen endlicher nilpotent
gruppen. Arch. Math. 9 (1958) 241-250.

Serre, J-P. :Linear representations of finite groups. Graduate Texts
in Mathematics 48, Springer-Verlag (1977).

Siegel, C.L. : Analytic functions of several complex variables.
Lect. Notes, I. A.S., Princeton (1949).

Shimura, G. : On analytic families of polarised abelian varieties
and automorphic functions. Ann. Math. 78 (1963) 149-192.
Shimura, G. and Tanijama, Y. : Complex multiplication of abelian
varieties and applications to number theory. Publ. of Math. Soc.
Japan 6 (1961).

Smith, P. :Permutable periodic transformations. Proceedings of
the National Academy of Science. 30 (1944) 105-108.

Spanier, E. H. : Algebraic topology. McGraw-Hill, New York 1966,
Springer-Verlag, New York 1981.

Steenrod, N.E. : The topology of fibre bundles. Princeton
University Press. Princeton N. J. (19510.

Symonds, P. : Flat Manifolds. Thesis, Cambridge University
(1987).

Weil, A. : Algebras with involution and the classical groups. J.

India Math. Soc. 24 (1960) 589 - 623.

R.117



[Weyl] Weyl, H. : On generalised Riemann matrices. Ann. of Math. 35
(1934) 714—729.

[Wey2] Weyl, H. : Generalised matrices and factor sets. Ann. of Math. 37
(1936) 709—745.

[Wo] Wolf, J. A. : Spaces of constant curvature. M¢Graw-Hill (1967).

[Za] Zassenhaus, H. : The theory of groups. 2"¢ edition, Chelsea,

New York 1949

R.118



