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Abstract—The segmentation of axons and myelin in electron
microscopy images allows neurologists to highlight the density of
axons and the thickness of the myelin surrounding them. These
properties are of great interest for preventing and anticipating
white matter diseases. This task is generally performed manually,
which is a long and tedious process.
We present an update of the methods used to compute that
segmentation via machine learning. Our model is based on
the architecture of the U-Net network. Our main contribution
consists in using transfer learning in the encoder part of the U-
Net network, as well as test time augmentation when segmenting.
We use the SE-Resnet50 backbone weights which was pre-trained
on the ImageNet 2012 dataset.
We used a data set of 23 images with the corresponding
segmented masks, which also was challenging due to its extremely
small size. The results show very encouraging performances
compared to the state-of-the-art with an average precision of
92% on the test images. It is also important to note that the
available samples were taken from elderly mices in the corpus
callosum. This represented an additional difficulty, compared to
related works that had samples taken from the spinal cord or
the optic nerve of healthy individuals, with better contours and
less debris.

Index Terms—deep learning, segmentation, myelin, axon, g-
ratio, convolutional neural network (CNN), electron microscopy

I. INTRODUCTION

In the central nervous system, white matter consists of
myelinated and unmyelinated axons that connect different
brain regions. Myelinated axons are wrapped by multiple
layers of myelin lamellae which are tightly sealed to the axon.
The myelin sheath exhibits periodic small gaps, the Nodes of
Ranvier, where the axon is unmyelinated. The primary function
of myelin is to speed the propagation of action potentials along
the axon of a neuron by preventing the leakage of current
below the myelin sheath and restricting the propagation of
action potentials from one node of Ranvier to another. The
axon and its associated myelin sheath are also metabolically
coupled; the myelin sheath provides trophic support to the
axon needed for its long-term integrity and survival [1].
The white matter has been recognized for its importance to

brain health due to the devastating effect of white matter
diseases such as sclerosis, leukodystrophies or small vessel
diseases of the brain. Moreover, recent works indicate that
white matter can exhibit learning-dependent plasticity with
formation of new myelin or changes in myelin thickness [2].
The myelin g-ratio is a quantitative measure of the relative
thickness of the myelin sheath and as such a critical parameter
in white matter study. It is defined as the ratio of the inner
axonal diameter to the outer radius of the myelin sheath
wrapped around the axon. Studies that measure the g-ratio
ex vivo in the CNS typically use electron microscopy. The
optimal g-ratio, to achieve maximal efficiency, is roughly
comprised between 0.6-0.8. Its computation requires a robust
and precise segmentation.
Through this article, we present the related works as well
as the method we propose for segmenting these electron
microscopy images in three classes : axon, myelin and back-
ground (Fig. 1, left). It was an exciting challenge because
working with images so hard to read (Fig. 1, right) in such a
small dataset is a big feat. However, by presenting the results
and compare them to the state of the art, we demonstrate that
our model, based on the U-Net architecture to which we add
transfer learning approaches, provides very encouraging and
promising results.

II. RELATED WORKS

Segmenting axons and myelin sheaths has been a challenge
for several years. First works proposed traditional image
segmentation methods, favoring unsupervised approaches.

Researchers from the university of Laval, Quebec, Canada,
sought to tackle this challenge in 2014 [3]. They used an
unsupervised approach of boundary detection and watershed:
first segmenting the axons, and then the myelin surrounding
each of them. The final goal of this approach is to produce
the histogram of g-ratio versus the axon equivalent diameter.
This approach of segmenting axons and myelin in two parts
allows for this calculation.



Fig. 1. Electron microscopy images

Another work was precedently done by AxonSeg [4], with
similar methods, dataset and results. The segmentation of
axons is based on the detection and analyis of local regional
minima, morpholgical operations, feature extraction and dis-
criminant analysis. The outer border of the myelin sheaths is
obtained through minimal path and active contour algorithms.
Our results will be compared to theirs towards the end of the
article.V
The main issue, in the context of this problem, is the lack of
generalization. This set of techniques might work out fine and
give out satisfactory results on an image of good quality with
normal axons and myelin sheaths, but it may fail when the
image is more complex, or acquired from a sick or elderly
subject. The aim of our article is to be able to treat more
complex images with higher accuracy.

More recent approaches rely on deep-learning methods.
CNNs have proven to be very effective in computer vision, and
U-net architectures [5] have achieved very good performances
in the segmentation of medical images. The first to use
CNNs for myelin and axon segmentation were Mesbah et
al. [6]. They did so in two main paths: the encoder-decoder
architecture outperformed the per pixel approach.
Another framework developped in 2018 by Zaimi et al, called
AxonDeepSeg or ADS [7] aims to answer the same problem.
The authors worked with scanning electron microscopy images
(SEM) and transmission electron microscopy (TEM) images.
They used multiple resolutions of images, in order to improve
generalization, and then manually segmented them. They pro-
duced images at multiple resolutions to train a custom U-Net
model and achieved the best results so far. They concluded
that the use of transfer learning as well as combining multiple
models would be great steps to improve both the accuracy and
the robustness of the model.

III. MATERIAL

Animal experiments were conducted in full accordance
with the guidelines of our local institutional Animal Care
and Use Committee (Lariboisire-Villemin, CEA9). A mouse
model of cerebral autosomal dominant arteriopathy with sub-
cortical infarcts and leukoencephalopathy (CADASIL), Tg-
Notch3R169C, and relevant controls, non-transgenic and Tg-
Notch3WT mice, were used at ages 6 months and 15 months.
Brains were perfusion fixed, and the anterior corpus callosum
was extracted and frozen using a high pressure freezing

machine. Freeze substitution was carried out using a Leica
EM AFS machine by modifying a previously used protocol
(Weil et al., 2017), and brains were embedded in Epon. 70nm
ultrathin sections were mounted on copper-palladium grids and
stained. Images were taken using a Tecnai Spirit transmission
electron microscope at 6500x (pixel size: 5.96nm; image size:
7.97x5.29m).
The dataset consists of 23 electron microscropy images, of
dimensions 1336 by 888 pixels. The images are in gray levels,
coded on 2 bytes. All images were segmented by an expert,
who delineated manually the boundaries of the axons and
myelin sheaths with a stylus. This was a very tedious task,
with ambiguous parts: especially the so-called ”inner tongues”,
which are not strictly myelin or axon, and unmyelinated axons
difficult to identify. Our data set is also complex because the
imaged samples come from pathological states, resulting in a
high level of structural variability: the thickness of the myelin
can vary from a few nm to a few um; the number of axons
with myelin can range from 20% to 80%; the size of the
”inner tongue” can also vary considerably. We also can observe
blur in some images, as well as uneven illumination. All
these characteristics make the segmentation task very delicate,
whether manually or automatically. Our aim is to achieve a
good robustness and accuracy, despite all these features and
the small size of our dataset.
Fig. 1 shows two pre-processed images. While the myelin on
the first image (Fig. 1, left) is rather well-defined, it is not the
case for the second one (Fig. 1, right). Not only is it much
more blurry and vague, but there are a lot of debris in the
background that resemble the shape and size of axons. The
axons in the second image also have more complex shapes
than the round ones in the first.

IV. METHODS

A. Dataset preparation
In an effort to improve generalization, we normalized our

images in Matlab using the Imadjust function. We then split
the dataset into 3 categories (Fig. 2): train, validation and test
sets. The training set consists of 17 .tif images, the validation
set of 3 and the test set of 2.

B. U-Net choice
The neural network we used to segment these electron

microscopy images is based on the U-Net architecture [5]. U-
Net is a CNN specifically developed for the segmentation of



Fig. 2. Complete pipeline in 4 steps

biomedical images. This architecture is composed of two paths
giving it this U shape. The first path is the contraction path,
also called encoder. It is a convolution neural network used to
extract the characteristics and capture the context of the image,
by computing highlevel features. The other part of the network
is the expansive path, symmetrical to the contractive path, also
called decoder. It consists of a sequence of upconvolutions
and ascending concatenations that allows the image to be
reconstructed, this time segmented, by capturing the precise
localization information of the image. It is therefore an end-
to-end fully convolutional network (FCN) [8]. One of the
main strength of this network is the connections between
the encoder and decoder parts. Those connections are used
to skip features from the contracting path to the expanding
path in order to recover spatial information lost during down-
sampling.

C. Transfer learning

Our main contribution is the use of Transfer Learning [9]
approaches in addition to the standard U-Net architecture (Fig.
2). Transfer Learning focuses on using stored knowledge,
the network weights, gained while solving one problem and
applying it to a different but related problem. We used the
SE-Resnet50 [10] model, which is pre-trained on ImageNet
dataset and fine-tuned to make it fit with our small dataset
of electron microscopy images. We started by removing the
model’s original classifier, then we added a new classifier that
best fits our purpose. Finally, to fine-tune the model, we have
frozen the convolutional base and used its outputs to feed
the classifier; the pre-trained model is used as a fixed feature
extraction mechanism. We implement our methods in Keras
thanks to the Segmentation Model API [11]. We used the
weights trained on the ImageNet 2012 dataset, provided by
Segmentation Model.

D. Data augmentation

We used data augmentation [12] on the inputs of the model
in order to reduce over-fitting and improve generalization and
robustness (Fig 2). All the transformations have been applied

by using Albumentations [13], a fast augmentation library.
Considering the context and scale of these images, we chose
the following parameters and their values are summarized in
table I.

TABLE I
DATA AUGMENTATION PARAMETERS

Parameter Description

Flip Randomly flips vertically and horizontally with prob-
ability of 0.5

Shift Randomly shifts the image up to 10% to any direc-
tion with probability of 1

Rotate Rotates the image 360 with probability of 1
Scale Scales the image up to half or double its size with a

probability 1
Perspective Changes the perspective with a probability 0.5
Brightness Changes the brightness with a probability of 0.9
Gaussian noise Adds statistical noise with a probability of 0.2
Contrast Changes the contrast with a probability of 0.45
Hue saturation Changes the color partitions with a probability of

0.45
CLAHE Updates the histogram with a probability of 0.45
Gamma Changes the gamma profile with a probability of 0.45

E. Training parameters

We performed more than fifty tests with different sets of
hyper-parameters to evaluate their influence on the training and
validation test. Once the model and the hyper parameters were
optimized we applied it to the test images. We thus manually
performed a method similar to the grid search [14]. The table
II summarizes the best set of hyper-parameters.
Several hyper-parameters have a considerable influence on the
performances. Among them, the use of batch normalization
[15] [16] layers between the convolution and activation layers
of the decoder, the learning rate which controls how much
you adjust the weights of your network, the cost function
and the optimizer, that govern the way in which the model
achieves learning. Last but no least, the backbone which
differentiates us from the others existing methods, especially
from AxonDeepSeg. Indeed, we have not used the original
U-Net encoder part but we have used the SE-Resnet50 model



TABLE II
HYPER-PARAMETERS

Hyper-parameters Value
Input size 448*672
Epochs 100
Activation function Softmax
Batch size 3
Batch normalization TRUE
Learning rate 0.0001
Backbone SE-Resnet50
Encoder weights ImageNet
Loss Dice Loss
Optimizer Nadam

thanks to transfer learning approaches. This model has been
chosen by using grid searches as well.
The best results have been obtained with the use of the dice
loss function and the Nadam optimizer. The loss is computed
for a whole batch during the training : Eq. 1,

L(Y, Ŷ ) = 1−
2
∣∣∣Y ∩ Ŷ

∣∣∣
|Y |+

∣∣∣Ŷ ∣∣∣ (1)

where Y and Ŷ are respectively the ground-truth and the
predicted output maps. This training phase has been executed
on the Google Collab cloud platform and took only a few
minutes on the NVIDIA TESLA K80 GPU provided.

F. Test time augmentation

As the model was very fast and we did not have time
limitations, we chose to do test time augmentation (TTA) (Fig.
2). It is a quite uncommon method of improving the accuracy
of the model. After flipping the same image, or applying the
same deformations as in the data augmentation, these images
are then segmented, and finally assembled together.
Our program takes an image as input, flips it vertically and
horizontally. It then segments the resulting images separately
using the same model, and flips them back so that they all have
the same orientation. Each image ”votes” for the color of a
pixel ; the stemming image’s ( of same dimensions ) accuracy
is improved by around 1%. It aims to removes biases that
could have grown in the treatment of verticality of the image.

G. Evaluation method

After the training, we evaluated our model on the two test
images. The numerical results are presented in the results part
V-B.

1) Confusion matrix: As the segmented images of the test
set and the masks have the same dimensions, we were able to
create a confusion matrix V-B1.

2) Precision: Precision (Eq. 2) effectively describes the
purity of our positive detections relative to the ground truth.

[Precision(TP, FP ) =
TP

TP + FP
] (2)

3) Recall: Recall (Eq. 3) effectively describes the com-
pleteness of our positive predictions relative to the ground
truth.

[Recall(TP ) =
TP

TP + FN
] (3)

4) Dice coefficient: The Dice coefficient (Eq. 4), also
known as F1-score is a metric used to gauge the similarity
between the ground truth and the predicted output.

[DiceScore(TP, FP, FN) =
2 ∗ TP

2 ∗ TP + FP + FN
] (4)

V. RESULTS AND DISCUSSION

A. Qualitative results

Below are the images (Fig. 3) that compose our test set,
after passing through the model.

Fig. 3. Qualitative results of our model

Fig. 4. Qualitative comparison with annotated errors



TABLE III
COMPARISON OF RESULTS

AxonSeg ADeepS SEM ADS TEM Ferreira T&R
Training / Test set sizes NaN 9 / 3 136 / 25 21 / 2 21 / 2
Sample species Mices Mices + 1 human Mices + 1 Macaque Mices Mices
Sample origin Spinal cord Spinal cord Brain Corpus callosum Corpus callosum
Pre-treatment Resampling Resampling Resampling None Imadjust + resize
Dice score ( axon ) NaN 0,9244 0,9493 0,8765 0,955
Dice score ( myelin ) NaN 0,8389 0,8552 0,854 0,917
Recall / Sensititivy 0,7886 0,9876 0,9597 0,9 0,91353
Precision 0,6745 0,7987 0,9647 0,87 0,9153

We identified 4 classes of errors, in which the other visible
ones can be associated with. Error 1 can is linked to the dark
nucleus of the axon, which is detected as background. Training
the model on more axons with nuclei or tuning these spots
down in pre-processing could solve this issue.
Error 2 can be attributed to the extreme shape of the axon.
Very elongated, the model chooses to split it in two. These
odd shapes are rare in the dataset ; training the model with
more diverse profiles of axons could help with generalization.
Error 3 can be attributed to myelin debris or noise in the image.
This particular method of obtaining the image leaves room for
some indistinguishable parts.
Error 4 is actually due to the fact that axon debris are present.
They are hard to distinguish from background, but could be
relevant for computing the g-ratio.
Even though the contours of the myelin sheaths are matching
the one of the segmented image, the distinction between each
individual myelin sheath is not made.

B. Quantitative results

1) Confusion matrix: We obtained this table by computing
the difference by pixel in the starting and final images. We then
averaged the results between test images, and scaled them to
100%.
The true positives are in majority, but there is a net distinction
between the three classes. Myelin contour is hard to define,
and as previously mentioned, there are some structures in
the image that are very ambiguous, and even an expert has
difficulty to know wether it is an axon or not. The posteriori
qualitative analysis of the segmentations showed that some
axons were rightly segmented although they were not in the
ground truth. Dr Joutel also identified myelin debris that were
not manually segmented.

TABLE IV
CONFUSION MATRIX PRE AND POST-TTA

in %
(Pre - Post TTA)

Model segmentation
Axon Myelin Other

Ground
truth

Axon 79.1 - 80.3 19.4 - 19.3 1.5 - 0.4
Myelin 14.9 - 15.0 58.0 - 58.5 27.1 - 26.5
Other 19.7 - 19.4 23.7 - 24.4 56.6 - 56.2

2) Metrics results: For each metric, we computed the
score obtained on each class separately, doing a pixel-by-pixel
analysis. We finally compute the average of these scores for
the two test images. Using TTA slightly improved an already

well-performing model.
We can see that the scores computed on the axon class are
the best, slightly ahead of those calculated on the myelin
class. On the other hand, the results of the scores computed
on the background class are much worse. We can interpret
these results as follow: the axons are well segmented while
the myelin is more difficult to circumvent and sometimes
spills over into the background or the axons. Finally, the less
good scores of the background class are due to the fact that
the model sometimes finds axons and myelin which are not
segmented on the ground truth image. Paradoxically, this bad
score partly reflects the strength of our model. The results
obtained are presented in the table V. It is also interesting to
compare the time it takes to process a full image. The AxonSeg
technique takes around 8 hours to segment a 110000 axon
images, while ours segments images of same axon density in
around 7 minutes.

TABLE V
METRICS RESULTS

Axon Myelin Background
Recall 0,946 0,941 0,827
Precision 0,963 0,894 0,911
Dice score 0,955 0,917 0,867

3) Performance comparison: Table V presents the compari-
son of our performance with other similar works. ADS stands
for AxonDeepSeg, which is the reference algorithm in this
field. It is worth noting that the data sets are different, ours
being much more challenging because of the extremely small
dataset and the high image variability.
We originally tried to use the same architecture and techniques
as AxonDeepSeg, in order to optimise furthermore the hyper-
parameters of their model. These results can be seen in the
”Ferreira” column, by the name of the student who used this
method. This approach did not bear great fruits, as our dataset
was much smaller, but this first step was necessary.
Our final results, labelled ”Our model”, compete with the ones
of AxonDeepSeg. Even though the size of the dataset has
a strong influence on the results obtained, we can achieve
slightly better dice scores. Moreover, the designers of ADS
trained their model and tested it on electron microscopy
images taken from young and healthy animals. In our case, we
were dealing with older mices which represents an additional
difficulty on the segmentation of the images. Finally, ADS



images are taken from the spinal cord while ours are taken
from the corpus callosum where segmentation is more difficult
to perform.

VI. CONCLUSION AND PERSPECTIVES

Using transfer learning and test time augmentation, paired
via the standard hyper-parameters optimization techniques
only betters the outcome of the model. Taking the most steps
possible in order to improve the generalization of the model is
important as well, and we tried our best at it. This also was an
exercise of working with a rather extreme dataset. The total
number of training images and their definition was very low,
and the quality of the myelin in some cases was challenging.
The Hausdorff Distance is widely used in evaluating medi-
cal image segmentation methods. Using this boundary-based
metric could improve the qualitative results of the predictions.
One could build on the work described in [17].
Moreover, we could see that increasing the size of the dataset
had a favourable impact on the quantitative results obtained.
This avenue will soon be explored because the Paris Lari-
boisire hospital will provide us additional images.
We also consider adversarial normalization as a possible
improvement [18]. There exist many ways of collecting these
images, and there might exist disparities within a same image:
adapting the normalization to the dataset could improve the
robustness of the model further more.
The ultimate goal of this segmentation tool would be to then
compute the g-ratio of each axon. Computing the g-ratio for
every axon will enable us to get a very reliable histogram,
which is valuable to characterize diseases affecting the white
matter.
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[3] Steve Bégin, Olivier Dupont-Therrien, Erik Bélanger,
Amy Daradich, Sophie Laffray, Yves De Koninck, and
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