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Abstract

Despite blockchain based digital assets trading since 2009, there has been a functional gap between (1)

on-chain transactions and (2) trust based centralized exchanges. This is now bridged with the success

of Uniswap, a decentralized exchange. Uniswap’s constant product automated market maker enables the

trading of blockchain token without relying on market makers, bids or asks. This overturns centuries of

practice in financial markets, and constitutes a building block of a new decentralized financial system. We

apply ARDL and VAR methodologies to a dataset of 999 hours of Uniswap trading, and conclude that its

simplicity enables liquidity providers and arbitrageurs to ensure the ratio of reserves match the trading pair

price. We find that changes in Ether reserves Granger causes changes in USDT reserves.
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Highlights

• Uniswap is a decentralized exchange based on user provided liquidity reserves.

• Ratio of liquidity reserves are cointegrated with the token price off Uniswap.

• Changes in Ether reserves Granger causes changes in USDT reserves.

• Decentralized exchanges jeopardize regulatory strategies focused on institutions.

1. Introduction

On 1 September 2020, USD 953 million worth of digital tokens traded on the Uniswap decentralized

exchange (DEX) in a single day. These trades utilized almost USD 2 billion of committed liquidity.1. In the
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prior week, the platform’s volumes had already exceeded the volumes of the largest centralized cryptoasset

exchange Coinbase.2 Two weeks later, Uniswap would issue its own digital governance token and airdrop

(i.e. give away for free) at least 15% of its ultimate value to its prior users. As of 2 November 2020 the fully

diluted market cap of the Uniswap governance token was USD 484 million.3

Although the record keeping functionality of blockchains make them natural payment and token transfer

mechanisms, significant blockchain token trading takes place on centralized exchanges. These venues offer

consistent transaction costs, fast settlement and optimized user interfaces. The most visible negative of such

venues are the regular hacks, and occasional exchange collapses, that jeopardize the assets they custody.

Gandal et al. (2018) examines the fall of the Mt Gox exchange as well as the increasing price manipulation

leading up to the actual event. Only recently have DEXs gained significant share of cryptoasset volumes

relative to centralized exchanges. Lin (2019) identifies four dimensions across which exchanges can be

decentralized, including (1) the blockchain platform, (2) the mechanism for discovering a counterparty, (3)

the order matching algorithm and (4) transaction settlement. Choices regarding these functions impact an

exchange’s trade off between performance, privacy and capital intensity. Lin (2019) enumerates the benefits

of DEXs as (1) lower counterparty risk, (2) potentially lower fees, and (3) more trading pairs. Trends favoring

a switch towards DEXs include (1) increasing quantity of distinct cryptoassets, (2) the regulatory risk of

listing a cryptoasset on a centralized exchange, and (3) user preferences to avoid Know Your Customer

and Anti Money Laundering (KYC/AML) regulations required by a centralized exchange. Centralized

exchanges are a focus of regulatory actions, with the CFTC and SEC charging the derivatives platform

Bitmex with providing US based customers access to unregulated financial derivatives, and not following

AML requirements CFTC (2020). In the UK, FCA (2020) banned the sale of derivatives that reference

cryptoassets to retail investors. Importantly, the FCA has not banned the trading of cryptoassets. Uniswap

and other DEXs are not offering derivatives, but it is clear that both regulation and cryptoasset markets

continue to evolve at speed. Alexander and Heck (2020) observes the problems arising from inconsistent

regulation of cryptoasset and derivative markets. DEXs will exacerbate these differences.

Traditional exchanges bring all parties to a single marketplace and depend on specialists to provide

liquidity. Both they and early DEXs utilize order books of bids and asks. The bid consists of prices and

volumes participants are openly willing to buy at. The ask consists of prices participants are willing to sell

at. If the same party engages on the bid and the ask at the same time, they are a specialist or market maker,

looking to profit on the spread. Comerton-Forde et al. (2010) find that market maker balance sheet and

2cryptobriefing.com/uniswaps-daily-volume-overtook-coinbase-more-80-million/
3coingecko.com/en/coins/uniswap
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income statement variables impact time variation in liquidity - in other words spreads widen when specialist

participants have large positions or lose money. Given sufficient transaction flow, market makers may not

be required to provide liquidity to a market. However a more revolutionary alternative to a bid-ask based

financial market is a disintermediated reserve based model that holds pools of assets that traders can access.

Figure 1: Ether and Tether reserves for the ETH-USDT pair on Uniswap

Uniswap is such a model. Liquidity providers (LPs) commit proportionate quantities of two cryptoassets

to form the basis of a trading pair (Figure 1 shows the reserves for the ETH-USDT pair). In return LPs

receive 0.3% of the value of trades. Angeris and Chitra (2020) notes how Uniswap applies a constant product

rule to these reserves to map them to a marginal price. Further detail on these mechanics are provided in

subsection 2.2. We utilize a dataset of 999 hours of cryptoasset reserves for the ETH-USDT pair from

Uniswap, and explore the research question: are DEXs, in particular Uniswap, an effective cryptoasset

exchange? We examine this question with three testable hypotheses.

• H1: The price of the ETH-USDT Uniswap pair matches its exchange rate off Uniswap.

In a centralized exchange, market makers and participants ensure varying degrees of the Efficient Market

Hypothesis (Fama, 1970). Uniswap has discarded this strategy, and therefore it is logical to test the connec-

tion between prices on and off Uniswap. Cointegration of the ratio of reserves and non-Uniswap pricing is a
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necessary condition of the efficiency and effectiveness of Uniswap. It is where the pricing curve of Uniswap’s

constant product market maker equates to the price off platform. We formulate a series of equilibrium

correction Auto Regressive Distributed Lag (ARDL) models in order to test this hypothesis.

• H2: The price of Ether, Bitcoin and the volume of transactions provide information that help predict

changes in Uniswap reserves.

Here we examine which independent variables assist in predicting changes in reserve balances. Additionally,

ARDL requires that there is at most one cointegrating relationship with the dependent variable.

• H3: Changes in one reserve balance, of a pair, cause changes in the other reserve balance.

ARDL does not prove causality. Therefore we apply a VAR model, and its test of Granger causality, to see

if changes in one reserve balance, of a pair, influences the other reserve balance.

Our results provide evidence that the the Uniswap exchange is an effective cryptoasset exchange. We find

a surprising relationship between the price of Bitcoin and underlying reserves. Our VAR analysis suggests

that over the study period, changes in Ether reserves Granger causes changes in Tether reserves. The

effectiveness of Uniswap has significant implications for the expansion of use cases for decentralized finance.

Although blockchain promised the ability to digitally trade anything, in practice there has not necessarily

been the liquidity for it. Reserve based markets imply that trades can now be carried out at any price and

at any volume, enhancing the completeness of financial markets. Furthermore, decentralized marketplaces

will challenge the objectives and enforcement capabilities of regulators. In particular, decentralizing the

exchange eliminates the venture’s need for a registered address and permanently located infrastructure,

and therefore reduces the surface it exposes to the authorities. The next section provides background to

decentralized finance and Uniswap’s pricing mechanism. Following that are sections on Data, Methodology,

Results and Discussion. The research closes with a short Conclusion.

2. Background

2.1. Blockchain, speculation and decentralized finance

Blockchain has become synonymous with digital tokens like those traded on Uniswap. However there

is more to the technology than this. We highlight five threads. The first is as a mechanism to enable

decentralized record keeping - and exemplified by Maersk and IBM’s TradeLens project that records the

movement of 60% of the world’s shipping containers (Jensen et al., 2019). A record agreed by all is by

4



definition accepted as “true”. This reduces the need for trust, and at a minimum accelerates dispute

resolution. In the future this may enable decentralized decision making. Secondly are the smart contracts

coded on the blockchain, that are commonly used to issue and manipulate third party tokens. Shared

code, that all agree to be “true”, can be thought of as shared rules. This may later open up new types

of automation and agent relationships. Cong and He (2019) provides a formal proof of how a blockchain

based consensus, using smart contract based prices contingent on delivery, can support new entrants. In

their paper, new entrants signal quality by trustlessly guaranteeing buyers compensation if the product fails,

explicitly increasing the completeness of the contract space. The shared computer code referred to as smart

contracts do not come with guarantees. Rather any consequences are public prior to interaction. The third

thread are digital tokens. It is noted that both record keeping and tokens can be separately used to enable

payments and the transfer of value. However it is with tokens that we enter the field of tokenomics, and their

ability to reduce project networking costs. Catalini and Gans (2016) implicitly divide these cost reductions

into venture bootstrapping, where tokens are sold to investors or incentivize employees; and platform scaling

where tokens are offered to miners to process transactions, or to evangelize users.

The fourth thread is the ease of deploying a payment system. There is circumscribed need for a new

electronic currency that is a close substitute with bank deposits. However there is a large opportunity in a

novel payments infrastructure. The United States and its allies control the SWIFT international payments

system and the clearance of dollars - used to both cut off Iran and sanction multinational companies (Majd,

2018). Critically, a blockchain based Chinese Central Bank Digital Currency (CBDC) would bootstrap a new

payments system that can operate largely separate from the SWIFT international payments system. BOE

(2020) discusses the potential resiliency benefit of a core payment network that sits outside the commercial

banking system. But it only touches on why this facilitates features such as negative interest rates: a

blockchain based CBDC hands the payment system, deposit accounts and its data to a single system owner.

The fifth thread is conversely the ability of using decentralization to break rules. The rise of blockchain

tokens have facilitated online crime and money laundering. Foley et al. (2019) use a variety of network

analyses, such as transactions with known dark web wallets, to estimate that one quarter of Bitcoin users

were involved with illegal activities, equating to USD 76 billion in transactions. “Cryptocurrencies are

transforming...black markets by enabling black e-commerce”, Foley et al. (2019, Page 1798). However, the

evolution and use of digital tokens suggest that illicit activities are not the primary use case of digital tokens.

Firstly, Brainard (2020) observes that the money-like use cases of (1) means of exchange, (2) store of value

and (3) unit of account, (which Dwyer (2015) argues were never well addressed by Bitcoin) have increasingly
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been taken over by stablecoins. BOE (2020) defines cryptoassets as “a type of private asset that depends

primarily on cryptography and distributed ledger or similar technology as part of their perceived or inherent

value”, and stablecoins as a type of cryptoasset “whose value is linked to another asset”, i.e. the US dollar.

The most popular stablecoin is the Tether digital token (USDT). It is 5% of the value of all cryptoassets,

compared to 60% for Bitcoin, but manages double the daily transaction value.4 Such stablecoins are unsuited

to illicit activities as they are typically centralized and easily frozen by their issuers.5

Despite the growth of cryptoassets for payments, arguably the leading use case for digital tokens is

speculation. Unfortunately this is difficult to address empirically. Lo (2017) provides evidence that the

price action of Bitcoin is consistent with it being traded as a proxy for the prototyping phase of a new

technology. Ciaian et al. (2017) use an ARDL methodology to find a variety of relationships between

Bitcoin, altcoins and a set of macroeconomic variables. Tan et al. (2020) examine the Garman and Klass

volatility of 102 cryptoassets. These papers reveal relatively little consistency and connection between any

of these digital assets. Lo and Medda (2020) categorizes and tests a set of ICO tokens, issued prior to 2017,

by token function. It highlights the large quantity of funds directed to a set of ventures that consisted of

little more than a white paper and a website. Although a number of these projects are still in operation,

none have a noteworthy number of users. Other than Bitcoin, Ether and stablecoins, few cryptoassets have

retained share of value of the space. Cumulatively, all this speaks to the speculative context of trading

such vehicles. Arthur et al. (2016) review the differences between gambling, speculation and investing. The

key distinctions are expected value (EV) and variability of returns. Speculation involves a higher EV than

gambling (where negative EV is the norm), and higher variability than investing. This is not to deride the

importance of speculation. Both venture capital and oil drilling (especially prior to seismic surveys and

shale drilling) observe a high number of project failures. In particular in the crypto space, these flows of

funds have been critical to the creation of decentralized building blocks, known as primitives.

Uniswap is one of the primitives of the wider space known as Decentralized Finance (DeFi). Multicoin

Capital founder Kyle Samani defines DeFi as “Enforcing financial contracts through code running on cen-

sorship resistant and permissionless public blockchain”.6 Other large players in DeFi include Curve in the

lending and borrowing of cryptoassets, and Synthetix in cryptoasset derivatives.7 The DeFi space has be-

come popular for liquidity mining or yield farming, where ether, stablecoins and other assets are committed

and rewarded. Part of these rewards are payments such as Uniswap’s 0.3% fee for liquidity providers, but

4en.ethereumworldnews.com/tethers-usdt-daily-trade-vol-eclipses-btcs-marketcap-hits-13b/
5trustnodes.com/2020/09/26/tether-freezes-30-million-usdt-after-kucoin-hack
6twitter.com/KyleSamani/status/1308280047984242688
7curve.fi/ and synthetix.io/
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the majority are tokens handed out by the venture for platform scaling. Yearn.finance8 is an example of

how primitives are building blocks. Deposits on its platform are moved around cryptoasset pools such as

Curve’s, trading on Uniswap as necessary, in order to maximize potential rewards. The emergence of DeFi

has exacerbated congestion and operation costs (i.e. gas fees) on the Ethereum network, similar to the situ-

ation on the Bitcoin network in 2018. Proof of work blockchain networks are capacity constrained by design

(Lo and Medda, 2018). It is how Nakamoto consensus blockchains, such as Bitcoin, enable decentralization

and censorship resistance. DeFi primitives are expanding the scope of both these functions.

2.2. Uniswap’s constant product automated market maker

RαRβ = k

Pre trade

Post tradeRβ1

Rα1

Rβ0

Rα0 Rα

Rβ

Figure 2: Uniswap constant product automated market maker

A constant product automated market maker (AMM) ensures that the reserves before and after the

trade (assuming no fees) adhere to the function:

RαRβ = k (1)

Rα is the quantity of reserves of asset α; Rβ is the quantity of reserves of asset β; and k is a constant.

Equation 1 is plotted in Figure 2. Where trades do not change the ratio of reserves i.e. small, price

pαβ = Rβ/Rα. This is the slope of the tangent where the current mix of reserves intersect the curve.

Reserves following a purchase of α adhere to (Rα − ∆Rα)(Rβ + ∆Rβ) = k. The marginal price of a new

transaction is trivially the relative change in quantity of the two reserves pαβ = ∆Rβ/∆Rα. This is the slope

8yearn.finance/dashboard
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of the line joining the before and after points on the curve. The slippage (realized price less than market

price) of a trade is positively correlated with trade size and inversely correlated to the size of reserves.

Angeris and Chitra (2020) generalizes the mathematics of constant product market makers, and argues

that they provide a tractable optimization problem for arbitrageurs to synchronize on and off chain prices.

On a traditional exchange, the price of an asset lies between the bid and the ask, but this does not apply

on DEXs. Market makers contribute to price discovery, but liquidity providers are price takers. LPs have

no price protection other than the constant product function, which treats price as an output. Because

arbitragers capture some of the value of price changes, the assets of an LP excluding fees will underperform

a fixed portfolio of the original assets, unless price reverts. This is deceptively referred to as impermanent loss

- however even if price reverts, LPs underperform a portfolio that actively rebalances.9 The CEO of Uniswap

Hayden Adams has referred to LPs as “Long fees/volatility and short volatility/fees”10 In other words LPs

benefit from fees which are a function of volatility, but suffer from price change volatility. Separately, traders

can specify a maximum deviation relative to an external price oracle, to protect themselves from short term

reserve fluctuations. Notably, large trades on Uniswap are vulnerable to front running, where bots watch

Ethereum’s mempool of unprocessed trades, and buy and sell around market moving transactions.11

3. Data

The study is based on closing hourly Uniswap data for the period midnight 18 August 2020 to 2pm 28

September 2020, via a 1000 hour query of the Uniswap V2 subgraph.12 Subgraphs are a way of storing

public data, and accessible via Graph Query Language (GQL). As the final hour is incomplete, 999 hours

are retained. The Uniswap subgraph does not contain hourly price data, only daily price data. Therefore

we acquire via API the matching 999 hours of closing ETH-USDT price from the Cryptocompare.com

data aggregator. We do not know the relationship between Cryptocompare’s benchmark exchange rate (a

composite of unknown weights) and the third party pricing oracle utilized by Uniswap. Descriptive statistics

for a selection of dataset variables are shown in Table 1. Total reserves for the pair in USD are charted

against trading volumes in Figure 3. The large drop in reserves and volumes in the middle of the chart

relates to a copy cat exchange SushiSwap, that offered token incentives to LPs willing to switch to their

platform. Competitor moves such as these are sometimes referred to as vampire attacks.13

9medium.com/coinmonks/uniswap-a-graphical-exposition-part-ii-ba440b3fc522
10twitter.com/haydenzadams/status/1309176877869826048?s=20
11medium.com/token-flow-insights/how-to-munch-on-pickles-from-a-whale-dinner-edb5628cc769
12thegraph.com/explorer/subgraph/uniswap/uniswap-v2
13finematics.com/vampire-attack-sushiswap-explained/
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N Mean St dev Min p50 Max

Ether reserves, tokens 999 254,727 208,648 11,195 219,063 611,322

USDT reserves, tokens 999 93,533,764 73,919,675 4,704,488 81,763,952 220,368,144

Total reserves, USD mil 999 186 147 9.43 163 439

Ether transaction volume, ETH/hr 999 6,462 5,850 559 4,932 58,799

USDT transaction volume, USDT/hr 999 2,421,322 2,122,218 226,818 1,846,440 20,523,222

ETH reserves * USDT reserves 999 3.91e+13 4.46e+13 5.31e+10 1.81e+13 1.34e+14

Ratio of reserves USDT to ETH 999 381 31.8 319 381 483

ETHUSDT close price, USD 999 381 31.7 319 381 483

BTCUSDT close price, USD 999 10,977 596 9,946 10,883 12,352

Diff in log Ether reserves 998 .00383 .0746 -1.97 .00168 .668

Diff in log USDT reserves 998 .00366 .0749 -1.97 .00152 .67

Table 1: Descriptive statistics - 999 hour snapshot of Uniswap ETH-USDT pair

Figure 3: Total reserves and trading volumes for the ETH-USDT pair on Uniswap
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4. Methodology

Hypothesis H1 requires us to test for cointegration between price and the ratio of reserves. This cointe-

gration is central to the effective trading of cryptoassets on Uniswap. Within equilibrium correction ARDL,

the test of cointegration is referred to as the Bounds test. We proceed there via (1) categorizing the vari-

ables by their order of integration; (2) discussing the framework of the ARDL model; and (3) laying out

the equilibrium correction ARDL to which the Bounds test is applied. Although Pesaran et al. (2001) com-

mented that ascertaining the order of integration was unnecessary prior to testing for cointegration under

ARDL, this was asserted in a bounded fashion: the framework does not extend directly to variables that

are integrated of order two I(2). Therefore we test for unit roots using Augmented Dickey-Fuller (ADF),

Phillips-Perron (PP) and Dickey-Fuller GLS (DFGLS) tests. We use the Akaike Information Criteria (AIC)

to determine the appropriate number of lags.

ADF PP DF-GLS

level 1st diff. level 1st diff. level level 1st diff.

Statistical significance 5% 5% 5% 5% 5% 10% 5%

Ether reserves NS S NS S NS NS S

USDT reserves NS S NS S NS NS S

Ether volumes S S S S NS S @ 19 lags S

USDT volumes S S S S NS S @ 18 lags S

ETHUSDT price NS S NS S NS NS S

BTCUSDT price NS S NS S NS NS S

Ratio of reserves NS S NS S NS NS S

3 tests of stationarity applied to 7 time series, on levels and first differences. NS = non-stationary. S = stationary.

Table 2: Stationarity test results

The results shown in Table 2 indicate that our sample contains a mix of integration orders. Reserves,

ratio of reserves and prices are stationary in the first differences I(1), while volumes are likely to be stationary

in levels I(0). The DF-GLS test applies a generalized least squares (GLS) detrending on the series prior to

running an ADF test, which can improve the power of the test (Elliott et al., 1996). Although both OLS

and GLS based tests see declining power in the presence of level or trend breaks, the risk is in misidentifying

a stationary time series with such a structural break as non-stationary i.e. that the order of integration is

over estimated (Cook and Manning, 2004). Therefore ARDL is appropriate and can be represented thus:

yt = c0 + c1t+

p∑
i=1

φiyt−i +

q∑
i=0

βixt−i + ut (2)
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yt is the dependent variable at time t, with up to p lags included in the model.

xt is the k x 1 vector of independent variables. For simplicity we display here lag order q as the same

for all the independent variables - this does not have to be the case.

ut is a random error term.

c0 and c1 are deterministic intercept and time trend coefficients.

An extension of the model in Equation 2 estimates the long run relationships as an equilibrium correction

process (Pesaran et al., 2001). It frames the independent variables as long run forcing of the dependent

variable (Kripfganz and Schneider, 2020). This assumes the independent variables are weakly exogenous,

and models should consider the directionality of effects during formulation e.g. it may be plausible for

transactions to drive changes in reserves, but it is less likely that reserves force large transactions. With

respect to hypothesis H1, yt becomes the ratio of reserves Rt; while xt are the exchange rates of ETHt and

BTCt with Tether. This is shown in Equation 3.

∆Rt =c0 + c1t+ α(Rt−1 − θ1ETHt−1 − θ2BTCt−1) +

p−1∑
i=1

ϕRi∆Rt−i + ω1∆ETHt + ω2∆BTCt

+

q−1∑
i=1

ϕETHi∆ETHt−i +

r−1∑
i=1

ϕBTCi∆BTCt−i + ut

(3)

α is the adjustment coefficient.

θ are the long run coefficients on first lags of ETHt and BTCt.

ω are the short run coefficients on the first differences of ETHt and BTCt.

ϕ are the short run coefficients on the lagged differences of Rt, ETHt and BTCt.

This choice of methodology benefits from its ability to estimate both short run and long run parameters

at the same time. Furthermore, Pesaran and Shin (1999) observes that an appropriate estimation of the

orders of the extended ARDL(p,m) model is sufficient to both correct for the residual serial correlation, and

the problem of endogenous regressors. The ARDL models and coefficients are estimated in Stata utilizing

the ARDL package, which is based on Kripfganz and Schneider (2020). These models are subjected to two

parts of the ARDL Bounds test. Note that if there is no cointegration, then the ARDL model in Equation

2 is used to estimate relationships between variables and their lags. Hypothesis H1 is investigated via a

variety of specifications that look for cointegration between the ratio of Ether and USDT reserves and the

exchange rate of ETH-USDT. Hypothesis H2 utilizes the same methodology and searches for the presence

of cointegrating and auto regressive relationships between reserves, transactions and price.
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Cointegration implies that there are stationary equilibrium relationships between separate non-stationary

variables. A corollary of this is that when these variables diverge, at least one of the cointegrated variables

converges back to return the system to a long run equilibrium. In Equation 3 the rate of this is estimated

by the coefficient α. The Bounds test begins with a Wald test (F-statistic) of the joint hypothesis HF
0 that

α = 0 and
∑q
i=0 ϕxi = 0, versus the alternative hypothesis HF

1 that α 6= 0 and
∑q
i=0 ϕxi 6= 0. If the null

hypothesis is rejected, then the t-statistic is used to test the second Ht
0 of α = 0 versus Ht

1 of α 6= 0. The

distributions of these test statistics are nonstandard and depend on the integration order of the independent

variables. Kripfganz and Schneider (2020) extend the set of available critical values for the bounds test via

estimating response surface models, with each significance level showing four critical values based on I(0) and

I(1) for the F-test and t-tests. There can be at most one cointegrating relationship between the independent

variables and the dependent variable (although there may be additional cointegrating relationships between

the independent variables). The validity of the Bounds test depends on normally distributed error terms

that are homoskedastic and serially uncorrelated. For the equilibrium correction ARDL model for the ratio

of ETH/USDT reserves to ETHUSDT price, we carry out the Breusch-Godfrey LM test for autocorrelation,

and the Breusch-Pagan test for heteroskedasticity. The coefficients need to be stable over time. Kripfganz

and Schneider (2020) notes that Bounds testing with higher lag order can be useful for addressing remaining

serial error correlation, with a more parsimonious model applied after testing for forecasting purposes.

Across our analysis AIC, which indicates the optimality of a model, is used to select the set of variables and

the number of lags. AIC is less parsimonious than Schwarz’s Bayesian Information Criteria (BIC), but in

ARDL lowers the risk of serial correlation.

Moving on, hypothesis H3 requires an alternative methodology to test for Granger causality. We imple-

ment a Vector Auto Regressive (VAR) model to analyze directional changes in cryptoasset reserves. VAR

modeling specifies as many models as dependent variables (Enders, 1995). We use first difference of logs,

to ensure the linearity of changes in the two rapidly increasing reserve balances. In a basic form of two

variables with a single lag, VAR modeling would define two equations thus.

∆(lnETHt) = αu + βu1∆(lnUSDTt−1) + εu (4)

∆(lnUSDTt) = αe + βe1∆(lnETHt−1) + εe (5)

Variables are considered endogenous. Although it is possible to use lags selectively, typically each model

12



repeats the same lagged explanatory variables symmetrically. This way it can be argued that VAR modeling

is theory-free with no preconceptions. The Granger causality tests within the VAR model examine if prior

period first difference of log of one cryptoasset reserve provides information about the value of current period

first difference of log of the other cryptoasset reserve. Tests of Granger causality exploits the directionality

of time to imply the directionality of the relationship. Changes in reserve balances are a corollary of trades

on the Uniswap platform, and following such trades, the mechanism by which arbitrageurs cointegrate the

reserve ratio and price. In the next section we examine the results.

5. Results and discussion

[A] [B]

Adjustment factor

L. (Diff from equilibrium) -0.611∗∗∗ -0.613∗∗∗

Long run effects

L. (ETHUSDT price) 1.002∗∗∗ 1.007∗∗∗

L. (BTCUSDT price) -0.000

Short run effects

LD. (Ratio of reserves) -0.191∗∗∗ -0.185∗∗∗

L2D. (Ratio of reserves) -0.093∗∗ -0.089∗∗

D. (ETHUSDT price) 0.905∗∗∗ 0.858∗∗∗

LD. (ETHUSDT price) 0.205∗∗∗ 0.200∗∗∗

L2D. (ETHUSDT price) 0.116∗∗∗ 0.112∗∗∗

L3D. (ETHUSDT price) 0.022 0.021

D. (BTCUSDT price) 0.004∗∗

aic 3450.675 3443.950

bic 3494.800 3497.880

Adj R2 0.855 0.857

N 995 995

Bounds test results

F-statistic 92.700 61.081

t-statistic -13.611 -13.526

F-test p-value I(1) 0.000 0.000

t-test p-value I(1) 0.000 0.000

Bounds test rejects H0 no level relationship

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 3: ARDL - Ratio of reserves and ETHUSDT price
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The results of applying ARDL to our dependent variable, the ratio of Ether to USDT reserves, with the

price of Ether and the price of Bitcoin (both relative to USDT) are shown in Table 3. As all three variables

in this model are I(1), the bounds test statistics are compared to the I(1) critical values. The F-statistic

and the t-statistic are more extreme than the related critical values (p-value = 0.000), which rejects the null

hypothesis of no level relationship. This provides evidence in favor of the first of our testable hypothesis:

• H1: The price of the ETH-USDT Uniswap pair matches its exchange rate off Uniswap.

Figure 4: The ratio of Ether and Tether reserves (on the ETH-USDT pair on Uniswap) versus the ETHUSDT price

This result confirms empirically the effectiveness of Uniswap’s reserve balance based Ether and USDT

exchange pair on an hourly time frame. These results are supported graphically in Figure 4. The lower part

of this figure indicates that some of the arbitrage opportunity is visible in the data, but over the sample

period largely stays under 1%. We note that because of fees, arbitrage is unlikely to take place when the

difference between on and off Uniswap prices are less than 0.3%.
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Returning to Table 3, the short run effects are ϕ and ω from equation 3, which are the coefficients on the

first and lagged differences of our variables. The majority of these coefficients are statistically significant.

The long run effects are the coefficients θ on the, off platform, lagged exchange rates of ETHUSDT and

BTCUSDT. In both specifications, the coefficient on the lagged ETHUSDT price is slightly over 1. Of

the long run coefficients, only ETHUSDT is statistically significant. During the study time period, the

adjustment factor α is 0.61. This suggests that 61% of the difference between the ratio of reserves and the

ETHUSDT price is adjusted back to long run equilibrium over the course of the subsequent hour. There is no

specific theoretical reason why the ratio of reserves should be impacted by the price of Bitcoin BTCUSDT,

however the lower AIC value and the statistical significance of the first difference coefficient suggests the

Bitcoin price does contain information in predicting changes in the ratio of reserves. This may be because of

Bitcoin’s importance in the cryptoasset space; its impact on trader wealth; or some residual use as a unit of

account. We run a Breusch-Godfrey LM test for autocorrelation, which does not reject the null of no serial

correlation for 1 lag and 5 lags at the 5% significance level, but does reject the null for 2-4. We force higher

lags on the dependent variable and rerun the bounds test and observe similar results (not shown). The

Breusch-Pagan test for heteroskedasticity has a χ2 test statistic of 2.6 and a p-value of 0.1069. Therefore

we do not reject the null of constant variance at the 5% and 10% significance levels.

• H2: The price of Ether, Bitcoin and the volume of transactions provide information that help predict

changes in Uniswap reserves.

In order to explore our second hypothesis H2, we put the ratio of reserves to one side, and run ARDL

models with Ether reserves and USDT reserves as our dependent variables. The Bounds tests on these

equilibrium correction models (not shown) do not reject the null hypothesis of no level relationship - we find

no evidence of cointegration. Because of this, the equilibrium correction models are not appropriate, and

the results of the standard ARDL model are presented in Table 4 and 5. For both dependent variables, we

execute 3 models with different independent variables, and rank them by AIC. The lower the AIC the more

appropriately specified the model. For both Ether reserves and USDT reserves the most general models

with the most variables appear to be preferred in predicting changes in the dependent variables. That the

price of Ether impacts reserves makes sense as reserves are a function of (1) liquidity provision in a ratio

set by price and (2) trades that exchange one reserve for another at a price dependent on impact. The

statistical significance on volumes is somewhat weaker. Notably, the statistical significance of Bitcoin is a

surprise. Together these results find in favor of our hypothesis H2. The BIC would rank the models for both

dependent variables differently, but would also increase risks of serial correlation in the residuals. We test
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the other variables to ensure no additional cointegrating relationships that may impact our earlier analysis.

Mostly there is no logic for such directionality, and we do not find such evidence. Over the study time

period we also do not find cointegration between the price of Ether and the price of Bitcoin. The result of

this may be different over longer time periods.

[B] [D] [E]

L. (ETH reserves) 0.883∗∗∗ 0.861∗∗∗ 0.861∗∗∗

L2. (ETH reserves) 0.102∗∗ 0.122∗∗∗ 0.117∗∗∗

(USDT reserves) 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗

L. (USDT reserves) -0.002∗∗∗ -0.002∗∗∗ -0.002∗∗∗

L2. (USDT reserves) -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗

(ETHUSDT price) -637.565∗∗∗ -619.692∗∗∗ -518.689∗∗∗

L. (ETHUSDT price) 498.591∗∗∗ 487.398∗∗∗ 374.865∗∗∗

L2. (ETHUSDT price) 96.852∗∗ 94.694∗∗ 118.811∗∗∗

L3. (ETHUSDT price) 28.018 24.263

(ETH volume) 0.483∗∗ 0.540∗∗

L. (ETH volume) -0.346 -0.458∗

L2. (ETH volume) -0.012 -0.009

L3. (ETH volume) 0.020 0.017

L4. (ETH volume) -0.049∗∗ -0.039∗

(USDT volume) -0.001∗ -0.001∗∗

L. (USDT volume) 0.001 0.001∗

(BTCUSDT price) -8.585∗∗∗

L. (BTCUSDT price) 9.367∗∗∗

L2. (BTCUSDT price) -2.946

L3. (BTCUSDT price) 2.571∗

aic 17839.896 17815.129 17796.283

bic 17888.923 17898.476 17894.338

N 995 995 995

Models ordered by AIC descending

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 4: Short run ARDL model of Ether reserves within ETH-USDT Uniswap pair
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[F] [G] [H]

L. (USDT reserves) 0.880∗∗∗ 0.857∗∗∗ 0.858∗∗∗

L2. (USDT reserves) 0.106∗∗∗ 0.126∗∗∗ 0.120∗∗∗

(ETH reserves) 359.660∗∗∗ 359.814∗∗∗ 359.155∗∗∗

L. (ETH reserves) -316.353∗∗∗ -307.481∗∗∗ -307.090∗∗∗

L2. (ETH reserves) -37.979∗∗ -46.147∗∗∗ -43.853∗∗∗

(ETHUSDT price) 2.36e+05∗∗∗ 2.30e+05∗∗∗ 1.88e+05∗∗∗

L. (ETHUSDT price) -1.87e+05∗∗∗ -1.82e+05∗∗∗ -1.37e+05∗∗∗

L2. (ETHUSDT price) -3.35e+04∗∗ -3.30e+04∗∗ -4.21e+04∗∗∗

L3. (ETHUSDT price) -1.10e+04 -9394.944

(ETH volume) -182.284∗∗ -205.483∗∗

L. (ETH volume) 115.697 159.812∗

L2. (ETH volume) 7.660 6.336

L3. (ETH volume) -8.740 -7.309

L4. (ETH volume) 17.894∗∗ 13.854∗

(USDT volume) 0.430∗ 0.494∗∗

L. (USDT volume) -0.287 -0.409∗

(BTCUSDT price) 3453.907∗∗∗

L. (BTCUSDT price) -3744.165∗∗∗

L2. (BTCUSDT price) 1078.459

L3. (BTCUSDT price) -944.970∗

aic 29585.068 29560.327 29537.154

bic 29634.096 29643.674 29635.209

N 995 995 995

Models ordered by AIC descending

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 5: Short run ARDL model of USDT reserves within ETH-USDT Uniswap pair

Our third hypothesis examines how the Uniswap ETH-USDT pair returns to equilibrium.

• H3: Changes in one reserve balance, of a pair, cause changes in the other reserve balance.

We investigate this with a VAR model. We begin by reviewing the order selection statistics for our two

variables. The BIC recommends zero lags but the AIC opts for 3 lags. We run two models, one with 3 lags

and the second with 1 lag. The results of this are shown in Table 6. Tests of model stability suggest that the

Eigenvalues are appropriately within the unit circle. We find a single statistically significant coefficient on

the first difference in log of Ether reserves, when the dependent variable is the first difference in log of USDT

reserves. A test of Granger causality under model [J] finds that the first differences in the log of Ether reserves
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[I] [J]

DLRETH

L.DLRETH 0.451 0.476

L2.DLRETH -0.069

L3.DLRETH 0.027

L.DLRUSD -0.402 -0.419

L2.DLRUSD 0.105

L3.DLRUSD 0.115

DLRUSD

L.DLRETH 0.490∗ 0.516∗

L2.DLRETH -0.051

L3.DLRETH -0.022

L.DLRUSD -0.439 -0.457

L2.DLRUSD 0.086

L3.DLRUSD 0.164

aic -8775.818 -8787.288

bic -8707.179 -8757.860

N 995 997

Models ordered by AIC descending

DLRETH is first difference of log Ether reserves

DLUSDT is first difference of log USDT reserves

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 6: VAR model of Ether and USDT reserves

Granger causes changes in the first difference in the log of USDT reserves at the 5% statistical significance

level (p=0.038). Over this time period we reject the null that first differences in the log of USDT reserves

Granger causes changes in the first differences in the log of Ether at the same significance level (p=0.089). It

is hard to state definitely why this would be the case. However, we can make inferences because on Uniswap

every trade has a price impact. Ceteris paribus, arbitrage trades following off Uniswap price changes should

not have next period impacts. Only arbitrage trades following trading induced reserve changes should link

two time periods. Arguably arbitrage should lead to bidirectional Granger causality. As this is not the case,

arbitrageurs may prefer to buy Ether when it is cheap over selling Ether when it is expensive. The logic for

this is that, following a trading induced reserve imbalance, if the next trade impacts USDT more than Ether

- this is by definition a purchase of Ether. Such a trade results in a one quantum decline in Ether reserve

balance and 1 + x quantum proportionate rise in USDT reserve balance. The quantum is the temporarily

low Ether price in USDT, while the benchmark price is 1 + x+ y with y ≥ 0.
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6. Conclusion

This research provides empirical evidence regarding the effectiveness of reserve based asset exchanges. We

find that for a 999 hour period of Uniswap’s existence, including the majority of its reserve build, the ratio

of Ether and USDT reserves on the ETH-USDT pair is cointegrated with a third party ETHUSDT exchange

rate benchmark. For a constant product automated market maker, this cointegration is a necessary condition

of the exchange rate on platform approximating the exchange rate off platform. The success of Uniswap

is a rare example of a financial market operating without the classic features of bids and asks, market

makers or auctioneers. It is a clarion call to regulators, governments and financial market participants

that the innovation and decentralization promised by blockchain based systems is starting to gain traction.

This has major implications for financial trading, stability and regulation. An argument made by Lo and

Medda (2020) is that blockchain does not build strictly superior systems, but alternative systems that are

attractive along less common dimensions, e.g. decentralization and censorship resistance. The question now

becomes how should regulators and governments respond to a marketplace that does not need a registered

address and geographically fixed physical infrastructure? To date, rule makers have focused on regulating

the institutions of the emerging cryptoasset space (Blandin et al., 2019). This may no longer be possible.

Directions for future research include the potential to add an uncorrelated asset to investor portfolios;

the optimal fee to maximize LP wealth, and whether or not decentralized exchanges are more or less risky

than centralized exchanges.
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