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Abstract

The aim of this thesis was to investigate the membrane
properties of cone photoreceptors and ganglion cells of the
salamander retina and to determine their role in the processing of
the visual signal.

Experimental investigations were carried out on cells in the
intact retina and also in cells that had been isolated from the
retina by enzymatic dissociation.

Glutamate is thought to be the neurotransmitter released from
vertebrate photoreceptors. Glutamate gates channels in postsynaptic
bipolar and horizontal cells, but there have been no exhaustive
studies of the effects of glutamate on the photoreceptors
themselves. In patch-clamp recordings from both isolated cones and
cones in the intact salamander retina, glutamate was found to
activate a current carried largely by chloride ions, which is
localized to the synaptic terminal of the cone. This suggests that
glutamate released from a cone terminal may act on "autoreceptors"
on that terminal, modulating its own release. This may be important
as a mechanism for increasing the gain of cone phototransduction.

The membrane properties of ganglion cells determine how visual
information is coded for transmission to the brain. Ganglion cells
have previously been shown to exist as at least two types,
sustained and transient, in terms of the pattern of action
potentials produced in response to illumination. The origin of
transience in ganglion cells in unclear. Salamander ganglion cells
show sustained or transient responses to the injection of current
mimicking light-induced synaptic input. Using the whole-cell
recording method, the properties of both voltage-gated currents and
excitatory and inhibitory neurotransmitter-gated currents were
investigated in voltage-clamped salamander ganglion cells. On the
basis of these results, it is suggested that transience in the
response of ganglion cells may in part be due to the properties of

the voltage-gated membrane currents present in these cells.
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Chapter 1
Introduction

To understand the physiological basis of visual processing in
the vertebrate retina, it is important to characterize the voltage-
gated and neurotransmitter-gated currents in the membrane of
retinal cells.

The experiments presented in this thesis reveal evidence for a
novel glutamate-gated current in cone photoreceptors, and
characterize the properties of both voltage- and neurotransmitter-
gated currents present in ganglion cells of the tiger salamander
retina. With this knowledge, the way in which these currents
contribute to various aspects of visual processing may be assessed.

This introduction gives background information on the
structure of the vertebrate retina and the properties of the
different retinal cell types, with particular emphasis on
neurotransmitter pathways and the function of synaptic transmission
in the retina.

1.1 An overview of the structure of the vertebrate retina

1l.1.1 Cellular organization of the retina

The retina contains six major types of neurons;
photoreceptors, horizontal cells, bipolar cells, amacrine cells,
interplexiform cells and ganglion cells. The positions of these
cells in the retina is shown in Fig. 1.1A (reproduced from Dowling,
1987). In addition, the diagram shows the large radial glial cell
type, the MlUller cell, which is found in all vertebrate retinae
(Cajal, 1893), and which traverses the whole retina, extending fine
processes laterally between the retinal neurones.

All vertebrate retinae have a layered organization as shown in
Fig 1.1B, which is a photograph of a living slice of retina from
the tiger salamander. The retina has three layers of cell bodies,
the photoreceptor cell layer, the inner nuclear layer (containing
the cell bodies of bipolar, horizontal and amacrine cells), and the
ganglion cell layer. Synaptic connections made between the cell
layers are restricted to the outer plexiform layer (where
photoreceptors contact bipolar and horizontal cells) and the inner
plexiform layer (where bipolar and amacrine cells contact ganglion

cells). Exceptions to this cellular arrangement do occur, when
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Fig. 1.1 The structure of the vertebrate retina.

A The major types of cell found in the vertebrate retina (from
Dowling, 1987). The original drawing was based on observations of
cells in the mudpuppy retina that had been stained by the Golgi
method. The letters indicate: receptors, R; a horizontal cell, H;
bipolar cells, B; an amacrine cell, A; an interplexiform cell, I; a
ganglion cell, G; a Mlller cell, M. All of these cell types are
neuronal, except for the Miiller cell, which is the main type of
glial cell in the retina, extending processes all the way through
the retina from the spaces between the photoreceptors and pigment
cells (not shown) at the top of the diagram, to the vitreous humour
at the bottom. Milller cells also have processes along the whole
length of the cell which extend laterally between the neurons. The
lines at the top and bottom of the diagram represent the external
and internal limiting membranes respectively.

B The retinal slice preparation obtained by vertical slicing of the
flattened retina on a slide, and then rotating the pieces of retina
obtained, through 90° so that the photoreceptor longitudinal axes
were parallel to the slide. The photograph was taken with Hoffman
modulation contrast optics. The photoreceptor layer (PL) and
ganglion cell layer (GCL) are clearly visible in the outer and
inner retina respectively. The photoreceptors normally project into
the pigment epithelium, and the ganglion cell layer faces the
vitreous. Between these cell layers, the outer plexiform layer
(OPL) comprises the photoreceptor to bipolar and horizontal cell
synapses, the inner nuclear layer (INL) contains the bipolar,
horizontal and amacrine cell bodies, and the synaptic connections
between bipolar, amacrine and ganglion cells make up the inner
plexiform layer (IPL). Scale bar is GCym.
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cells become "displaced" with respect to their "normal" position.
For example, amacrine cells "displaced" to the ganglion cell layer

are a general feature of many retinae.

1.1.2 Identification of retinal neurones

A combination of morphological (discussed here) and
physiological studies (sections 1.2.3, 1.2.6) allows identification
of the major retinal cell types (reviewed by Werblin, 1973), the
properties of which are similar in the retinae of lower (amphibia
and fish) and higher vertebrates (rat, rabbit and cat).

Much early information about retinal cell morphology came from
visualization of Golgi-stained cells with light microscopy (Cajal,
1893). Later, details of the synaptic connections in the retina
were revealed by electron microscopy of Golgi-stained cells or
specifically labelled cells (see below). Both electrical synapses
(e.g. between photoreceptors and between horizontal cells,
Witkovsky et al., 1974) and chemical synapses (Lasansky, 1973) are
found in the retina.

Physiological studies, particularly intracellular recording
with microelectrodes and more recently patch-clamp recording
(Hamill et al., 1981), suggest that there are a few basic response
types for each class of retinal neuron. Cell types may be
identified during recording by introducing dyes (such as Niagara
Sky Blue or Procion yellow) into the cell, by injection, or by
allowing them to diffuse into the cell from the recording
electrode.

Camplementary to the use of dyes, pharmacological studies
which localize putative neurotransmitters or enzymes for their
synthesis can distinguish certain retinal cell types from others.
This may involve immunohistochemical techniques which use
antibodies specific for particular substrates, conjugated with
fluorescent markers, allowing direct visualization of the label
associated with a particular cell type.

In Chapters 4 to 6 of this thesis, a staining technique which
specifically labels ganglion cells has been used successfully for
their identification in the intact retina and in an isolated cell
preparation (see Methods, sections 2.5.1 and 2.5.2, Chapter 2).
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1.2 Information transfer in the retina

1l.2.1 Transmission of information in the retina occurs through

vertical and lateral pathways which are subserved by different

neurotransmitters.

Information is carried in two directions during visual
processing, vertically and laterally through the retina with
respect to the diagrams in Fig 1l.1. Vertically, electrical signals
generated by light in photoreceptors (see below, section 1.2.2) are
transmitted via chemical synapses to bipolar cells, and from
bipolar cells to ganglion cells. Ganglion cell axons form the optic
nerve which projects to the oPtn’ ¢ tectum. Vertical
transmission of information is thought to be mediated predominantly
by excitatory amino acid neurotransmitters (see sections 1.3.2 and
1.3.8).

Laterally, information transfer is mediated mainly by
inhibitory amino acid neurotransmitters from horizontal cells to
cone photoreceptors and bipolar cells in the outer retina (see
section 1.3.6) and from amacrine cells to bipolar and ganglion
cells in the inner retina (see section 1.3.10). Interplexiform
cells extend processes into both inner and outer plexiform layers,.
and seem to provide feedback from the inner retina (mainly from
amacrine cells: Dowling and Ehinger, 1975) to bipolar and
horizontal cells in the outer retina.

1.2.2 Phototransduction: the first stage of information processing

in the retina

Information processing in the retina begins with the
conversion of light into a voltage response (phototransduction) in
photoreceptors. In the absence of light, an inward "dark" current
(carried by sodium and calcium ions) flows through the
photoreceptor outer segment membrane and keeps the cell
depolarized.

Light causes photoreceptors to hyperpolarize. This voltage
response results from absorption of light by a visual pigment,
activating an enzyme cascade, which eventually leads to a drop in
the concentration of cyclic GMP (cGMP) in the cytoplasm of the
photoreceptor outer segment. The cGMP directly gates "dark" current
channels, holding them open in the dark (Fesenko et al., 1985), so
that when the levels of cGMP fall in the light the channels close,
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