UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Probing galaxy evolution through interstellar dust and gas properties

Lamperti, Isabella; (2021) Probing galaxy evolution through interstellar dust and gas properties. Doctoral thesis (Ph.D), UCL (University College London).

[thumbnail of PhD_Thesis_Isabella_Lamperti.pdf] Text
PhD_Thesis_Isabella_Lamperti.pdf
Access restricted to UCL open access staff until 1 March 2022.

Download (22MB)

Abstract

Molecular gas is an important ingredient in galaxy evolution, since it is the fuel of star-formation. This Thesis explores different methods of measuring molecular gas masses in galaxies, and their applicability as a function of global galaxy properties, redshift, and presence of an active galactic nucleus (AGN). While CO(1-0) is the most commonly used emission line tracer of molecular gas for nearby galaxies, higher transitions such as CO(3-2) are more readily accessible for high-redshift galaxies. In order to connect studies at low and high redshift, we investigate which parameters are responsible for variations of the r31 = CO(3-2)/CO(1-0) luminosity line ratio in the local Universe and if the presence of an AGN influences the observed line ratio. Dust emission is often used as a molecular gas tracer in the literature, but to improve its accuracy, we need to know how dust properties change within the galaxy population and to quantify the uncertainties in measuring the dust masses. We study how the dust properties (in particular dust temperature and emissivity index) vary in a sample of ~500 nearby (z < 0.05) galaxies from the JINGLE and HRS surveys and derived scaling relations between the dust properties and other general galaxy properties. Moreover, we explore how the dust properties and scaling relations evolve with redshift using data from the A3COSMOS catalogue. Dust emission in the far-infrared (FIR) is also used to trace star-formation, in particular in the case of AGN, where other star-formation tracers may be more heavily contaminated by the AGN emission. We combine FIR continuum observations with spatially resolved observations of the ionized gas in z ~ 2 AGN and we find no evidence of star-formation suppression due to AGN outflows.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Probing galaxy evolution through interstellar dust and gas properties
Event: UCL (University College London)
Language: English
Additional information: Copyright © The Author 2021. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy
URI: https://discovery.ucl.ac.uk/id/eprint/10120996
Downloads since deposit
3Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item