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ABSTRACT

Foetal rat brain aggregate cultures resemble the developing brain providing a
unique system to investigate myelinogenesis, demyelination and repair. Supplementing
aggregate cultures with macrophages accelerated cellular organisation and increased
myelin deposition over time without affecting activity of the oligodendrocyte marker
2’,3’-cyclic nucleotide 3’-phosphodiesterase (CNP).

Pro-inflammatory cytokines and anti-myelin oligodendrocyte glycoprotein (MOG)
antibodies induced demyelination in myelinated aggregate cultures while oligodendrocytes
were spared. Demyelination was associated with increased levels of a myelin basic
protein (MBP) degradation peptide indicating proteolysis of myelin. MBP continued to
accumulate following removal of demyelinating agents while peptide levels declined.

Myelinogenesis in the aggregates was associated with patterns of growth factor
mRNA expression comparable with those of the developing brain. The mRNA levels
of platelet-derived growth factor-A (PDGF-A), a potent mitogen for oligodendrocyte
progenitors, rose rapidly while fibroblast growth factor-2 (FGF-2) and ciliary
neurotrophic factor (CNTF) mRNA increased gradually as MBP accumulated. The
peak of transforming growth factor-B1 (TGF-B1) and neurotrophin-3 (NT-3) mRNA
expression coincided with the appearance of MBP mRNA, while that of insulin-like
growth factor-I (IGF-I) was more closely associated with the detection of MBP protein.
Enhanced myelination in macrophage-enriched cultures was associated with reduced
expression of CNTF and increased levels of TGF-B1 and FGF-2 mRNA both of which
promote oligodehdrocyte development in vitro.

Demyelination induced a distinct pattern of expression of many myelination-
associated growth factors. A rapid rise in CNTF mRNA in standard cultures closely
followed by increases in FGF-2 and IGF-I was in contrast to the delayed induction of

PDGF-A mRNA. In macrophage-enriched aggregates the rise in IGF-I mRNA
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following demyelination preceded that in standard cultures suggesting that macrophage-
enrichment instigates a faster IGF-I response during remyelination.

Since macrophage-rich demyelinating multiple sclerosis lesions also display
signs of remyelination, macrophages, as a source of growth factors, have the potential

to promote myelination and repair.
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CHAPTER1
INTRODUCTION
1.1 The central nervous system

The central nervous system (CNS), consisting of the brain and spinal cord,
communicates with other body systems to continually receive, elaborate and interpret
information enabling it to determine many aspects of behaviour and participate in a vast
complexity of direct and indirect control actions on the rest of the body. The complex and
diverse functions of the mature CNS, including perception, motor co-ordination, motivation
and memory, depend on the precise interactions of many thousands of neural cells. Hence, the
individual nerve cell, the neuron, is a key unit of the CNS which operates by generating and
propagating electrical signals down the length of an axon. Axons are covered by a high
resistance, complex multi-layered membranous sheath called myelin which, in the CNS, is

formed by glial cells called oligodendrocytes.

1.2 Oligodendrocyte development and myelination
1.2.1_The oligodendrocyte lineage

Oligodendrocytes are derived from pluripotent stem cell precursors located in the
subventricular zones of the developing CNS. Their development and the subsequent process
of myelination occurs relatively late during development after the formation of most neurons
and astrocytes (Norton, 1981). The earliest precursors of rat spinal cord oligodendrocytes are
evident from embryonic day 12 (E12) to E14 in the ventral portion of the neural tube (Warf et
al., 1991; Yu et al., 1994). Insights into the stages of oligodendrocyte differentiation have
been gained from both tissue culture and in vivo studies and have revealed that these cells
undergo a process of extensive maturation through a number of stages defined by the

sequential expression of specific markers and responses to distinct growth factors (Figure 1.1).

1
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The first cell identified in the oligodendrocyte lineage is the pre-progenitor giving rise to the
bipotential oligodendrocyte-type 2 astrocyte progenitor cell (O-2A). This cell, named after its
two types of progeny, has been shown to differentiate in vitro into oligodendrocytes, unless
modulated by growth factors to differentiate into A2BS5 positive type 2 astrocytes (Raff ef al.,
1983) although differentiation into astrocytes in vivo has not been consistently observed
(Franklin et al., 1995; Sawamura ef al., 1995). These progenitors are small, proliferative,
bipolar cells that are highly motile in vitro and characterised by the expression of the
ganglioside GD; (Curtis et al., 1988; LeVine & Goldman, 1988; Hardy & Reynolds, 1991;
Levine et al., 1993), the tetrasiagangliosides recognised by A2B5 monoclonal antibody (Raff
et al, 1983), the NG2 chondroitin sulphate proteoglycan (LeVine & Goldman, 1988;
Nishiyama et al., 1996; Levine et al., 1993), the cytoplasmic intermediate filament vimentin
(Raff et al,, 1984) and the platelet-derived growth factor-a receptor subunit (PDGF-Ra)
(Pringle et al., 1992). These precursor cells leave the subventricular zones and continue to
proliferate as they migrate towards their targets (Reynolds & Wilkin, 1988; Hardy &
Reynolds, 1991; Levison et al., 1993). From O-2A progenitor cells, oligodendrocytes continue
to mature by beginning to extend numerous processes and although the oligodendrocyte is
still bipotential and continues to proliferate at this stage it ceases to be mobile (Warrington
et al., 1993). Furthermore, this pro-oligodendrocyte acquires cell surface antigens that are
recognised by the monoclonal antibody O4 which reacts with an, as yet, unidentified protein
named pro-oligodendrocyte antigen on immature proliferating cells, sulphatide in mature
cells and several other lipids (Bansal ef al., 1989; Bansal et al., 1992) with a corresponding
loss of vimentin filament staining (Warrington & Pfeiffer, 1992; Hardy & Reynolds, 1993).
As differentiation proceeds oligodendrocytes extend an elaborate network of branched
processes and begin to express galactocerebroside (GC) which indicates terminal

oligodendrocyte differentiation with the combined loss of proliferative and migratory
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potential (Raff et al., 1978). During the final stages of maturation there is a sequential
expression of myelin specific proteins with DM-20, the first oligodendrocyte specific
protein detected, followed by the expression of 2’,3’-cyclic nucleotide 3’-phosphodiesterase
(CNP), then myelin basic protein (MBP), proteolipid protein (PLP), myelin-associated
glycoprotein (MAG) and myelin oligodendrocyte glycoprotein (MOG). Ultrastructurally
oligodendrocyte differentiation is associated with a decrease in cell size and an increase in
organelle density. The growth, differentiation and survival of oligodendrocytes and their
progeny, as well as the synthesis of myelin, is extensively influenced by multiple growth
factors including platelet-derived growth factor (PDGF), fibroblast growth factor-2 (FGF-2),
insulin-like growth factor-1 (IGF-I) and 2, neurotrophin-3 (NT-3), ciliary neurotrophic factor
(CNTF), glial growth factor (GGF), retinoic acid, interleukin-6 (IL-6) and leukaemia inhibitory
factor (LIF). Growth factor induced proliferation may be mediated by protein kinases with
protein kinase C implicated in the signal transduction pathways of oligodendrocytes (Bhat &
Zhang, 1996).

It has been suggested that rather than follow this pattern of differentiation, some cells
persist as adult oligodendrocyte progenitors (Wren et al., 1992). Evidence now increasingly
favours the view that once cells have differentiated they are not able to dedifferentiate (Lee et
al., 2000). Hence, the normal adult CNS contains cells that are positive for the proteoglycan
NG2 and express the PDGF-a receptor on their surface and are therefore, probable adult
oligodendrocyte progenitor cells (Levine, 1994). Adult O-2A progenitor cells (O-2A ***
progenitry have been described in both animals (ffrench Constant & Raff, 1986; Wolswijk &
Noble, 1989; Reynolds & Hardy, 1997), and humans (Raine ef al., 1981; Scolding ef al., 1995;
Scolding et al, 1999). While these cells have the potential to differentiate into
oligodendrocytes they are different from their perinatal counterparts in that they are unipolar

and vimentin negative (Wolswijk & Noble, 1989). Furthermore, these progenitors are
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considerably less mobile than their perinatal equivalents and have a longer cell cycle time

(Wolswijk et al., 1990; Scolding et al., 1995).

1.3 Myelin

Myelin accounts for approximately 70% of the dry weight of the CNS with a single
oligodendrocyte able to myelinate between 30 and 50 internodal segments of neighbouring
axons (Butt & Ransom, 1989). During myelination an oligodendrocyte is able to produce up

to 3 times its weight of myelin membrane per day (McLaurin & Yong, 1995).

1.3.1 Myelination

Myelin is laid down and maintained around axons in the CNS by oligodendrocytes
and accounts for 50% of the mammalian CNS white matter, about 35% of the adult human
brain and 20-25% of the adult rat brain (Norton & Cammer, 1984). Myelination is a tightly
controlled process that begins in the peripheral nervous system (PNS) and follows in the
CNS in a caudal to rostral sequence. It is initiated in the CNS when the axons to be
myelinated reach a diameter of approximately 1 micron. In the human spinal cord the
myelin sheath protein, MBP, can be detected in the myelin forming cell, the
oligodendrocyte, at nine to ten weeks gestation indicating the onset of myelination
(Weidenheim et al., 1993). Hence, MBP can first be detected in the cell body of
oligodendrocytes prior to the appearance of myelin and is only later detectable in cellular
processes when the intensity of oligodendrocyte MBP staining is diminished, after the onset of
myelination (Sternberger, 1978). The human spinal cord is myelinated between mid to late
term and three months post natal, while brain myelin is laid down in the months and years

following birth (Folch-Pi, 1955). Myelin is first seen in the rat at about P9 and while the



maximal rate of myelin deposition occurs at P20, myelination continues for at least another 6
months (Norton & Cammer, 1984).

Oligodendrocytes extend multiple processes that locate axons prior to myelination.
Processes are extended which, after tentative contact, anchor to the axon and extend
longitudinally before surrounding the target axon (Ludwin & Szuchet, 1993; Hardy &
Friedrich, 1996). Further extension of each edge of the oligodendrocyte process results in one
edge, the future inner tongue, passing beneath the other. Subsequent development of the
myelin sheath is believed to involve this oligodendrocyte inner tongue elongating and rotating
around the axon to form multiple concentric layers or lamellae (Raine, 1984b). As myelin is
formed it compacts whereby the cytoplasm is extruded so that the two cytoplasmic (inner)
surfaces of the membrane become opposed and fuse to form a single major dense line (dark
line) while the two extracellular surfaces of adjacent layers of the membrane intimately abut to
form the intraperiod line although these two surfaces do not fuse (Raine, 1984b). CNS myelin
displays a periodicity of 11.5nm with each lipid bilayer approximately 4-5nm thick.
Ultimately only the inner and outer tongues do not compact so that intracellularly myelin
contains very little cytoplasm, although larger amounts are visible at the node of Ranvier.

Oligodendrocyte maturation and myelination is influenced by a combination of growth
factors as well as cell surface and extracellular matrix molecules. Multiple proteoglycan
proteins including chondroitin sulphate proteoglycans are particularly abundant in CNS
white matter suggesting a role in myelination (Ruoslahti, 1996). The extracellular matrix
proteins vitronectin, laminin, thrombospondin and tenascin-C are expressed in the
developing CNS at a time when oligodendrocyte precursor cells are migrating (McLoon et
al., 1988; O’Shea et al., 1990; Sheppard et al., 1991; Bartsch et al.,, 1992). Accordingly,
thrombospondin-1, fibronectin and the laminin family member merosin promote

oligodendrocyte precursor cell migration in vitro (Frost et al., 1996; Scott-Drew & ffrench-
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Constant, 1997). Furthermore, laminin-2 enhances myelin membrane process formation
and extension in vitro (Buttery & ffrench-Constant, 1999). However, unlike the
thrombospondins, neither fibronectin or laminin are widely expressed in white matter tracts
during postnatal development (O'Shea et al., 1990; Scott-Drew & ffrench-Constant, 1997).
Tenascin-C inhibits oligodendrocyte precursor cell adhesion and migration thereby
defining the pattern of myelination (Bartsch et al., 1992; Frost et al., 1996; Kiernan et al.,
1996). In contrast, despite a number of behavioural abnormalities in tenascin-C null mice,
the distribution of oligodendrocyte precursor cells and myelination appeared unaffected
(Kiernan et al., 1999). Tenascin-R expression is restricted to the nervous system where it
is produced by type-2 astrocytes, a small subset of neurons and oligodendrocytes during
CNS myelination (Pesheva et al., 1989; Wintergerst et al., 1993). Its expression is subject
to regulation by cytokines and growth factors with, for example, PDGF able to up-regulate
tenascin-R expression on O-2A progenitor cells (Jung et al., 1993). In the developing CNS
white matter tracts, tenascin-R mRNA and protein are present both within the pathways of
oligodendrocyte precursor cell migration and during myelination (Pesheva et al., 1989).
Accordingly, tenascin-R interacts with cell surface gangliosides and inhibits GD3+
oligodendrocyte precursor cell adhesion and migration (Probstmeier et al, 1999).
However, as oligodendrocytes mature tenascin-R promotes the stable adhesion, process
formation and terminal differentiation of O4+ oligodendrocytes by a sulphatide mediated
mechanism in vitro (Pesheva et al., 1997). This implies that oligodendrocytes may respond
differently to the same extracellular signal as their molecular repertoire changes with
ongoing maturation. Furthermore, growth factors may influence the expression of
tenascin-R and other extracellular matrix molecules thereby affecting the myelinating

capacity of these cells.



1.3.2 Myelin composition

As with other biological membranes myelin is composed of lipids and proteins,
however, it is unusual in that the lipids comprise more than 70% of its dry weight (Rumsby,
1978) compared to 40% in the oligodendrocyte. Since a high lipid concentration effectively
excludes water and any substances soluble in water such as sodium and potassium ions the
high lipid content contributes to myelin’s function as an insulator. As observed in other
membranes these lipids are asymmetrically distributed across the bilayer. Hence, the highly
compacted myelin lipid bilayer consists of 70 to 85% lipid, including 40-45% phospholipid,
25-30% glycolipid and approximately 25% cholesterol (Table 1.1). The phospholipids are
made up of diminishing concentrations of ethanolamine phosphatides, phosphatidyl choline,
sphingomyelin, phosphatidyl serine and three inositol phosphatides (Cuzner & Norton, 1996).
The glycolipids, all of which are specific to oligodendrocytes and myelin, include galactosyl
ceramide (galactocerebroside, GC), sulphatide, galactosyl diglyceride, digalactosyl diglyceride
and fatty acid esters of cerebroside with GC and sulphatide accounting for 24% and 3.5-7%
respectively of the total lipids while the remainder account for 1% (Cuzner & Norton, 1996).
Finally, gangliosides comprise a minor component of the myelin sheath accounting for 0.1 to
0.3% of the lipid content of myelin.

Although less abundant than lipids proteins, which account for 25-30% of the myelin
sheath, contribute to stabilising the membrane. In fact, myelin contains many fewer proteins
than other surface membranes with, for example, proteins that facilitate the passage of ions
through the lipid bilayer absent therefore contributing to the ionic impermeability of the myelin
sheath. The two main polypeptides present which comprise 80% of the total myelin protein
are PLP and MBP. PLP is a 30kDa lipophilic integral membrane polypeptide, and together
with its alternatively spliced isoform DM-20 contributes 50% of the total protein. MBP is the

major extrinsic membrane polypeptide (30-40%) which is hydrophilic and exposed primarily



Percentage of total lipid

Lipids Myelin Liver Erythrocyte Endoplasmic
Reticulum

Cholesterol 28 17 23 6

Glycolipids 29 7 3 trace

Galactocerebroside 24

Sulphatide 4

Others 1

Phospholipids 43

Phosphatidyl ethanolamine 15 7 18 17

Phosphatidyl choline 10 24 17 40

Sphingomyelin 9 19 18 5

Phosphatidyl serine 9 4 7 5

Others 0.1-0.3 22 13 27

Tablel.1. Comparison of the lipid compeositions of myelin membrane with other cellular
plasma membranes.

on the cytoplasmic membrane surface. It exists in multiple isoforms encoded by a single gene
that is alternatively spliced. In humans there appear to be 4 main isoforms, a 21.5kDa protein,
encoded by all 7 exons, a 20kDa protein where exon 5 is missing, the major 18.5kDa protein,
where exon 2 is deleted, and a 17.2kDa protein, where exon 2 and 5 are removed (Kambholz et
al., 1986; Roth et al., 1987). Rat CNS myelin comprises of at least 4 major isoforms including
21.5 and 18.5kDa proteins in addition to a 17kDa protein where exon 6 is deleted and a 14kDa
protein where both exon 2 and 6 are spliced (Campagnoni et al., 1987). MBP and PLP
through their adhesive properties are both implicated in myelin compaction (Boison ef al.,
1995; Staugaitis et al., 1996) while DM-20 may be involved in myelinogenesis (Ludwin,
1997). Shiverer mouse mutants that have no myelin basic protein consequently display

abnormal CNS myelination and are severely myelin deficient.



CNP, an enzyme of 46 and 50kDa isoforms, is primarily present in oligodendrocytes
and their processes as opposed to compacted myelin. These two CNP isoforms occur in
approximately equal amounts and account for about 4% of the total myelin protein. CNP is a
guanosine triphosphate binding protein and may be important in oligodendrocyte
differentiation (Ludwin, 1997). Glycoproteins such as myelin-associated glycoprotein (MAG),
myelin oligodendrocyte glycoprotein (MOG), 105kDa oligodendrocyte myelin glycoprotein
(OMgp) and myelin oligodendrocyte specific protein (MOSP) are also present at very low
levels (Cuzner & Norton, 1996) while there are probably others that have yet to be
characterised. MAG comprises approximately 1% of the total myelin protein existing as two
isoforms, L-MAG and S-MAG, both of about 100kDa. In rodents the ratio of these isoforms
varies with development with the larger L-MAG isoform predominating during myelination
while S-MAG is the major isoform in the adult (Cuzner & Norton, 1996). A role for MAG has
been suggested in axon-myelin contact and spacing. The 26kDa MOG which appears late in
development and only constitutes 0.05% of the total protein may have a role in myelin
maintenance (Ludwin, 1997). The 48kDa MOSP present on the oligodendrocyte surface may
have a role in membrane-cytoskeletal interactions (Dyer et al, 1991; Dyer, 1993).
Additionally, tubulin, which is not specific to myelin, is also present.

Myelin components do turnover, although usually at slower rates than other brain
membranes. Most of the lipids in myelin have half lives of several weeks although this may be
longer with cholesterol, cerebroside and sulphatide having half lives of a few months (Morell
et al., 1994). Myelin proteins have a fast phase half life of 2 to 3 weeks in addition to a slow

phase (Morell et al., 1994).
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1.3.3_Molecular organisation of myelin

Myelin is considered. to be a typical example of a fluid mosaic membrane with an
extracellular surface rich in carbohydrate residues from glycoproteins and glycolipids.
Cerebroside and other glycolipids are located on the extracellular surface of the lipid bilayer,
hence on the intraperiod line (Braun, 1984). Similarly, cholesterol appears to be distributed in
the outer half of the membrane bilayer (Braun, 1984). This half of the bilayer contains nearly
all of the cholesterol and glycolipids while phospholipids including phosphatidyl ethanolamine
(plasmalogen) and the phosphatidyl inositols predominate on the cytoplasmic half of the
membrane (Kirschner & Ganser, 1982).

Of the myelin proteins, it seems that PLP loops the bilayer three or four times leaving
large polypeptide chains exposed on the extracellular surface that may stabilise the intraperiod
line (Figure 1.2). MBP is extrinsic and restricted to the cytoplasmic domain (Braun, 1984)
where it appears to complex to itself possibly acting to compact and stabilise the apposed
cytoplasmic surfaces at the major dense line (Cuzner & Norton, 1996). MAG is situated in the
periaxonal membrane with the carbohydrates of one transmembrane domain exposed on the
external surface of the membrane bilayer just adjacent to the axon (Cuzner & Norton, 1996).
Like CNP, it is believed to be absent from the majority of compact myelin although it has been
suggested that it could reside on the external surface of the intraperiod region in compact

myelin (Sato et al., 1982).

1.3.4 Myelin function

Myelin ensheaths and insulates axons while also facilitating rapid saltatory conduction
of action potentials. The high resistance, low capacitance myelin sheath prevents the local
current generated by depolarisation from passing to the axolemma. This promotes saltatory

conduction of action potentials from node to node enhancing the rate of impulse transmission.
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In non-myelinated axons the speed of excitation is proportional to the axon diameter. Hence,
in myelinated axons, where the signal is propagated 100 times faster, the diameter of the fibre
can be significantly reduced while maintaining the same performance. Thus, in addition to
increasing the speed of impulse transmission, myelin enables many more smaller axons to be
present thereby contributing to the extremely compact organisation of the CNS. Moreover,
signal conduction is more energy efficient in myelinated axons as the flow of sodium and
potassium ions necessary to depolarise the small area of exposed axonal membrane at the node
is modest in comparison to non-myelinated fibres where the whole axon membrane must

depolarise and subsequently repolarise.

1.4 Multiple sclerosis

Multiple sclerosis (MS) is a chronic, inflammatory and progressively demyelinating
disease of the mature CNS. The disease primarily affects young adults with onset most
common among people between twenty and thirty years of age with a female to male
preponderance of 2:1 (MacDonald et al., 2000). It is estimated that 85 000 people in the
United Kingdom are affected with around 2400 new cases diagnosed each year.

The course of MS varies considerably between people. However, in approximately
66-85% of all cases the disease initially follows a relapsing-remitting course (Weinshenker
et al., 1989a; Weinshenker et al., 1989b) with symptoms experienced for periods of days to
months during recurrent relapses and interspersed with periods of remission where a partial
or complete recovery is evident. Relapsing-remitting MS accounts for approximately 45%
of all diagnosed cases which, in most instances (30-40%), gradually changes over time into
a secondary progressive phase resulting in irreversible disability (Weinshenker et al,
1989a; Weinshenker et al., 1989b). In up to 20% of cases the course of MS may be

essentially benign with no exacerbations experienced after initial diagnosis while
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approximately 10% of individuals experience a primary progressive course where the
condition develops with no alleviation.

Demyelinating lesions develop irregularly over several decades and clinical features,
which occur as a result of neurological dysfunction, are followed by complete or partial
recovery. These neurological deficits are highly variable among individuals and are closely
associated with the pathology of the disease. A range of primary symptoms arising initially as
a consequence of impaired nervous conduction due to inflammation and myelin loss include,
weakness, pain and fatigue, optic neuritis, bladder and bowel instability, spasticity, gait
disorders and sexual dysfunction. Persistent deficits arise as a consequence of progressive
demyelination with permanent interruptions to axonal conduction while in more extreme

circumstances chronic disabilities may be associated with axonal degeneration.

1.4.1. Cause of multiple sclerosis

The cause of MS remains unclear although evidence suggests that both genetic and
environmental factors may be important. Among environmental factors that may influence
disease onset infectious agents have been implicated, particularly viruses. It has been
suggested that molecular mimicry, similarity between a microbial antigen and another
tissue, could trigger the immune system to damage the CNS. Hence, exposure outside the
nervous system to a virus, which has a molecular similarity to a component of the myelin
sheath, could activate T cells to cross the blood-brain barrier (BBB). Therefore, in
genetically pre-disposed people, myelin antigens may be mis-identified as virus thereby
resulting in an autoimmune tissue attack. Furthermore some key components of myelin are
expressed outside of the CNS with, for example, MBP expressed in the thymus during
development (Pribyl et al., 1993; Zelenika et al., 1993) and key myelin lipids found in

other plasma membranes.
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A genetic pre-disposition to MS has been suggested (Dyment et al., 1997) and
associated with certain major histocompatibility complex (MHC) genes. However, no
single gene has been identified suggesting that multiple genes interact to increase
susceptibility (Sawcer et al., 1996; Haines et al., 1996; Ebers et al., 1996). Furthermore,
the concordance rate of MS in monozygotic twins is only 30% implying a multifactorial

aetiology (Noseworthy, 1999).

1.4.2 Mechanisms and mediators of demyelination in multiple sclerosis

The healthy CNS is generally considered to be an immunologically privileged site
(Barker & Billingham, 1977) shielded from the immune system by the selectively permeable
BBB which restricts the passage of large molecules. CNS injury which involves damage to the
BBB results in the recruitment of inflammatory cells from the circulation thereby destroying
the previously immunologically privileged status. The events that initiate the inflammatory
process leading to BBB damage and eventual myelin destruction in MS remain unclear. In
normal physiological circumstances the BBB is not entirely impermeable to lymphocytes
and small numbers of these cells are detectable in the brain and cerebrospinal fluid (CSF).
It is possible that in inflammatory demyelinating diseases T cells are activated by an
unknown peptide, either in the periphery or the CNS, which along with peripheral blood
macrophages cross the BBB into the CNS where microglia and astrocytes are activated.
Whatever the trigger, BBB disruption would escalate the immune response by allowing
further inflammatory mediators access to the brain. Oligodendrocytes and myelin are
subsequently damaged by toxic substances produced by lymphocytes and activated
macrophages including pro-inflammatory cytokines, antibody, complement components,
proteolytic and lipolytic enzymes, reactive oxygen intermediates and nitric oxide before the

damaged myelin is phagocytosed by macrophages and microglia (Cuzner & Norton, 1996).
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1.4.2.1 T-lymphocytes

It is thought that CD4+ Thl T lymphocytes are pivotal in disease progression and
extension of the inflammatory lesion by secreting cytotoxic cytokines such as interferon-
gamma (IFN-y) and enhancing macrophage activity. The release of local cytokines and
chemotactic factors may facilitate the recruitment and activation of macrophages, microglia
and additional lymphocytes. IFN—y, which up-regulates MHC class II molecules and activates
macrophages, is thought to be produced exclusively by T lymphocytes and has been shown to
play a major role in MS exacerbation (Panitch ef al., 1987) while it is also associated with peak
expression of experimental allergic encephalomyelitis (EAE) (Issazadeh et al., 1995a;
Issazadeh et al, 1995b). Activated CD4+ T cells and microglia may also lyse
oligodendrocytes by binding via the Fas ligand to the Fas receptor expressed on a variety of
glial cells in the CNS including oligodendrocytes thereby activating the Fas signalling pathway
(Hahn et al., 1995; Yagita et al., 1995).

Oligodendrocytes in vivo do not express MHC class II molecules and therefore, CD4+
T cells are unlikely to be directly responsible for their death. Cytotoxic CD8+ autoreactive T
cells may predominate in some MS lesions where they may bind to MHC class I antigens on
oligodendrocytes causing cell injury or contributing to demyelination by producing
inflammatory cytokines (Tsuchida et al., 1994). Similarly, yd T cells, also present in MS
lesions, possess potent cytotoxic activity in vitro and are capable of damaging
oligodendrocytes (Freedman et al., 1991). These cells are known to respond to heat shock
proteins which may be increased in MS (van Noort et al., 1995) and furthermore, depletion of
this subset of T cells reduced EAE severity (Rajan et al., 1996). However, although it seems
that a T cell response is crucial for disease induction, T cell mediated inflammation is often

only associated with minimal demyelination.
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1.4.2.2 Macrophages in demyelination

The main functions of macrophages in the body include phagocytosis, processing and
presentation of foreign antigens to T lymphocytes via an MHC Class II molecule and secretion
of cytokines and a variety of growth factors in response to inflammation, infection and injury.
Macrophages and microglia have been implicated in the destruction and phagocytosis of
myelin in inflammatory demyelinating diseases. Microglia are considered to be the main
cell type found in early active MS plaques while haematogenous monocytes and
macrophages predominate in later more advanced lesions where BBB breakdown is
apparent (Li et al.,, 1996). Evidence suggests that macrophages may be involved in the
initial attack as myelin disruption in very early MS lesions was detectable in close
proximity to macrophages prior to any signs of phagocytosis (Li et al., 1993). Furthermore,
ultrastructural studies in MS and EAE have determined that macrophages attach to and
penetrate between myelin lamellae and are subsequently responsible for stripping myelin
from the axon prior to receptor-mediated phagocytosis (Lampert, 1965; Prineas & Connell,
1978). Macrophages containing myelin debris within coated pits and vesicles have been
identified in active demyelinating MS lesions suggesting that these cells are responsible for
receptor-mediated phagocytosis of myelin (Prineas & Connell, 1978; Epstein ef al., 1983).
Accordingly, macrophages and microglia have been shown to possess a wide variety of
receptors which are implicated in myelin uptake in vitro including the Fc, lectin, scavenger
and complement type 3 (CR3) receptors (Mosley & Cuzner, 1996). Furthermore,
macrophage depletion in EAE protects against the manifestation of clinical symptoms
(Brosnan et al., 1981; Huitinga et al., 1990) implying that recruitment and activation of
macrophages are central to the disease process.

The functional properties of macrophages and microglia are dependent on their state

of activation which is subject to regulation by cytokines with, for example, the key
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macrophage activator IFN-y able to up-regulate MHC class II expression as well as the Fc,
CR3 and scavenger receptors reflecting an enhanced phagocytic capacity. Similarly,
tumour necrosis factor-o. (TNF-ot) and interleukin-1a (IL-1ct) up-regulate the expression of
the Fc receptor (Loughlin ef al., 1992). Activated macrophages and microglia, also secrete
a variety of potentially cytotoxic soluble substances thought to further contribute to
demyelination including pro-inflammatory cytokines, complement components, proteolytic
and lipolytic enzymes and reactive oxygen intermediates which are volatile and reactive

oxidants capable of causing potent tissue damage (Hartung et al., 1992).

1.4.2.3 Cytokine mediated demyelination

Cytokines produced by activated T lymphocytes and macrophages as well as
resident CNS cells such as astrocytes, microglia and neurons have been implicated in the
initiation and maintenance of inflammatory demyelination. A multitude of cytokines
associated with clinical disease activity have been detected in human MS tissue. In situ
hybridisation studies have shown that mRNA encoding the cytokines IL-6, TNF-a and
IFN-y predominate in inflammatory perivascular lesions while, in more hypercellular areas
with out myelin loss, increased levels of T cell derived IL-2 and IFN-y mRNA were
apparent (Woodroofe & Cuzner, 1993). Perivascular macrophages would be the major
source of IL-6 and TNFa although T cells are also capable of producing these cytokines.
Accordingly, the presence of IL-1, IL-6 and TNF—a in macrophages, microglia and astrocytes
has been demonstrated (Hofman et al., 1989; Selmaj et al., 1991a).

IFN-y enhances T cell cytotoxicity, B cell proliferation and antibody production as
well as activating macrophages and up-regulating MHC II expression, Fc receptor and

complement receptor expression (Hartung et al., 1992). In situ hybridisation and
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immunohistochemical studies have identified this cytokine in both chronic and active MS
lesions (Woodroofe & Cuzner, 1993). The major cytokines expressed by activated
macrophages are TNF-a and IL-1 and both of these are elevated in MS lesions as well as in
macrophages located in the peripheral blood and CSF (Hofman et al., 1986; Hofman et al.,
1989; Merrill et al., 1989). Additionally, both TNF—a and IL-1a increase the expression of
the Fc receptor on macrophages and microglia (Loughlin et al., 1992). TNF-o. mediates
immune injury and demyelination and has been shown to be toxic for oligodendrocytes in vitro
and to induce myelin swelling and loss (Selmaj & Raine, 1988; Selmaj et al, 1992).
Accordingly, oligodendrocytes express TNF-a receptors 1 and 2 (Wilt e al., 1995) while
intra-peritoneal injection of anti-TNF-o. antibody has been shown to inhibit the clinical
signs of EAE (Selmaj et al., 1991b). IL-1 may be involved in activating astrocytes as well
as inducing the production of other cytotoxic cytokines such as TNF-a and IL-6 (Lee et al.,
1995). IL-1 is expressed by macrophages and microglia in MS lesions (Brosnan et al.,
1995; Cannella & Raine, 1995) while it has also been found to exacerbate EAE (Jacobs et
al., 1991). However, not all cytokines are pro-inflammatory, in fact, IFN-a and f are
thought to contribute to down-regulating the inflammatory process as are cytokines
characteristic of a Th2 response such as IL-4 and IL-10 (Miller & Karpus, 1994; Olsson, 1995)

and may subsequently be important in the recovery process.

1.4.2.4 Antibody-mediated demyelination

Demyelinating activity has also been attributed to antibodies particularly as they are
found in the sera of MS patients (Walsh & Tourtellotte, 1983; Raine, 1984a). Any antigen
present on the myelin sheath, particularly on the external surface, is a potential target for a

demyelinating auto-antibody response however, the particular antigen responsible for
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demyelination in MS has not been identified. Polyclonal antibodies directed against the
myelin membrane proteins PLP, MBP and MAG did not produce demyelination in CNS
cultures (Seil & Agrawal, 1980; Seil ef al., 1981), however, it has been suggested that the CNS
specific external minor membrane protein MOG is a good target for antibody induced
demyelination due to it’s location and specificity (Lassmann & Linington, 1987).
Accordingly, MOG specific mouse monoclonal antibodies have been found to induce
demyelination in rats with EAE (Lassmann et al., 1988; Linington et al., 1988) and antibodies
directed against MOG have shown demyelinating activity in aggregating foetal rat brain
cultures (Kerlero de Rosbo ef al., 1990).

Antibodies may opsonise myelin enabling receptor-mediated phagocytosis via a
number of cell surface receptors located on macrophages and microglia including Fc receptors,
complement receptors and scavenger receptors (Mosley & Cuzner, 1996). Immunoglobulin
deposition is associated with macrophages and disintegrating myelin sheaths at the edge of MS
plaques indicating a humoral contribution to lesion formation (Prineas & Graham, 1981). In
EAE immunoglobulin has been identified between clathrin-coated pits and associated myelin
debris suggesting that immunoglobulins may opsonise myelin and subsequently act as a
ligand facilitating Fc receptor-mediated phagocytosis of myelin (Raine & Scheinberg, 1988).
Furthermore, that complement deposition is associated with these areas (Storch et al., 1998)
suggests that antibodies may further contribute to demyelination and injury in MS by
activating the antibody-dependent classical complement cascade. The presence of activated
complement products and terminal membrane attack complexes (MAC) have been observed
in plaques and CSF of patients with MS (Compston ef al., 1989). The monoclonal anti-MOG
antibody, Z12, fixes complement in vitro and has been identified as a potent demyelinator
(Piddlesden et al., 1993) while complement appears to be activated in areas of myelin

breakdown (Compston et al., 1989).
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1.5 Pathology of multiple sclerosis lesion

The predominant pathological features that characterise MS are widespread
inflammatory cell infiltration and multifocal patches of demyelination in the CNS white
matter which are known as plaques. These plaques occur at irregular intervals over several
decades and are largely responsible for the disruption in saltatory nerve conduction leading
to neurological deficits. Generally, MS lesions can be divided into 3 categories active,

chronic active and chronic inactive (Lassmann et al., 1998).

1.5.1 The active lesion

Magnetic resonance imaging (MRI) data has shown that one of the earliest
detectable pathological signs in new lesion development is an increase in BBB
permeability which is associated with inflammation (McDonald, 1994). Therefore, in this
early active stage of classical MS plaque development immune cells can penetrate the BBB
and cause inflammatory oedema as well as characteristic perivascular cuffs which are
found predominantly around postcapillary venules, particularly in the periventricular white
matter, optic nerve and tract, corpus callosum and brain stem (Brosnan & Raine, 1996).
Perivascular infiltrates in these small early active lesions are thought to initially comprise
all major lymphocyte classes, particularly T lymphocytes and to a lesser extent B
lymphocytes, but macrophages become a major component of these cuffs as the lesion
progresses and myelin breakdown products become abundant (Woodroofe et al., 1986;
Esiri & Reading, 1987). The extent of perivascular lymphocytic infiltration has been
shown to correlate with disease activity (Adams, 1975; Guseo & Jellinger, 1975). Active
lesions have abundant and evenly distributed MHC class II positive cells which are mainly
macrophages (Bo et al., 1994) although may also be associated with both astrocytes and

endothelial cells within active plaques. Hence, there is a hypercellular interface between
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normal and degenerating myelin in active MS plaques due primarily to infiltrating immune
cells, macrophages and proliferating glia. In very early MS lesions macrophages
containing MBP or oil red O staining are evident but there are no obvious signs of myelin
loss (Li et al., 1993). These lesions may only be 2 to 3 weeks old as myelin proteins are
rapidly degraded while in active plaques that are 2 to 3 months old lipid laden macrophages
are evident. Histochemical studies have shown that many myelin components are lost
during demyelination, including MBP, MAG, sphingolipids, cerebroside and cholesterol
(Hallpike et al., 1970) while an increase in cholesterol esters is evident.

Early active lesions are therefore small and hypercellular, they undergo a variable
degree of oligodendrocyte loss and up to 40% of plaques display signs of attempted
remyelination, particularly in the early phase of the disease (Prineas et al., 1993a). In some
instances there is also profound gliosis and even neuronal and axonal loss. As the plaque
develops CD8+ lymphocytes are found located towards the edge of the lesion while CD4+
lymphocytes are concentrated within the core. B lymphocytes and antibody can also be
detected which is consistent with the finding of oligoclonal banding in the CSF of MS

individuals.

1.5.2. The chronic lesion

Chronic active plaques are characterised by MHC class II positive lipid containing
macrophages at the lesion edge although these cells may also contain myelin proteins
indicative of more recent myelin phagocytosis (Bo ef al., 1994). Macrophages in the centre
of these chronic active plaques may contain lipids but not myelin protein degradation
products.

Older more chronic lesions are hypocellular and become immunologically silent

with no apparent lymphocytic infiltration or myelin filled macrophages. Particularly,
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