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Abstract

Data-efficient learning algorithms are essential in many practical applications
where data collection is expensive, e.g., in robotics due to the wear and tear. To
address this problem, meta-learning algorithms use prior experience about tasks
to learn new, related tasks efficiently. Typically, a set of training tasks is assumed
given or randomly chosen. However, this setting does not take into account the
sequential nature that naturally arises when training a model from scratch in real-
life: how do we collect a set of training tasks in a data-efficient manner? In this
work, we introduce task selection based on prior experience into a meta-learning
algorithm by conceptualizing the learner and the active meta-learning setting
using a probabilistic latent variable model. We provide empirical evidence that our
approach improves data-efficiency when compared to strong baselines on simulated
robotic experiments.

1 Introduction

Learning models of complicated phenomena from scratch, using models with generic inductive biases,
typically requires large datasets. Meta-learning addresses this problem by taking advantage of prior
experience in a domain to learn new tasks efficiently. Meta-models capture global properties of the
domain and use them as learned inductive biases for subsequent tasks. Standard in such algorithms is
to randomly choose training tasks, e.g. by uniformly sampling parameterizations on the fly [1, 2].

However, exhaustively exploring the task domain is impractical in many real-world applications
and uniform sampling is often sub-optimal [3]. For example, consider learning a meta-model of the
dynamics of a robotic arm for a range of parameterizations, e.g., varying lengths and link weights.
Due to costs, such as its wear and tear, there is a limited budget for experiments. Uniform sampling
of the parameters/configurations, or even space-filling designs, may lead to uninformative tasks being
explored due to the non-linear relationship between the parameters and the dynamics. In general, the
relevant task parameters might not even be observed, rendering a direct search infeasible.

In this work, we adopt the view that the aim of a meta-learning algorithm is not only to learn a
meta-model that generalizes quickly to new tasks, but to use its experience to inform which task is
learned next. A similar view is found in Automatic curriculum learning (ACL) where, in general,
a task selector is learned based on past data by optimizing it with respect to some performance
and/or exploration metric [4]. For instance, the work in [5] uses automatic domain randomization
to algorithmically generate task distributions of increasing difficulty, enabling generalization from
simulation to real-life robots. Similarly motivated work is found in [6], referred to as unsupervised

∗Equal contribution, correspondence to jean.kaddour.20@ucl.ac.uk

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

jean.kaddour.20@ucl.ac.uk


Figure 1: PAML infers latent embeddings of observed task datasets (Gaussian-shaped distributions,
gray arrows), providing meaningful information about their relations and simultaneously learns a
mapping to the task descriptor space (black arrows). It then ranks candidate tasks (diamonds) in the
latent space based on their utility (the higher, the darker) and selects the one with highest utility.

meta-learning, and extended to ACL in [7]. Here, unsupervised pre-training is used to improve
downstream performance on related RL tasks. In comparison to ACL, we note that our key objective
is data-ef�cient exploration of a task space from scratch.

More closely related to our goal is active domain randomization in [3], which compares policy rollouts
on potential reinforcement learning (RL) tasks compared to a reference environment, dedicating more
time to tasks that cause the agent dif�culties. PAML learns a representation of the space of tasks and
makes comparisons directly in that space. This way our approach does not require a) rollouts on new
potential tasks, b) handpicked reference tasks and c) the task parameters to be observed directly.

In contrast, we consider an unsupervised multi-modal setting, where we learn latent representations
of task domains fromtask descriptorsin addition to observations from individual tasks. A task
descriptor might comprise (partially) observed task parameterizations, which is common in system
con�gurations in robotics, molecular descriptors in drug design [8] or observation times in epidemiol-
ogy [9]. In other cases, task descriptors might only indirectly contain information about the tasks, e.g.,
a grasping robot that can choose tasks based on images of objects but learns to grasp each object/task
through tactile sensors. Importantly, the task descriptors resolve to a new task when selected.

Our main contribution is a probabilistic active meta-learning (PAML) algorithm that improves data-
ef�ciency by selecting which tasks to learn next based on prior experience. The key idea is to use
probabilistic latent task embeddings, illustrated in Figure 1, in a multi-modal approach to learn and
quantify how tasks relate to each other. We then present an intuitive way to score potential tasks to
learn next in latent space. Crucially, since the task embeddings are learned, ranking can be performed
in a relatively low-dimensional space based on potentially complex high-dimensional data (e.g.,
images). Since the task-descriptors are made explicit in the model, additional interactions are not
required to evaluate new tasks. PAML works well on a variety of challenging tasks and reduces the
overall number of tasks required to explore and cover the task domain.

2 Probabilistic Meta-Learning

This section gives an overview of meta-learning models, focusing on probabilistic variants. We
consider the supervised setting, but the exposition is largely applicable to other settings with the
appropriate adjustments in the equations.

Meta-learning models deal with multiple task-speci�c datasets, i.e., tasksTi , i = 1 ; : : : ; N , give
rise to observationsDTi = f (x i

j ; y i
j )g of input-output pairs indexed byj = 1 ; : : : ; M i . The tasks

are assumed to be generated from an unknown task distributionTi � p(T ) and the data from an
unknown conditional distributionDTi � p(Y i jX i ; Ti ), where we have collected data into matrices
X i ; Y i . The joint distribution over taskTi and dataDTi is then

p(Y i ; Ti jX
i ) = p(Y i jTi ; X i )p(Ti ): (1)

Generally speaking, we do not observeTi . Therefore, we model the task speci�cation by means of a
local (task-speci�c) latent variable, which is made distinct from global model parameters� , which
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(a) Hierarchical Bayesian Meta-
Learning.

(b) PAML.

Figure 2: Graphical models in the context of a supervised learning problem with inputsx and
targetsy . Global parameters� (blue) are shared by all tasks, whereas local parametersh i (orange)
are speci�c to each task. (a) Hierarchical Bayesian Meta-Learning, e.g., [10, 11]. (b) PAML with
additional task descriptors i that are conditioned on task-speci�c latent variablesh i .

are shared among all tasks. Speci�cally, we follow Sæmundsson et al.[10] and learn a continuous
latent representationh i 2 RQ of taskTi . That is, we formulate the probabilistic model

p(Y; H; � jX) =
NY

i =1

p(h i )
M iY

j =1

p(y i
j jx i

j ; h i ; � )p
�
�

�
; (2)

whereH collects the latent task variables. Global parameters� represent properties of the observa-
tions that are shared by all tasks, whereas each local task variableh i models task-speci�c variation.
For example, a family of sine wavesy(t) = A sin(!t + � ) parameterized by amplitudeA, angular
frequency! and phase� share the form ofy(t) (global) and have task speci�c parametersA; !; � (lo-
cal). Figure 2(a) shows the graphical model for the probabilistic model de�ned by(2). The likelihood
p(y i

j jx i
j ; h i ; � ) factorizes given both the global parameters� and the local task variablesh i .

Learning the model in(2) is intractable in most cases of interest, but is amenable to scalable
approximate inference using stochastic variational inference. Alternatively, since the global model
parameters� are estimated from all tasks, we can reasonably learn a point estimate using either
maximum likelihood or maximum a posteriori estimation. To make this explicit in the exposition, we
collapse the distribution over� and denote the model byp� (Y; HjX) = p� (YjH; X)p(H), where we
additionally assume a �xed prior over the task variablesp(H). To approximate the posterior over task
variables, we specify a mean-�eld variational posterior (with parameters� )

p� (HjY; X) � q� (H) =
NY

i =1

q� (h i ); (3)

which factorizes across tasks. The form ofq� (�) is chosen, such that learning is made tractable.
A typical choice is a Gaussian distribution. More expressive densities are possible using recent
techniques developed around generative modeling and variational inference; see, e.g., [12, 13].

For learning the model parameters� and variational parameters� , the intractability of the model
evidencep� (YjX) is �nessed by maximizing a lower bound on the evidence (ELBO)

logp� (YjX) � Eq� (H)

h
log

p� (Y; HjX)
q� (H)

i
= Eq� (H)

h
logp� (YjH; X) + log

p(H)
q� (H)

i
=: L ML (� ; � );

(4)

where Jensen's inequality is used to move the logarithm inside the expectation. When the likelihood
of the model factorizes across data (such as in(2)), the bound in(4) consists of an expectation over a
nested sum of likelihood and regularization terms, i.e.,

L ML (� ; � ) =
NX

i =1

M iX

j =1

Eq� (h i )

h
logp� (y i

j jx i
j ; h i )

i
�

NX

i =1

KL
�
q� (h i )jjp(h i ))

�
: (5)

This objective can be evaluated using a Monte-Carlo estimate using samplesh i � q� (h i ). The
second term in(5) is the negative Kullback-Leibler divergence between the approximate posterior
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Algorithm 1 PAML
1: input: Task descriptors (distributionp( ) or

�xed set f  i g
N
i =1 ), active meta-learnerf p� ; q� g,

utility function u(�) andN init
2: Sample initial	 init and task datasetsD = D init
3: while meta-trainingdo
4: Train active meta-learning modelp� and

infer task embeddingsq� (H) (see section 3.1)
5: Select candidate � by ranking in latent space

 � = argmaxh �
u(h � ) (see section 3.2)

6: Observe new taskD � � p(y jx ;  � )
7: Add new task to datasetD = D [ D  �

8: end while

Figure 3: The Probabilistic Active Meta-Learning (PAML) Algorithm. PAML takes in a distribution
or set of task descriptors from an underlying task domainp(T ), an active meta-learning model and a
utility function. The task-descriptors , and observations(x ; y ), are used to learn latent embeddings
h that modelT . PAML uses the latent embedding to do data-ef�cient active learning in task space.

q� and the priorp over latent task variablesh i . When bothq� andp are Gaussian, this term can be
computed analytically. Since(5) consists of a sum over tasksi and dataj , we use stochastic gradient
descent with mini-batches of data over both tasks and data within tasks to scale to large datasets.

At test time, we are faced with an unseen taskT� , and our aim is to use the meta-model to make
predictionsY � given test inputsX � . A common scenario is a few-shot learning setting, where,
given only a few data-points, we can perform predictions by approximate inference over the latent
variableq� (h � ), keeping the model parameters �xed. Since the objective in(5) factorizes, we can
ef�ciently optimize the variational parameters� of q� (h � ) given new observations only. Then, we
make predictions using

p� (Y � jX � ) = Eq� (h � )

h
p� (Y � jX � ; h � )

i
: (6)

Without any observations from the new task, we can make zero-shot predictions by replacing the
variational posteriorq� (h � ) in (6) with the priorp(h � ).

3 Probabilistic Active Meta-Learning

We are interested in actively exploring a given task domain in a setting where we have task-descriptive
observations (task-descriptors), which we can use to select which task to learn next. In general,
task-descriptors are any observations that enables discriminative inference about different tasks. For
example, they might be fully or partially observed task parameterizations (e.g., weights of robot
links), high-dimensional descriptors of tasks (e.g., image data of different objects for grasping), or
simply a few observations from the task itself. Task-descriptors of taskTi are denoted by i .

For active meta-learning, we require the algorithm to make either a discrete selection from a set
of task-descriptors or to generate a valid continuous parameterization. In other words, the task-
descriptors can be seen as actions available to the meta-model which transition it between tasks. From
this perspective, the choice of task-descriptor (action-space) is either discrete or continuous and the
task selection process can be seen as a restricted Markov decision process.

Figure 3 illustrates how PAML works. Given some initial experienceD init , PAML trains the active
meta-learning model from(7) (see Section 3.1) in steps 1–4. If the problem speci�es a discrete set
of candidates � , we infer their corresponding latent variablesh � and rank them, see Section 3.2.
Otherwise, we generate new candidates, e.g., by discretizing in latent space or sampling from the prior.
These latent candidates are then used to generate new tasks � , see(7). Finally, PAML observes the
new task, adds it to the training set and repeats until a stopping criterion has been met (steps 6–8).
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3.1 Extending the Meta-Learning Model

Our approach is based on the intuition that the latent embedding learned by the meta-learning model
from Section 2 will, in some instances of interest, better represent differences between tasks than
the task-descriptive observations on their own. Firstly, the latent embedding models the full source
of variation due to task differences rather than using only partial information, as might be the case
when there are hidden sources of task variation. Secondly, the embedding is both low dimensional
and is required to explain variation in observations through the likelihoodp� (y i

j jx i
j ; h i ). If the

task-descriptors contain redundant information, the model is implicitly encouraged to discard this in
the latent embedding. To extend the meta-learning model in(2) to the active setting, we propose to
learn the relationship betweenh i and task-descriptors i . Speci�cally, we propose the model

p� (Y; H; 	 jX) =
NY

i =1

p� ( i jh i )p(h i )
M iY

j =1

p� (y i
j jx i

j ; h i ); (7)

where	 denotes a matrix of task-descriptive observations i .

To train this model, we maximize a lower bound on the log-marginal likelihood

logp� (Y; 	 jX) = log Eq� (H)

h
p� (YjH; X)p� (	 jH)

p(H)
q� (H)

i
(8)

� Eq� (H)
�

logp� (YjH; X) + log p� (	 jH) + log
p(H)
q� (H)

�
(9)

= L ML (� ; � ) +
NX

i =1

Eq� (h i )
�

logp� ( i jh i )
�

=: L P AML (� ; � ); (10)

where we used Jensen's inequality and a factorizing variational posteriorq� (H) as in (3).

By measuring the utility of a potential new task in latent space rather than through the task-descriptor
 , the algorithm can take advantage oflearnedtask similarities/differences that represents thefull
task con�gurationT . The likelihood terms in equation(10), together with the prior onH, means
that two tasks that are similar are encouraged to be closer in latent space. Additionally learning the
relationship between latent variablesh and provides a way of generating novel task-descriptors.

3.2 Ranking Candidates in Latent Space

A general way of quantifying the utility of a new task, in the context of ef�cient learning, is by
considering the amount of information associated with observing a particular task [4]. To rank
candidates in latent space, we de�ne a mixture model using the approximate training task distribution
q� (H). We then de�ne the utility of a candidateh � as the self-information/surprisal [14] associated
with h � , under this distribution:

u(h � ) := � log
NX

i =1

q� i
(h � ) + log N: (11)

When the approximate posteriorq� i
(h � ) is an exponential family distribution, such as a Gaussian,

equation(11) is easy to evaluate. We assign the same weight to each component because we assume
the same importance for each observed task.

4 Experiments

In our experiments, we assess whether PAML speeds up learning task domains by learning a meta-
model for the dynamics of simulated robotic systems. We test its performance on varying types of
task-descriptors. Speci�cally, we generate tasks within domains by varying con�guration parameters
of the simulator, such as the masses and lengths of parts of the system. We then perform experiments
where the learning algorithm observes: (i) fully observed task parameters, (ii) partially observed task
parameters, (iii) noisy task parameters and (iv) high-dimensional image descriptors.

We compare PAML to uniform sampling (UNI), used in recent meta-learning work [1, 15] and
equivalent to domain randomization [16], Latin hypercube sampling (LHS) of the parameterization
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Figure 4: NLL/RMSE for 100 test tasks for the cart-pole, pendubot and cart-double-pole with
observed task parameters as task-descriptors. Across all environments, PAML performs signi�cantly
better than the baselines UNI and LHS.

interval, and an oracle, i.e., the meta-learning model trained on the test tasks, representing an upper
bound on the predictive performance given a �xed model. Fixed, evenly spaced grids of test task
parameters are chosen to reasonably cover the task domain. As performance measures, we use the
negative log-likelihood (NLL) as well as the root mean squared error (RMSE) on the test tasks. The
NLL considers the full posterior predictive distribution at a test input, whereas the RMSE takes
only the predictive mean into account. In all plots, error bars denote� 1 standard errors, across 10
randomly initialized trials.

We consider three robotic systems in the experiments, which are introduced below. The resulting
dynamics models could also be used in model-based RL: the faster the model performs well in terms
of predicting the task dynamics, the faster the planning algorithm will learn a good policy [17].

Cart-pole The cart-pole system consists of a cart that moves horizontally on a track with a freely
swinging pendulum attached to it. The state of this non-linear system comprises the position and
velocity of the cart as well as the angle and angular velocity of the pendulum. The control signals
u 2 [� 25; 25] N act as a horizontal force on the cart.

Pendubot The pendubot system is an underactuated two-link robotic arm. The inner link exerts
a torqueu 2 [� 10; 10] Nm, but the outer joint cannot. The uncontrolled system is chaotic, so that
modeling the dynamics is challenging. The system has four continuous state variables that consist of
two joint angles and their corresponding joint velocities.

Cart-double-pole The cart-double-pole consists of a cart running on a horizontal track with a
freely swinging double-pendulum attached to it. As in the cart-pole system, a horizontal force
u 2 [� 25; 25] N can be applied to the cart. The state of the system is the position and velocity of the
cart as well as the angles and angular velocities of both attached pendulums.

Observations in these tasks consist of state-space observations,x ; _x , i.e., position, velocity and
control signalsu . We start with four initial tasks and then sequentially add 15 more tasks.To learn a
dynamics model, we de�ne the �nite-difference outputsy t = x t +1 � x t as the regression targets.
We use control signals that alternate back and forth from one end of the range to the other to generate
trajectories. This policy resulted in better coverage of the state-space, compared to a random walk.

The meta-model learns a global functiony i
j = f � (x i

j ; u i
j ; h i ) with local task-speci�c embeddingsh i ;

see Section 2 for details. We choose to model the global function with a Gaussian process (GP) [18]
as they are the gold standard for probabilistic regression. Speci�cally we use the sparse variational GP
formulation from [19] and the meta-learning model developed in Section 3. The hyper-parameters of
the GP play the role of the global parameters� and are shared across all tasks. A detailed description
of (hyper-)parameters for the experiments is given in the Appendix.
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(a) Partially observed task parameters. (b) Noisy task parameters.

Figure 5: NLL/RMSE for 100 test tasks for the cart-pole system with different task descriptors: (a)
Partially observed task parameters; (b) Noisy task parameters. In all experiments, PAML performs
signi�cantly better than the baselines UNI and LHS.

4.1 Observed Task Parameters

In these experiments, the observed task descriptors match the task parameters exactly. However, the
non-linear relationship between the parameters and the dynamics means that ef�cient exploration of
the con�guration space itself will, in general, not map directly to ef�cient exploration in terms of
predictive performance. Here we test whether or not the meta-model learns latent embeddings that
are useful for active learning of the task domain.

We specify task parameterization as follows: The cart-pole tasks differ by varying masses of the
attached pendulum and the cart,pm 2 [0:5; 5:0] kg andpl 2 [0:5; 2:0] m, respectively. Pendubot
and cart-double-pole tasks have lengths of both pendulums in the ranges,pl 1 ; pl 2 2 [0:6; 3:0] m and
pl 1 ; pl 2 2 [0:5; 3:0] m, respectively.

Figure 4 shows the results of all methods in all three environments. Comparing PAML to the
baselines UNI & LHS, we see that PAML performs signi�cantly better than UNI and LHS in terms
of performance on the test tasks. For all three systems, the NLL and RMSE see a steep initial drop
for PAML, whereas the performance of the baselines drops more slowly and exhibits higher variance
across experimental trials. This is because PAML consistently uses prior information to select the
next task whereas the baselines are more affected by chance. We note that the gap in performance
obtained by our approach over the baselines remains signi�cant across the task horizon, which is
particularly noticeable in the RMSE plots (bottom row) of Figure 4.

4.2 Partially Observed Task Parameters

Partial observability is a typical challenge when applying learning algorithms to real-world systems
[20]. In these experiments, we simulate the cart-pole system where the task descriptors are chosen
as the length of the pendulum, but we vary both its length and mass. In real life, one could imagine
this scenario with space robots exposed to changing, unknown gravitational forces. The length is
varied betweenpl 2 [0:4; 3:0] m and the (unobserved) pendulum's masspm � U [0:4; 3:0] kg. I.e.,
each time a new task-descriptor is selected (i.e., length), the mass is sampled. In contrast, the oracle
observes all possible massespm within the test task grid. Results are shown in Figure 5(a). PAML
achieves lower prediction errors in fewer trials than the baselines. The error after one added task
of our methods is approximately matched by the baselines after about �ve added tasks. It selects
similar lengths multiple times, which has the effect of exploring different values of the stochastic
mass variable. For example, in one trial, the �rst eight selected lengths of PAML lie in the range
[0:41; 0:58] m. Intuitively, the reason for this is that the latent embedding represents the full task
parameterization, and smaller values of the length make the effects of varying the mass more apparent.
We interpret these results as a demonstration of how PAML is able to exploit information about
unobserved task con�guration parameters inferred by the meta-model.

4.3 Noisy Task Parameters

In this experiment, we explore the effects of adding a super�uous dimension to the task-descriptors.
In particular, we simulate the cart-pole system where we add one dimension� 2 [0:5; 5:0] to the
observations that does not affect the dynamics. To select tasks ef�ciently, PAML needs to learn to
effectively ignore the super�uous dimension. Results in Figure 6 illustrate exactly this. Here we show
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Figure 6: Latent embeddings from the cart-pole system with noisy task parmaeters. Black dots denote
training tasks, and colored dots points chosen by PAML (with two standard deviation error bars). The
numbers above each point denote the order they were picked.

Figure 7: Pixel task-descriptors for the cart-pole system with different lengths. PAML can infer latent
embeddings from pixel observations and exploit these for faster learning of a task domain.

the latent embeddings corresponding to the initial training tasks (black) and the selection made by
PAML. We observe that it consistently picks a value for� around0:5 while exploring informative
values forpm andpl . Figure 5(b) shows how predictive performance for PAML is better than the
baselines in terms of both NLL and RMSE.

4.4 High-Dimensional (Pixel) Task Descriptors

In this experiment, PAML does not have access to the task parameters (e.g., length/mass) but observes
indirect pixel task descriptors of a cart-pole system. We let PAML observe a single image of 100
tasks in their initial state (upright pole), where the pole length is varied betweenpl 2 [0:5; 4:5].
PAML selects the next task by choosing an image from this candidate set. The model then learns
the dynamics of the corresponding task, from state observations (x ; _x ). We use a Variational Auto-
Encoder [21, 22] to learn the latent variables from images (see Appendix for more details). Figure 7
shows example descriptors. The baseline selects images uniformly at random and both methods
start with one randomly chosen training task. Figure 8 shows that PAML consistently selects more
informative cart-pole images and approaches the oracle performance signi�cantly faster than UNI.

Figure 8: NLL/RMSE for 25 test tasks of the cart-pole system using pixel task-descriptors. PAML
outperforms UNI by exploiting a learned latent representation of the task domain.
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