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Abstract

Calculations are presented for electronic excitation of H; by electron impact.
For the initial calculations, ab initio R-matrix scattering techniques are used to
represent scattering from the ground to five low lying electronic states of H,. Each
target state is represented by a full configuration interaction treatment within a
basis of Slater type orbitals, optimised to give accurate vertical excitation ener-
gies. All total symmetries including 2®, are included in the scattering calculation.
Eigenphase sums and integral cross sections are presented for this model together
with assignments of the resonance structures produced.

This model is then extended to include the lowest seven electronic states of
H, at the equilibrium geometry. Eigenphase sums and resonance feature analysis
are presented for excitation from the ground to the six excited states included in
the calculation. Integral cross sections are also presented for these processes and
extensive comparison made with experimental data.

Differential cross sections calculated using the seven state model are presented
for both resonant and non-resonant energy regions and comparison made with
previous experimental and theoretical results.

A method of adapting scattering calculations to calculate bound states of
molecules within the R-matrix method is presented. This method is based on
atomic method of Seaton (1985). The results of test calculations on the bound
states of CH and HeH, at fixed internuclear separation, are presented together
with results for the vibrational bound states of HeH. The development of this
method made it possible to calculate transition dipoles for excitation processes.
Results for the transitions dipoles of Hj, as a function of internuclear separation,

are presented and comparison made with available theoretical data.
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Chapter 1

Introduction

1.1 General Introduction

In the last twenty years there has been a great interest in the area of electron-
molecule collisions. These processes are not only of fundamental importance in
the areas of physics and chemistry, where they are used in the study of fusion
plasmas and radiation physics, but are also of importance in areas such as as-
tronomy were a detailed knowledge of collision processes is necessary in order to
understand interstellar matter and the earth’s ionosphere. Recently the introduc-
tion of increased computing power and facilities has made it possible to develop
new methods for solving the complex theory of molecule scattering.

Collisions between electrons and molecules are clearly more varied than between
electrons and atoms. As well as electronic excitation, radiative recombination and
ionisation, electron-molecule collisions can also give rise to rotational and vibra-
tional excitation, dissociation, dissociative attachment and dissociative ionisation.
For a summary of all the possible collision processes see Burke and Shimamura
(1990). The non-spherical nature of the molecule makes the long range collision

processes more complex than for the atomic case by introducing effects such as
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multipole interactions between states of the same orbital angular momentum. The
possibility of exciting nuclear degrees of freedom introduces important resonance
effects which are not found in electron-atom collisions. Because of the increased
complexity of the collision problem it became necessary to modify the methods
used previously for studying electron-atom collisions and to introduce new ones.
A brief discussion of some of the more useful methods developed to study molecule

scattering and to calculate the bound states of a molecular system is given below.

1.2 Scattering Methods

Several methods have been developed to study low energy electron collisions with
molecules. Some of these methods have used the laboratory frame as their frame
of reference (Takayanagi and G'eltrnan 1965), but these methods have so far only
proved suitable for light, diatomic molecules due to the complex nature of the
representation. Most of the methods used recently to produce successful results
have used the molecular frame of reference with the internuclear distance assumed
to be fixed. Relaxation of the fixed nuclei approximation and the effects of nuclear
motion will be discussed later.

One of the techniques used to solve the fixed nuclei approximation is the sin-
gle centre expansion technique. This method treats the target orbitals and the
scattered electron as an expansion about the centre of mass of the molecule. The
main problem associated with this method is that a large number of terms in the
expansion are needed for convergence. For certain target molecules, including Hj,
the static potential is straightforward to expand as a single centre expansion, but
this is not true for all diatomic molecules. The method is, however, widely used in
the study of polyatomic molecular targets. The representation of the exchange po-

tential as a single centre expansion is far more complex, however, various methods
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have been used to overcome these difficulties (Burke and Sinfailam 1970, Morrison
1979, McNaughten et al 1990).

Within the single centre expansion method, an iterative method was used to
treat exchange by Collins, Robb and Morrison (1978) in the study of electron-
H, scattering. These calculations produced good results for energies up to 1 eV.
Morrison and co-workers went on to develop a method of treating exchange using
a model exchange potential. These model exchange potentials are local potentials
which imitate the exchange terms in the scattering equations. Morrison and Collins
(1981) have made a comparison of two different model exchange potentials for a
number of diatomic molecules. They conclude that a free electron gas type model
potential treatment compares well with exact static exchange calculations. More
recently Buckman et al (1991) used a method which treats exchange as separable,
but non-local, to study vibration excitation of H;. Very good agreement was
obtained between these results and their experimental work for energies below 5
eV.

The single centre expansion method has also been used in combination with
other methods such as the Linear Algebraic method and the Kohn Variational
method.

The Linear Algebraic method was adapted by Collins and Schneider (1981)
from similar techniques used to solve nuclear collision and electron-atom problems.
By using Green'’s functions and reducing integrals to quadratures, it represents the
electron-molecule system by a set of linear algebraic equations which are solved
by an iteration-variation method. This method is well suited to vector super-
computers and is useful for strong non-local potentials, though it shows no real
advantage for local, multipolar potentials. This method is therefore most useful
when the electron is close to the target molecule and suggests the division of space

into two regions, an inner region where this method is appropriate and an outer
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region where an alternative method would be more suitable. See for example the
R-matrix method described below. The major disadvantage of the Linear Alge-
braic method is that the polarisation of the target molecule is treated as a separate
potential and therefore the risk of over-polarisation can be large. This method was
used to study electron- H, scattering (Schneider and Collins 1985), along with two
other methods in a coordinated study which will be described below.

The Kohn variational method for electron-molecule collisions was developed by
Collins and Robb (1980) from techniques used previously for nuclear collision and
electron-atom problems. The method relies on having a good trial wavefunction
for the system. It has been shown from the study of several diatomic molecules,
including H; (Collins and Robb 1980), that the method is reasonably efficient and
accurate for producing K-matrices, from which cross sections are calculated, and
eigenphases over a wide range of energies. The method is susceptible to spurious
singularities in the solution, however, Miller and Jansen op de Haar (1987) have
produced a complex Kohn variational method which avoids these singularities.
The Kohn variational method has also been employed by Armour and co-workers
to study positron-molecule scattering. Results have been produced for positron-
H; scattering (Armour and Baker 1987) and positron-N, scattering (Armour et
al 1991) and the method is currently being extended to study other diatomic
molecules.

The L? method for studying molecular scattering was developed from the use
of bound state techniques and computer codes. The wavefunction of the system is
expanded as a set of L? discrete basis functions which are square integrable. This
method produces eigenphases of the system at discrete energies determined by the
particular basis set used. The method assumes that only weakly coupled, low !
values make significant contributions to the integral cross section and it is not

possible to produce continuous values of eigenphases with a single basis represen-
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tation. The method has been applied to electron-H; and electron-N; scattering
(McCurdy et al 1976). The results agree well with previous theoretical studies
which use the l-spoiling approximation. This method has also been incorporated
into the R-matrix, and various T-matrix methods, where it is used to represent
polarisation effects sufficiently accurately to enable the study of resonances.

The Schwinger variational method was developed for studying molecule scat-
tering by Takatsuka and McKoy (1981, 1984). It produces the T-matrix of the
system. The main advantage of this method over the Kohn variational method
is that the trial function does not have to have the correct asymptotic form as
long as it is a good approximation to the exact wavefunction in the region of
the effectiveness of the potential. The single centre expansion is frequently used
in this method and better convergence for long range potentials is achieved by
an iterative procedure. The Schwinger multichannel variational method has been
used to study electron scattering from H, by Lima et al (1985,1988), Gibson et
al (1984,1987), and more recently by Huo and Weatherford (1991). As with the
Linear Algebraic treatment of this system, the major weakness of this method is
the representation of the correlation and polarisation effects.

Another method which has been used to study electron-molecule collisions
by calculating the T-matrix is the distorted wave approximation developed by
Rescigno et al (1974). In this approximation both the incident and the scattered
electronic wavefunctions are represented by distorted waves. The effective distort-
ing potential is obtained by averaging over the internal degrees of freedom of the
target molecule. As the collision energy decreases the distortion will increase until
this method is no longer appropriate, however, it has also been extended to the
study of low energy collision processes. The major disadvantage of this method
is that, although correlation effects can be represented by a distorted wave rep-

resentation, polarisation effects cannot. This method has been used to study the
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electron- H; system by Fliflet and McKoy (1980) and Lee et al (1982, 1990) and the
results produced were in good agreement with results obtained using a Schwinger
variational method neglecting polarisation effects.

The R-matrix method, along with the Schwinger variational method, is the
method that would seem to be the most useful for further study of diatomic and
polyatomic collision processes. The R-matrix was originally used by Wigner (1946
a, b) and Wigner and Eisenbud (1947) for the study of nuclear collisions and later
adapted for use in electron-atom collisions by Burke et al (1971). It has been
used in the field of atomic collisions for the study of various processes including
scattering, photoionisation, atomic polarisabilities, spectral line shifts, free-free
transitions and photoabsorption, reviews of which are found in Burke and Robb
(1975) and Burke (1982).

The R-matrix method was developed for use in the study of electron-molecule
collisions by Schneider (1975) and Burke et al (1977) and it is this treatment that
is of interest here. The molecular R-matrix method has been used previously to
study integral and momentum transfer cross sections for electron scattering from
various diatomic molecules, reviews of which are given by Buckley et al (1984)
and Burke and Noble (1986). The method has also been extended to the study
of positron-molecule collisions by Tennyson (1986), Tennyson and Morgan (1987)
and Danby and Tennyson (1990).

The main feature of the R-matrix method is that it divides space into an
internal and an external region separated by a sphere of radius a, centred on
the centre of mass of the target molecule. The sphere is chosen to just enclose the
target charge distribution. This is very similar to the frame transformation method
used by Chang and Fano (1972). In the internal region the potential is strong and
multicentred, and exchange and correlation effects between the incident electron

and the target are important. In the external region exchange and correlation
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effects are neglgcted and only the long range polarisation potential is important.

In order to express the complex process in the internal region Schneider (1975)
used a set of prolate spheroidal coordinates with which to expand the wavefunction.
These prolate spheroidal coordinates give good results for diatomic molecules,
but are not appropriate for polyatomic molecules. Burke et al (1977) however
favoured a multicentre, discrete basis representation in the internal region. This
method used sets of Slater-type orbitals, with effectively negligible amplitude at the
boundary, centred on the atomic centres, and a set of Slater type orbitals which did
not vanish at the boundary, centred on the centre of mass of the target molecule.
The molecular orbitals were then defined in terms of the orbitals centred on the
atomic centres and the continuum molecular orbitals were expressed in terms of
all the sets of orbitals (i.e. three sets for the diatomic case). The set of orbitals
centred on the centre of mass. of the molecule in the inner region provides the
link between the multicentred treatment in the inner region and the single centre
expansion approach in the external region.

The R-matrix method employed here uses a set of numerical basis functions,
instead of Slater type orbitals, centred on the centre of mass of the target molecule
(Gillan et al 1987). Slater type orbitals are difficult to integrate over due to the
cusp at the origin. Indeed no integral package has yet been written which uses
Slater type orbitals to deal with non-planer molecules. The numerical basis func-
tions used here, however, are more suitable for integration. The use of these
numerical basis functions means, however, that a  Bloch operator (Bloch 1957)
must be added to the Hamiltonian matrix to ensure that the Hamiltonian is Her-
mitian. The method is therefore no longer a strictly variational one, as the Buttle
correction is based on perturbation theory. However, in practice the method still
behaves in a variational manner.

By setting up and diagonalising the Hamiltonian matrix in the internal region
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a set of eigenenergies and eigenvectors can be produced. These eigensolutions
can then be used to form the basis set in the inner region from which all the
physical solutions of the wave equation can be expanded. The great advantage
of this method is that the diagonalisation only has to be performed once for each
symmetry of the electron-molecule system, and solutions at all energies can then
be found at comparatively little cost.

The inner region functions are matched to the outer region functions at the
R-matrix boundary by a matrix known as the R-matrix. The R-matrix relates
the functions at the boundary to their derivatives as will be explained in more
detail in the next chapter. This matching can then be used to produce the K-
matrix (reactance matrix) and the T-matrix from which scattering information is
determined.

Nesbet et al (1986) developed a method which combines the R-matrix method
with a matrix-variational approach. This method divides space in a similar way
to the R-matrix method, but uses numerical asymptotic functions for the contin-
uum basis functions. As with the matrix-variational method the continuum basis
functions are energy dependent which means that the inner region calculation has
to be repeated for each energy range. The number of continuum functions used is
therefore kept to a minimum. This method has produced results which compare
reasonably well with experimental data for elastic electron- H; scattering, but has

not yet been extended to include nuclear motion or applied to any other system.

1.3 A Comparative Study

The R-matrix method was used to study electron-H, scattering by Baluja et al
(1985) in a coordinated study to compare the R-matrix method, the Linear Alge-

braic method (Schneider and Collins 1985) and the Schwinger multichannel vari-
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Figure 1.1: Integral cross section for excitation from the ground to the b 3T} state
of H,. The solid curve represents the work of Baluja et al (1985), the dashed
curve that of Schneider and Collins (1985) and the dotted curve that of Lima et
al (1985).

ational method (Lima et al 1985) for a specific model. The three methods were
used to represent elastic scattering and electronic excitation from the ground to
the first excited state of H,, the b 3L} state. This transition is of interest as it
is spin forbidden and can only take place by exchange. It therefore represents a
good test of the effectiveness of the method of including exchange effects. The
models used also included electron correlation effects to relax the strict orthog-
onality condition between the bound and continuum states. The integral cross

sections produced by these three models are shown in figure 1.1. It can be seen
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that the results produced were in good agreement with each other. They were also
in reasonable agfeement with experimental data.

This study was able to demonstrate the importance of including exchange and
correlation effects. Previous calculations which did not include these effects gave
integral cross sections that were significantly too low. The only one of these
three methods that attempted to include polarisation effects was the R-matrix
method. Including polarisation lead to a reduction in the integral cross section
at low energies, however, in chapters 3, 4 and 5, it has been shown that the
representation used was insufficient. By improving the polarisation representation
the integral cross section at higher energies are reduced and resonance information

can be obtained.

1.4 Bound states

The calculation of bound states of molecules has also been an active area of research
since the introduction of improved computing power and facilities. A large amount
of bound state information is necessary in order to calculate properties such as
radiative transition probabilities, photoionisation cross sections and opacities in
stellar atmospheres and interiors.

Quantum chemical methods for producing molecular bound states have proved
very successful for studying low lying bound states. These methods generally
represent the target molecule by using a linear combination of atomic orbitals
and Gaussian type orbitals and using a configuration interaction (CI) technique.
Very large CI expansions are used, often employing millions of configurations.
However, these methods are not suitable for producing the high lying Rydberg
states just below the ionisation energy of the molecule. An alternative method

was therefore needed and recently Kaufmann et al (1989) adapted a Gaussian
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type orbital expansion to look at Rydberg series.

The R-matrix codes developed for scattering calculations are ideally suited to
the calculation of bound states as the complex internal region calculation is the
same for both cases. The difference lies in the calculation of the external region
wavefunction and the matching conditions at the R-matrix boundary. Within the
field of the atomic R-matrix method Ojha and Burke (1983) developed a method
of searching for bound states, but it had the limitation that only bound states
with energies close to the R-matrix poles could be found. This method was later
adapted for the molecular case, see for example the work on H, by Tennyson et al
(1986) and on CH by Tennyson (1988), but was again unsuitable for calculating
the Rydberg states of the system.

The method described by Seaton (1985) for the calculation of atomic bound
states using the R-matrix method, however, is able to produce the bound states
of a system from a single construction of the R-matrix. In the internal region the
wavefunctions are set up as described for the scattering case. Solutions in the outer
region must tend to zero as r, the distance of the electron from the centre of mass
of the target, tends to infinity and must be able to be matched to the inner region
functions at the R-matrix sphere. These outer region functions can be found by
a combination of analytical and simple numerical methods. By imposing suitable
boundary conditions and matching the inner and outer region functions, all the
bound states of the system can in principle be calculated. This method has proved
very useful in the study of atomic systems and was used for the Opacity Project
(Seaton 1987, Berrington et al 1987) which produced large numbers of atomic ion
bound states.

This method has been converted to find the bound state energies of molecules,
see Chapter 6. Once the molecular wavefunctions in the inner and outer region

have been calculated the method of matching the solutions is identical for the
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atomic and molecular cases. In order to find the atomic bound state energies
Seaton (1985) used a search for zeros of the matching matrix, which indicates a
bound state, over a range of quantum defect number. For each principal quantum
number there are only a small number of bound states for a given symmetry in
the atomic case, however, this is not in general true for the molecular case and
therefore a modification to the searching procedure had to be developed. This will

be discussed in some detail later.

1.5 Nuclear motion

The fixed nuclei approximation, frequently used in the methods described above,
is valid when the time of interaction between the electron and the molecule is small
compared to the vibration and rotational period of the molecule. This is usually
the case except near to the threshold of a channel or near to a resonance position
where the time of interaction is greatly increased. Even when these conditions are
not satisfied it is still possible to use the fixed nuclei approximation as rotational
and vibrational effects can be corrected for in a second part of the calculation.
This is known as the adiabatic-nuclei or Born-Oppenheimer approximation and it
relies on the assumption that the electronic and the nuclear motion can be treated
separately.

When this assumption is no longer valid, for example in the region of a reso-
nance or close to the ionisation energy of the target molecule, the non-adiabatic
effects have to be included. A method for including vibrational non-adiabatic ef-
fects was developed within the R-matrix method by Schneider et al (1979). The
wavefunction of the system is expanded as products of fixed-nuclei functions and
basis functions representing the nuclear motion. This treatment has been used to

study systems such as N, (Morgan 1986, Gillan et al 1987) and HC! (Morgan et
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al 1990).

In order to include the effects of rotational motion of the target molecule,
Arthurs and Dalgarno (1960) introduced a rigid rotor model for the target molecule.
This method neglects the vibrational motion of the target and uses the laboratory
frame to obtain the correct asymptotic form of the wavefunction. The total angular
momentum of the electron-target system is a constant and the eigenfunctions of the
total angular momentum vector are used as a basis to expand the wavefunction of
the system. This method, however, is not suitable for use within the molecular R-
matrix method as it employs the laboratory frame and not the molecular frame of
reference used in the inner region of the R-matrix method. An alternative method
was used by Tennyson and Morgan (1987) for the study of positron-C'O scattering
within the R-matrix method. They used the multipole-extracted adiabatic-nuclei
approximation which models rotational motion by using the static, space-fixed,
first Born approximation. This method gave reasonably good results for scatter-
ing energies below the positronium formation threshold energy, but the results

were less pleasing at higher energies.

1.6 Present work

In this work the molecular R-matrix method has been used to study the integral
and differential cross sections for electron-H, scattering. Elastic scattering and
scattering from the ground to the first six electronically excited states of H; have
been considered. Chapter 2 sets out the theory of the molecular R-matrix method
and gives a description of the computer codes used in this work. Chapter 3 presents
preliminary results for a six state model and outlines some of the difficulties en-
countered when trying to produce this data. Chapter 4 discusses the integral cross

sections for the full seven state model with special reference to the resonance fea-
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tures found. Chapter 5 presents the differential cross sections calculated for the
full seven state model. These calculations represent an improvement on previous
studies of the system in two respects: firstly the target representation is a full CI
representation and secondly, previous calculations were restricted to the study of
two target states whereas these calculations consider the lowest seven states.

The molecular R-matrix method can also be used to find the bound states of
molecules. Following the algorithm set out in Seaton (1985) for the calculation
of atomic bound states using the R-matrix method, a computer program module
has been developed to calculate molecular bound states together with a module
to calculate the transition moments between them. These program modules, and
results obtained for the diatomic molecules H,, HeH and C H which demonstrate

the effectiveness of the method, are presented in Chapter 6.
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Chapter 2

Molecular R-matrix theory

As has already been mentioned the basic feature of the R-matrix method is that
space is divided into two regions separated by a sphere of radius a. The complex
inner region calculation follows the same theory for both scattering and bound state
calculations and this will be discussed in some detail. The theoretical method used
to obtain scattering information in the outer region will be presented as well as
the theory, adapted from Seaton (1985), which was used in the computer program
module to calculate the bound states of molecules. The use of these bound state
in the calculation of transition dipoles is also described. The various modules of
the computer package used in this work will be discussed in relation to the relevant

theory.

2.1 Inner region

In the inner region the target molecular orbitals g; are represented by the expan-

sion:

oi = Dipi, (2.1)
1
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where p; are Slater type orbitals (STOs) centered on the nuclear centres of the tar-
get molecule and Dy; are coefficients which are found by performing a self consistent
field (SCF) calculation. The functions p; are then known as LCAO-MO-SCF or
linear combination of atomic orbitals molecular orbitals in the SCF approxima-
tion. The SCF approximation involves including electron—electron interaction in
an average field approximation. The forces on a particular electron within the
average field of all the other target particles®'®calculated and the electron is al-
lowed to move in this field. This, however, affects the average field exerted on
the other electrons, which are then allowed to alter their positions in turn. This
process is repeated until some minimum energy for the system within the SCF
approximation is reached.

In order to perform a target CI calculation configurations of the N electron
target molecule ¢I¥ have to be built up from the SCF target molecular orbitals.
The target molecular wavefunctions 1Y are then expanded as a linear combination

of these configuration:

v = cudl. (2.2)

1

The coefficients ¢;; are calculated by diagonalising the N electron Hamiltonian
HN:
(WY | HY [$]) = erbir, (2.3)

where the e are the target energies.

The target molecular orbitals p; must be augmented by a set of continuum
orbitals in the inner region in order to perform an N +1 electron calculation. This
is achieved by first setting up effective atomic orbitals u; centred on the centre of
mass of the target molecule. These u; take the form of numerical basis functions

which satisfy the equation:

2L +1) \
A S LA e\ (r) = 2.4
(o = 2 4 V() + Bui(r) =0, (24)
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subject to the boundary conditions

and
a du;
athedei} = 2.6
u’_ dr e b’ ( )

where k? = 2e;, V, is a suitable potential (for example the Coulomb potential) and
b is an arbitrary constant taken to be zero in this work.

The continuum molecular orbitals 7; for a diatomic molecule can then be rep-
resented in the inner region by the partial wave expansion:

ni(r) = > v ui(r)Yim, (B)Ai + Y pfBij + Y pPCij, (2.7)
i i i
where the V) jmi, are spherical harmonics, p#! and p? are Slater type orbitals centred
on the target nuclei A and B. The coefficients A;;, B;; and C;; are determined by
Schmidt and Lagrange orthogonalisation (Tennyson et al 1987).

The eigenstate wavefunctions gb,]cv +1 of the inner region N+1 electron system,
with eigenenergies e, in Hartrees, can then be represented by the expansion:

P = AZ Y (X1...XN); (PN+10N+1) @i + ZXm(Xl---XNH)ﬁmk, (2.8)
t,J

m

where A is the antisymmetrisation operator and x, = (rn, on), where ry is the spa-
tial coordinate of the n** electron and oy, is its spin coordinate. The 7; are formed
by coupling the spin function of the scattered electron to the continuum molecular
orbitals 7;. The first term in equation (2.8) therefore represents a summation over
all configurations where the target electrons are in a target configuration and the
N + 1t electron is in one of the continuum orbitals.

The functions x; in equation (2.8) correspond to configurations where all N +1
electrons are placed in the target molecular orbitals. They are added to allow for
short range correlation and polarisation effects between the scattered electron and

the target molecule.
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The coefficients a;;; and §;; are determined by diagonalising the Hamiltonian

matrix in the inner region so that

(YN Hygr + L |90 1) = exbra, (2.9)

where Hp 1 is the Hamiltonian of the N+1 electron system and L4 is the Bloch
operator (Bloch 1957) included to ensure that the Hamiltonian is hermitian in the

inner region. It is defined by the equation:

N41
1 _ . d b _ .
Ini =5 30 S W Wiy, ()80 =) (e~ D (7 Yoy, (7] (210)
=1 J ¢ '
A CI target representation can be used to reduce the size of the Hamiltonian
matrix to be diagonalised. If the coefficients a;;x in equation (2.8) are not allowed
to vary fully, so that only the N electron configurations ¢ included in the CI

target representation are included, then equation (2.8) may be rewritten:

P =AY Yy (xaxn) ) i(Ns1oNs1) ek + ) Xm(X1-XN+1) Bk
1 7 m
(2.11)
where the N electron target wavefunctions ¥} are given by equation (2.2). By

defining the Hamiltonian matrix element H;;;» for going from configuration ¢! 7;
to ¢V} by:
Hijiryr = (¢ n;| H|¢Vn}), (2.12)

for going from configuration ¢¥9; to x.. by:

Hijm = (¢} n;| Hxm), (2.13)
and for going from configuration x,, to x.. by:

Hym = (xXm|H|Xom), (2.14)

a Hamiltonian matrix of reduced size can be defined by the three equations:

Hijpy = ZciIHiji'j’Ci‘I', (2.15)

11!
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Hijm = z cirHijm, (2.16)
and

H: = Hpm, (2.17)

=
where the coefficients ¢;; are those of equation (2.2). It can be seen that no saving
is made for configurations where all the electrons are in target molecular orbitals,
but the number of these is typically much smaller than the number of configura-
tions where the N + 1** electron is in a continuum orbital. As an example the
seven target state work on electron-H; scattering discussed in Chapter 4 generated
a Hamiltonian matrix that was 5396 x 5396 elements large for the X, symme-
try. Using this contraction method the size was reduced from 5396 configurations
squared to 428 configurations squared of which 209 of the configurations where of
the type where all N + 1 electrons are in the target molecular orbitals.
The Schrodinger equation (;f the N + 1 electron system in the inner region is
given by:
(Hny1+ Lyya — E)¥ = Ly, V. (2.18)

where ¥ is the total wavefunction of the system. This has the solution:

U =(Hyny1 + Lyyr — E) 'Ly 0. (2.19)
The inverse operator can be expanded in the basis defined by equations (2.8)
and (2.9) so that:
¥n ) o L [9)
U) = . 2.20
R (2.20)

Premultiplying this equation by the channel function < Y Y},.m,‘_l and defining the

reduced radial functions F; as:
Fi(r) = (9} Viym, 1), (2.21)

the surface amplitudes f;; by:
for = (6] Vi, l3) (2.22)
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and using the Bloch operator defined by equation (2.10) it follows that at the

R-matrix boundary:
Z Ri;(E)( a——— — bF})r=a, (2.23)
which defines the R-matrix given by

Ri(E) = Zf,k(a )(ex — E)7 fix(a). (2.24)

P11 and

In practice it is not possible to include an infinite number of states
the sum in equation (2.24) has to be truncated to a finite number of terms Ny for
each value of £. The error produced by this truncation is particularly important
in this case due to the artificial boundary conditions (equations (2.5) and (2.6))
at the R-matrix sphere. The Buttle correction (Buttle 1967, Shimamura 1978) is

therefore added to the diagonal terms of the R-matrix to remove the error incurred

and is defined as:

Bu(p) = = Y, Ll (225)

112
1=N;+1 2kl‘ E
where uy; is the i** eigensolution of equation (2.4) and k% = 2e;; the relevant
eigenenergy.

2.2 Inner region program suite

The computer program suite used in this work to solve the inner region prob-
lem was adapted from the quantum chemical package ALCHEMY (McLean 1971,
Noble 1982). A flow chart of this suite is given in figure 2.1.

The module SCF is where the atomic Slater type orbitals are input and a self
consistent field target calculation is performed. The module outputs target molec-

ular orbitals which are linear combinations of the atomic orbitals as in equation

(2.1).
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Figure 2.1: Inner region flow chart.
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The module NUMBAS is where the numerical continuum orbitals are generated
in accordance with equations (2.4), (2.5) and (2.6). The potential V, can be input
separately or the module has the capability of calculating several simple potentials.
The maximum number of partial waves retained must be input and no attempt is
made to orthogonalise the orbitals to the target. This module also calculates the
Buttle correction defined by (2.25).

INTS generates the 1-electron, 2-electron and property integrals over the re-
stricted inner region.

MOS produces molecular orbitals and their boundary amplitudes, given by
equation (2.22), from the target orbitals generated by SCF and the continuum
orbitals generated in NUMBAS. MOS can be used to Schmidt orthogonalise the
target orbital set, or the target-continuum orbital set and it can also be used to
Lagrange Orthogonalise the continuum orbitals to a specified number of target
orbitals of the same symmetry (Tennyson et al 1987). This procedure may be
needed to eliminate linear dependance.

TRANS orders the atomic orbital integrals generated by INTS and transforms
them into molecular orbital integrals using the molecular orbital coefficients gen-
erated in MOS.

In the module CONGEN electron configurations to be included in the CI cal-
culation are picked by hand. It is therefore used to determine which terms are
included in the expansions of equation (2.8). SPEEDY determines which inte-
grals, computed by INTS and transformed by TRANS, will be needed for the
configurations generated in CONGEN. SORT then sorts these integrals into the
most convenient order for the module CI. CI performs a configuration interac-
tion calculation. It diagonalises the Hamiltonian as in equation (2.9) to yield the
eigenenergies ex and the coefficients ¢;j; and B of equation (2.8). In the case of

a CI target calculation this yields the coefficients ay;x and By of equation (2.11).
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The other module of interest here is TMT which is used to produce the dipole
and quadrupole moments of the target, required in the outer region calculation,
from data generated in the inner region and inner region moments for N + 1

electron transitions. This module will be discussed in more detail in section 2.7.

2.3 Outer region scattering calculation

In the outer region it is assumed that the effects of electron exchange between the
scattering electron and the target can be ignored and that the wavefunction can

be expanded in the single centre, close coupling form:

¥ = Z &i(XI..XN, 0'N+1)7‘—1G;(7'N+1)}/1'-m['.(f‘N_H), (226)

Following the method used in the inner region this equation can be substituted
into the Schrodinger equation and projected onto the channel functions to give a
set of coupled differential equation for the reduced radial functions G; for a given

internuclear separation:

(D 6, =2 3 V()G (), (227)

dr? r2

where

k} =2(E - EY), (2.28)

EV are the eigenenergies associated with the target state ¢ and V;; is the potential

1

in the outer region.
For a scattering calculation the equations (2.26) are subject to the asymptotic

boundary conditions (r — o)
Gij — ki_%(Sinoiéij + cosb; K;) for open channels (2.29)

Gi; — 0 for closed channels (2.30)
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which also define the K-matrix K;; that couples the open channels The 6; are given
by:
1 z L2
0; = k;r — §li7r + Fln]k,-r +argl'(l; +1— z;), (2.31)
where I'(l; + 1 — iz/k;) is a complex gamma function and z is the residual charge

of the molecule. From the K-matrix the eigenphase sum § is given by
6= Zarctan (KR (2.32)

where K is the diagonalised K-matrix. The T-matrix can be obtained from the

matrix equation

. T= (2.33) .

1-:K’
From the T-matrix the integral cross-section o(z — 1'), for going from state ¢ to
state ¢/, can be found for a linear molecule (Burke 1979) from the equation

T (25 +1)
oY 2.34
U(Z—*Z) kzz 25_*_1)%;' Izl ( )

where S is the total spin angular momentum, S; is the spin angular momentum
of state ¢ and A is the total electronic angular momentum projected onto the
molecular axis. The T-matrix can also be used to calculate the differential cross
section, see Malegat (1990).

In the present work the outer region functions were obtained by first propa-
gating the R-matrices (Baluja et al 1982, Morgan 1984) to a suitable radius and
then using (Gailitis) asymptotic expansion techniques (Noble and Nesbet 1984) to
solve equation (2.27).

2.4 Outer region program suite

Figure 2.2 shows the flow diagram for the outer region suite of programs used. It

should be noted that inner region modules of figure 2.1 are individual programs
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that are the run separately and independently of one another. The solid lines
linking the various modules are data flow indicators. However, the outer region
package is one program that is divided into modules. The solid lines in figure
2.2 again indicate data flow, but the dashed lines represent calls to modules from
within other modules.

The outer region program is managed by the module DRIVER which sets up
computer memory allocations and calls the various modules.

The module INTERF is used to interface between the inner and the outer region
codes. It takes the input from the inner region together with additional target data,
including internuclear separation, energy levels of the target states and multipole

‘moments. It constructs the surface ‘arr’lpiitl‘ldés ’f,'kv givén byveduati(')ny(f.??') at the
R-matrix boundary from the information generated in the inner region and adds
in the Buttle correction of equation (2.25).

RSOLVE is the main driving module of the outer region which produces the
K-matrices of the system (equation (2.29)). It makes calls to VIBRMT, which sets
up the necessary data if a non-adiabatic calculation is being performed, RPROP
which propagates the R-matrix to a given radius and CFASYM which calculates
wavefunctions in the asymptotic region.

EIGENP produces eigenphases from K-matrices using equation (2.32) and RE-
SON is an automatic resonance detection program which produces resonance posi-
tions and widths by fitting detected resonances to a Breit-Wigner form (Tennyson
and Noble 1984). Within this form the eigenphase 7 is expressed as a function of

the scattering energy, E, in the form:
N

Ztan [ E ] + Za, (2.35)

1=

where I'"** is the width and E"” is the position of the resonance. The second sum
in this equation is a power series used to represent the underlying trend of the

eigenphase across the region of the resonance.
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TMATRX is used to produce the T-matrices of the system (see equation (2.33))
from the K-matrices and additional vibrational data via a subroutine call to VIB-
INT if a non-adiabatic calculation is being performed. From the T-matrices MCQD
computes multichannel quantum defects (see section 2.5), the integral cross sec-
tions are computed by the module IXSECS and the differential cross sections by
the module DCS (Malegat 1990).

2.5 Bound state calculation

In the inner region the total wavefunction of the bound N + 1 electron system ¥;

" can be expanded in terms of the complete set of functions i,/)fcv +1 of equation (2.8):°

=Y o, (2.36)
, k

The coefficients Cy; are known as the bound state coefficients. In order to calculate
these bound states, the outer region functions must tend to zero as the distance
of the scattering electron tends to infinity. Within the R-matrix method they
must also be able to be matched to the inner region functions at the R-matrix
boundary. In the present work these outer region functions were obtained by first
using a Gailitis expansion technique (Noble and Nesbet 1984) at a suitable radius,
and then propagating inwards to the R-matrix boundary using the Runge Kutta
Nystrom method to solve the asymptotic equations numerically.

The matching conditions, at the R-matrix boundary, for a bound state are:

Fi=) P;X; (2.37)
J
and
dF; dP;
ari 5~ abi 2.38
dr - dr Xis (2:38)

where the F; are the reduced radial functions described in section 2.1, the F;;

are the outer region functions and X is a column vector needed to construct the
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bound state coefficients \1 Cks given by the equation:

‘LCsz Z 2( fik E) Z( dCI;J - ﬂPtJ)XJ (239)

€ —

By combining equations (2.23), (2.37) and (2.38) the standard form of the

matching condition is given by:
> BiiXj =3 (P = [} R(E)Qui])X; =0, (240)
3 J k

where

dPy;

..... Equation (2.40) has the standard form of an. eigenvalue equation and it therefore . . = . |
only has solutions at discrete values of energy FE, the bound state energies, where
the determinant of the matrix B;; will be zero.
A problem arises at energiés E close to the R-matrix pole energies ex. At
these energies the R-matrix (equation (2.24)), and hence the matrix B;; (equation
(2.40)), is undefined. It therefore becomes necessary to eliminate these poles and
this is done using the method described by Burke and Seaton (1984).

Equation (2.24) is first rewritten as:

S

Ry = 2a(ex — E)

where the total energy E is close to the pole energy e,

Si; = fix(a)fik(a) (2.43)
and
Ty = 3 oo fula)lex = E)™ (o) (2.44)
k#K

A solution of the eigenvalue problem:
Z SiiUsk = Z Uiksk (2.45)
i k
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is then sought. It can be shown (Burke and Seaton 1984) that this equation is

satisfied when Uj; is given by:

fikfivig/TiTjp fori=1toyg

for j=1 to (I-1) Uj=19 -Ti/Tin fori=j7+1 (2.46)
0 fori> (5 +1)
and
for j=1 Uit = fix/T1, (2.47)

for : = 1 to I where I is the total number of channels and

Z %) %. (2.48)
p R
The matrix Uj; is normalised to
) ULU; = 6 (2.49)
1
where Ug is the transpose of U;;. The solution for s is then:
Sp = 6“1“2,. (2.50)

By combining equation (2.40) with equation (2.42) and premultiplying by the

matrix Ug the matching condition becomes:

1
for i=1to (J—1) Y LuXe=0 (2.51)
=1
and
Ly — -————1‘2M X =0, 2.52
;[ = Gaen T M) (2.52)
where
Z (P — [Z Tim@mi]) (2.53)
and

M:J Z tl QIJ (2'54)
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Figure 2.3: Outer region bound state flow chart.

The quantity (ex —F) now only appears in one of the matching equations (equation
(2.52)). This equation can then be multiplied by the (ex — E) factor to redefine

the matrix B;;:

for =1 to (I - 1) By = Ly (2.55)

and

BIi’ = (eK - E)LI,-/ - I‘zM[,'/, (256)

thus eliminating any singularities.

The bound states of a system are found using the computer module BOUND
shown in figure 2.3. As for the scattering case DRIVER is the control module
and the module INTERF provides the interface between the inner and the outer
region calculations. The module BOUND makes calls to subroutines VIBRMT,
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RPROP and CFASYM in order to include vibrational information, propagate the
R-matrix and perform the asymptotic calculations respectively in exactly the same
way that the scattering module RSOLVE did. The calculation of the bound states
is performed within the module BOUND itself.

Zero’s of the determinant of B;;, defined by equations (2.55) and (2.56), can
be searched for by calculating the determinant at successive energy points and
detecting any change in sign of the determinant. In practice, for ionic molecules,
it is often more convenient to search over effective quantum number v (Seaton
1966, 1985) given by:

2

E=E-2

ot (2.57)

where E; is the energy of the lowest molecular state. The effective quantum number

is related to the principal quantum number n by the equation:
p=n—v (2.58)

and p is the quantum defect. In the atomic case there are only a small number
of bound states for a given value of the principal quantum number n, but for
molecules this is not necessarily the case. It was therefore necessary to develop a
new method of searching for bound state energies.

For a given value of n an estimate for the number of poles likely to be found
was calculated by considering the number of open channels with allowed values of
£. This information was then used to construct an evenly spaced grid in quantum
defect space of effective numbers from n — % to n + % For each grid point the
R-matrix pole nearest in energy to the grid point was found and the determinant of
the matrix Bjj, given by equations (2.55) and (2.56), was calculated. If there was
no change of sign in the determinant between successive grid points then a check
was made for the possibility of two poles between the grid points by fitting the

determinant function to a quadratic. Once a change in sign had been detected a
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Newton-Raphson search was performed to obtain an initial estimate of the bound
state energy.

This initial estimate of the bound state energy, E;, was then assumed to be
very close to the true value, E, and the first two terms of a Taylor series expansion

were used to set up the standard eigenvalue equation:

dB,J (El

EB'J(E X;= Z(BU(EI (Eo — Er) ))X =0. (2.59)

This relation was then applied recursively (Seaton 1985, appendix 3) until the
change in the energy produced for one application of the formula was below a
certam value
| Smce the calculatlon of the detlerr’m;lant ‘of B;; takes a cons:derable amount
of computer time an option was added so that instead of setting up an even
grid of effective quantum number a grid could be used that was dense around
the points where a bound state might be expected and sparse in between these
points. This was made possible by the use of a quantum defect grid instead of an
energy grid, since for each value of n there is likely to be a bound state energy
with approximately the same value of quantum defect number as for n —1 (Seaton
1966). See figure 2.4. The arrows represent the bound state quantum defect values
and the vertical lines represent the grid points. Thus for a given value of n, bound
state energies are searched for near to the bound state energies found for n — 1,
by adding 1 onto their effective quantum numbers.

For molecules with no residual charge the use of a quantum defect grid is not
possible. An option was therefore included to set up an energy grid instead which

could be used for all types of molecular targets.
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Figure 2.4: Quantum Defect grid.

2.6 Calculation of transition dipoles

The development of the bound state computer module made it possible to calculate
photoionisation cross sections using the module PHOTO and to develop another
module TDIP to calculate transition dipoles from which oscillator strengths can
be calculated, see figure 2.3.

Previously the module TMT was used to calculate dipole and quadrupole mo-
ments of the N electron system for use in the outer region program package to
produce both scattering information and bound state. It can also be used to cal-
culate inner region transition moments of the N + 1 electron system. In order
to do this the module TMT requires input from the inner region packages (see
figure 2.1). It requires the transformed property integrals generated in the module
TRANS, the sorted energy expression generated in SORT and the CI wavefunction

information generated in the module CI. TMT then produces a transition matrix
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Tir using the dipole length approximation:

N+1 -
Tow = (Yp 1D erilyi" ™). (2-60)
=1

The module BOUND is then used to generate bound states ¥; of the N +1
electron system with bound state coefﬁcient4 Cis, see equation (2.36).

The transition dipole ¢ for going from state i to state i’ is given by:

- N+1 - : o
i = (U] Z |0 = Z CkiTir Crriv, (2.61)
=1 kk?

From the transition dipole the oscillator strength fi;» can be calculated using the
definition (Schadee 1978):
2 (2 - 60,A+A’)

= S = %omth) o Bzl 2.62
3 B Bt (262)

fiwr

in atomic units. At present the-module TMT can only be used for non-CI targets.

46



Chapter 3

Six state model for H,

~ Even for the seemingly simple H, molecule there are still several areas where -
our knowledge of its characteristics is weak (McConkey et al 1988). These areas
include the electronic excitation integral cross sections, dissociative recombination
and differential cross section. An attempt has been made here to produce accurate
results for the integral (and in Chapter 5 differential) cross sections for electronic
excitation of molecular hydrogen by electron impact using the R-matrix method
described in Chapter 2.

Several recent experimental studies have concentrated on integral cross section
measurement (Watson and Anderson 1977, Ajello et al1982, 1984, Hall and Andric
1984, Pasquerault et al 1985, Mason and Newell 1986b, Khakoo and Trajmar
1986b, Nishimura and Danjo 1986, Khakoo et al 1987), a review of which has
recently been made by Tawara et al (1990). These measurements are very difficult
to make and, therefore, the integral cross section results are not always reliable.
There has also been considerable theoretical effort in this area (Fliflet and McKoy
1980, Arrighini et al 1980, Lee et al 1982, Redmon et al 1985, Baluja et al 1985,
Schneider and Collins 1985, Lima et al 1985, Gibson et al 1987, Rescigno and
Schneider 1988, Lima et al 1988, Lee et al 1990). In this chapter and the next
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