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Abstract—Object detection has made enormous progress and
has been widely used in many applications. However, it performs
poorly when only limited training data is available for novel
classes which the model has never seen before. Most existing
approaches solve few-shot detection tasks implicitly without
directly modeling the detectors for novel classes. In this paper, we
propose GenDet, a new meta-learning based framework which
can effectively generate object detectors for novel classes from
few shots, and thus conducts few-shot detection tasks explicitly.
The detector generator is trained by numerous few-shot detection
tasks sampled from base classes each with sufficient samples, and
thus it is expected to generalize well on novel classes. An adaptive
pooling module is further introduced to suppress distracting
samples and aggregate the detectors generated from multiple
shots. Moreover, we propose to train a reference detector for
each base class in the conventional way, with which to guide the
training of the detector generator. The reference detectors and
the detector generator can be trained simultaneously. Finally,
the generated detectors of different classes are encouraged to be
orthogonal to each other for better generalization. The proposed
approach is extensively evaluated on the ImageNet, VOC and
COCO datasets under various few-shot detection settings, and it
achieves new state-of-the-art results.

Index Terms—Meta Learning, Few-shot Learning, Object De-
tection, Weight Generation

I. INTRODUCTION

THANKS to the resurgence of deep networks [1] and the
construction of large scale datasets [2], [3], [4], object

detection has witnessed consistent improvements in the last
five years [5], [6], [7], [8], [9]. Typically, learning to detect
novel classes, which the model has never seen before, needs to
collect and train on abundant images of those classes, which
is prohibited in many real-world applications. Therefore, it
is desired to obtain object detectors in the few-shot setting.
Namely, a model is trained on the base classes each of which

This work was partly supported by the Natural Science Foundation of
Guangdong Province (No. 2020A1515010711) and the Special Foundation
for the Development of Strategic Emerging Industries of Shenzhen (No.
JCYJ20200109143035495 and No. JCYJ20200109143010272).

Liyang Liu, Wenming Yang and Qingmin Liao are the Shen-
zhen Key Lab. of Information Sci&Tech/Shenzhen Engineering Lab. of
IS&DCP, Shenzhen International Graduate School/Department of Elec-
tronic Engineering, Tsinghua University, Shenzhen, 518055, China (e-
mail: liu-ly14@mails.tsinghua.edu.cn; yang.wenming@sz.tsinghua.edu.cn;
liaoqm@tsinghua.edu.cn).

Bochao Wang, Zhanghui Kuang, Yimin Chen and Wayne Zhang
are with SenseTime Research (e-mail: sergeywong@gmail.com;
kuangzhanghui@sensetime.com; chenyimin@sensetime.com;
wayne.zhang@sensetime.com).

Jing-Hao Xue is with the Department of Statistical Science, University
College London, London WC1E 6BT, U.K. (e-mail: jinghao.xue@ucl.ac.uk).

with sufficient training samples, and then can be quickly
adapted to novel classes with little data, leveraging the past
knowledge learned from base classes.

There have been many few-shot classification methods
developed so far [10], [11], [12], [13], [14]. However, few-shot
detection, which aims at bounding box regression and region
classification simultaneously, is much more complicated but
under-explored. Trivially finetuning the model (trained on base
classes) with little novel class data easily leads to over-fitting
because of data scarcity. Pioneers of few-shot detection have
explored background depression [15], metric learning [16] and
feature reweighting [17], [18]. Most of these previous works
carry out few-shot detection implicitly, either by manipulating
the feature maps to highlight regions [15] or channels [17],
[18] related to novel classes, or by constraining different
classes to be separable in a learned embedding space [16]. Be-
sides, [19] proposes a simple finetuning baseline for few-shot
detection, introducing the instance-level feature normalization
when finetuning on novel classes.

Recently, MetaDet [20] introduces model regression to
few-shot detection, in the same spirit with [21]. It learns
a class-agnostic transformation T φ which regresses from
models learned with few samples to models learned with many
samples in the model parameter space. MetaDet optimizes
class-specific weights W of the detectors for novel classes
via regularized finetuning as shown in Fig. 1 (a). In contrast,
in this work, we propose an approach termed GenDet for few-
shot detection, which can directly and effectively generate
detectors for novel classes as shown in Fig. 1 (b). GenDet
learns a class-agnostic detector generator fψ which predicts
the detectors from the support examples, and thus it conducts
few-shot detection explicitly.

GenDet is trained via sampling N shots from each of K
sampled base classes and simulating the few-shot detection
testing scenario. Furthermore, in previous few shot detection
methods [16], [17], [18], only the naïve average strategy is
employed, where the detectors from few shots are simply
averaged regardless of their importances. This strategy leads
to poor quality of the aggregated detectors because there exist
noisy samples. We are the first to discuss this problem in
few-shot detection, and accordingly we propose a learnable
adaptive pooling module to filter out the noisy samples in the
few-shot training set. In adaptive pooling the detectors are
weighted by their importances, which are implemented as the
similarities with the baseline mean detector. We empirically
validate the effectiveness of our adaptive pooling module in
obtaining better aggregated detectors for novel classes.
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Fig. 1. Comparison of the meta testing procedure between MetaDet [20] and our GenDet. (a) MetaDet optimizes randomly initialized novel class detectors W
via regularized finetuning. The intermediate detectors W ? = T φ (W ) transformed from regressor T φ act as finetuning regularization only, the novel class
detectors W finetuned with few-shot data are ultimately used for detecting novel classes; (b) GenDet directly generates detectors W for novel classes from
their few cropped regions via the meta model fψ . The generated detectors W can be directly used to detect novel classes or further finetuned to improve
the performance. So MetaDet has to adopt finetuning while GenDet can be applied both with and without finetuning on novel-class samples. In GenDet an
adaptive pooling module is also proposed to aggregate the detectors generated from multiple instances.

Besides, we train reference detectors for all the base classes
with all samples in the conventional way. Then the generated
detector for a class is constrained to approximate its corre-
sponding reference detector, which is more discriminative as it
is optimized by the whole dataset other than just the sampled
few-shot detection tasks. In this way we use the reference
detectors as training guidance to learn a detector generator
that can generate detectors with stronger discriminative ability.
Surprisingly, the reference detectors and the detector generator
can be end-to-end learned simultaneously without stage-wise
training as in MetaDet [20]. Finally, to further increase the
discriminative ability, the generated detectors for novel classes
are encouraged to be orthogonal to each other for better
generalization. Our proposed GenDet can be efficiently applied
for novel classes without finetuning, and it can be further
improved with finetuning as demonstrated in our experiments.
In summary, our contributions are as follows:

1) We learn to generate detectors for novel classes by
episodic training on sampled base classes. We propose
an adaptive pooling module to better aggregate detectors
generated from multiple shots, especially when there
exist noisy samples.

2) We propose to train reference detectors for all the
base classes via conventional (many-shot) training, with
which to guide the training of the detector generator,
so that it can generate detectors with stronger discrim-
inative ability. The reference detectors and the detector
generator can be end-to-end trained in a single stage.

3) Our generated detectors can be deployed both with and
without finetuning. We introduce the orthogonality prior
as a regularization during few-shot finetuning on novel
classes to better distinguish visually similar classes, and
thus increasing the generalization ability.

4) Our method is shown to be effective on multiple few-
shot detection benchmarks, i.e., ImageNet [16], VOC
[17] and COCO [17], where it outperforms previous

state-of-the-arts [16], [17], [18], [19], [20] by a large
margin, showing its superiority.

II. RELATED WORK

A. Few-shot learning
Few-shot learning aims at rapidly generalizing to new tasks

with limited samples, leveraging the prior knowledge learned
from large-scale base dataset. Plenty of methods have been
developed for few-shot learning, especially few-shot image
classification [22]. Embedding learning methods [14] embed
samples of classes to a semantic space, then classification
is done by measuring the similarity of the inputs. Specifi-
cally, Siamese Networks [23] embeds pairs of inputs with
the same model, and it learns to predict similarity between
inputs in order to generalize to novel classes. Matching
Networks [10] adopt the attention mechanism on the embed-
dings of the labeled samples to predict the classes of the
unlabeled ones. Prototypical Networks [13] extend Matching
Networks by using a prototype, the centroid of each class,
as the classifier. [24] additionally learns a category-agnostic
mapping to transform the mean-sample representation to its
class-prototype representation, considering the prototypes in
Prototypical Networks [13] may be inaccurate. Furthermore,
finetuning with geometric constraints is applied in [25] to force
intra-class similarity and inter-class disparity. [26] transfers
knowledge from base classes to novel classes by embedding
image features as class adapting principal directions, instead
of the vector representation adopted by previous works.

Weight generation methods [11], [27] predict the parame-
ters of novel classes from support images. Model Recommen-
dation [28] generates novel-task parameters by collaborative
filtering. Weight imprinting [29] adds new weight vectors to
the classification layer of a model without requiring back prop-
agation. [30] achieves few-shot fine-grained recognition by
learning the piecewise exemplar-to-classifier mapping function
to avoid overfitting caused by the high dimensionality.
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Learning to finetune methods [12] achieve fast conver-
gence on novel tasks by learning good parameter initializations
which are common for all tasks. Learning with external
memory methods [31], [32], [33] directly stores the needed
prior knowledge in the external memory to be retrieved or
updated, and thus enables fast generalization. Generative
modeling methods [34], [35] hallucinate samples of novel
classes to accommodate for the lack of data. Others learn prior
knowledge by parts and relations [36], [37], super classes [38]
or latent variables.

Our work also relates to robust few-shot learning [39],
where representation outliers and label outliers [40] of the
novel dataset are analyzed, and outlier suppression is achieved
by the robust attentive profile networks. The adaptive pooling
module proposed is our effort to deal with outliers of the
support set. Compared with classification, it is much more
complicated to annotate images for detection, so it is appealing
to learn detectors of novel classes from few samples, which
is an under-explored problem we devoted ourselves to.

B. Generic object detection

Great achievements have been made in generic object detec-
tion with deep learning models [5], [8], [41], [42]. According
to whether there are region proposals to be used, these meth-
ods can be divided into two categories: proposal-based and
proposal-free. Proposal-based detectors, pioneered by R-CNN
series [5], [8], [41], extract class-agnostic region proposals of
the potential objects at first, then proposal-level classification
and box regression are conducted. In contrast, proposal-free
detectors attempt to predict bounding boxes and get detection
confidences of each category directly. YOLO [7] divides the
image into grids, then predicts several bounding boxes and
class probabilities for each grid cell. SSD [6] extends YOLO
with feature pyramid for multi-scale detection and it adopts
default/anchor boxes with different sizes to detect objects with
various shapes. RetinaNet [43] proposes a focal loss to deal
with the imbalance between easy and hard examples in dense
detection on multi-scale feature maps extracted by FPN [44],
[45]. Recently, anchor-free methods [46], [47] are proposed
to eliminate the pre-defined anchor boxes in the detection
framework. FCOS [47] makes full use of all points in a ground
truth box and suppresses low-quality detected bounding boxes
by a centerness branch. CornerNet [48] detects pairs of corners
and groups them to form the final detected bounding boxes.
These generic object detection methods focus on many-shot
scenarios while we develop GenDet for few-shot cases.

C. Few-shot detection

Most existing few-shot learning methods focus on classifi-
cation, while few-shot detection is an under-explored problem
and there are only few attempts. MSPLD [49] leverages a
large number of unlabeled images for representation learning
in the context of few-shot detection. LSTD [15] designs a deep
architecture to boost the recall rate for detection, using SSD [6]
as the RPN module of Faster R-CNN [8]. The authors propose
to transfer the pretrained detector to the few-shot scenario
via regularized finetuning, where background depression [15]

is adopted. Kang et al. [17] propose a feature reweighting
method where a model learns to predict reweighting vectors for
each novel class from few shots, and the reweighting vector is
applied to the feature map of the image to obtain class-specific
features. Meta R-CNN [18], by reweighting the features of
RoIs, extends the work of [17] with Faster [8]/Mask R-
CNN [50] in detection and segmentation, respectively. LSTD
[15] and Feature Reweighting [17]/Meta R-CNN [18] can be
considered to highlight features related to novel classes, either
in the spatial or channel dimension, and then class-agnostic
detection head is applied on the reweighted feature maps to
detect novel classes. Our approach differs from theirs in that
we generate class-specific detectors explicitly from support
instances while feature reweighting methods [17], [18] predict
a class attentive vector, which is used to reweight the feature
maps and thus acts as an implicit detector. Also, instead of the
average pooling used in [17], [18], where the attentive vector
for each class is computed by simply averaging over few shots,
we propose a learnable adaptive pooling (AdaPool) module
to effectively aggregate information from multiple shots, sup-
pressing the influence of noisy samples. RepMet [16] exploits
a distance metric learning (DML) module to model multi-
modal distribution of each category. It learns a generalizable
metric via triplet loss [51] on base classes and transfers it to
novel classes. RepMet conducts detection by computing the
distance of RoI features in the embedding space, and thus
it can be considered as a non-parametric model. It does not
consider the K-way, N -shot testing scenario, while our model
is trained as it is deployed, and thus takes the advantage of
“training as testing” [10]. TFA [19] trains the class-agnostic
backbone on the base classes and then learns the class-specific
heads (box classifier and regressor) on novel-class data, where
instance-level feature normalization is adopted in the scaled
cosine similarity for better performance.

MetaDet [20] regresses from detector parameters learned
with few samples to those learned with many samples, while
our GenDet directly transforms few-shot samples of novel
classes to detector parameters. MetaDet employs a two-stage
meta-training procedure. In the first stage, the class-agnostic
backbone and the base-class detectors are trained on large-
sample images. Then in the second stage, the detector trans-
former T φ is learned by sampling few-shot tasks from base
classes, where it is responsible for predicting the detectors
learned with many shots from those learned with few shots.
This two-stage training paradigm may lead to suboptimal
optimization. However, our detector generator can be learned
simultaneously with the reference detectors in a single stage,
and thus is benefited from end-to-end learning. Also, MetaDet
can only be adopted with finetuning on novel classes. During
finetuning, as shown in Fig. 1 (a), approximated many-shot
detectors W ? = T φ (W ) are used to regularize the opti-
mization of few-shot detectors W for novel classes. Namely,
the target novel class detectors W are randomly initialized
and learned with few shots from novel classes, and at the same
time W are regularized to match the transformed ones W ?. In
contrast, our generated detectors are already applicable ones
and can be directly used to detect novel classes. They can
also be regarded as good initialization and further finetuned,



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

TABLE I
COMPARISON BETWEEN GENDET AND PREVIOUS STATE-OF-THE-ARTS.

method RepMet [16] Reweight [17] Meta R-CNN [18] TFA [19] MetaDet [20] GenDet (Ours)
parametric model 7 3 3 3 3 3
class-specific head 3 7 7 3 3 3
adaptive pooling 7 7 7 7 7 3

many-shot guided 7 7 7 7 3 3
end-to-end training 3 3 3 3 7 3
episodic training 7 3 3 7 3 3

optional finetuning 3 7 7 7 7 3
orthogonality prior 7 7 7 7 7 3

opening up the opportunity for both high efficiency and high
performance. Tab. I gives a clear comparison between GenDet
and previous methods for few-shot detection.

D. Siamese tracking

GenDet also relates to Siamese-network-based tracking
methods [52], [53], which can be formulated as one shot
detection in a local region other than the full image. In these
methods, RoI on the template frame acts as the target object
and a network extracts features from it. The same network
extracts feature maps of subsequent frames, where the one
shot detection happens through a correlation operator between
the feature of RoI and the feature maps of upcoming frames.
Locality prior ensures that the location of the detected target
object does not depart too much away from its initial position.
Tracking could be regarded as a special case of few-shot
detection but is less ambiguous, as the appearances in adjacent
frames do not vary much; whereas in detection, instances
of the same class can look very different while instances
of different classes may appear similar. So it requires the
detection model to have much stronger discriminative ability
than tracking.

III. METHODOLOGY

A. Tasks and motivation

We first review the task of few-shot detection. In K-way,
N -shot detection, we are given a support dataset Ds =
{(xs,ys)i} for K novel classes, each with N support in-
stances (so 1 ≤ i ≤ KN ). xs denotes the object region in
support images and ys =

(
ycls
s ,yloc

s

)
includes the class and

location label of xs. We are supposed to obtain detectors W
by using the provided training samples Ds. Then the detectors
W are used to predict detection results on the query dataset
Dq =

{(
xq,yq

)
j

}
. xq represents an RoI induced by a region

proposal (or a local region induced by the receptive field of a
network), and its ground truth label yq =

(
ycls
q ,yloc

q

)
is used

to evaluate the performance of the detectors W .
As we know, directly training W on the few-shot dataset

Ds easily leads to over-fitting and thus weak generalization
ability on Dq . So we propose to train a meta model fψ
to generate detectors on C base classes, each with abundant
training samples, and then apply the learned meta model fψ
on K novel classes. The procedure is divided into two phases.
In meta-training, to simulate the testing scenario, we randomly
sample K-way, N -shot detection tasks from C base classes

to train the meta model fψ . The sampled tasks are also
known as “episodes” and this training strategy is termed as
“episodic training”. As the meta model can be trained on
as many sampled tasks as desired, the common knowledge
of generating detectors can be acquired and later generalized
to K novel classes. Then in meta-testing, the trained meta
model is applied to generate detectors for K novel classes.
By learning to generate detectors using the meta model fψ ,
we effectively avoid the over-fitting issue caused by directly
training the detectors W with few training samples.

B. Detector generation

Specifically, we learn to generate detectors directly from
few support instances with the meta model fψ as shown in
Fig. 2. At the top of the figure, fψ is parameterized by ψ
and takes the cropped object regions xs of support images as
input. For the 1-shot setting, it outputs the predicted detector
of the corresponding class ycls

s as follows:

Ŵ
(1)

k = fψ (xs) ∈ RD, k = ycls
s , (1)

where D is the dimension of vectorized detector parameters.
In general, the generated detectors may contain both the region
classification and box regression weights. In the middle, a
region xq on query images is transformed to gφ (xq) on the
feature map through a parameterized feature extractor gφ. The
generated detectors of K classes Ŵ ∈ RK×D are convolved
with the extracted feature gφ (xq) to predict the query label
yq . In meta training, we train the detector generator fψ and
feature extractor gφ simultaneously via sampling episodes
from base classes, where parameters {ψ,φ} are optimized
through loss minimization. The loss can be any conventional
detection loss for region classification and location regression.
Here we term it as the generated detector loss:

Ld = loss
(
yq; gφ (xq) , Ŵ

)
. (2)

The detector generator fψ is learned with a large number of
few-shot detection tasks sampled from base classes, so it can
transfer its detector generation ability to novel classes. Then
in meta testing, detectors for novel classes can be generated
by using few instances of novel classes. Later, the generated
detectors could be used to detect other instances of these novel
classes on testing images.

In our GenDet different classes share the bounding box
regression parameters, which is commonly employed in object
detection, especially in one-stage methods. So fψ is supposed
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Fig. 2. Schematic illustration of our framework GenDet. Top: detector generation branch. The detector generator fψ generates the detectors from support
instances (xs,ys) of different classes (indicated by different colors). The adaptive pooling module is proposed to aggregate the detectors generated by multiple
shots of each class. The generated detectors are also regularized to be orthogonal to each other for better discriminative ability. Middle: representation learning
branch. The feature extractor gφ transforms each region xq (yellow rectangle) in query images to gφ (xq) (yellow tensor) on the feature map. The extracted
feature gφ (xq) of an RoI is correlated/convolved with the generated detector fψ (xs) to predict the query label yq . Bottom: reference detector learning
branch. The reference detectors θ are introduced to guide the training of detector generation. Reference detectors θ are implemented as randomly initialized
model parameters for all the base classes, like in the many-shot setting. It plays a similar role as fψ (xs) and is correlated with the extracted RoI feature
gφ (xq) to predict the auxiliary query label yaq . The dashed lines indicate that the generated detectors should try to approximate the reference detectors. The
main difference between the two branches (top and bottom) lies in what detectors an RoI is convolved with to predict the corresponding target label. In the
top branch, the detectors are generated by the meta-model fψ from few instances of the sampled K base classes. While in the bottom branch, the detectors
are class-specific parameters for all of the C base classes. More details about the losses can be found in the text.

to extract features discriminative enough to distinguish differ-
ent classes, it takes the object regions cropped from support
images as input and thus the location information of support
images is only used for cropping objects. The query image in
each episode is the input of the feature extractor gφ to produce
the feature maps, which the generated detectors are convolved
with to produce the detection results. During training, we
sample an image from one of the sampled base classes as
the query image to ensure that there is at least one instance
from the sampled classes. The query image acts as a positive
example for classes that appear in it and a negative example
for classes that do not. During testing, the query image may
either contain instances of the K novel classes or not. The few
shot detection method is supposed to predict correct results if
there exist instances from the K classes, otherwise it should
predict the query image as all-background.

We make the detector generator fψ and the feature extractor
gφ not to share parameters because of their different roles:
1) fψ focuses on the classification-related features while gφ
extracts features that are responsible for both the classification
and regression task; 2) fψ is applied on the cropped region of
objects while gφ is applied on the whole image, where specific
domain shifts exist. In fact we have tried to share the backbone
but it leads to slightly worse performance (~1% mAP as in
Tab. III) on the 5-way 5-shot VOC benchmark, which may
result from less model capacity. We also notice that sharing the
parameters between fψ and gφ will not reduce computation
and thus cannot speed up the inference procedure.

C. Adaptive pooling

In the multi-shot (N > 1) case, the aggregated generated
detector for novel class k can be obtained via simply averaging

the generated detector parameters from each support instance
n of class k:

W k =
1

N

N∑
n=1

Ŵ
(n)

k , (3)

Ŵ
(n)

k = fψ

(
x(n)
s

)
, k = ycls(n)

s , (4)

where (n) indicates the n-th example. However, as shown in
Fig. 3, some support instances for the novel class can be noisy,
which easily leads the averaged parameters to be distracted
and results in less effective detectors. Inspired by the set-
based face recognition [54], we propose to overcome this issue
via adaptively pooling the information from multiple shots,
highlighting the commonality and suppressing the noise. To
be specific, the adaptively pooled detector is obtained by a
weighted average, with the weight computed by the similarity
between the single-shot detector and the mean detector:

Ŵ k =

N∑
n=1

αnŴ
(n)

k , (5)

αn =
exp (sn)∑N

m=1 exp (sm)
, sn = Ŵ

(n)

k · FC
(
W k

)
, (6)

where FC means a fully connected layer and · is the inner
product. Adaptive pooling can be seen as a learnable gener-
alization of average pooling, and in this way we are able to
aggregate the information from multiple shots and suppress
the noise. Fig. 3 visualizes the learned weights, as shown, the
undesired support instances are effectively down-weighted.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

unusual
view

class
overlay

object
part

b
ir
d

b
u
s

co
w

m
b
ik
e

so
fa class

overlay

object
part

unusual
view

p
la
n
e

b
o
tt
le

co
w

h
o
rs
e

so
fa

Fig. 3. Certain object instances for the novel classes can be noisy, e.g., “class overlay”, “object part” and “unusual view”, and thus distract the averaged
generated detectors. Adaptive pooling is proposed to adaptively weight the detectors generated by these instances, according to their importances, which
is computed by the similarity with the average detector. The grayscale images beside the natural images visualize the learned importance of each support
instance, and darker means less important. As shown noisy instances are effectively suppressed.

D. Reference guided training

If we only employ episodic training to obtain the learned
parameters {ψ,φ} of the detector generator fψ and feature
extractor gφ, each training iteration is restricted to one episode
where only a limited number of classes appear. This may result
in weak discriminative ability of the extracted feature gφ (xq),
as it distinguishes the sampled classes only. Moreover, in the
absence of abundant training data, the generated detectors
Ŵ can hardly match the detectors learned with large-sample
images. So we propose to train reference detectors via large-
sample training, with which to guide the training of the de-
tector generator fψ and the feature extractor gφ. Specifically,
apart from the generated detectors Ŵ , we introduce a refer-
ence detector θc ∈ RD (bottom of Fig. 2) for each base class
c which is randomly initialized and trained simultaneously
with fψ and gφ. This leads to the following two advantages.
Firstly, with the help of the reference detectors θ ∈ RC×D,
the extracted feature gφ (xq) is forced to distinguish all base
classes at each iteration. So gφ can produce much more
discriminative representations than the episodic-only case. In
implementation, besides the original class label ycls

q ∈ [1,K]
corresponding to the index in the sampled K classes of
each episode, for each query region xq we introduce another
auxiliary class label yall ∈ [1, C] corresponding to the index
in the total C base classes. yall exists because the sampled K
classes all come from the C base classes. Note that the location
label is shared in both cases, regardless of K sampled classes
or C overall classes. Then gφ (xq) is convolved with θ to
predict the newly introduced auxiliary label ya

q =
(
yall,y

loc
q

)
,

where we introduce the reference detector loss:

Lr = loss
(
ya
q ; gφ (xq) ,θ

)
. (7)

Secondly, via constraining the generated detector to be close
to its corresponding reference detector, we can generate better
detectors Ŵ for sampled classes, which in turn leads to better
optimization for detector generator fψ . We specify the guided
generation loss as L1 discrepancy:

Lg =

C∑
c=1

I
(
ycls
s = c

)
‖fψ (xs)− θc‖1, (8)

where I (·) is an indicator function which equals 1 if the
condition in the bracket is true and 0 otherwise, and θc means
the reference detector for class c. Moreover, with the trained
reference detectors for base classes, we endow our model the
ability to detect both base and novel classes. We can use θ as
base class detectors and employ fψ to generate detectors for
novel classes in meta testing.

We stress that in our GenDet, training the reference de-
tectors θ of base classes do not violate the meta-learning
concepts. We are not trying to fit class-specific losses of
base classes, in contrast we use θ to guide the training of
the detector generator fψ via losses Lr and Lg. By episodic
training the generated detectors only need to distinguish the
sampled K classes in each episode, while by conventional
training the reference detectors θ are trained to distinguish all
C > K base classes. So theoretically θ is more discriminative
than the generated detectors. By constraining the generated
detectors to approximate θ, eventually fψ is better trained
to generalize on novel classes in the K-way N -shot setting,
such that it can generate novel class detectors with stronger
discriminative ability.

E. Orthogonality regularization

Our meta-model fψ after meta-training can be deployed
both without and with finetuning on the test dataset. If without
finetuning, the detectors Ŵ generated by applying fψ on
novel classes can be immediately used. Otherwise if with
finetuning, Ŵ is used to initialize the target novel class de-
tectors W , which is then optimized by loss minimization with
few samples. We can regard our generated detectors as good
initialization for the novel-class detectors, and the optimized
detectors can be obtained in just few epochs before over-fitting.
However, as some novel classes may share similar appearance
but have not been used to train the detector generator fψ , so
the generated detectors for them can be ambiguous.

In few-shot finetuning, from the perspective of Bayesian
parameter estimation, an appropriate prior distribution of pa-
rameters can provide useful bias when data lacks. It motivates
us to use the natural orthogonality prior for regularizing
W ∈ RK×D of novel classes, adding discriminative ability
to the model. The above constraint can be formulated as the
orthogonal regularization loss as follows:
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Lo (W ) = ‖W̃W̃
>
− IK‖1, (9)

where W̃ is the row normalized version of W , ‖·‖1 denotes
the entry-wise matrix norm which is the sum of all entries’
absolute values in the matrix and IK ∈ RK×K is the identity
matrix. This prior is based on the intuition that detectors
among different classes should vary from each other so as
to maximize the discriminative power. Eventually, we cast
finetuning on the K-way N -shot dataset as maximum a
posteriori. When lack of data we could resort to appropriate
prior. We argue that the orthogonality prior is suitable for
our classification parameters since we are trying to distinguish
the K classes, especially when they are visually similar. The
eventual loss is composed of both the likelihood of few-shot
data and the prior from regularization. The orthogonality term
only acts as a weighted regularization, not a hard constraint.

As for implementation, we make different class detectors
share the box regression parameters. The classification param-
eters for all K novel classes can be stacked as W ∈ RK×D

during finetuning, for FCOS D = 256 and for Faster R-CNN
D = 2048. To apply the orthogonality constraint, we first
normalize W to obtain W̃ ∈ RK×D so that each row in W̃
is a unit-norm vector. Then we compute the cosine similarity
between each pair of rows in W̃ by S = W̃W̃

>
∈ RK×K .

Next we constrain the similarity matrix S to be close to
the identity matrix IK ∈ RK×K via L1 loss, such that the
similarity between any pair of different classes is minimized,
or equivalently the discriminative ability of classification pa-
rameters is maximized.

F. Model training and testing

During meta-training, we sample episodic dataset Dt ={
(xs,ys)

t
i ,
(
xq,yq

)t
j

}
for each task t from base classes and

learn the model parameters {ψ,φ,θ} for detector generator
fψ , feature extractor gφ and reference detectors θ, via mini-
mizing the losses discussed above:

L = Ld + Lr + αLg, (10)

where α is the hyper-parameter for balancing the guided
generation loss. One may expect that the detector generator
fψ and the reference detectors θ are to be trained in two
separate stages as in MetaDet [20], but we emphasize that the
model can be trained end-to-end in a single stage. Specifically,
in the implementation, θ is randomly initialized model weights
and represents detector parameters for all C base classes, and
fψ is trained by sampling episodes from C base classes to
simulate testing. An episode includes few shots xs from the K
sampled base classes, which is a subset of the C base classes.
In a training step, we sample two images from the first of the
K sampled classes as queries. Because the query images xq

belong to one class in C base classes, so they can also act as
mini-batch samples of the conventional training. That is why
they can also be used to train the reference detectors θ, and
thus simultaneous training is achieved.

In meta-testing, we sample K-way, N -shot tasks on novel
classes to evaluate the performance of our learned model. As

in Fig. 1 (b), fψ is fixed and applied to novel classes. It uses
few shots from novel classes as inputs and predicts detector
parameters for them. If with finetuning, the predicted parame-
ters are further finetuned for several epochs with these samples
to improve performance. Beside the traditional detection loss,
the orthogonality regularization loss is included to increase the
discriminative ability of the finetuned detectors:

Lft = Ld + βLo, (11)

where β is introduced to weight the regularization term. We
have also tried to add orthogonality during meta-training,
but it leads to degraded performance. We think both the
reference guidance during meta-training and the orthogonality
term during meta-testing act as regularization for the generated
detectors, excessive constraints in meta-training may cause
optimization difficulty.

Specifically, during training, we adopt the 5-way 5-shot
setting, where the detector generator fψ predicts a detector
for each support instance (cropped object). Then the adaptive
pooling module uses these detectors to obtain an aggregated
one, which is convolved with the query image feature map to
produce the detection results. During one-shot testing where
only a single support instance is provided, the generated
detector from this instance is directly convolved with the
query image, since our adaptive pooling module is generally
applicable to any-shot and naturally degrades to have no
effect when there is only one shot. In few-shot testing where
few shots are available, the inference procedure is the same
as few-shot training. The adaptive pooling module uses the
generated detectors from multiple support instances to form
the aggregated one. Note that we generate only classification
parameters for each class and make different classes share the
regression parameters. The novel classes share the regression
parameters with base classes that are learned via conventional
training, and the detector generator only generates classifica-
tion parameters for novel classes during few-shot testing.

Our detector generator fψ and feature extractor gφ are
class-agnostic, they produce discriminative detector param-
eters and activation maps for all classes, respectively. The
generated detectors are able to distinguish the novel classes
in each episode during testing because we have simulated
the few-shot tasks by using the samples from base classes
during training. We have sampled numerous few-shot tasks
from base classes to train fψ and gφ, so we expect them
to generalize well on novel classes. If without finetuning,
the generated detectors are directly convolved with the query
image feature map to predict the detection results as done
in the training phase. Intuitively, the support instances of the
novel class contain the class information, so the detectors
generated from them are also class-aware. Even though the
detectors without finetune may not be that discriminative, they
are still reasonable enough because fψ transfers a certain
amount of knowledge from base classes to novel classes. If
with finetuning, we abandon fψ once the detectors for novel
classes are generated. The generated detectors act as good
initializations, and then we finetune on novel class few-shot
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data with orthogonality regularization to optimize the detectors
for better performance.

IV. EXPERIMENTS

In this section, we first illustrate the details we use to imple-
ment GenDet and the dataset we adopt. Then ablation studies
are conducted to show the effect of different components in
GenDet. Finally, we compare our GenDet with the state-of-
the-art methods on three benchmarks.

A. Implementation Details

GenDet is a general few-shot detection method and thus
can be adopted with both proposal-free and proposal-based
detection models. We first use FCOS [47] because of its higher
training speed and memory efficiency when many classes are
involved, which is common in few-shot detection. In this case,
the detector generator fψ in Fig. 2 is a ResNet-50 [55] with
the last fully connected layer discarded. To obtain the gener-
ated detector fψ (xs), a support instance xs goes through all
the convolutional layers of ResNet and global average pooling.
At last, another 1 × 1 convolution layer transforms fψ (xs)
to dimension D = 256. The feature extractor gφ includes a
ResNet-50 backbone and FPN [44], the same as the original
FCOS. The extracted feature gφ (xq) is a 1 × 1 × D vector
on the feature pyramid, responsible for detecting objects of
different sizes. Following FCOS, we implement the detector
as 3 branches, namely region classification (one binary cross-
entropy loss for each class), box regression (IoU loss) and
centerness prediction (binary cross-entropy loss).

For comparison with previous state-of-the-arts, we also
adapt GenDet on proposal-based Faster R-CNN [8], which
most of the existing few-shot detection methods use. In the
case of Faster R-CNN, fψ is a complete ResNet-50 (w/o
the last fully connected layer). gφ (xq) is obtained via RoI
pooling on the feature map (FPN is not used) and region-
based CNN. The RoIs are produced by the RPN [8] and
the R-CNN is the last 3 residual blocks of ResNet. The
detectors are composed of region classification (cross-entropy
loss) and box regression (smooth L1 loss) branch. Also,
background detectors are jointly learned with the reference
detectors θ to distinguish between object and non-object, as in
many-shot Faster R-CNN. In both cases of FCOS and Faster
R-CNN, box regression/centerness prediction parameters are
shared among classes, we only generate region classification
parameters for different classes. This follows the intuition
that different classes own distinguished appearances, but their
location regression have common characteristics. Also, the
orthogonality constraint in Eq. (9) is only applied to classifica-
tion parameters, as the constraint makes no sense for location
regression parameters.

Specifically, for Faster R-CNN based GenDet, the detec-
tor generator fψ is ResNet-50, which is composed of the
first conv followed by 4 stages of convs, a 7 × 7 average
pooling and a flatten operation. It takes the cropped object
(resized to 224 × 224) as input and outputs the detector’s
classification parameters Ŵ

(n)

k ∈ R2048 for the n-th shot
of the k-th class. The mean detector for the k-th class is

the average of Ŵ
(n)

k , n ∈ [1, N ] and can be represented

as W k =
∑N

n=1 Ŵ
(n)

k . Then the fully-connected layer
FC : R2048 → R2048 maps the mean detector W k ∈ R2048

to the transformed domain W
fc
k ∈ R2048. The unnormalized

importance sn of the one-shot detector is computed as the
inner-product between Ŵ

(n)

k and W
fc
k : sn = Ŵ

(n)

k ·W
fc
k .

Then {sn} are normalized by softmax operator to compute the
weights {αn}, which are used to obtain the adaptively pooled
detector Ŵ k for the k-th class as Eq. (5). The detector is
composed of the region classifier and the box regressor. The
aggregated classification parameters Ŵ ∈ R(K+1)×2048 are
stacked by Ŵ k from K classes and task-shared background
parameters W bg ∈ R2048. We take Ŵ as the parameters
of 1 × 1 convolutional layers and convolve them with RoI
features to predict the classification scores. Box regression
parameters W box ∈ R2048×4 are shared among classes and
act as the parameters of 1× 1 convolutional layers which are
convolved with RoI features to output the regressed boxes. For
FCOS based GenDet, the detector generator fψ is ResNet-
50 similar to that in the Faster R-CNN case, except that
after the flatten operation we add a dimension reduction layer
to reduce the 2048-D outputs to 256-D to comply with the
channel dimension of FPN adopted by FCOS. Accordingly,
the fully connected layer in Eq. (6) should also be modified
as FC : R256 → R256. In FCOS the detector is composed
of classification, regression and centerness branches. The
classification branch is constituted by K binary classifiers,
one for each class. The classification scores are the outputs
of 1 × 1 convolutional layers whose parameters are given by
Ŵ k and the bias b ∈ R which are shared among classes.
The parameters of the box regression branch and centerness
prediction branch are W box ∈ R256×4 and W ctr ∈ R256,
respectively, and they are shared among classes.

If not specified, we adopt 5-way, 5-shot training episodes,
i.e., each training episode consists of 5 randomly sampled
classes and 5 support images for each class. 2 images from the
first sampled class, which simultaneously constitute a mini-
batch for training reference detectors θ in the conventional
way, serve as query images for training fψ in the episodic
way. Object regions from support images are cropped and
resized to 224 pixels per side. Query images are resized to
600 pixels for the shorter side and no more than 1000 pixels
for the longer side. The model is optimized using stochastic
gradient descent (SGD) with 8 GPUs. The weight decay is
10−4 and the momentum is set to 0.9. We train the model
on base classes for 13 epochs with an initial learning rate of
0.02, which is multiplied by 0.1 at 8 and 11 epochs. As for
finetuning, the model trained on the base classes is finetuned
for 5 epochs on the novel classes. Hyper-parameters for guided
generation loss and orthogonality regularization loss are set to
α = 10−2 (FCOS, or α = 10−3 for Faster R-CNN) and β = 1
via cross validation. As Lg in Eq. (8) relates to L1-norm of
large-dim vectors (256-D in FCOS and 2048-D in Faster R-
CNN), so small α is to balance the large dimension.

For few-shot detection, we think the meta model should
be meta trained on a base dataset which contains a large
enough number of classes, so it can learn prior knowledge
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TABLE II
EFFECT OF DIFFERENT COMPONENTS ON MAP (%) AT IOU=0.5 WITH IMAGENET BENCHMARK. THE STUDIED MODEL IS GENDET + FCOS. “ADAPOOL”

IS SHORT FOR THE ADAPTIVE POOLING MODULE. “Ld” IS THE GENERATED DETECTOR LOSS, “Lr” MEANS THE REFERENCE DETECTOR LOSS, “Lg”
DENOTES THE GUIDED GENERATION LOSS AND “Lo” IS THE ORTHOGONALITY REGULARIZATION LOSS.

variants AdaPool Ld in Eq. (2) Lr in Eq. (7) Lg in Eq. (8) Lo in Eq. (9) finetune
w/o w/

w/o adaptive pooling 7 3 3 3 3 65.9 76.5
w/o reference detectors 3 3 7 7 3 63.5 72.7

w/o guided training 3 3 3 7 3 65.6 76.6
w/o episodic training 7 7 3 7 3 51.2 68.5

w/o orthogonality term 3 3 3 3 7 67.3 75.8
our full model 3 3 3 3 3 67.3 77.8

TABLE III
EFFECT OF DIFFERENT COMPONENTS ON MAP (%) AT IOU=0.5. THE
STUDIED MODEL IS GENDET + FASTER R-CNN. RESULTS OF 5-WAY,

5-SHOT ON THE FIRST CLASS SPLIT OF VOC ARE SHOWN.

variants mAP

share backbone 56.6
w/o adaptive pooling 55.4
w/o guided training 55.3

w/o episodic training 48.5
w/o orthogonality 54.3
stage-wise training 36.3

naïve finetuning 34.2
our full model 57.7

that generalizes well to novel classes. ImageNet [2], which
is a large-scale benchmark for image classification and object
detection with thousands of classes and millions of images,
is an ideal testbed for evaluating few-shot detection methods.
RepMet [16] proposed a few-shot detection benchmark based
on ImageNet, where the first 101 classes (mostly animals
and birds species) from ImageNet’s 1000 classes are used
as base classes for meta training, and 214 classes from the
same concept domain are used as novel classes for meta
testing. In each few-shot detection task, N randomly sampled
support instances and 10 query images for each of the 5
classes are used for evaluation. Three different shot settings
N ∈ {1, 5, 10} are included in this benchmark. For ImageNet,
the backbone is pretrained on COCO [4] as done in [16]. We
use this benchmark for our ablation studies with N = 5 and we
carry out 100 few-shot detection tasks in our testing procedure.
We follow the standard VOC metric and report mean average
precision (mAP) with intersection-over-union (IoU) at 0.5. The
mAP metric is computed after aggregating the detection results
from all 100 tasks.

B. Ablation studies

In Tab. II we verify the effectiveness of different compo-
nents we proposed above for few-shot detection. Comparing
the first and last row, we note that replacing average pooling
with the adaptive pooling effectively suppresses noise of the
support instances, and thus leads to better performance.

If “w/o reference detectors” θ, the whole framework de-
grades to a few-shot detection model only using episodic
training (or meta-learning). When w/o finetuning on novel
classes, due to the absence of training guidance for both gφ
and fψ , the feature extractor gφ cannot learn representations

that are discriminative enough, also the detector generator fψ
cannot generate detectors that match the reference detectors
trained in the large-sample setting. So transferring gφ and
fψ to novel classes will not be as effective as training with
guidance from reference detectors θ. As for w/ finetuning case,
because the generated detectors Ŵ are not strong enough,
which are used to initialize the detectors W for novel classes,
the performance is also lower than “our full model”.

For “w/o guided training”, we do use the reference detectors
θ. However, we only use it to guide the training of gφ but not
that of fψ (the same as setting α = 0). Then the discriminative
ability of feature extractor gφ is largely boosted and thus leads
to higher mAP. However, as the guidance is not applied for
training the detector generator fψ , the generated detectors are
less effective so the mAP is still inferior to “our full model”.

In the case of “w/o episodic training”, during meta training
the detector generator is not optimized directly through the
generated detector loss Ld. Although we can still learn a rea-
sonable detector generator by matching the generated detectors
to the reference detectors, the performance drops dramatically
especially without finetuning due to not simulating the testing
scenario, which verifies the necessity of episodic training.

The variant “w/o orthogonality term” (the same as setting
β = 0) is also inferior w.r.t. with finetuning mAP. As we only
employ the orthogonality in meta testing with finetuning, so it
does not influence the performance of the w/o finetuning case.
During finetuning, novel class detectors W are initialized by
the generated detectors Ŵ , and the number of training samples
is small. As the generated detectors for novel classes may
be similar because different classes (such as two species of
dogs) may have similar appearances, it’s essential to add the
orthogonality constraint to detectors W . In Fig. 4 we visualize
the correlation between detectors of novel classes during
finetuning at the beginning of each epoch (iter), demonstrating
that the regularization loss effectively increases orthogonality
and thus discriminative ability.

iter = 0 iter = 1 iter = 2 iter = 3 iter = 4

Fig. 4. Visualization of the correlation between detectors of different classes
when finetuning. Darker color denotes lower correlation and vice versa.

To be consistent with previous works, we also conduct
ablation studies on the VOC [3] dataset. VOC 2007 and 2012
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TABLE IV
COMPARISONS ON IMAGENET WITH MAP (%) AT IOU=0.5 UNDER VOC’S METRIC.

method model backbone FPN [44] DCN [56] w/o finetune w/ finetune
N=1 5 10 1 5 10

RepMet [16] Faster R-CNN ResNet-101 3 3 56.9 68.8 71.5 59.2 73.9 79.2

GenDet (Ours) FCOS ResNet-50 3 7 55.1 62.4 64.4 59.9 75.0 81.2
Faster R-CNN ResNet-50 7 7 64.8 75.9 77.6 65.7 81.2 85.4

contain 20 categories and tens of thousands of images. Kang
et al. [17] randomly select 5 categories from VOC as the
novel classes and leave the remaining 15 classes as the base
classes. The evaluation is done on three different random class
splits they propose, and each class split is evaluated with
different shot settings N ∈ {1, 2, 3, 5, 10}. The results shown
in Tab. III (5-way 5-shot on the first class split) draw similar
conclusions as those of ImageNet. We also tried “stage-wise
training” similar as in MetaDet [20], i.e., first train the feature
extractor gφ and reference detectors θ with many shots, then
fix them and use sampled few-shot tasks to train fψ with
reference guidance in the second stage. This leads to much
worse performance than “our full model”. We think our end-
to-end training can better overcome the domain-shift problem
from many-shot to few-shot because of joint optimization of
fψ , gφ and θ. Moreover, we provide the result of “naïve
finetuning”, which finetunes the model trained on base classes
with few shots from novel classes. It leads to poor performance
as expected resulting from over-fitting.

TABLE V
COMPARE GENDET+FASTER R-CNN WITH STATE-OF-THE-ART ON VOC
BY MAP (%) AT IOU=0.5 UNDER VOC’S METRIC. THE SUPPORT DATA IS
THE SAME AS THAT PROPOSED BY [17] AND THE RESULTS ARE FOR THE

FIRST CLASS SPLIT.

method backbone N=1 2 3 5 10
Reweight [17] DarkNet-19 14.8 15.5 26.7 33.9 47.2

Meta R-CNN [18] ResNet-101 19.9 25.5 35.0 45.7 51.5
GenDet (Ours) ResNet-50 40.7 48.1 52.5 57.5 62.4

TABLE VI
COMPARE GENDET+FASTER R-CNN WITH STATE-OF-THE-ART ON VOC

BY MAP (%) AT IOU=0.5 UNDER VOC’S METRIC. RESULTS FOR BOTH
BASE AND NOVEL CLASSES ARE REPORTED.

method backbone N=3 10
base novel base novel

Reweight [17] DarkNet-19 64.8 26.7 63.6 47.2
Meta R-CNN [18] ResNet-101 64.8 35.0 67.9 51.5

GenDet (Ours) ResNet-50 68.4 52.5 69.3 62.4

C. Compare with state-of-the-art

Results on ImageNet. To compare fairly and avoid testing
instability, we conduct exactly the same 500 few-shot detec-
tion tasks used by RepMet [16] and the final performance
(mAP@0.5) is computed with the results aggregated from all
the 500 episodes. Tab. IV summarizes the comparison between
GenDet and RepMet. GenDet based on FCOS is inferior to
RepMet in the w/o finetuning case, but is superior to RepMet
remarkably when w/ finetuning. Note that RepMet deploys a
much more powerful backbone ResNet-101 with deformable

convolutional networks [56]. Moreover, GenDet based on
Faster R-CNN outperforms RepMet significantly both w/ and
w/o finetuning. We think that GenDet outperforms RepMet
mainly because of episodic training, showing the necessity of
“training as testing” in few-shot object detection.

Results on VOC. We note that previous works on the VOC
benchmark use different detection models and backbones, i.e.,
Feature Reweighting [17] uses YOLOv2 [7] with DarkNet-
19, Meta R-CNN [18] uses Faster R-CNN with ResNet-
50/101, TFA [19] uses Faster R-CNN with ResNet-101 and
MetaDet [20] uses Faster R-CNN with DarkNet-19/VGG-
16. For fair comparisons, we implement GenDet based on
Faster R-CNN with VGG-16/ResNet-50/101 as the backbone.
Consistent with previous methods [17], [18], [19], [20], we
use the combination of VOC2007 and VOC2012 trainval set
for training on base classes. The support set is chosen from
VOC0712 trainval set and the query set is composed of all the
images from VOC07 test set. As previous methods on VOC
all adopt the w/ finetuning setting, we also report the results of
w/ finetuning. First, we use exactly the same support training
data as [17], [18] for fair comparison and the results are shown
in Tab. V. We further provide the results of both base and
novel classes in Tab. VI. As shown, our method significantly
outperforms [17], [18] in terms of mAP for both base and
novel classes. [17], [18] adopt a class-agnostic detection head
on the class attentive feature maps, while GenDet generates
class-specific detection heads, which give the model more
capability to detect novel classes.

As noted by [19], [20], different support data usually leads
to fluctuated results. So to ensure the testing stability, we
conduct 20 trials for each class split and report the average
mAP. The results are in Tab. VII where the backbone is
pretrained on ImageNet. The same three base/novel class splits
as [17] are used for fair comparisons. Our GenDet significantly
outperforms the other few-shot object detection methods under
various backbones and class splits, showing its effectiveness.
Compared with [19], [20] which learn novel class detectors
from randomly initialized weights, our method finetunes the
generated detectors which are good initializations. The better
starting point makes it more likely to converge to optimal in
a few epochs before overfitting.

Results on COCO. COCO [4] has 80k training images,
40k validation images and 20k testing images from 80 classes,
covering all categories in VOC. In general, 5k images from
validation set are used for evaluation and the left images in the
training and validation set are combined for training, namely
trainval35k. Kang et al. [17] choose the 20 categories from
COCO that also appear in VOC as the novel classes and leave
the remaining 60 classes to be the base classes. Compared with
VOC, COCO is more challenging for detection as there exists
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TABLE VII
COMPARE GENDET+FASTER R-CNN WITH STATE-OF-THE-ART ON VOC BY MAP (%) AT IOU=0.5 UNDER VOC’S METRIC, THE SAME THREE CLASS

SPLITS ARE USED IN DIFFERENT METHODS. ONLY TFA MODELS USE MULTI-SCALE TRAINING AND FEATURE PYRAMID NETWORKS.

method backbone split 1 split 2 split 3
N=1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

Reweight [17] DarkNet-19 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 39.2 19.2 21.7 25.7 40.6 41.3
Meta R-CNN [18] ResNet-101 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1

TFA w/ fc [19] ResNet-101 36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2
TFA w/ cos [19] ResNet-101 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8

MetaDet [20] DarkNet-19 17.1 19.1 28.9 35.0 48.8 18.2 20.6 25.9 30.6 41.5 20.1 22.3 27.9 41.9 42.9
MetaDet [20] VGG-16 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1

GenDet (Ours) VGG-16 30.8 37.2 43.0 46.6 54.3 22.5 23.5 29.1 33.2 43.6 27.1 33.1 37.8 44.3 49.7
GenDet (Ours) ResNet-50 38.5 47.1 52.2 57.7 63.5 26.8 34.0 37.3 42.8 48.3 33.4 40.0 44.3 51.2 56.5

TABLE VIII
COMPARE GENDET+FASTER R-CNN WITH STATE-OF-THE-ART ON COCO BY MAP (%) AT DIFFERENT IOU THRESHOLDS AND OBJECT AREAS UNDER

COCO’S METRIC. ONLY TFA MODELS USE MULTI-SCALE TRAINING AND FEATURE PYRAMID NETWORKS.

method backbone
N=10 30

AP@IoU AP@area AP@IoU AP@area
0.5:0.95 0.5 0.75 S M L 0.5:0.95 0.5 0.75 S M L

Reweight [17] DarkNet-19 5.6 12.3 4.6 0.9 3.5 10.5 9.1 19.0 7.6 0.8 4.9 16.8
Meta R-CNN [18] ResNet-50 8.7 19.1 6.6 2.3 7.7 14.0 12.4 25.3 10.8 2.8 11.6 19.0

TFA w/ fc [19] ResNet-101 10.0 - 9.2 - - - 13.4 - 13.2 - - -
TFA w/ cos [19] ResNet-101 10.0 - 9.3 - - - 13.7 - 13.4 - - -

MetaDet [20] VGG-16 7.1 14.6 6.1 1.0 4.1 12.2 11.3 21.7 8.1 1.1 6.2 17.3
GenDet (Ours) VGG-16 7.3 14.9 6.3 1.4 5.9 13.0 11.4 22.7 10.0 3.2 9.4 19.2
GenDet (Ours) ResNet-50 9.2 17.7 8.8 3.3 7.7 14.6 14.0 26.7 13.2 4.4 12.1 23.3
GenDet (Ours) ResNet-101 9.9 18.8 9.6 3.6 8.4 15.4 14.3 27.5 13.8 4.8 13.0 24.2

TABLE IX
COMPARE GENDET+FASTER R-CNN WITH STATE-OF-THE-ART ON

COCO → VOC WITH MAP (%) AT IOU=0.5 UNDER VOC’S METRIC.

method backbone mAP
Reweight [17] DarkNet-19 32.3

Meta R-CNN [18] ResNet-50 37.4
MetaDet [20] VGG-16 34.0

GenDet (Ours) VGG-16 35.4
GenDet (Ours) ResNet-50 39.4

more small and occluded objects. For COCO benchmark, we
follow the standard evaluation metric on COCO and report
the mAP averaged over different IoU thresholds from 0.5
to 0.95, also the mAP over different object areas. The few-
shot detection tasks are constructed as 20 way, N ∈ {10, 30}
shot tasks. The same as on VOC, GenDet is also based on
Faster R-CNN with different backbones. Tab. VIII shows our
GenDet achieves the best performance, demonstrating it also
generalizes well to the challenging dataset.

Results of Cross Dataset. Considering in practice the base
classes and novel classes may come from different domains,
we also compare the performance with previous works in the
COCO → VOC cross dataset setting with N = 10. The meta
model is trained with COCO images of the 60 COCO classes
which are absent in VOC, while to be tested on the VOC
images of the 20 VOC classes. Tab. IX shows that GenDet
generalizes best in the cross dataset setting.

V. CONCLUSIONS

In this work we propose GenDet, a detector generation
model for few-shot object detection. We train the detector
generator by sampling few-shot detection tasks simulating the
testing scenario. An adaptive pooling module is proposed to

aggregate information from multiple shots by suppressing the
noisy instances. The reference detectors which are trained in
the conventional way are introduced to guide the training of
the detector generator. Our detector generator and reference
detectors can be trained simultaneously in a single stage,
benefited from end-to-end training. Moreover, the generated
detectors are constrained to be orthogonal to each other for
better generalization. With extensive experiments on different
benchmarks, we show the superiority of our proposed method
over previous state-of-the-arts.
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