Hospital bed capacity and usage across secondary healthcare providers in England during the first wave of the COVID-19 pandemic: a descriptive analysis

Bilal Akhter Mateen,1,2,3 Harrison Wilde,4 John M Dennis,5 Andrew Duncan,2,6 Nick Thomas,5,7 Andrew McGovern,5,7 Spiros Denaxas,2,3,8 Matt Keeling,9 Sebastian Vollmer

ABSTRACT

Objective In this study, we describe the pattern of bed occupancy across England during the peak of the first wave of the COVID-19 pandemic.

Design Descriptive survey.

Setting All non-specialist secondary care providers in England from 27 March 2020 to 5 June 2020.

Participants Acute (non-specialist) trusts with a type 1 (i.e., 24 hours/day, consultant-led) accident and emergency department (n=125), Nightingale (field) hospitals (n=7) and independent sector secondary care providers (n=195).

Main outcome measures Two thresholds for ‘safe occupancy’ were used: 85% as per the Royal College of Emergency Medicine and 92% as per NHS Improvement.

Results At peak availability, there were 2711 additional beds compatible with mechanical ventilation across England, reflecting a 53% increase in capacity, and occupancy never exceeded 62%. A consequence of the repurposing of beds meant that at the trough there were 8.7% (8508) fewer general and acute beds across England, but occupancy never exceeded 72%. The closest to full occupancy of general and acute bed (surge) capacity that any trust in England reached was 99.8%. For beds compatible with mechanical ventilation there were 326 trust-days (3.7%) spent above 85% of surge capacity and 154 trust-days (1.8%) spent above 92%. 23 trusts spent a cumulative 81 days at 100% saturation of their surge ventilator bed capacity (median number of days per trust=1, range: 1–17). However, only three sustainability and transformation partnerships (aggregates of geographically co-located trusts) reached 100% saturation of their mechanical ventilation beds.

Conclusions Throughout the first wave of the pandemic, an adequate supply of all bed types existed at a national level. However, due to an unequal distribution of bed utilisation, many trusts spent a significant period operating above ‘safe-occupancy’ thresholds despite substantial capacity in geographically co-located trusts, a key operational issue to address in preparing for future waves.

INTRODUCTION

The ability of hospitals to cope with large influxes of patients, either due to a pandemic illness or seasonal increases in respiratory disease exacerbations, is in part dictated by the availability of beds.1 Since 1987, when formal reporting of the number of hospital beds began in the UK, there has been a sustained decline in the number of available beds across the National Health Service (NHS).2 In recent years, this issue has garnered more attention due to the annual ‘winter bed crisis’,3 4 where the end of the calendar year heralds a surge in emergency admissions often resulting in hospitals operating well above quality and operational performance tipping points, that is, 85% or 92% total bed occupancy.3–5 The saturation of hospital beds is not only problematic through its impact on the ability of the workforce to
deliver high-quality care, but additionally the bottle-necking of the emergency care workflow has been shown to contribute to suboptimal outcomes for patients, including increased numbers of healthcare-acquired infections and increased mortality.

These concerns about the NHS’ ability to cope with large influxes of patients on a new level of significance in early 2020, when the WHO formally declared COVID-19 a pandemic illness, due to its virulence and the magnitude of the disease’s impact globally. As early reports from China were published, it became apparent that a relatively large proportion of individuals who contracted COVID-19 required admission to hospital, for example due to new oxygen requirements, sepsis, acute respiratory distress syndrome and even multiorgan dysfunction. Forecasts of the potential number of people requiring hospital admission and mechanical ventilation across the UK suggested that the baseline capacity of the NHS would be insufficient. In an effort to ensure sufficient capacity the British government instituted a series of policies, including facilitating the discharge of individuals who had been delayed due to non-medical reasons in an effort to unlock capacity, cancelling all non-urgent clinical work, opening large field hospitals (ie, the Nightingale hospitals) and increasing mechanical ventilator availability for use in clinical areas repurposed to manage patients requiring higher-acuity care.

The UK started making significant strides towards rolling back its non-pharmacological interventions in June 2020, including reopening schools and planning for the discontinuation of shielding for vulnerable people, signalling an end to the first wave of the pandemic. Following these changes, there was the potential for a second wave of COVID-19 related admissions at the end of 2020. Understanding regional differences in hospital capacity is fundamental to informing the UK’s response to the potential second wave and any future epidemics, as well as for elucidating how to safely wind down repurposed surge capacity, such as operating theatres to allow for the bed to be occupied, so as to prevent counting beds that could not accommodate a new patient. It is unclear how well the NHS as a whole managed to respond to the additional demand for beds over the recent months. In this study, we sought to describe the pattern of bed occupancy in hospitals across England during the first wave of the COVID-19 pandemic.

METHODS

Primary data source

Data were accessed from the daily situation reports (‘SitReps’, covering the previous 24 hours) provided to the Scientific Pandemic Influenza Group on Modelling by NHS England on behalf of all secondary care providers. All NHS acute care providers, independent sector care providers and field hospitals in England submitting information to the daily situation reports were eligible for inclusion.

Study population

The data are presented in the context of several different units of secondary care provision: hospitals/sites, trusts, sustainability and transformation partnerships (STPs; aggregates of geographically co-located trusts), regions and the whole of England (ie, national), where each is an aggregate of the preceding unit (the structure of UK care providers is explained in the online supplemental material).

Inclusion and exclusion criteria

Exclusions were applied at the trust level for NHS-specific care providers. Exclusion criteria were as follows: acute specialist trusts: women and/or children (n=4), neurology and ophthalmology (n=2), heart and lung (n=3), orthopaedic, burns and plastics (n=4), and cancer (n=3). The remaining care providers were grouped into three categories and analysed separately: (1) acute (non-specialist) trusts with a type 1 (ie, 24 hours/day, consultant-led) accident and emergency department (n=125); (2) Nightingale (field) hospitals (n=7); and (3) independent sector providers (n=195).

Recruitment period

Data were available from 27 March 2020 (the first available SitRep) to 5 June 2020 inclusive.

Recorded information

The data specification comprised resource utilisation and capacity-specific information, including the number of beds at each trust, stratified by several factors of interest, including acuity and COVID-19 ascertainment (further defined in online supplemental material). Notably, beds were only recorded as being available if they were ‘funded’ (ie, there was adequate staffing and resources for the bed to be occupied), so as to prevent counting of beds that could not accommodate a new patient. Bed acuity was organised into general and acute (G&A), beds compatible with non-mechanical ventilation and beds compatible with mechanical ventilation. Occupancy is calculated based on the status of each bed at 08:00 each day, and then later separated by the proportion that had a positive COVID-19 test; there was no available information on the temporal relationship between admission and a positive test and thus these data reflect some combination of community-acquired and nosocomial COVID-19.

Reporting fields changed on 27 April 2020, with several additional columns being added, which included specific fields for level 2 (HDU: High Dependency Unit) and level 3 (ICU: Intensive Care Unit) beds. The impact of these changes is detailed in the online supplemental material. However, one crucial outcome was that it became apparent the definition of critical care beds used prior to 27 April 2020 was not consistent with prior reporting practices of only including level 2 (HDU) and level 3 (ICU) beds, as the newly reported values did not equal...
the simultaneously reported critical care values. As such, any results pertaining to critical care, HDU and ICU are reported separately in the online supplemental material.

NHS England reports trust-level data, whereas we additionally attempted to disaggregate this information into the individual hospitals that the trusts comprise. Not all of the trusts were amenable to disaggregation from the trust-level data into independently reported sites in the available extracts, resulting in a final sample of 173 unique hospital sites, comprising 91.7% of the total number of ventilated beds and 81.4% of the G&A beds when compared with trust level. The change in data reporting introduced on 27 April 2020 also resulted in variation in information capture; for data prior to 27 April, the results available reflect 89.6% of all mechanical ventilator beds and 86.9% of G&A beds, whereas for data from 27 April onwards the results reflect 93.0% of all mechanical ventilator beds but 77.0% of G&A beds.

Outcome
The primary outcomes of interest were bed availability and bed occupancy by patients with and without COVID-19, for each level of secondary care provision, that is, hospital, trust and STP (aggregates of geographically co-located trusts). Different ‘safe occupancy’ thresholds were used to interpret the results: 85% as per the Royal College of Emergency Medicine and 92% as per NHS Improvement. We also compared occupancy against baseline bed occupancy (see online supplemental material for definitions) and 100% of surge capacity.

Statistical analysis
We generated and reported descriptive summaries (eg, medians, ranges, counts, proportions) of the data. We reported absolute numbers for hospital, trusts and STPs attaining specific occupancy thresholds. In light of the discordant critical care and HDU/ICU values, this analysis was handled and reported separately (see online supplemental material). To capture the temporal aspect of the information available, the number of hospital-days, trust-days and STP-days spent above hospital baseline capacity and surge capacities of 85%, 92% and 100% is also reported. Full details on the quality control procedures are reported in online supplemental SFigures 1 and 2. Details on aggregation and disaggregation of geographical information are provided in online supplemental STable 1 and 2. Analyses were carried out in R, and figures were generated using the ggplot2 package. Maps were acquired from the UK’s Office for National Statistics Open Geography Portal.

Patient and public involvement
No patients were involved in the design of the study, interpretation of the results or drafting of this manuscript.

RESULTS
National mobilisation
During the first wave of the pandemic, the NHS repurposed general/acute beds into those suitable for higher acuity patients (ie, HDU/ICU) and patients requiring mechanical ventilation. Available ventilated bed capacity peaked at an additional 2711 beds, a 53% increase from a baseline of 4123 beds. Ventilated beds occupancy never exceeded 62% of this capacity at a national level (figure 1), and the proportion of occupied beds which contained patients with COVID-19 fluctuated between 30.4% and 76.0% over the course of the first wave; however, there were notable regional differences in COVID-19-specific demand (figure 2, online supplemental SFigure 3). Similar patterns were observed in critical care/HDU and ICU beds (online supplemental SFigure 4). A consequence of the repurposing of beds
compared with the average occupancy from January to March 2020. Total bed occupancy never exceeded 72% nationally (figure 1). Data were relatively complete over the observation period (from 27 March to 5 June 2020), with no unavailable records for COVID-19-specific occupancy across G&A and mechanical ventilation compatible beds and less than 10% for non-COVID-19/uncorrelated beds (see online supplemental material).

Occupancy relative to baseline capacity

Out of the 125 trusts (aggregates of hospitals), 3 trusts (2.4%) at some point during the first wave were operating above their baseline bed availability for G&A beds (124 trust-days (1.4% of the total 8738 days at risk); median number of days per trust=36 days (range: 30–58); online supplemental SFigure 5). For beds compatible with mechanical ventilation, 87 trusts (69.6%) at some point during the first wave were operating above their baseline bed availability (2456 trust-days (28.1% of the total at risk); median number of days per trust=24 days (range: 1–61); online supplemental SFigure 6). Similar results to that of mechanical ventilation compatible beds were seen for critical care/HDU and ICU bed occupancy (see online supplemental material, SFigure 7 and 8).

Occupancy relative to surge capacity

Table 1 summarises the number of hospitals, trusts and STPs operating above the prespecified thresholds for ‘safe occupancy’ and details the duration (ie, median number of days) that each spent above the designated thresholds.

Hospital-level occupancy

Of the total 11,851 English hospital-days at risk over the study period, 494 hospital-days (4.17% of the total days at risk) were at or above 85% of G&A bed (surge) capacity, 110 hospital-days (0.92%) were at or above 92% of G&A bed (surge) capacity, and only 10 were spent at 100% of G&A surge capacity (figure 3). Similarly, for beds

Table 1 Number of hospital/trusts/STPs at each occupancy threshold for different bed types

<table>
<thead>
<tr>
<th>Bed type</th>
<th>Organisational unit</th>
<th>>85% n (%)</th>
<th>Median number of days at or above threshold (range)</th>
<th>>92% n (%)</th>
<th>Median number of days at or above threshold (range)</th>
<th>100% n (%)</th>
<th>Median number of days at or above threshold (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General and acute</td>
<td>Hospital/site (n=173)</td>
<td>56 (32.4)</td>
<td>6 (1–45)</td>
<td>19 (11.0)</td>
<td>3 (1–19)</td>
<td>1 (0.6)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Trust (n=125)</td>
<td>30 (24.0)</td>
<td>5 (1–46)</td>
<td>14 (11.2)</td>
<td>3 (1–13)</td>
<td>0 (0.0)</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>STP (n=42)</td>
<td>2 (4.8)</td>
<td>10 (3–17)</td>
<td>2 (4.8)</td>
<td>1 (1–1)</td>
<td>0 (0.0)</td>
<td>–</td>
</tr>
<tr>
<td>Mechanical ventilation</td>
<td>Hospital/site (n=173)</td>
<td>91 (52.6)</td>
<td>4 (1–48)</td>
<td>72 (41.6)</td>
<td>3 (1–48)</td>
<td>52 (30.0)</td>
<td>2 (1–48)</td>
</tr>
<tr>
<td></td>
<td>Trust (n=125)</td>
<td>58 (46.4)</td>
<td>3 (1–27)</td>
<td>40 (32.0)</td>
<td>2 (1–17)</td>
<td>23 (18.4)</td>
<td>1 (1–17)</td>
</tr>
<tr>
<td></td>
<td>STP (n=42)</td>
<td>10 (23.8)</td>
<td>2 (1–11)</td>
<td>5 (10.4)</td>
<td>1 (1–6)</td>
<td>3 (7.1)</td>
<td>1 (1–2)</td>
</tr>
</tbody>
</table>

STP, sustainability and transformation partnership.

compatible with mechanical ventilation there were 586 hospital-days (4.94%) spent above 85% of surge capacity, 320 hospital-days (2.70%) were spent above 92%, and 226 hospital-days (1.9%) were spent at 100% occupancy (see figure 4). Summaries of the size and geographical locations of hospitals stratified by saturation are in online supplemental STable 3.

Trust-level bed occupancy
Over the study period, there were 287 trust-days (3.3% of the total days at risk) where G&A bed occupancy exceeded 85% of surge capacity and 57 trust-days (0.7%) were at or above 92% of bed (surge) capacity. The closest to capacity any trust in England reached was 99.8% for G&A beds. However, for beds compatible with mechanical ventilation there were 326 trust-days (3.7%) spent above 85% of surge capacity and 154 trust-days (1.8%) spent above 92%. There were 23 trusts that reached 100% saturation of their mechanical ventilator bed capacity (figure 5, online supplemental SFigure 9).

STP-level bed occupancy
Across the 42 STPs (aggregates of geographically co-located trusts), there were 20 STP-days (0.7% of the total days at risk) where G&A bed occupancy exceeded 85% of surge capacity. The highest any STP reached for G&A bed occupancy was 92.7%. For beds compatible with mechanical ventilation, there were 35 STP-days (1.2%) where occupancy exceeded 85% of surge capacity, 11 STP-days (0.4%) in excess of 92% occupancy and 4 STP-days (0.1%) at full occupancy (all of which were for STPs outside London: (1) Somerset, (2) Suffolk and North East Essex, and (3) Shropshire, Telford and Wrekin; online supplemental SFigure 10). Figure 6 illustrates the number of STPs operating at each distinct occupancy threshold as a proportion of baseline and actual surge capacity. The full time-lapse for G&A (online supplemental video 1) and ventilator bed (online supplemental video 2) occupancy over the period of interest can be found in the online supplemental material. A similar pattern was seen in the context of critical care/HDU and ICU beds across the STPs (online supplemental SFigure 7 and 8).

Field (Nightingale) hospital occupancy
Of the reported bed capacity achievable through opening the Nightingale hospitals, at peak occupancy only 1.23% of the theoretical maximum were exceeded 85% of surge capacity and 57 trust-days (0.7%) were at or above 92% of bed (surge) capacity. The closest to capacity any trust in England reached was 99.8% for G&A beds. However, for beds compatible with mechanical ventilation there were 326 trust-days (3.7%) spent above 85% of surge capacity and 154 trust-days (1.8%) spent above 92%. There were 23 trusts that reached 100% saturation of their mechanical ventilator bed capacity (figure 5, online supplemental SFigure 9).
being used (table 2). This equates to 618 bed days for patients with COVID-19 requiring mechanical ventilation and 1483 bed days for all other types of intervention for patients with COVID-19 (ie, oxygenation, non-invasive respiratory support, non-respiratory organ support and so on).

Independent sector care providers

Variations in reporting meant that the number of providers reporting each day varied, with a median of 181 providers (range: 172–187). At peak occupancy, no more than 134 independent sector beds were occupied with patients who were confirmed COVID-19-positive. With regard to patients without COVID-19, at peak occupancy there were 1350 people in independent sector beds, representing a peak saturation of 18.7% (based on the total number of beds reported during contractual negotiations). In summary, there were 3360 bed days for patients with confirmed COVID-19 accommodated by the independent sector (86 mechanical ventilator bed days, 104 non-invasive ventilation bed days and 3170 other bed days) and 53,937 bed days for patients without COVID-19 (2,771 mechanical ventilator bed days, 2,046 non-invasive ventilation bed days and 49,120 other bed days) between 2 April and 5 June across England.

DISCUSSION

This national study of hospital-level bed occupancy provides unique insight into the impact of COVID-19 on bed-specific resource utilisation across an entire country. Our analysis suggests that the response of the NHS and British government to COVID-19 was sufficient to alleviate early concerns regarding the number of mechanical ventilators and critical care beds at a national level; however, local variation in demand (ie, regional variation in COVID-19 prevalence) still meant that many trusts reached 100% capacity for both. Moreover, examining occupancy in the context of different organisational units (ie, trust level vs STP level) suggests that the higher order networks (ie, STPs) were not efficiently used to offload disproportionately impacted trusts, as it was theoretically possible to have 95.1% fewer trust-days at 100% mechanical ventilator bed capacity assuming load was better distributed. On the other hand, despite a reduction in overall capacity, G&A bed occupancy levels relatively infrequently reached ‘unsafe’ levels, even at the individual hospital level. This in part may explain why the field hospitals and independent sector care provider beds were never substantially used. Only a very small fraction of the theoretical maximum field hospital bed capacity was operationalised (1.23%). Similarly, despite signing a 14-week block contract with all of the major independent sector care providers valued at £235 million, these beds too remained largely unoccupied, with less than 24% of the theoretical maximum bed days for established

<table>
<thead>
<tr>
<th>Nightingale hospital location</th>
<th>Occupied beds at peak (n)*</th>
<th>Maximum operational beds (n)*</th>
<th>Maximum theoretical capacity (beds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>London (Excel Centre)</td>
<td>66</td>
<td>112</td>
<td>4000</td>
</tr>
<tr>
<td>Manchester (Convention Centre)</td>
<td>47</td>
<td>72</td>
<td>1000</td>
</tr>
<tr>
<td>Birmingham (National Exhibition Centre)</td>
<td>0</td>
<td>0</td>
<td>2000</td>
</tr>
<tr>
<td>Bristol (University of West England)</td>
<td>NA</td>
<td>NA</td>
<td>1000</td>
</tr>
<tr>
<td>Washington (Centre of Excellence for Sustainable Advanced Manufacturing)</td>
<td>NA</td>
<td>NA</td>
<td>450</td>
</tr>
<tr>
<td>Harrogate (Convention Centre)</td>
<td>0</td>
<td>0</td>
<td>500</td>
</tr>
<tr>
<td>Exeter (Westpoint Arena)</td>
<td>NA</td>
<td>NA</td>
<td>200</td>
</tr>
</tbody>
</table>

*Several hospitals were formally opened, but never reported an occupied bed, as such they did not appear in the SitRep data set (denoted by NA in the table). Those that were in the data set but had no patients are denoted by ‘0’.

NA, not available; SitRep, situation report.
ventilators (ie, not including the 1012 theatre-specific mechanical ventilators) having been used.

Context
Initial estimates suggested that an additional 30000 mechanical ventilators would be necessary to accommodate the impact of the COVID-19 pandemic. These estimates were later updated to just 18000 mechanical ventilators, from an estimated baseline of 8000 across the UK.\(^2^9\) It is difficult to determine the accuracy of these projections, as they were made in the absence of the impact of non-pharmacological interventions. However, the results of our study suggest that, at the population level, UK-based models of ventilator and bed resource utilisation which integrated the impact of non-pharmacological interventions were actually remarkably accurate.\(^1^6\) \(^3^0\) Arguably the most influential modelling study was that of the Imperial MRC (Medical Research Council) Centre for Global Infectious Disease Analysis group, where the authors clearly illustrate that with full ‘lockdown’ (ie, the suite of non-pharmacological interventions that were eventually instituted) critical care bed capacity would not be overwhelmed.\(^1^6\) The nuance that this modelling study lacked was that it failed to explicitly incorporate the impact of unequal distribution of burden, which manifested in our data as specific hospitals and trusts reaching full occupancy, despite the fact that at the national level there were a substantial number of unoccupied beds.

This retrospective analysis also highlights some of the early incorrect assumptions made about the UK’s baseline resource availability. For example, in contrast to ministerial statements suggesting that there were approximately 8000 ventilators in the UK prior to the pandemic,\(^2^9\) our results identified only 4123 operational beds compatible with mechanical ventilation on the first day of reporting in England. Even after acknowledging that our value does not account for the devolved nations (Wales, Scotland and Northern Ireland), it is unlikely that the initial figures reported by members of the parliament truly reflected operational capacity, as that would suggest only 50% of such equipment was in England, despite it representing 84% of the UK population. Interestingly, the absolute increase in ventilator numbers due to government incentives (eg, the UK’s Industrial Ventilator Challenge) is much more similar to our reported results.

Strengths and limitations
There are several strengths to this study. For example, the use of an administrative (ie, ‘SitRep’) data that are a statutory collection by NHS England, via a well-established reporting mechanism that has been exploited for research,\(^3^1\) confers robustness to the data. One example of how this robustness manifested is, unlike other attempts to collect data at a national level to inform the COVID-19 response plan in the UK,\(^3^2\) the degree of missingness in the data used in this study was minimal (see online supplemental material). Moreover, in light of the unique access to the raw ‘SitRep’ data, we have been able to not only present our results at the trust level, to which previous endeavours have been limited,\(^3^3\) but rather have been able to present information at a much more granular layer (ie, hospital/site level), thus providing a much richer understanding of resource utilisation that is less prone to the diluent effects of higher level geographies. Finally, a further strength of this study is the relative simplicity of the analysis; there are no complex statistical methods used as the descriptive summaries presented are sufficient to describe the experiences of nationalised (single-payer) health system in a high-income economy during the first wave of the COVID-19 pandemic.

Notably though, there are also several limitations to the data set and our analysis. Principally we have no information on individual clinician and patient behaviour that will have inevitably influence these occupancy rates and thus cannot comment on these factors. Second, there are limitations inherent to the ‘SitRep’ data. In particular, data were not available during February and early March, during which some early ‘bed mobilisation’ was likely carried out, and thus our observation period does not cover the entirety of the first wave (however, we believe it is unlikely that this undermines the major findings of this study). Moreover, changes introduced in ‘SitRep’ data collection halfway through the reporting period limited our ability to investigate critical care bed occupancy, which was the third bed-specific potential concern identified by forecasting experts. The hospital-level results should also be interpreted with caution as they are an incomplete representation of the core trust-level information and thus may not truly reflect the exact position of each organisation; for example, the trust corresponding to the single site that achieved 100% G&A occupancy was never itself at 100% total occupancy. On a related note, the core weakness of the ‘SitRep’ data is that data are presented as a daily snapshot (at 08:00) and therefore are unable to capture the nuances of the hospital throughput; in essence, both under-reporting and over-reporting of occupancy are possible using this method. As such, any marginal results where hospitals are only just over one of the ‘safe occupancy-level’ thresholds should be interpreted with caution as they could represent reporting artefacts. Moreover, the use of the occupancy thresholds reflects a limitation of our analysis, in that a proxy for adverse outcomes had to be used given that the necessary information was not readily available to directly explore the relationship between occupancy and patient-level outcome. Finally, the results of this study may not be generalisable to other countries given that it is specific to the UK National Health System infrastructure and reporting systems; for example, it is difficult to draw comparisons with other countries as UK-specific factors such as reporting definitions are likely to mediate the hypothesised occupancy–mortality risk relationship, which will inevitably limit the ecological validity of these results in other geographical settings.
Implications for policymakers and clinicians

This study illustrates the potential for near real-time results reporting by which to determine the need for and the effectiveness of government policies introduced to address resource utilisation-specific issues as a consequence of the COVID-19 pandemic. For example, due to an unequal distribution of the resource utilisation burden across England, many trusts spent a significant period of time operating above ‘safe-occupancy’ thresholds, despite the fact that in the vast majority of circumstances there was relief capacity in geographically co-located trusts (ie, at the STP level). Out of the 81 trust-days spent at 100% saturation of their mechanical ventilation beds (which pertains to 23 trusts reaching this threshold), on all but 5 days there was spare capacity at the corresponding STP level, which would have resulted in only 4 trusts reaching 100% saturation at any point (online supplemental SFigure 11). This reflects a key operational issue for policymakers to address in preparing for a potential second wave, and would have been identifiable if the SitRep data had been used for now-casting. Moreover, other policies for which these results may be relevant include the creation of the Nightingale (field) hospitals and independent sector network partnership. Our results suggest that the early investment and the creation of an operational field hospital and independent sector network may yield more overtly positive results in the winter, when G&A occupancy levels regularly exceed 92% 54; however, during the first wave of the pandemic they were underutilised.

CONCLUSION

Using administrative data submitted by all secondary care organisations in England, we can conclude that at the national level there was an adequate supply of all bed types throughout the first wave of the COVID-19 pandemic. However, the burden of need was not equally distributed, and thus in many cases local demand exceeded the supply of beds, especially where it concerned mechanical ventilation. Although several of the policies introduced by the government, both historical (ie, STPs) and pandemic-specific (eg, the independent sector block contract), could have potentially addressed this issue, there is evidence that these interventions were not optimally used. As such, we hope that this paper acts as exemplar for how routinely collected administrative data can be used to evaluate policy interventions, especially in the context of the COVID-19 pandemic, as well as highlighting the need for locally relevant (in lieu of national or regional summaries), near-real-time information on service use for operational decision making.

Author affiliations
1 Warwick Medical School, University of Warwick, Coventry, UK
2 The Alan Turing Institute, London, UK
3 Institute of Health Informatics, University College London, London, UK
4 Department of Statistics, University of Warwick, Coventry, UK
5 The Institute of Biomedical & Clinical Science, University of Exeter, Exeter, UK
6 Department of Statistics, Imperial College London, London, UK
7 Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
8 Health Data Research UK, London, UK
9 The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University of Warwick, Coventry, UK

Twitter Bilal Akhter Mateen @Bilal_A_Mateen, Harrison Wilde @HarrisonDWilde, John M Dennis @john_den_ and Spiros Denaxas @SpirosDenaxas

Acknowledgements
We thank NHS Improvement and NHS England for providing access to the SitRep data. We also thank Dr Bu’Hussain Hayee for sense-checking the final draft.

Contributors
Based on the CRediT taxonomy, the authors of this study made contributions to this manuscript in the following ways: conceptualisation (BAM and SV); data curation (HW and SV); methodology (HW, BAM and SV); formal analysis (HW, BAM, JMD, SD and SV); project administration and supervision (BAM, MK and SV); visualisation (HW, BAM, JMD, NT, AM, AD and SV); resources (SV and MK); established data access (MK); writing the original draft (BAM and HW); and reviewing and editing the draft (all authors). The corresponding author and the senior author (SV) had full access to all data and attest to the integrity of the analysis. The decision to publish for publication was agreed by all authors. BAM and SV act as guarantors of the work as presented.

Funding
The study was funded by UK Research and Innovation. BAM, SD and SV are supported by the Alan Turing Institute (EPSRC grant EP/N510129/1). JMD is supported by an Independent Fellowship funded by Research England’s Expanding Excellence in England (E3) fund. SV is supported by the University of Warwick IAA funding. HW is supported by the Feuer International Scholarship in Artificial Intelligence. JMD, NT and AM are supported by the NIHR Exeter Clinical Research Facility.

Map disclaimer
The depiction of boundaries on this map does not imply the expression of any opinion whatsoever on the part of BMJ (or any member of its group) concerning the legal status of any country, territory, jurisdiction or area or of its authorities. This map is provided without any warranty of any kind, either express or implied.

Competing interests
AM declares previous research funding from Eli Lilly and Company, Pfizer and AstraZeneca. SV declares funding from IQVIA. All other authors declare no competing interests.

Patient consent for publication
Not required.

Ethics approval
Data used in this study were made available through an agreement between the University of Warwick and the Scientific Pandemic Influenza Group on Modelling (SPI-M), which were acting on behalf of the British Government. The study was reviewed and approved by the Warwick BSREC (BSREC 120/19-20).

Provenance and peer review
Not commissioned; externally peer reviewed.

Data availability statement
Data may be obtained from a third party and are not publicly available. Trust-level data will eventually be published by NHS England as a freely accessible data resource, but outputs have been delayed by the COVID-19 pandemic. For expedited or more granular access, requests will need to be made directly to NHS England (contact via england.dailysitrep@nhs.net). All codes for this study are available on request.

Supplemental material
This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (but including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access
This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID iDs
Bilal Akhter Mateen http://orcid.org/0000-0003-4423-6472

REFERENCES

Supplementary Material

Supplementary Methods

Representativeness of Sample
Using the 2nd of May (randomly chosen) as an exemplar date, the non-specialist acute trusts to which we have restricted this survey represented 6,359 of the 6,866 beds (i.e. 92.6%) compatible with mechanical ventilation across England (comprising all institutions reporting to SitRep). Similarly, for all bed types, our sample represents 92.4% (i.e. 98,882 or the total 106,981 across England).

Organizational Units of Healthcare Provision
Although hospitals are relatively self-explanatory, the remaining units may require further context for readers unfamiliar with the organization structure utilized in the UK, as such, the following are brief summaries of the higher-order units of healthcare provision. Trusts are the core functional unit of hospital-based (i.e. secondary care provision in England. They represent the first-level of aggregation above individual sites/hospitals, i.e. a trust is a collection of 1 or more geographically co-located hospitals which for specific administrative reasons operate as a single entity, although individual hospitals retain differing degrees of financial and operational autonomy depending on the specific trust structure. STPs are the aggregated unit of trusts, in combination with other units of healthcare provision, such as Clinical Commissioning Groups which administer the portion of the healthcare budget allocated to a specific geographic locale. There are 42 STPs each mapped to a specific health-geography ‘footprint’, and their express purpose was to deliver improvements pertaining to efficacy of services and integration of geographically co-located care providers.[35] The STPs are then mapped to 7 distinct geographical regions across England.

COVID-19 Status Recording
Data reported with reference to COVID-19 status, for example the number of general and acute beds occupied by individuals with the infection, refers to those whom had a confirmed positive result from a reverse transcriptase polymerase chain reaction (PCR) of nasopharyngeal and/or oropharyngeal swab.[36] PCR was the only available testing method during the study period. Although national testing policy changed throughout the study period, all people for whom there was a suspicion of COVID-19 infection and who were admitted to hospital were tested, and potentially re-tested multiple times if the initial results were negative but clinical suspicion remained high (recorded as suspected COVID; for the purposes of the subsequent analysis ‘confirmed’ and ‘suspected’ were treated as one group due to the relatively small numbers reported for the latter).

Historical Baselines for Bed Availability
Baseline data comprised: 1) the average number of general and acute (G&A) beds available between January-March 2020, sourced from previously published routine situation report (SitRep) data;[37] 2) the number of critical care beds prior to the first reported case of COVID-19 in the UK, i.e. the value reported on the 30th January 2020 Critical Care SitRep;[38] and similarly to previous modelling studies was used for the baseline availabilities of HDU / ITU, critical care and ventilated beds;[30] 3) the maximum theoretical capacity for field hospitals was based on official government press releases;[39,40] and, 4) independent sector provider baseline capacity extracted from appendix 1 of the NHS England documentation confirming the 14 week block contract with the Independent Healthcare Providers Network.[28] Baselines were available for all of the trusts from the sources mentioned above and was propagated through into the STP and Regional datasets alongside aggregation of other values. Baseline bed numbers were not available for site level data. The choice of the period prior to the first wave of the pandemic instead of the historical baseline from 12 months prior was informed by two important piece of information: 1) the UK has experienced a gradual downward trend in bed numbers [1], and thus to be able to use the comparable period from 2019 we would have required an adjustment for that trend to produce a realistic baseline (there was a chance that we would have hypothesized there being more beds than were created after the first few weeks of mobilization by over-estimating the baseline number without this correction); 2) we deemed that use of the exact number of beds available at the time of operational planning (i.e. in February/early march) had greater ecological validity, as this was about reflecting the change from what we know was available rather than an abstracted version of what might have existed relative to similar periods in previous years.

Quality Control
All of the data was acquired through the daily site reports provided by NHS-Improvement & NHS England. These reports were loaded and appended sequentially with checks to ensure consistency in headings and data composition. The data spanned multiple sheets; these sheets were joined using Hospital, Trust and STP level
codes where appropriate. In some cases it was necessary to resort to using site names where no codes were present on the sheets containing hospital-level information regarding general and acute and critical care bed availability and occupancy. It was immediately apparent that extracting comprehensive site-level data from these records was non-trivial and for reasons discussed later, we maintain two datasets moving forward: one at site-level and one at trust-level that is used to aggregate to STP, Regional and Total figures as well.

Bed availability and total occupancy was recorded directly for G&A and critical care beds, alongside percentages of covid-confirmed occupants allowing for the calculation of a covid / non-covid / unoccupied breakdown for the G&A beds only (due to discrepancies in the definition of HDU / ITU and critical care beds, the percentage occupancy for critical care beds often resulted in impossible values of over 100%; it was decided to forego calculating a covid-breakdown for these beds due to how prolific these inconsistencies and issues were). For all of the other bed types, data was recorded in a different way. The number of covid positive patients (and in some cases covid-suspected patients), non-covid patients and the remaining unoccupied beds were recorded, allowing for total occupancy and availability to be calculated through simple transformation of these columns.

There are two key dates and several more minor milestones in the period we have data for (26th March to 5th June) where significant, non-trivial changes occurred in the site report structure and content. Prior to April 1st there was no information on bed availability beyond G&A and Critical Care beds; only the number of covid-positive patients were recorded for each type of bed. After the 1st of April, more granular bed availability was provided along with the means to work out the covid/non-covid breakdown of occupancy for Ventilated beds. From the 27th April onwards similar breakdowns and availability were recorded for HDU / ITU, IDU and most other types of bed at a site-level.

After loading in the data and accounting for the above described changes to its composition, the trust-level data used for the majority of our analysis had:
- 8.7% of Ventilated bed non-covid and unoccupied numbers missing across all records (no missing records for covid occupancy)
- No missing records for G&A, Critical care bed availability and occupancy
- No missing records for HDU / ITU after April 26th, otherwise 45.0%
- All other columns containing information regarding the hospital, trust, etc. were complete

Both datasets were filtered to remove children’s hospitals, mental health hospitals and other sites / trusts that were not relevant to the analysis. STP linkage data was acquired via NHS Digital’s library of public datasets source: https://digital.nhs.uk/services/organisation-data-service/data-downloads/other-nhs-organisations and augmented to include populations within STPs to facilitate our “beds-per-capita” figures (values were scrapped manually from the NHS England website, source: https://www.england.nhs.uk/integratedcare/stps/view-stps/). It was found that 7 trust codes were duplicated across 2 STPs; it was inappropriate to double count them so they were arbitrarily assigned to one of the STPs. The following table contains the STP and Trust code pairs that were chosen / removed from the linkage data to ensure a one-to-one mapping:

<table>
<thead>
<tr>
<th>Trust Code</th>
<th>STP Code (Assigned)</th>
<th>STP Code (Removed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDU</td>
<td>QRL</td>
<td>QNQ</td>
</tr>
<tr>
<td>RFS</td>
<td>QJ2</td>
<td>QF7</td>
</tr>
<tr>
<td>RK9</td>
<td>QJK</td>
<td>QT6</td>
</tr>
<tr>
<td>RMC</td>
<td>QOP</td>
<td>QHM</td>
</tr>
<tr>
<td>RNN</td>
<td>QE1</td>
<td>QHM</td>
</tr>
<tr>
<td>RVR</td>
<td>QXU</td>
<td>QWE</td>
</tr>
<tr>
<td>RVY</td>
<td>QYG</td>
<td>QE1</td>
</tr>
</tbody>
</table>

Additionally, due to some trust-level mergers that took place and missing data in the source, 4 updated STP-Trust pairs were manually added to the linkage data to facilitate their inclusion in the analysis (source:
Finally, it was found that two STPs spanned two regions. It was decided that QHM should fall under the North West region (all but one of its trusts are in that region) and QF7 should fall under the Midlands region (all but one of its trusts are in that region). The region definitions are inferred from the regions assigned to each trust in the site reports making up our primary dataset.

Despite our best efforts there were some missing values that persisted in critical columns outside of the key milestones mentioned in the section above. Moreover, in preparing the data it was noted that on several occasions there were substantial and improbable changes in the number of available beds that lasted 24 hours (even after allowing for the weekly trend of cyclical fluctuations in beds availability), prior to reversion to a value that fit the overall trend. These outliers follow from the reasonable assumption of the presence of data entry errors; it was decided that a cleaning rule should be applied to the data to avoid these seemingly impossible daily fluctuations and outliers.

First, a rolling median centred on each record was calculated using the 5 applicable days surrounding the record (smaller windows used at extremities of the data with correction not being possible at its absolute extremes). Missing values as well as values deemed to be outliers (a change greater than the 95th percentile of all differences between each record and the centred median spanning five days around it) were replaced with the aforementioned rolling median values. Highly improbable fluctuations were filtered out and missing values could be imputed in a robust way. This imputation and outlier detection process was applied to every applicable bed column spanning every type contained in the data. Only after this cleaning took place were other columns created through transformation, e.g. the number of available ventilated beds etc. The effect of cleaning the data is shown below in a before and after comparison, 4 trusts were chosen for their high initial volatility in G&A bed occupancy (See SFigure 1 & SFigure 2).

Statistical Analysis Notes
Temporalized values, i.e. hospital-days, were calculated by multiplying the absolute number of each functional unit for which data was available, and the number of days for which data is available for each.

After cleaning the data, two more key issues had to be dealt with in the trust-level and site-level datasets respectively:

1. Due to the aforementioned trust-level mergers, the composition of the data changed slightly throughout its duration. In an effort to achieve consistency, we merged and coalesced records prior to each mergers’ appearance in the data to match their state post-merger. I.e. any rows corresponding to trusts that were eventually merged into some other trust were merged consistently throughout the dataset, even before this change actually took place. This was applied to records for the trusts RQ8, RDD and RAJ which were merged to fall under the single code RAJ on April 1st. This was also applied to RC9 and RC1 merged into RC9, and RA7 and RA3 merged into RA7: mergers that also occurred on April 1st and were reflected in the data shortly after.

2. It was observed that in one of the sheets relied upon for ventilated bed numbers, separate rows were included for both the sites and the corresponding trusts (given a “catch-all” label as their organisation type rather than “site”). In cases where only one hospital was associated with a trust, the numbers for that hospital were sometimes - inconsistently - recorded in the catch-all row rather than the site row as was done fairly consistently across all other situations. To achieve consistency without losing significant portions of the site-level data, we coalesced those rows where only one site was present and the catch all row contained numbers whilst the site row had zeroes or missing values. In order to achieve this, the organisation types of the two rows were swapped so that the catch-all row would be used in place of the site row, such that the site code and name was consistent throughout the entirety of the data.
Data Limitations

One persistent concern was the formulas by which bed occupancy proportions were generated. For example, the COVID-19 specific G&A bed percentage-occupancy was initially calculated as the sum of COVID-19 patients in IDU (infectious disease unit) beds and COVID-19 patients in “any other beds” divided by the total number of available G&A beds. This eventually changed to being the sum of the number of mechanical ventilated beds, non-invasive ventilated beds, oxygen-supporting beds and “any other beds” occupied by COVID patients minus the number of HDU / ITU beds occupied by confirmed COVID patients, all divided by the total number of available G&A beds. Whilst this is not in-and-of-itself problematic, the nature of the “any other beds” item was deemed concerning by the authors.

To understand the aforementioned concern, we first need to explain the data specification in more detail. It was noted that columns of the form “Number of Covid-19 confirmed patients in … beds at 0800” did not seem to contain values consistent with “Number of … beds available, as at 08:00 (COVID)”, which we expected to have mirrored values. Importantly, the latter set of columns did not contain an “any other bed” column. As such, the formula used by NHS-E in the above calculation of G&A bed proportions drew the “any other beds” value from the first set of data, whereas all of the other information was drawn from the latter columns as they were internally consistent. We acknowledge that the use of this formula could have introduced an error of unknown magnitude or direction (as the two versions of data reporting were not consistent). Similar issues were seen with the independent sector data as well.
Figure 1: G&A Bed Availability Across the Most Volatile Trusts in Terms of G&A Bed Occupancy (Pre-Correction)

Supplemental material placed on this supplemental material which has been supplied by the author(s)

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
on this supplemental material which has been supplied by the author(s)

BMJ Open

Mateen BA, et al.
BMJ Open 2021; 11:e042945. doi: 10.1136/bmjopen-2020-042945
Figure 2: G&A Bed Availability Across the Most Volatile Trusts in Terms of G&A Bed Occupancy (Post-Correction)
Supplementary Results

STable 3: Descriptive Summaries of the Size and Geographic Locations of Hospitals Stratified by the Peak Occupancy Achieved

<table>
<thead>
<tr>
<th></th>
<th>Hospitals reaching 100% saturation of mechanical ventilation beds (n = 51*)</th>
<th>Hospitals reaching >92%, but not 100% saturation of mechanical ventilation bed (n = 20)</th>
<th>Hospitals reaching >85%, but not 92% saturation of mechanical ventilation bed (n = 19)</th>
<th>All other Hospitals (n = 77**)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak G&A bed capacity (Median [Range])</td>
<td>438 [197 - 1012]</td>
<td>484 [256 - 841]</td>
<td>459 [253 - 910]</td>
<td>558 [44 - 1499]</td>
</tr>
<tr>
<td>Peak mechanical ventilation compatible bed capacity (restricted to April 2nd onwards) (Median [Range])</td>
<td>29 [7 - 77]</td>
<td>49 [18 - 141]</td>
<td>33 [15 - 153]</td>
<td>40 [7 - 159]</td>
</tr>
<tr>
<td>Peak HDU/ITU bed capacity (restricted to April 27th onwards) (Median [Range])</td>
<td>29 [0 - 99]</td>
<td>45 [17 - 161]</td>
<td>37 [14 - 157]</td>
<td>40 [6 - 152]</td>
</tr>
</tbody>
</table>

Location

<table>
<thead>
<tr>
<th>England (n = 167)</th>
<th>51 (30.5%)</th>
<th>20 (12.0%)</th>
<th>19 (11.4%)</th>
<th>77 (46.1%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>London (n = 27)</td>
<td>6 (22.2%)</td>
<td>11 (40.7%)</td>
<td>7 (25.9%)</td>
<td>3 (11.1%)</td>
</tr>
<tr>
<td>Midlands (n = 27)</td>
<td>11 (40.7%)</td>
<td>3 (11.1%)</td>
<td>1 (3.7%)</td>
<td>12 (44.4%)</td>
</tr>
<tr>
<td>East of England (n = 20)</td>
<td>7 (35.0%)</td>
<td>2 (10.0%)</td>
<td>1 (5.0%)</td>
<td>10 (50.0%)</td>
</tr>
<tr>
<td>South West (n = 17)</td>
<td>3 (17.6%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>14 (82.3%)</td>
</tr>
<tr>
<td>South East (n = 24)</td>
<td>6 (25.0%)</td>
<td>2 (8.3%)</td>
<td>3 (12.5%)</td>
<td>13 (54.2%)</td>
</tr>
<tr>
<td>North East and Yorkshire (n = 29)</td>
<td>8 (27.6%)</td>
<td>1 (3.4%)</td>
<td>4 (13.8%)</td>
<td>16 (65.5%)</td>
</tr>
<tr>
<td>North West (n = 25)</td>
<td>10 (43.5%)</td>
<td>1 (4.3%)</td>
<td>3 (13.0%)</td>
<td>9 (39.1%)</td>
</tr>
</tbody>
</table>

* One hospital is excluded from this n and the subsequent calculations as it does not have any information regarding G&A beds, despite reaching 100% capacity for mechanical ventilator bed capacity.
** 5 hospitals were excluded from this table as they had no ventilated beds at any time, or no data was available for their ventilated bed capacity in the dataset.
SFigure 3: Regional Bed Occupancy Across England, Stratified by COVID-19 Status

Occupancy Type
- Unoccupied
- Occupied by Non-Covid
- Occupied by Confirmed Covid

Comparison of Ventilated Beds and G&A Beds across different regions of England from April 01 to June 01, showing the number of beds occupied by different types of occupancy.
SFigure 3: Bed Occupancy Across England by geographical region, stratified by COVID-19 Status

Legend: *SFigure 3A* (Left) illustrates the time-varying trends in mechanical ventilator bed capacity and occupancy across the 7 regions of England, from March 27th to June 5th; note that availability information is only present from 1st April onwards. *SFigure 3B* (Right) illustrates general and acute bed capacity and occupancy across the 7 regions of England, from 1st April to 5th June. Occupancy in both figures is stratified by whether the individual in the bed has a positive COVID-19 test or not.

Critical Care Beds
Critical Care Beds
In the context of surge capacity, at the site-level, 1558 hospital days (13.1%; median number of days per hospital = 10 [range: 1 to 65]) were at or above 85% of capacity, which corresponds to 120 hospitals spending at least 1 day at, or above, the aforementioned threshold. 948 hospital days (8.0%; median number of days per hospital = 6 [range: 1 to 51]) were spent above 92%, representing 102 hospitals. And 88 (50.9%) hospitals reached 100% capacity, representing 640 hospital days at saturation (median number of days per hospital = 5 [range: 1 to 51]). At the trust-level, 965 trust days (11.0%; median number of days per trust = 8 [range: 1 to 56]) were at or above 85% of capacity, representing 80 trusts. 567 trust days (6.5%; median number of days per trust = 5 [range: 1 to 47]) were spent above 92%, representing 64 trusts. And 47 (37.6%) trusts reached 100% capacity, representing 339 trust days at saturation (median number of days per trust = 5 [range: 1 to 21]). At the STP-level, 138 STP days (median number of days per STP = 5 [range: 1 to 43]) were at or above 85% of capacity, representing 18 STPs. 74 STP days (median number of days per STP = 2 [range: 1 to 26]) were spent above 92%, representing 14 STPs. And 6 STPs reached 100% capacity, representing 34 STP days at saturation (median number of days per STP = 3 [range: 1 to 19]). See SFigure 4 for a visual summary of these results. See SFigure 5 for the aggregate occupancy, stratified by COVID-19 status at the regional level.

In the context of baseline capacity, at the trust-level, 2620 trust days (22.1%; median number of days per trust = 27 [range: 1 to 69]) were at or above 100% capacity, which corresponds to 92 trusts spending at least 1 day at, or above, their-pre-pandemic baseline. 230 trust days (median number of days per trust = 9 [range: 1 to 49]) were at or above 200% capacity, which corresponds to 19 trusts spending at least 1 day more than 100% above their-pre-pandemic baseline. At the STP-level, 620 STP days (median number of days per STP = 24 [range: 1 to 63]) were at an occupancy-level above 100% of baseline availability, which corresponds to 27 STPs spending at least 1 day at, or above, their-pre-pandemic baseline. 44 STP days (median number of days per STP = 14 [range: 10 to 20]) were at an occupancy-level above 200% of baseline availability which corresponds to 3 STPs spending at least 1 day more than 100% above their-pre-pandemic baseline. See SFigure 8 for a visual summary.

HDU/ITU Beds
The following results should be interpreted in the context of the date range available, i.e. data is only present after the 27th of April. Thus, the results are likely a significant underestimation of peak occupancy as, in retrospect, the peak number of cases and fatalities in the UK were near the beginning of April.

In the context of surge capacity, at the site-level, 315 hospital days (2.7%; median number of days per hospital = 2 [range: 1 to 39]) were at or above 85% of capacity, which corresponds to 59 hospitals spending at least 1 day at, or above, the aforementioned threshold. 216 hospital days (1.8%; median number of days per hospital = 1 [range: 1 to 39]) were spent above 92%, representing 45 hospitals. And 40 hospitals reached 100% capacity, representing 192 hospital days at saturation (median number of days per hospital = 1 [range: 1 to 39])). At the trust-level, 192 trust days (median number of days per trust = 3 [range: 1 to 39]) were at or above 85% of capacity, representing 36 trusts. 122 trust days (median number of days per trust = 2 [range: 1 to 39]) were spent above 92%, representing 24 trusts. And 19 trusts reached 100% capacity, representing 106 trust days at saturation (median number of days per trust = 2 [range: 1 to 39])). At the STP-level, 138 STP days (median number of days per STP = 3 [range: 1 to 43]) were at or above 85% of capacity, representing 18 STPs. 74 STP days (median number of days per STP = 2 [range: 1 to 26]) were spent above 92%, representing 14 STPs. And 6 STPs reached 100% capacity, representing 34 STP days at saturation (median number of days per STP = 3 [range: 1 to 19])). See SFigure 5 for a visual summary.
SFigure 4a: Number of Hospitals/Trusts/STPs at Varying Critical Care Bed Occupancy Levels Compared to Surge Capacity

Number of continuous days spent at threshold

<table>
<thead>
<tr>
<th>Hospital Level</th>
<th>Trust Level</th>
<th>STP Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 60 80 100</td>
<td>40 60 80 100</td>
<td>40 60 80 100</td>
</tr>
</tbody>
</table>

Proportion of Beds Occupied (%)

Proportion of Hospitals/Trusts/STPs (%)

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance on this supplemental material which has been supplied by the author(s).

Supplemental material

doi: 10.1136/bmjopen-2020-042945

Figure 4b: Number of Hospitals/Trusts/STPs at Varying HDU/ITU Bed Occupancy Levels Compared to Surge Capacity
SFigure 4: Critical Care (Top) & HDU/ITU (Bottom) Occupancy (Based on Surge Capacities) Across England

Legend: SFigure 4A (Top) illustrates the proportion of hospitals/trusts/STPs at different occupancy thresholds for surge critical care bed capacity, across England, from April 1st to June 5th. SFigure 4B (Bottom) illustrates the proportion of hospitals/trusts/STPs at different occupancy thresholds for surge critical care bed capacity, across England, from April 1st to June 5th. The superimposed colours represent how long the trusts spent at each specific threshold.
Figure 5: Number of Trusts/STPs at Varying G&A Bed Occupancy Levels Compared to Baseline Capacity

Supplemental material placed on this supplemental material which has been supplied by the author(s)
Figure 5: Trust-Level General & Acute Bed Occupancy (Based on Baseline Capacities) Across England

Legend: The proportion of all trusts, and sustainability and transformation partnerships (STPs), at varying general and acute (G&A) bed occupancy thresholds relative to their baseline (mean availability January-March 2020) capacity, across England, from April 1st to June 5th. The superimposed colours represent how long the trusts spent at each specific threshold.
Figure 6: Number of Trusts/STPs at Varying Ventilated Bed Occupancy Levels Compared to Baseline Capacity

Number of continuous days spent at threshold

- **1**
- **2 - 7**
- **8 - 14**
- **> 14**

Trust Level

STP Level

Proportion of Beds Occupied (%)
Figure 6: Trust-Level Ventilator Bed Occupancy (Based on Baseline Capacities) Across England

Legend: The proportion of all trusts, and sustainability and transformation partnerships (STPs), at varying ventilator bed occupancy thresholds relative to their baseline capacity, across England, from April 1st to June 5th. The superimposed colours represent how long the trusts spent at each specific threshold.
SFigure 7: Regional Critical Care Bed Occupancy, Stratified by COVID-19 Status

Occupancy Type
- Unoccupied
- Occupied by Non-Covid
- Occupied by Confirmed Covid

HDU / ITU Beds

Date
- May 01
- May 15
- Jun 01

Number of Beds
- 0
- 50000
- 100000
- 150000

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) BMJ Opendoi: 10.1136/bmjopen-2020-042945: e042945. 11 2021; BMJ Open, et al. Mateen BA
SFigure 7: Regional Critical Care Bed Occupancy, Stratified by COVID-19 Status

Legend: The time-varying trends in critical care bed capacity and occupancy across the 7 regions of England, from March 27th to June 5th. Occupancy is stratified by whether the individual in the bed has a positive COVID-19 test or not.
Figure 8: Proportion of Trusts/STPs at Varying Critical Care Bed Occupancy Levels Compared to Baseline Capacity

Number of continuous days spent at threshold

- 1
- 2 – 7
- 8 – 14
- > 14

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance on the information contained in this material, which is provided by the authors. Move to BMJ Open. doi: 10.1136/bmjopen-2020-042945.
SFigure 8: Critical Care Bed Occupancy (Based on Baseline Capacities) Across England

Legend: SFigure 6A (Left) illustrates the proportion of trusts at different occupancy thresholds based on baseline critical care bed capacity, across England, from April 1st to June 5th. SFigure 6B (Right) illustrates the proportion of STPs at different occupancy thresholds based on their baseline critical care bed capacity, across England, from April 1st to June 5th. The superimposed colours represent how long the trusts spent at each specific threshold.
SFigure 9: Number of Trusts Operating Above Various Ventilated Bed Surge Capacity Thresholds

Occupancy of Surge Capacity (%) ▼ 85 ▼ 92 ▼ 100

Date

Apr 01 Apr 15 May 01 May 15 Jun 01
SFigure 9: Trust-Level Ventilator Bed Occupancy (Based on Surge Capacities) Across England

Legend: The conversion of trust code to name for all trusts included in the figure are: Manchester University NHS Foundation Trust (R0A), Isle Of Wight NHS Trust (R1F), Barts Health NHS Trust (R1H), London North West University Healthcare NHS Trust (R1K), Royal Surrey County Hospital NHS Foundation Trust (R2A), Yeovil District Hospital NHS Foundation Trust (R4A), University Hospitals Bristol NHS Foundation Trust (R47), University Hospitals Bristol And Weston NHS Foundation Trust (R47), Bradford Teaching Hospitals NHS Foundation Trust (R4E), Royal Free London NHS Foundation Trust (RAL), North Middlesex University Hospital NHS Trust (RAP), The Hillingdon Hospitals NHS Foundation Trust (RAS), Kingston Hospital NHS Foundation Trust (RAX), St Helens And Knowsley Teaching Hospitals NHS Trust (RBN), Mid Cheshire Hospitals NHS Foundation Trust (RBT), York Teaching Hospital NHS Foundation Trust (RCB), Harrogate And District NHS Foundation Trust (RCD), Airedale NHS Foundation Trust (RCF), The Queen Elizabeth Hospital, King's Lynn, NHS Foundation Trust (RCX), East Suffolk And North Essex NHS Foundation Trust (RDE), Barking, Havering And Redbridge University Hospitals NHS Trust (RF4), Barnsley Hospital NHS Foundation Trust (RFF), The Rotherham NHS Foundation Trust (RFR), West Suffolk NHS Foundation Trust (RGR), Cambridge University Hospitals NHS Foundation Trust (RGT), Portsmouth Hospitals NHS Trust (RHU), Royal Berkshire NHS Foundation Trust (RHW), Guy's And St Thomas' NHS Foundation Trust (RJ1), St George's University Hospitals NHS Foundation Trust (RJ7), South Warwickshire NHS Foundation Trust (RJ1C), Countess Of Chester Hospital NHS Foundation Trust (RJR), King's College Hospital NHS Foundation Trust (RJZ), Sherwood Forest Hospitals NHS Foundation Trust (RKS), Whittington Health NHS Trust (RKE), The Royal Wolverhampton NHS Trust (RLO4), Wye Valley NHS Trust (RLOQ), Salford Royal NHS Foundation Trust (RMS3), Tameside And Glossop Integrated Care NHS Hospitals Foundation Trust (RMP), Dartford And Gravesham NHS Trust (RN7), North Cumbria Integrated Care NHS Foundation Trust (RNN), Homerton University Hospital NHS Foundation Trust (RRX), Wrightington, Wigan And Leigh NHS Foundation Trust (RRF), University College London Hospitals NHS Foundation Trust (RRV), Northumbria Healthcare NHS Foundation Trust (RRT), Oxford University Hospitals NHS Foundation Trust (RTH), Ashford And St Peter's Hospitals NHS Foundation Trust (RTK), Surrey And Sussex Healthcare NHS Trust (RTP), University Hospitals Of Morecambe Bay NHS Foundation Trust (RTX), Epsom And St Helier University Hospitals NHS Trust (RUY), East Kent Hospitals University NHS Foundation Trust (RYY), Southport And Ormskirk Hospital NHS Trust (RYY), United Lincolnshire Hospitals NHS Trust (RWD), Warrington And Halton Hospitals NHS Foundation Trust (RWY), Calderdale And Huddersfield NHS Foundation Trust (RWY), Sandwell And West Birmingham Hospitals NHS Trust (RXK), Buckinghamshire Healthcare NHS Trust (RXQ), East Lancashire Hospitals NHS Trust (RXR), Shrewsbury And Telford Hospital NHS Trust (RXW), Imperial College Healthcare NHS Trust (RYJ)
SFigure 10a: Proportion of Hospitals/Trusts/STPs at Varying Ventilated Bed Occupancy Levels Compared to Surge Capacity

Number of continuous days spent at threshold
- 1
- 2 - 7
- 8 - 14
- > 14
<table>
<thead>
<tr>
<th>Number of continuous days spent at threshold</th>
<th>Hospital Level</th>
<th>Trust Level</th>
<th>STP Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40 60 80 100</td>
<td>40 60 80 100</td>
<td>40 60 80 100</td>
</tr>
<tr>
<td>2 - 7</td>
<td>40 60 80 100</td>
<td>40 60 80 100</td>
<td>40 60 80 100</td>
</tr>
<tr>
<td>8 - 14</td>
<td>40 60 80 100</td>
<td>40 60 80 100</td>
<td>40 60 80 100</td>
</tr>
<tr>
<td>> 14</td>
<td>40 60 80 100</td>
<td>40 60 80 100</td>
<td>40 60 80 100</td>
</tr>
</tbody>
</table>

Proportion of Hospitals/Trusts/STPs at Varying G&A Bed Occupancy Levels Compared to Surge Capacity

SFigure 10b: Proportion of Hospitals/Trusts/STPs at Varying G&A Bed Occupancy Levels Compared to Surge Capacity

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance on this supplemental material which has been supplied by the author(s).

BMJ Open 2021; 11:e042945. doi: 10.1136/bmjopen-2020-042945
SFigure 10: Mechanical Ventilator Beds (Top) & General and Acute (Bottom) Occupancy (Based on Surge Capacities) Across England

Legend: SFigure 8A (Top) illustrates the proportion of STPs at different occupancy thresholds for surge mechanical ventilator bed capacity, across England. SFigure 8B (Bottom) illustrates the proportion of STPs at different occupancy thresholds for surge general and acute capacity, across England. The superimposed colours represent how long the trusts spent at each specific threshold.
Figure 11: Ribbon Plots of STP Minimum and Maximum Occupancy
Supplementary Video 1

[See attached link for time-lapse of G&A bed capacity at the STP level across England]

Supplementary Video 2

[See attached link for time-lapse of mechanical ventilator bed capacity at the STP level across England]

Supplementary References

