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ABSTRACT

Segmentation in neurological Magnetic Resonance Imaging (MRI) is necessary for volume
measurement, feature extraction and for the three-dimensional display of neuroanatomy. This
thesis proposes several automated and semi-automated methods which offer considerable
advantages over manual methods because of their lack of subjectivity, their data reduction
capabilities, and the time savings they give. Work has concentrated on the use of dual echo
multi-slice spin-echo data sets in order to take advantage of the intrinsically multi-parametric
nature of MRI. Such data is widely acquired clinically and segmentation therefore does not
require additional scans. The literature has been reviewed. Factors affecting image non-
uniformity for a modem 1.5 Tesla imager have been investigated. These investigations
demonstrate that a robust, fast, automatic three-dimensional non-uniformity correction may be
applied to data as a pre-processing step. The merit of using an anisotropic smoothing method

for noisy data has been demonstrated.

Several approaches to neurological MRI segmentation have been developed. Edge-based
processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing,
two threshold based techniques and a fast radial CSF identification approach are proposed to
identify the intracranial region contour in each slice of the data set. Once isolated, the
intracranial region is further processed to identify CSF, and, depending upon the MRI pulse
sequence used, the brain itself may be sub-divided into grey matter and white matter using semi-
automatic contrast enhancement and clustering methods. The segmentation of Multiple Sclerosis
(MS) plaques has also been considered.

The utility of the stack, a data driven multi-resolution approach to segmentation, has been
investigated, and several improvements to the method suggested. The factors affecting the
intrinsic accuracy of neurological volume measurement in MRI have been studied and their
magnitudes determined for spin-echo imaging. Geometric distortion - both object dependent and
object independent - has been considered, as well as slice warp, slice profile, slice position and
the partial volume effect. Finally, the accuracy of the approaches to segmentation developed in
this thesis have been evaluated. Intracranial volume measurements are within 5% of expert
observers’ measurements, white matter volumes within 10%, and CSF volumes consistently
lower than the expert observers’ measurements due to the observers’ inability to take the partial

volume effect into account.
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CHAPTER 1

INTRODUCTION.

Magnetic Resonance Imaging (MRI) or Nuclear Magnetic Resonance (NMR) Imaging is a
modality that can be considered to be in its adolescent years. The initial research and
development has given way to consolidation and increasingly diverse clinical applications. MRI
already produces vast amounts of data and this looks set 10 increase in the future. Technical
improvements are allowing volume data, fast pulse sequences and NMR angiography to be used
in routine clinical work. Real time clinical 4-D imaging such as Echo Planar Imaging (EPI)
cardiac studies are on the horizon whilst MRI’s ever-increasing clinical acceptance is producing
large amounts of temporal data from lengthy serial studies. It is against such a background that
the importance of segmentation, the decomposition of an image into natural units, can be judged.

The successful segmentation of magnetic resonance images is dependent upon three
separate stages. Initially, attention must be paid to the image acquisition in choosing appropriate
pulse sequences to enhance neurological contrast - possibly using several such sequences.
Secondly, the images require preprocessing which in this thesis includes correction for image
non-uniformity and image smoothing to reduce the effects of noise. The corrected image is then
ready for processing. The segmentation method must take into account the characteristics of
NMR data and, as such, may have to rely on methods constructed particularly to take account
of this - for example specifically developed brain isolation algorithms.
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It is generally thought possible to divide segmentation into three levels of processing,
although opinions differ. Low level approaches (or pre-processing) involve image enhancement,
smoothing, resolution changes etc.; medium level approaches are segmentation methods such as
region-growing, clustering, edge-detection etc.; whilst high-level approaches are methods such
as knowledge-based processing and elastic matching to an atlas. This thesis concentrates on the
low and medium level approaches in order to produce a number of methods which are
appropriate for use on their own, but which could also be the basis for a higher level approach
taking into account the strengths and weaknesses of the various medium level approaches. Such
higher level work will not be dealt with in this thesis.

Three approaches to medium level processing have been considered: edge-based
processing, region-based processing and the stack - a data driven image description and
segmentation scheme. A variety of approaches have been chosen in order to investigate a range
of general and more specific tasks. The stack, for instance, is claimed to be a completely general
method of segmentation applicable to any image and the region based methods should be
applicable to a variety of tissues. Aspects of the edge-based processing will also be generally
applicable. Performance has been improved by using a variety of domain specific processing
approaches such as search spaces. Although these methods are not directly applicable to other
anatomical regions, the ideas behind them remain valid. Finally it is pertinent to note that true
3-D methods ensure coherence in the third dimension, which is not the case for a 2-D slice by
slice approach. It will be argued, however, that multi-slice data is often not suitable for certain

types of 3-D processing.

The images considered for this work have to a large extent been dual-echo multi-slice
head data sets (in order to take advantage of the intrinsically multi-parametric nature of MRI
data), and to a lesser extent, images of the head acquired with a variety of other sequences. The
availability of two registered images of the same region demonstrating different image contrast
gives more information which can make data processing more easy. The dual-echo images were
acquired with a spin echo sequence in near transverse oblique slices (the orientation of over 95%
of the head data acquired by the Institute of Neurology NMR Research Group) on a 1.5 T
General Electric Signa Advantage scanner (GE, Milwaukee, USA) using a TR of 2000 - 4000
ms, echo times of 30 ms and 80 ms, 3-5 mm slice thickness with a 256x192 acquisition matrix
(frequency encoding x phase encoding steps) and a 256x256 display matrix. The early echo data

is proton density weighted whilst the late echo data is T,-weighted. Other data were acquired
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imaging of the central nervous system, cardiovascular system, lungs, hepato-biliary system,
gastrointestinal tract, vascular and lymphatic system, the urinary tract, the skeletal system,
thyroid, parathyroid and adrenal gland and tumour imaging. There is currently great interest in
the use of labelled white blood cells and monoclonal antibodies for targeting infection.

Ultrasound began to be used clinically in the 1960s, with its non-ionising nature making it
suitable for foetal imaging. It is the imaging modality which is most operator dependent and
requires a prolonged period of training. Ultrasound is widely used in prenatal medicine, vascular

disease, cardiac diagnosis and abdominal investigations.

X-ray Computed Tomography (X-ray CT, or CT) was introduced in 1972 by Hounsfield and
provided for the first time cross-sectional tomographic slices with high quality anatomical detail.
CT is important in neurology and oncology, lung disease, orthopaedics, whole body diagnostics

and with fast CT, cine cardiac studies.

Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography
(PET) began making an impact during the 1970s, in a manner similar to that in which X-Ray
CT followed from planar X-Ray imaging. It should be noted that PET is not a widely available
technique as it requires an on site cyclotron. The two techniques are used for functional imaging
of the brain, heart, liver and kidneys. Recently, there has been great interest in cerebral
metabolism for the detection and localisation of cerebral abnormalities producing metabolic and
perfusion defects through abnormal isotope uptake.

MRI is the newest of the major imaging techniques having been developed in the 1970s. It is
widely used for investigations of the central nervous system, particularly for demyelinating
diseases such as multiple sclerosis. It has important uses in imaging parts of the musculoskeletal
system, cardiovascular work and bone marrow imaging. Vascular studies are of high quality and
MRI angiography shows promise. The clinical realisation of sub-second fast imaging and Echo
Planar Imaging (EPI) may lead to increased chest and abdominal applications, although questions
of efficiency and cost have yet to be satisfactorily answered.

The tomographic imaging modalities have in the past been considered in two broad groups with
CT and MRI providing anatomical and pathological detail, whilst PET and SPECT provide
functional and pathological detail. Recently though, the use of MRI angiography, diffusion and
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perfusion imaging and paramagnetic contrast agents (both manufactured and ’natural’ agents such
as the oxygen in haemoglobin), amongst others, have begun to providle MRI with a new
functional role.

1.2 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is an imaging modality of vast flexibility which can
produce extremely detailed cross-sectional images of the human body depicting normal and
pathological anatomy. The technique is dependent upon the magnetic properties of atomic nuclei,
with hydrogen nuclei (protons) being most commonly considered because of their high
concentration in the human body, both in water and in fats. When such protons are placed in a
magnetic field, they can absorb radio waves of a characteristic frequency, which depends on the
magnetic field strength and the physical and chemical environment of the nuclei. The application
of a number of pulses of radio waves to a sample is known as a pixlse sequence. The absorption
and re-emission of such radio waves is the underlying phenomenon utilised in MRI. The
technique produces images relating to three main parameters - proton density, transverse
relaxation and longitudinal relaxation (which depend upon the proton’s environment), as well
as a number of other parameters such as flow. Added to this are noise and instrumental effects
such as magnetic field and RF non-uniformities. MRI is therefore multi-parametric by its very
nature and the choice of appropriate pulse sequences and acquisition parameters allows the

relative contrast between normal and pathological anatomy to be varied greatly.

Despite MRI’s position as the most expensive common imaging modality, it is widely available
in the USA and is becoming more widespread in Europe. It is currently rare in the third world
apart from a few isolated sites. In 1992 an MRI system costs from approximately £0.75 - £2
million. By comparison, X-ray Computed Tomography equipment is approximately 1/2 - 2/3 the
price of MRI equipment, and ultrasound equipment 1/10 - 1/20 the price, for example.

In the field of anatomical and pathological neurological imaging, the source of the data for this
work, MRI has a number of advantages over its closest rival, CT. MRI does not suffer from the
beam hardening found in CT, so regions of the brain abutting the skull are shown clearly. MRI’s
non-ionising nature is generally advantageous, but makes MRI a particularly attractive alternative
to CT for patients requiring many examinations, paediatrics, and pregnant patients past the first
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trimester. MRI uses contrast agents minimally compared to CT due to its intrinsically superior
soft tissue contrast, although more contrast studies may well be performed in the future. Minimal
use of contrast agents is advantageous because of the possibility of adverse patient reaction, the
generally invasive nature of administration and the cost. In addition to this, MR contrast agents
are much less prone to causing adverse reactions than are CT contrast agents. MRI has the
ability to vary the many acquisition parameters to optimise image content and contrast and can
also acquire multiple slices simultaneously at any arbitrary angle. However it is an expensive
modality and inherently more complex than CT. MRI is not suitable for the visualisation of hard
bone and generally suffers more from motion artifacts than CT. The narrow bore of the magnet
can cause claustrophobia, and the interaction of the magnetic or RF fields with pacemakers,

metallic implants, ventilators and anaesthetic equipment may cause problems.

1.3 Image Segmentation

Image segmentation is the decomposition of an image into natural units and is commonly
accomplished with respect to intensity, texture or colour. There are many applications for image
segmentation - for robot vision, satellite imaging, geophysical seismic surveys, materials analysis,
medical imaging, microscopy and image coding to name but a few. The field of segmentation
is a particularly challenging one to work in because as Haralick [HARALICKS8S5] states so well
"there is no theory of segmentation”. Despite this, however, approaches to segmentation may
often be judged by either their broad applicability or ad hoc nature. The literature on
segmentation relevant to MRI may be considered as divided into computer science based papers
where a method is often applied to several classes of images and clinical papers which evaluate
the application of a method to a particular class or sub-class of medical images. A valid criticism
of some image processing and artificial intelligence approaches to segmentation is that the
authors choose a solution and force it onto a problem, rather than analysing the problem and
looking for an appropriate solution. This is the difference between a concept driven and a goal

driven approach.

Most MRI data are currently acquired as a series of slices and are therefore three dimensional
in nature. Either true volume data, where each voxel is approximately cubic, or multi-slice data
with the slice thickness typically being from 3 to 10 times the in-slice voxel dimension for

neurological MRI, may be acquired. The acquisition of three dimensional data raises the
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possibility of using three dimensional segmentation. The majority of the work in the field of
segmentation is two dimensional and is concerned with robot vision, military applications and
remote sensing. It is therefore often not directly applicable to three dimensional medical datasets.
There are major implications for speed associated with true 3-D processing and currently
techniques are often carried out slice by slice and in two dimensions because of memory
limitations. The true 3-D methods ensure coherence in the third dimension which is not the case

for slice by slice approaches.

14 Clinical Requirement for Segmentation in MRI

Automatic or semi-automatic segmentation in MRI is important becaﬁse of the vast
amounts of data generated (up to 16 Mbytes per dataset typically); to be able to display only the
anatomical, paihological or functional regions of interest, and to quantify volumes of structures
would save clinicians time and allow new approaches to the staging and following of
neurological diseases. The importance of an automated or semi-automated approach to
segmentation may be appreciated by considering the experience of Stimac et al. [STIMACS88]
who took 4-6 hours to trace contours of the skin, bone, ventricles and optic nerves for a 12 slice
256 dataset. Measurement of the volume of brain parenchyma, grey matter, white matter,
cerebrospinal fluid (CSF), the intracranial region, head, individual lesions and total lesion load
are important in dementia, Multiple Sclerosis (MS), Acquired Immune Deficiency Syndrome
(AIDS) and other diseases with neurological symptoms. Tracking changes in volume temporally
would be an aid to following the natural history and response to therapy of such diseases.

Segmentation is often a necessary step in 3-D Medical Imaging (the display of multi-
slice and volume data in a 3-D format using shading and transparency techniques). It allows the
visualisation of neuroanatomy such as the skin, bone, brain, grey matter, white matter, lesions,
the ventricles and eyes with all the benefits to clinicians that have been reported in the literature
[eg HERMANO9O0]. It is widely believed that segmentation is a weak link in the steps necessary
for such display [STIEHL90, COATRIEUX90]. There is somewhat of a division between
qualitative 3-D display oriented segmentation techniques where display technique;s can
compensate to a certain extent for misclassified boundary pixels etc., and volume oriented
segmentation techniques. Kohn et al. [KOHN91] give an example of four visually similar shaded
surface images of the brain, where the volume of the brain varies by 25% within the set of

images.
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Segmentation is the first stzige in image analysis. An initial segmentation could provide
the input to a feature classification system or expert system. More pertinently, an expert system
could be used to interactively drive the segmentation using an anatomical model, modality
specific knowledge, information about the possible pathology, a task plan and performance data
for various stages of the segmentation. Segmentation is useful for image registration and can be
very advantageous in some forms of image compression [KUNT85], an application which may
increase in importance with the current interest in Picture Archiving and Communications
Systems (PACS). It is also necessary for surgery planning and radiotherapy planning and
evaluation [TOONKELSS8, JUST91], the following of disease course, and response to therapy.
Anatomical segmentation can be used as an aid to functional imaging, either to allow reference
to anatomical structures or for image reconstruction using prior knowledge about the structures
being imaged [LEAHY91, GINDI91]. Segmentation can also be used to identify key structures
for temporal and intra-modality registratic;n. This allows multi-modality image fusion and

display.

Automated and semi-automated approaches to segmentation of MRI images have a
number of advantages over conventional mouse or tracker ball work, because they provide a
non-subjective method of object definition, reduce the volume of data a clinician encounters, and
by off-loading much of the work onto computer hardware produce a subsequent saving in time.
This work concentrates on the automatic and semi-automatic segmentation of gross normal
anatomy. It aims to identify skin, brain, grey matter, white matter, CSF external to the brain, the
ventricles (CSF within the brain) and the eyes. Some work on lesion segmentation has also been

carried out.

1.5 Neuroanatomy

The human neuroanatomy comprises the central nervous system which consists of the
brain and spinal cord, and the peripheral nervous system consisting of spinal and cranial nerves.
Only the brain has been considered in this work. The nervous system consists of a vast number
of units called neurones which consist of a cell body, axons and dendrites. Neurones are
commonly referred to simply as nerves. The nerve cell bodies predominantly form the grey
matter of the nervous system and are found in the periphery of the brain, whilst the axons and

dendrites form the white matter of the nervous system deep in the brain. Myelin is a sheath of
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fatty material which is wrapped around most axons and gives them a white appearance, the
origin of the term white matter. The myelin sheath

8 acts as an insulator

® protects the axon from injury

= speeds the flow of nerve impulses through the axons
The brain and spinal cord are completely surrounded by three membranes known as the
meninges. The innermost two of these membranes are separated by cerebrospinal fluid (CSF),
a clear fluid consisting mainly of water, mineral salts, glucose and plasma proteins. Within the
brain there are four irregular shaped cavities termed the right and left lateral ventricles, the third
ventricle and the fourth ventricle, which also contain CSF. The cerebrospinal fluid

® supports and protects the brain and spinal cord

® acts as a cushion and shock absorber between the brain and cranial bone

® may allow interchange of substances with the nerve cells
The CSF moves within the ventricles in an oscillatory motion, the precise cause of which has
yet to be ascertained. The brain is protected by the cranium (part of the skull) which is
surrounded by a layer of subcutaneous fat. Bone does not show up well using MRI because it
contains few mobile protons, but the signal from the fatty bone marrow is often evident. The
brain surface is highly convoluted and demonstrates many infoldings or furrows of varying
depth. Thé exposed areas of the folds are terméd gyri or convolutions and are separated by sulci
or fissures which are filled with CSF. The term lesion is used to describe an abnormality, such

as a tumour or area of demyelination (also known as a plaque in multiple sclerosis).

Figure 3 illustrates a sagittal image of the head of a normal volunteer, with the position of four
oblique planes illustrated. Images corresponding to these four planes along with diagrams of the
main features are illustrated by figures 1.4 - 1.11 . These images are representative of those used
in this thesis, with the whole brain typically being covered by 10-20 slices.
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1.6 The Use of Prior Knowledge in Segmentation.

It is possible to consider segmentation approaches as being divided into three groups on
the basis of their use of prior knowledge. Knowledge can be used intensely, as in the case of
Artificial Intelligence Knowledge Based approaches, minimally as done in many medium level
segmentation approaches, or not at all as with data-driven approaches.

1.6.1 Knowledge-Based Approaches

Artificial Intelligence (AI) is the emulation of mankind’s intelligence using computer
hardware and (often) specific Al languages. The vast majority of knowledge-based approaches
to MR segmentation initially use weak unsophisticated region-based segmentation techniques
(such as a split and merge approach, region growing, simple edge detection or thresholding
following crude anisotropic smoothing) to produce an over-segmented image. The small regions
are then pieced together using knowledge about region size, surface area, intensity etc., and
knowledge about anatomical regions, such as spatial relationships and intensity characteristics.
Many methods simply demonstrate various artificial intelligence techniques on a limited sub-set
of specially chosen key slices. Dellepiane et al. [DELLEPIANES9] acknowledge the poor
segmentation of their work and others when they state that

"in the recognition process, the so-called low-level (LL) processing (ie filtering,

segmentation, and feature extraction) still plays a key role:Many unsatisfactory

results obtained in _the final interpretation stage (ie, high-level (HL) stage)

may be ascribed to an inappropriate selection of LL algorithms, or to their low
performances."

The highlighting is this author’s. As demonstrations of Al techniques, many of the methods are
very interesting, but unfortunately, their claims to be accurate segmentation methods can be

dubious.

This author believes that a more appropriate method would be to use an Al approach to
interactively drive the segmentation using an anatomical model, modality specific knowledge,

information about the possible pathology, a plan of actions and performance data for various
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stages of the segmentation. (See for example [MATSUYAMAS89] on this last point). This author
believes that several methods of segmentation (perhaps several edge-detectors for example) may
be necessary for a full accurate result. Artificial Intelligence can provide a very good framework
for a knowledge-based approach, but the systems that have been applied to MRI segmentation
to date have suffered from poor segmentation.

1.6.2 Medium Level Segmentation Approaches.

These are region or edge-based approaches such as thresholding, clustering, region-
growing, edge-detection and some multi-resolution approaches. These approaches use knowledge
in various ways. For example, applying an intensity threshold or a threshold to an edge requires
some knowledge of the scene. These parameters need to be varied depending on the particular

scene.

1.6.3 Data Driven Approaches

Data driven methods do not utilise any prior knowledge. The form of the data
completely determines the form of the segmentation obtained. The stack and DOLP transform,

as discussed in sections 3.6.3 and 3.6.4, are examples of such approaches.

The work in this thesis concentrates on applying a little basic knowledge to low and medium
level segmentation methods, and to investigating one particularly attractive data-driven approach
- the stack. Low and medium level segmentation methods require adaptation to imaging
modality, the anatomy to be imaged and in the case of MRI, even the scan orientation and other

parameters. Data-driven approaches, however, are claimed to be independent of such effects.

1.7 Hardware and Software

Work has been carried out using the C and C++ programming languages under Unix
along with programs and subroutines from the University of North Carolina’s /fusr/image/
package (University of North Caroliha, Chapel Hill, NC, USA) and to a lesser extent Synoptic’s
programming language Semper 6+ (Synoptics Ltd., Cambridge UK). The Mayo Clinic’s Analyze
package [ROBB90] (Bio-dynamics Research group, Mayo Clinic, Rochester, MN, USA) has also
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been used for image visualisation. Image analysis and display has primarily used xdispunc, part
of the dispim suite of programs written by Dave Plummer in the Department of Medical Physics,
University College London, UK. The pmgrafn provides a variety of image display and analysis
facilities which include: image intensity scaling, linear profiles, zooming, statistics on regions
of interest, simple linear measurements, histograms, colour scale manipulation and some
elementary image editing such as windowing and masking. Graphs have been produced using
Xvgr - a data plotting tool for workstations writteh by Paul Tumer (Oregon Graduate Institute,
Oregon, USA).

Sun Workstations (Sun Microsystems, Mountain View, California, USA) have been used
exclusively for image handling and processing because of their widespread use in the Medical

Imaging community.

During the period of this work, two MRI scanner were used for imaging, both belonging to the
NMR Research Group at the Institute of Neurology,‘Queen Square, London, UK. The first of
these scanners was a Picker 0.5 T superconducting machine which was used from October 1989
- October 1991. From November 1991 onwards a GE 1.5 T Signa Advantage scanner was used.
The Picker scanner was not suitable for multi-image segmentation, as detailed in section 7.2.1,

and therefore images produced by it were not used for this work.

1.8 Summary of Approach to Segmentation Developed

The aim of this work is to develop automatic and semi-automatic methods for
segmentation of regions of the neuroanatomy. The work initially concentrates on acquiring high
quality dual-echo data which may be acquired in the same time as the equivalent single-echo
data, and on techniques appropriate to processing full brain datasets rather than a limited subset
of specially chosen key slices. Data is pre-processed to correct for image non-uniformity and
anisotropic smoothing is applied to noisy data. It has been found that a variety of techniques
must be used to segment the neuroanatomy of interest. Both edge and region based processing
have been utilised to this end. Edge-based processing is used to identify the skin, to isolate the
eyes, and the intracranial region (the brain parenchyma and CSF). The CSF can be separated
from the brain by dual-echo clustering, thresholding or contrast enhancement involving a linear

combination of images. If the contrast between grey matter and white matter is adequate then
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it may be possible to further subdivide the brain parenchyma into grey and white matter using
the same methods. The accuracy of segmentation may often be traded off against processing
time. More robust methods tend to take longer. Fast methods can often be applied to a limited
subset of key slices, but this work deals with multi-slice datasets.

Such a multi-step approach to segmentation may be contrasted to the use of the stack, a data
driven approach which is claimed to be a natural method of segmentation. The applicability of
the stack is evaluated in this thesis and several methods of improving the results from the stack

are proposed.

1.9 Overview of Thesis

Chapter 2 discusses the essential NMR theory including basic principles, common pulse

sequences and image contrast.

Chapter 3 reviews the wide variety of approaches to segmentation. These may be characterised
as edge-based methods, region based methods such as thresholding, clustering, region growing

and region split and merge, and multi-resolution approaches.

Chapter 4 reviews the literature on magnetic resonance imaging segmentation noting particularly
the common split of papers into those with clinical applications, where a goal driven approach

has been adopted, and the more abstract concept driven approach.

Chapter 5 discusses the various factors affecting non-uniformity in MRI, the magnitude of these
factors for the GE 1.5 T Signa Advantage scanner, and compares several methods of correction

for these non-uniformities.

Chapter 6 discusses the use of edge detection in neurological MRI. Edge detection has been used
to identify the strong edges associated with the skin and brain. The skin is identified as being
a strong outer contour on an early-echo image. The brain is identified as a strong contour in a
late-echo image which is long-lived in scale-space. The eyes are identified by their shape from
an edge image, using knowledge of anatomy to restrict the search area to the anterior region of
the head. The ventricles are identified once a focus of attention within the brain has been

established. A comparison of two and three dimensional edge detection methods has also been
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carried out.

Chapter 7 discusses the use of region-based segmentation. An accurate three-dimensional fully
automatic non-uniformity correction is used as a pre-processing step. Anisotropic -blurring is
proposed as a second pre-processing method, with the degree of smoothing depending upon the
particular approach. It is noted that the use of 5 mm thick slices with a 2.5 mm slice skip (as
widely acquired clinically) means that 3-D processing is often not appropriate. Thresholding,
contrast enhancement and dual-echo clustering approaches for the segmentation of brain, CSF,
grey matter, white matter and multiple sclerosis lesions are described. Multi-parametric
approaches to segmentation are particularly appropriate where large partial volume effects are
apparent, where edge strengths vary greatly and where the border is highly convoluted containing
thin strands of tissue.

Chapter 8 discusses the use of the stack - a data-driven multi-resolution approach to
segmentation. Such an approach may be contrasted to the highly tuned series of steps considered
in chapters 5-7. The stack has been claimed to be a totally general approach to segmentation,
but it is demonstrated that this is not the case. The applicability of the stack for neurological
MRI segmentation is discussed, and several improvements to the approach suggested.

Chapter 9 discusses volume measurement in neurological MRI, one of the most important
reasons for segmentation. Clinical need is reviewed, the magnitude of geometric distortion and
methods for its correction discussed, the partial volume effect considered and the results of

automatic and semi-automatic segmentation compared to those of experts.

Finally, chapter 10 summarises the work, discusses future directions for research and draws

conclusions.
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CHAPTER 2

NUCLEAR MAGNETIC RESONANCE THEORY.

21 Principles of Nuclear Magnetic Resonance.

2.1.1 Introduction.

Nuclei with non-zero nuclear-spin possess a magnetic moment aligned along the axis of
the spin. The spin is quantised and is characterised by the spin quantum number, I, which may
be integer or half-integer. The most common nuclei used in Nuclear Magnetic Resonance (NMR)
are hydrogen (*H), phosphorous (*'P) and carbon (**C). All of these isotopes have I=1/2, but
further discussions will be limited to the specific case of nuclei consisting of a single proton

(*H). The angular momentum p of a nucleus is given by

hl
-_= ey
£ 2r
and is related to the magnetic moment p by
Lo @

where h is Planck’s constant and 7y is the gyromagnetic ratio - a constant for a given nucleus.

If a nucleus has a magnetic dipole then it will interact with an externally applied
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magnetic field - the basis of NMR. The application of an external magnetic field B,, leads to
(2I + 1) nuclear energy levels which correspond to the allowed orientations of the dipole. An
isolated proton can take up one of only two stable states when placed in an external magnetic
field, usually referred to as ’spin up’ and ’spin down’. As with any physical system, the nucleus
prefers the low-energy state, in this case ’spin up’. The energy difference between the higher and

lower states is given by

AE = Y B, 3

Now the Bohr relationship for a photon of frequency v is
E = hv = hw, C)

where v = w, /2w, so a photon of energy hiw, will be absorbed when a nucleus transfers from a
low-energy to a high-energy state, and conversely, a photon of the same energy will be emitted
when a nucleus transfers from a high-energy to a low-energy state. Equating (3) and (4), and
substituting from (1) and (2) gives

W, = VB, O]
2.12 The Boltzmann Distribution.
At thermal equilibrium, the nuclear spins in a large sample are distributed amongst the

energy levels according to a Boltzmann distribution. For I=1/2, the ratio of nuclei in the two

states is given by

where Ny, = N, + Nyoun » k is Boltzmann’s constant and T the absolute temperature of the

sample.
N hw
—2_ =1+ 2 ifhw << kT 0
N kT

The fractional excess of spins in the up-state (low-energy state) is given by,
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N_-N,. ®
kT

For a proton at 300°K, and a medium MRI field strength of 1 Tesla

Iw B -34 8
o _ IMBy _ 1.055x10*.2.675x10%.1 _ (o1n 10 o)
kT kT 1381x10 %300

This fraction means that approximately 1 in 100,000 nuclei will contribute to an NMR signal.
NMR is hence a rather insensitive technique, with sensitivity increasing with field strength.

2.13 (Classical description of an isolated proton in an externally applied magnetic
field.

The interaction between the magnetic field and the nuclear magnetic moment acts to
align the magnetic moment with the field. The nuclear angular moment means that the nuclei

experience a torque given by

L-p, B, (10)

From classical mechanics, the rate of change of angular momentum equals the applied torque.

dp

—=-u,B (11
dt PL A 0

Asp = % it follows that % - LB, 12)

which is the equation of motion of an isolated nucleus in a magnetic field.

This can be rewritten as

dp
£ - B (13)
or

an -w, . B (14)
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where w, = -y B, the Larmor frequency. The nucleus will precess about B, with frequency given
by the Larmor frequency, w,. The classical spin behaves like a gyroscope or spinning top and

the two are often used as models for the behaviour of a single proton in a magnetic field.

2.1.4 Bulk Magnetisation.

Up to this point, only a single magnetic moment has been considered. The bulk

magnetisation is given by

M-Yu as)

and is the response of a large collection of magnetic moments. In zero magnetic field, the nuclei
are randomly oriented. (i.e. there is no phase coherence between the individually precessing
nuclei) If a magnetic field is applied, the nuclei precess at the same rate - the Larmor frequency.
There will be no net contribution to the magnetisation in the direction perpendicular to the field,
but due to the slight excess of nuclei in the low-energy state there will be a component of M in
the direction of B,,

2.15 The Classical Model as an idealised generalisation of the quantum-
mechanical description.

The classical model which has been adopted to this point, and will be further utilised,
is a convenient model to adopt in order to appreciate some of the phenomena of NMR. However
it should be noted that a quantum-mechanical model should strictly be used to investigate all
NMR phenomena, but that for spins of I=1/2, the classical model agrees with the predictions of

the quantum model for an isolated nucleus. This is not the case for spins of I=1 and greater.

2.2 The Rotating Frame.

In order to detect M, the bulk magnetisation, it is necessary to perturb the magnetic
moment. M will then precess around the main field at a frequency w, in a similar way to p. If
a second rotating field B, is applied perpendicularly to B, at a frequency w, , the rotating B,
field causes M to tilt away from its equilibrium position M,. In the lab frame, M will follow a
complex (spiral) path and so it proves convenient to transform to a frame of reference rotating

in synchronism with the rotating B, field.
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Any Cartesian frame of reference is defined by the position of its axes x,y,z. Let 1, 1,

R be the unit vectors defining the directions of the x,y,z axes in our arbitrary rotating frame.

Then

M-Mi+Mj+Mk (16)
The time derivative of M is
M M, o oM . o oM, . ok
— - Xl +M=+ _2j+ M ke M= a7
& ot T am ity Tt t ey
Mn M‘ . * 2 'l
0 R T T N YR ST Y. (18)
dt = dt dat ~ *dt Ydr “dt

Now f, 1, k can, by definition, only change direction, and not length. Hence

of . 9] 2 ok A
- ] , - 1 R — - k (19)
7 w.i 3 wi S wk

i.e. the frame rotates at w radians/s about an axis given by the vector w.

2] (] e 2
a |, a )., —

but we know that
aM M 21
{ = _ABO ( )

SO

LA (22)
™,B, {71 w,M
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a | LY 23)
- [ -y

a 24)
= _ - vyM B
{dt ]“ LKL
where
w
B, =B+ :\:{ (25)

and w/y is a fictitious field which appears in the rotating frame as a result of the transformation.
In the rotating frame of reference, M precesses about B, the effective magnetic field. Exactly
on resonance, w =-yB, = B, =0 (i.e. M remains stationery). The rotating frame is
illustrated by Figure 12.

2.21 90 and 180 degree pulses.

As stated before, the application of a B, field causes M to tilt away from the equilibrium
position M,. The time for which B, is applied (and also the strength of B,) will determine the
final orientation of M. The pulse length to allow M to tip through 90° is known as a 90° pulse.
A pulse time of double this gives a 180° pulse. In the rotating frame B, is stationary and is
arbitrarily set as lying on the x’ axes. (In the rotating frame, B, = 0, so that B, is the only field,
and M therefore precesses around it. A 90° pulse is just long enough for M to precess through
a quarter tum before B, is removed whilst a 180° pulse is long enough for M to precess through
a half tum.) Such pulses are important, because they can bring the magnetisation into the
transverse plane, which is the only way of detecting the magnetization.

A 90° pulse will take M, down onto the y axis as in Figure 13

An arbitrary pulse, with the system in equilibrium before the pulse will tum M, through an angle
o from z’, where o is known as the flip angle, as illustrated by Figure 14
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Figure 12 - The rotating frame.
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Figure 13 - The effect of a 90° pulse in the rotating frame.
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Figure 14 - The effect of an
arbitrary pulse in the rotating frame.
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2.2.2 The Bloch equations, relaxation processes, T,, T, and T,

Once M has been tipped away from its equilibrium state M,, the exchange of energy
between nuclei and from nuclei to the bulk of the material will cause M to return to M,. Two
types of decay of M can be distinguished.

' 4 'Y

A y
M
Mz 4 Mz 4 Mz 4
= Mxy 7 My Z My

Figure 15 - Transverse (spin-spin) relaxation.

P,
3"

.
x S

Figure 16 - Longitudinal (spin-lattice) relaxation.

Transverse or spin-spin relaxation (Figure 15) occurs as the individual magnetic moments
1 which contribute to M dephase under the influence of fluctuating local fields. A splitting up
or fanning out of magnetisation occurs, causing M, to decay to zero with time constant T,. In
longitudinal or spin-lattice relaxation (Figure 16) the nuclear magnetic moments lose energy to
their surroundings, causing M, to decay back to M, with time constant T,. In reality, both events
occur simultaneously, although obviously T, < T, (as if M, = M,, then M, = 0). It should be
noted that T, is a function of B,, whereas T, is approximately constant with field strength.
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2.23 Bloch Equations

Relaxation modifies equation (24) so that

W A A A
| -y - i Ml - S, - M @)
ot 2 1

which gives three simultaneous differential equations in M,, M, and M, describing the time-
variation of the magnetization. The equations are greatly simplified if the pulse length << T, or

T,, which is generally the case, so the relaxation can be neglected during the application of a
B, pulse.

2.24 Pseudo Relaxation

After the application of a 90° pulse to a system initially in equilibrium, M lies in the x-y
plane. If there is some variation of B, with position then B,,,. = B, + AB,. Where AB,, # 0, the

magnetisation will precess in the rotating frame about AB, once B, has been switched off

(Figure 17)
”

ABo
M

Figure 17 - Precession in the
rotating frame.
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If AB, is negative then precession will occur in the opposite direction. The net effect is to reduce
the transverse component of magnetization and hence the NMR signal. A simple experiment
would measure the signal decaying at a rate T,  where

1 1 1
—_———t — 27
T; 7"2 sz
so to measure T, it is necessary to remove or determine the effect of T,”™™ given by
1
— = YAB, (28)
T,

23 Measurement of NMR Parameters

It is desirable to measure the relaxation times T,, T, (but generally not T,”) and the
Proton Density (PD), which gives information about the amount of water in the sample. The
basic NMR experiment is to apply a 90° pulse to a sample and then examine the returned NMR
signal, as illustrated by Figure 18.

Bl

B1 signal 0 .t

Nmr Signal O—MW t

Figure 18 - Examining the FID

The B, signal is applied with a coil through which an alternating current is passed at what turns
out to be a Radio Frequency (RF). In the simple case, the same coil will pick up the RF signal
emitted by the sample as M dephases. The signal induced in the coil by the rotating transverse
magnetisation following the B, pulse is known as the Free Induction Decay (or FID).



2.3.1 Proton Density

The initial height of the FID is proportional to the proton density. In imaging, a string
of 90° pulses is applied separated by a time t. The pulse sequence is known as a saturation
recovery (SR) pulse sequence (Figure 19). For a true Proton Density image (as opposed to a
Proton Density weighted image), a t, of 2 5*T, seconds is required to allow full relaxation to

occur. Since T, is typically of the range 100-400 ms, t, will typically be of the range 0.5-2s.
With shorter repetition times, the image will have some degree of T, weighting. For technical

reasons there is always a short Spin-Echo inserted in the sequence, although this is not shown

in Figure 19.

,7 i 1
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Figure 19 - The Saturation Recovery spin-sequence.

2.3.2 T, Measurement

A 180-1-90 or Inversion Recovery (IR) pulse is used for T, measurement (Figure 20).
The 180° pulse flips M onto the z-axis, and after a delay the recovered M is then flipped into
the x-y plane and its magnitude measured. To measure T, accurately, the experiment is carried
out several times with varying 7, to allow a decay curve to be built up for the M; magnetization.
A least squares fit is then carried out to give T,. In imaging, it is common to simply use two

points. For technical reasons, the sequence normal contains a spin-echo with a short echo time.
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Figure 20 - The Inversion-Recovery spin-sequence.

233 T, Measurement

In order to measure T, values, it is necessary to separate the irreversible decay of M,,
caused by spin-spin relaxation from the reversible decay caused by main-field non-uniformity
(AB,). This is achieved by the Hahn spin-echo [HAHNS50] which, in its simplest form, is a 90--
180-t-echo as illustrated by Figure 21.
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Figure 21 - The Spin Echo spin-sequence.

In the rotating frame, six key events can be identified, as shown by Figure 22
(1) magnetization in phase

(2) magnetisation dephasing leading to an FID signal
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(3) magnetisation flipped through 180°
(4) build up of echo
(5) magnetization back in phase at echo peak
(6) decay of echo
The 180° pulse reverses the sign of AB,, cancelling out the effect of T, , but has no effect on
T,. The faster and slower precessing spins are compensated for by the 180° pulse.
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Figure 22 - The Spin Echo sequence in the rotating frame.

2.34 Gradient Echo Imaging

The conventional spin echo experiment acquires one line of data using a 90°/180° pulse
pair. The 90° pulse generates transverse magnetisation, which is subsequently read in the form
of a spin-echo created by the subsequent 180° pulse. Transverse magnetisation may of course,
be generated by pulses with flip angles much smaller than 90°. Such pulses allow the spin
system to relax back to a given degree of magnetisation more quickly than a 90° pulse since
most of the magnetisation is never disturbed. This therefore allows the use of shorter repetition
times (TR) without obtaining only heavy T,-weighting. To do this a 180° pulse can not be used,
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so a gradient echo is used, rather than a spin echo as described in section 2.4.4.

235 Sequence Notation.

The sequence notation that I intend to use is largely based on the American College of
Radiology glossary of NMR terms [ACR83] and is one that has evolved in recent years,
although it is not complete (for example the duration of data collection is not included). Its form
is A/t A At tots,.. /0 where A is a two letter sequence code (eg PS for Partial Saturation
sequence etc.), t. (ms) is the repetition time of the sequence, t; (ms) is the time between the
magnetization inversion pulse and the 90° data interrogating pulse (this term is only used for
IRs), t. (ms) is the time to echo, whether a gradient echo (field-echo) or spin-echo and 6 is the
flip angle (for sequences where angles other than 90° are utilised, such as gradient echo

sequences etc.)

Several acronyms are used to describe Signa spin echo imaging. MEMP (Multiple Echo Multi-
Planar) is a sequence with 1, 2 or 4 echoes, where each echo is separated from the previous echo
by a delay equal to the first echo time (eg SE/3000/20,40,60,80 for a 4 echo train with the first
echo at 20 ms). VEMP (Variable Echo Multi-Planar) is a two echo sequence for which the
second echo time is independent of the first echo time (eg SE/3000/32,87). The shape of the
slice profiles (see section 2.4.2) for MEMP and VEMP means that a slice skip equal to half the
slice width is recommended to avoid crosstalk. CSMEMP (Contiguous Slice Multiple Echo
Multi-Planar) and CSVEMP (Contiguous Slice Variable Echo Multi-Planar) are versions of
MEMP and VEMP which have squarer slice profiles than MEMP and VEMP and are designed
to be used for contiguous slice acquisition. Crosstalk is discussed in more depth in section 5.6,

and Signa slice profiles in section 9.5.1.



2.4 Obtaining Spatial Information.

2.4.1 The Field Gradient

An essential part of any NMR imaging system is the magnetic field gradient since it
allows spatial information to be obtained from analysis of the NMR signal. The field gradient
is simply an additional magnetic field, whose amplitude varies linearly with position along a
chosen axis. Field gradients are generated by passing currents through specially constructed
*gradient coils’. An imager has three pairs of gradient coils to generate magnetic field gradients
along the three orthogonal axes x,y and z. Consider two bottles in an imager, with the direction

of the field gradient as illustrated by Figure 23. The field gradient means that the resonant
frequency will vary with x.

Bottles
Field gradient > X
Signal anan M\W
Total signal ww*M'\nMw
Amplitude
|
vo
Larmor Frequency

Figure 23 - The field gradient.

Frequency analysis of the total signal rececived following an NMR excitation leads to two
amplitude pulses representing the positions of the two bottles. This is known as frequency

encoding. Frequency encoding gives 1-D information, but at least 2-dimensions are required for
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imaging. In the early days of NMR, reconstruction from projection methods were utilised such
as those used in X-Ray Computed Tomography. Fourier Transform methods are now more

common. [See section 2.4.3]

2.4.2 Selecting a Tomographic Slice.

If a slice through a sample is required instead of a shadowgram (as in a conventional
X-Ray), only spins within a narrow slice should be excited (i.e. subject to a RF pulse). This can
be achieved by a method known as selective excitation as illustrated below by Figure 24.
Suppose it is desired to produce a slice in the x-z plane. A field gradient, G,, is applied to the
sample at the same time as a spectrally-shaped RF pulse. Only the spins within the narrow
shaded strip are excited because only they have Larmor frequencies within the RF pulse’s
bandwidth.

Shaped RF pulse.

<>
5

Slice profile

Sample

Field TR 55
gradient (~—
X

Gy)

Figure 24 - Slice selection.

For most NMR studies, the ideal slice is assumed to be parallel-sided and of rectangular
section with its surfaces being positioned exactly along the required image plane. Non-
uniformities of both main and gradient fields are major causes of non-ideality of the profile and
RF non-uniformity is also of importance. These are generally minimised in the centre of the
image plane, but can be considerable at the outer edges of the slice. Several RF envelope shapes
are commonly used. A Gaussian RF envelope yields a near-Gaussian profile (the discrete Fourier

transform of the RF envelope) which is not a good approximation of a rectangular profile. A
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truncated sinc shaped RF profile provides a more rectangular profile, but one which has side
lobes. These can be reduced by cosine apodization. Slice width is often defined by the FWHM
of the slice profile, but it should be noted that this figure may be misleading in the case of some
profiles, such as a Gaussian which possesses large side wings. A poor slice profile leads to
signal from outside the desired area contaminating a slice and hence means that sharp edges are
less well defined.

243 Fourier Transform Methods

The Fourier Transform (FT) group of imaging techniques derives from an idea presented
by Kumar et al. [KUMAR?7S5]. The fundamental idea is that a simple 1-D projection is the
Fourier Transform of the FID as it evolves with time in the presence of a field gradient. If a
second 'dimension’ of time could be introduced, in which the FID effectively evolved in the
presence of a second gradient at right angles to the first, then a 2-D Fourier Transform of the
signal, expressed as a function of ordinary time and pseudo-time (the second dimension), would
produce a 2-D image. The array of raw FID data is often referred to as Fourier space, or k-space.
A useful approximation of pseudo-time can be obtained by subdividing real-time. This is
illustrated by Figure 25. In FT imaging, the real-time evolution of the signal in one gradient is
repeated many times. The second field gradient is applied in such a way that its effect increases
with each repetition, thereby simulating the progress of pseudo-time. This second field gradient
can be considered to introduce a phase "twist’ into each column of spins prior to collecting the
FID. Hence this second field gradient is sometimes referred to as the phase-encoding gradient,
whilst the first field gradient is referred to as the frequency-encoding gradient.

In Fourier zeugmatography the second field gradient has a constant amplitude with the pulse
duration increasing with each successive pulse-FID (ie with the progress of pseudo-time). This
has since been superseded by spin-warp imaging [EDELSTEIN80] in which the second field
gradient is applied for a fixed duration, but its amplitude varies linearly with the progress of
pseudo-time. The spin warp image-forming procedure can be (and is) incorporated into any of
the pulse sequences described above.
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Figure 25 - FID as a function of real time and pseudo-time.

2.44 The Gradient Echo

Consider the use of fast imaging techniques utilising small flip angles. A 180° pulse is
not appropriate for echo generation in this situation because it would invert the longitudinal
magnetization producing a non-equilibrium situation similar to that in an inversion-recovery
pulse sequence. Instead, an echo can be generated by applying a negative gradient in the readout
direction to dephase spins, immediately followed by a positive gradient which causes re-phasing.
The signal is then sampled as illustrated by Figure 26. The echo is not a spin echo and any main
field (B,) non-uniformities will cause imperfect refocusing. This leads to T,” instead of T,
weighting when using gradient echo sequences. The absence of a 180° pulse allows shorter echo
times to be utilised. The speed of this approach means that volume data may be acquired where
data are collected simultaneously from a slab of tissue using phase-encoding in a second
dimension to encode for the different slices. Such an approach allows isotropic data to be
acquired, and it is possible to have the "slice thickness" smaller than the in-slice voxel

dimension.
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Figure 26 - The gradient echo in a perfect field

25 Image Contrast

Image contrast in magnetic resonance imaging is a very complex and subtle process.
NMR images may contain PD, T, and T, information. As well as this, flow, chemical shift,
paramagnetic contrast agents, perfusion and diffusion also affect the image contrast, although this
discussion will be limited to PD, T;, T, and contrast agents. The amount of contribution of each
characteristic is determined by the nature and timing of the pulse sequence used to collect the
NMR signal. Differences in main field strength and the RF will make small differences in the
effects of a given pulse-sequence timing between imagers. Image intensity is linearly related to
both spin density and receiver coil sensitivity. It should be noted that protons in various types
of homogeneous tissue that differ in their molecular environments will exhibit characteristically
different values of their relaxation constants T, and T, because of the difference in proton

mobility.

25.1 Contrast in Common Sequences.

The most commonly used imaging sequences are Inversion Recovery (IR), Saturation
Recovery (SR), Spin Echo (SE) and Rapid Imaging techniques. Although the precise details of
sequences differs between imagers, the basic form of the sequences is as shown in Figure 19 -
Figure 21. Briefly the contrast dependency of the main sequences are as follows. Inversion
Recovery : the signal produced by the Inversion Recovery sequence is dependent on PD and T},
but not greatly on T,. The NMR signal can be positive or negative, although it is not possible
to determine which, and therefore the signal modulus is often displayed. Saturation Recovery :

the signal contains PD information weighted by the amount of T, relaxation which has occurred



69

during the interval T,. If T, is long then the relaxation will be complete and only PD information
will be available. Spin Echo : the SE sequence provides PD information which can be weighted
by T,, and/or T, relaxation. Rapid Imaging : gradient echo sequences such as FLASH, SSFP,
FISP and GRASS produce images weighted with a mixture of PD, T, and T,.

2.5.2 Contrast Media

The contrast between tissues can be varied by administering various external agents
either orally or intravenously. Generally, contrast media are based on paramagnetic materials of
some type which reduce relaxation times due to the fact that they are strongly paramagnetic with
one or more free electrons - which have a much larger magnetic moment than is associated with

hydrogen nuclei. Gadolinium-DTPA usage has been widely used for diverse investigations.

2.53 Quantitative Images

It is possible to produce quantitative images, where the image brightness is simply
proportional to T,, T, or PD, by using self normalising sequences and analysis methods. Such
sequences allow correction for non-uniformity (primarily RF) in the images by varying the
parameter of interest (such as Ty or Tg) whilst retaining the non-uniformity. [See section 2.6 on
artifacts.] Quantitative T, images can be generated by incorporating more than one echo into a
spin-echo sequence (ie a multiple-echo sequence). In general it is necessary to acquire a number
of images to calculate quantitative images. If one parameter can be held constant, it is usually
possible to obtain T, or T, images from two standard images. To obtain T,, T, and PD images,
three standard images are required. It is important to distinguish carefully between such T,/T,/PD
calculated images and T,/T,/PD weighted images.

2.54 Synthetic Images.

Knowing PD, T, and T, for a sample from a set of images, it is possible to synthesise
other images with different timing parameters, by using knowledge of the spin sequence and the
Bloch equations. This has proved useful in deciding upon which sequences to use for new

applications.
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2.6 Artifacts

A good definition of an artifact is given by Foster and Hutchinson [FOSTERS87]. They
state that "in imaging technology, an artifact is a feature appearing on the image which does not
correspond to the properties of the subject in the corresponding region." An artifact may arise
from the equipment itself, from some unwanted interaction between the subject and the imaging
equipment, or from an external cause. In NMR, artifacts manifest themselves as local errors such
as stripes or ‘single pixel errors, or features displaced from their 'correct’ position, the latter

commonly being known as aliases.

Respiratory and cardiac motion lead to regular aliases. Irregular motion such as single
patient movements cause a more featureless smear in the phase-encoding direction. Spin
sequence artifacts and machine imperfections may lead to ghosting, lines or incorrect contrast.
Flow artifacts from blood and CSF show up as streaks inside and outside the sample in the
phase-encoding direction often at the level of the ears in brain scans. (This is different from the
contrast due to flow.) It should be noted that the phase-encoding direction is technically different

from the other two orthogonal directions.

There are various types of non-uniformities to which NMR images are susceptible. The
non-uniformity of the main field B, has an important effect on gradient-echo images, whilst RF
non-uniformity affects Spin-Echo images adversely. RF non-uniformities are of particular
importance in quantification. Particular emphasis should be placed upon the difference between
transmission and reception non-uniformity. This will depend upon whether the same coil is used
to transmit and receive the RF signal (such as most body-coils) or not. Surface coils tend to be
receive coils only and are particularly susceptible to receive non-uniformity. There are various

types of correction that can be used for non-uniformity which are discussed in chapter 5.

Other problems include the ringing at sharp edges known as the Gibbs artifact, which
is a feature of the Fourier Transform image reconstruction, mis-registration of image slices and

distortions of the main magnetic field by ferromagnetic materials.
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2.7 Properties Of NMR Image Data

2.7.1 Noise

In NMR images the noise is generally independent of signal strength. With reasonable
amplification circuitry the amplifiers add little noise and the main source will be Johnson noise
due to the thermal motion of ions in the body. There is a slight difference at zero signal where
rectification may lead to negative values of noise being inverted. In this case, the noise is
described by a Rayleigh rather than a Gaussian distribution.

2.72 Edge Response

The step-edge is often proposed as a model for an ideal edge in an image. There are a
number of factors which mean that edges in an NMR image will not be an ideal step-edge.

® The image slice is not (in general) perpendicular to the tissue border.

® The finite size of a pixel/voxel leads to a slight curve being introduced at the first and last
pixels of an edge.

B The actual slice profile is imperfect as already discussed.

® The pixel profile in the x and y directions is also imperfect. The phase-encode direction is
worse, with some of the signal being contributed from several pixels away. The more phase-
encode steps there are, the closer the profile is to the ideal. The difference between phase-encode
and read direction comes from the fact that the phase-encoding process starts and ends abruptly,
effectively multiplying the time domain response in the phase encode direction, by a top-hat
function which becomes a sinc function following a Fourier Transform. In the read direction,
the top-hat in the time domain is softened by the (physical) filtering that takes place.

® Noise.

® Tissue inhomogeneity will affect an extended step edge.

® RF non-uniformity will affect a largely extended step-edge.

® The lack of a classic border between some tissue types (i.e. the lack of a sharp boundary
between tissues, for example in the case of grey and white matter where the two tissue types
may coexist at the cellular level.)

m The T, effect may lead to a gaussian blurring because of the shape of the FID envelope. This
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would be a very small effect.

2.8 Instrumentation.

Most imagers use similar basic hardware. Figure 27 shows a general block diagram of

the essential components of an NMR imager. The principal items of hardware are

= The magnet - magnets for NMR imaging are generally of two distinct types, namely air-cored
resistive or superconducting, although permanent magnets are infrequently used.

® Three sets of field gradient windings and their drivers. In most imaging systems, three
orthogonal field gradients must be provided.

® The RF transmitting and receiving coil(s) and their electronics. The radiofrequency system is
designed to apply RF electromagnetic field pulses to the appropriate region of the patient, and
to receive the weak FID emanating from the patient. One coil may be used for transmitting
(emitting) and receiving the signals. Often, however, RF pulses are applied via a large 'body-
coil’, with the receiver being any one of a large number of different coils especially designed
to receive signals from particular parts of the body. In the study of multiple sclerosis, head coils,
spinal coils and optical coils are commonly used. A Faraday shield surrounds the entire imager
coil in order to stop external RF interference reaching the receiver coil.

® A reference oscillator operating at or near the Larmor frequency.

® A timing controller.

®m A data acquisition and processing system. The data processing is required to collect the
incoming data, perform the various Fourier Transforms and other calculations, and to file and
archive the images. It also translates the user’s commands and set up the appropriate pulse
sequences as required.

B an image display.
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Figure 27 - Block diagram of basic components of an NMR imager.
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CHAPTER 3

MAJOR CATEGORIES OF IMAGE SEGMENTATION

3.1 Introduction

Image segmentation has been approached in numerous ways by various authors in an
attempt to produce practical solutions to problems in image analysis. The aim of segmentation
is to isolate objects. A region that corresponds to a physical entity, has borders and exhibits
contrast between the interior and the surrounding grey levels is often referred to as an object.
The basic approaches to segmentation may be considered to be divided into three main
categories of medium level approaches. Region-based methods make use of similarities between
pixels and may be divided into thresholding, region growing and clustering. Such approaches
may be contrasted to edge detection which focuses on the changes which occur at the boundaries
between regions. The final category is multi-resolution algorithms which often produce a
hierarchical description of an image. The major approaches within each category of segmentation
are considered within this chapter.
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3.2 Thresholding

Thresholding is most commonly used to separate an object from a background. Several
methods of thresholding are also applicable to images containing three or more homogeneous
regions and these methods will be dealt with later. Thresholding is commonly applied to
cytology images, images of printed or written documents and cloud cover images. Thresholding
works well in situations where object and background are homogeneous or smooth, but tends
to yield poor results when applied to textured images. In its most general form, thresholding can
be mathematically described as

Sxy) = kif T, <gxy)< T, k=0,1,...m (29

where (x,y) are the pixel coordinates, S(x,y) and g(x,y) are the segmented and the grey level
functions of (x,y) respectively, T, .... T, are threshold levels with T, equal to the minimum and
T, the maximum grey levels in the image and m is the number of distinct labels assigned to the
segmented image. It should be noted that although thresholding with respect to grey level is
common, thresholding may be carried out with respect to texture or other local properties.
Weszka’s early work (WESZKA78), widely acknowledged in the literature as one of the
classic survey articles in image processing literature and recently updated by Sahoo et al.
(SAHOOB88), gives a general form for a threshold operator. The form is as a test involving a
function T of the form T(x,y,N(x,y),g(x,y)) where (x,y) are the coordinates of the pixel, N(x,y)
represents the neighbourhood of (x,y), and g(x,y) denotes the grey level of pixel (x,y). This
notation aids the division of thresholding into three categories - global, local and dynamic
thresholding. A global threshold is one where the threshold is chosen only on the grounds of the
value g(x,y) at (x,y). If the threshold depends on both g(x,y) and N(x,y) then the operation is
local. Finally if T depends upon (X,y) as well as g(x,y) and N(x,y) then the thresholding is

termed dynamic.
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3.2.1 Global Threshold Selection.

3.21.1 Techniques Based on Grey Level Histograms.

The p-tile method (an abbreviation for percentile) was one of the earliest automatic thresholding
methods and was first suggested by Doyle (DOYLEG2). This method uses the grey-level
histogram to threshold simple images in situations where the object grey-levels are distinct from
the background grey-levels and occupy a known fraction of the area of the image. For example
if the object were known to occupy 70% of the image and the background 30% and the object
has higher grey levels than the background, then a threshold is chosen so that 30% of the pixels
in the output image are below the threshold and 70% above.

Prewitt and Mendelsohn (PREWITT66) suggested using the valleys in the histogram to
define a threshold. Their method is known as the mode method. It is based upon the assumption
that the white blood cells in the cytological images they were working with could be assumed
to represent one peak in the grey-level histogram, the background a second peak and the edge
pixels the valley in between these peaks. This yields a histogram termed as bimodal as opposed
to a unimodal histogram with a single peak. In unimodal histograms pixels are most often
presumed to be due to either the object, the background or the edge pixels alone. The mode
method works well for images of white blood cells, but not so well for images with extremely
unequal peaks or with broad and flat valleys in their histograms.

Ostu (OSTU78) suggested a global thresholding method based on discriminant analysis.
With the pixels of an image divided into two classes at a threshold, three variances can be
calculated - the within-class variance, the between class variance and the total variance. An
optimal threshold can be determined by minimising the ratio of class variance to total variance
where 6,2 and o, are the between class variance and the total class variance respectively. These

are given by

-1 1-1

of = X (-, b= Xip, 0
i=0 i
Cp" = Wow,(H,y)’ Wy = 3P, wy=1-w, (3D

i=0
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K = i l‘Lo'i P«'Zip.' (32)

where t is the proposed threshold, 1 the total number of grey levels in the image and p;=n;/n.

Several authors have recently suggested methods where the optimal threshold is obtained
by applying information theory. These include Pun [PUN80O and PUNS81], Kapur [KAPURSS]
and Johannsen and Bille [JOHANNSENS2]. Other methods include a moment preserving method
where the moments of an image to be thresholded are preserved in the binary output image
[TSAI85] and the minimum error method [KITTLERS86] which is based upon the minimisation
of a criterion representing the probability distribution function of the object and background,

their standard deviations, means and a priori probabilities.

3.21.2 The Use of Edge Strengths to *Improve’ Histograms.

The methods discussed to this point have been global methods where the grey level histogram
is used to determine a global threshold. However local properties have also been used to this
end. Two groups have used edge detectors to determine edge pixels and hence ’improve
histograms’. Mason et al. [MASON] have used a gradient image to weight non-edge pixels in
the histogram so as to make histogram valleys deeper and allow the use of a mode method. This
has proved fairly successful, although not all valleys are considerably deepened. Weszka et al.
[WESZKA73a] have suggested another gradient method, based on the Laplacian operator. This
has proved advantageous in situations where the histogram valley is broad and the peaks are
unequal in size where it is often difficult to choose a threshold. The grey level values of the
edge pixels give a more strongly bimodal histogram than the original image, again allowing the

use of a mode method.

3.2.13 Edge Strengths as an Aid to Threshold Selection.

Instead of using a gradient operator to improve histograms, other authors have used values of
local properties to directly compute a threshold for an image. These techniques involve taking
a histogram only of pixels which have a high gradient value. As before, these pixels lie on or
near the borders of objects, and tend to have a bimodal grey level histogram. However if less
and less pixels are used to determine the histogram (i.e. if pixels with higher and higher values
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of gradient are used) then a single mode is produced. If a low number of pixels is used, then
whether the edge histogram is bimodal or unimodal, the average grey-level of the filtered points
should be a reasonable place to threshold the image because this corresponds to the most likely
edge position. Both Katz [KATZ65] and Weszka and Rosenfeld [WESZKA75] used this method.
Further work using differencing operators was also carried out by Watanbe [WATANBE74] and
Weszka et al. [WESZKA73b] which achieved good results with cell images, but poor results

with images of chromosomes, handwriting and cloud cover.

3.2.14 The Co-Occurrence Matrix and Thresholding.

One of the drawbacks of the techniques so far described is that apart from the gradient methods,
they calculate a global threshold based solely on first-order grey level statistics (i.e. the grey
level histogram). Several methods improve on this by using second-order grey-level statistics.
Haralick [HARALICK?73] introduced the co-occurrence M o) matrix for texture analysis, whose
entries are the relative frequencies of occurrence of two neighbouring pixels with grey levels i
and j separated by a distance d with an orientation ¢. Ahuja and Rosenfeld [AHUJA78] used
the 4-connected neighbours of a pixel to construct a co-occurrence matrix. Because of
homogeneity, pixels interior to objects or background should contribute mainly to the near-
diagonal entries of M, whilst pixels near an edge should contribute mainly to the off-diagonal
entries of M because of the grey-level change near an edge. Therefore the matrix M can be used
to define histograms from the near-diagonal and off-diagonal entries of M, which should have
the appearance of a deep valley between object and background grey levels and a sharp peak
between the object and background grey levels respectively. A threshold for the image is then
chosen from the grey level range in which the valley from the near-diagonal pixels overlaps with
the peak in the off-diagonal pixels. Two similar methods are Kirkby and Rosenfeld’s (Grey
level,local average) scatter plot method [KIRKBY79] and a method by Deravi and Pal
[DERAVIg3].

3.2.15 Relaxation Methods.

Southwell first introduced the idea of relaxation to improve the convergence of recursive
solutions for systems of linear equations [SOUTHWELL40, SOUTHWELLLA46]. When
relaxation is applied to thresholding, the pixels of an image are first probabilistically classified
into object and background on the basis of their grey level. Then the probability of each pixel
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is adjusted according to the probabilities of the neighbouring pixels. One attractive feature of
relaxation methods is that they are parallel-processing techniques as opposed to the sequential
techniques described so far. This approach has been researched by Rosenfeld and Smith and
others [ROSENFELDS81, FEKETES81, PAVLIDIS77, PELEG80]. Bhanu and Feugaras
[BHANUS2] have used a similar method with gradients by maximising a criterion function with

gradient optimization.

3.22 Local Thresholding Methods.

Local threshold selection techniques have been widely used for optical character
recognition which must deal with a wide variation in print quality distortion over a single
document, and even a single character. Bartz [BARTZ69] used the average contrast over
previously scanned characters, whereas Wolfe [WOLFE69] and Ullmann [ULLMANN74] both
used local neighbourhoods, Wolfe of 4x4 and Ullmann of 5x5 pixels to select a threshold.
Researchers have also used the gradient, calculated over a local neighbourhood. Both Morrin
[MORRIN74] and Panda [PANDA77] have used this method. Panda has also suggested several
segmentation procedures that yield tri-modal distributions in the plot of frequency of occurrence
as a function of grey level and edge value. The three modes in this joint histogram correspond
to points interior to the object, points interior to the background and points on the border
between the two.

3.23 Dynamic Thresholding.

A dynamic thresholding technique widely quoted in the literature has been suggested
by Chow and Kaneko [CHOW?72] for detecting boundaries in radiographic images. Their method
was designed for low quality radiographic images where the contrast varies across the image,
making a global threshold inappropriate. A local histogram and a variance are calculated for
overlapping 7x7 windows in the image and the histogram classed as bimodal or unimodal
depending upon how well it fits a model of one or two nommal distributions. Bimodal
distributions are likely to occur on the boundaries of objects. The threshold for each pixel is
determined by interpolation between the nearest windows, the threshold value depending on the
pixels proximity to boundary points (or their neighbours). Thresholds for boundary points are
determined from the model of the two normal distributions in the appropriate local window.

Fernando and Monro [FERNANDOS2] have used 16 non-overlapping regions and applied the
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entropic thresholding technique of Pun [PUNS80] in each of these regions to determine a
threshold value. The entire thresholded image is then finally processed by a low-pass filter to
climinate the grey level discontinuities at region borders. Yanowitz and Bruckstein
[YANOWITZS89] propose a method where the threshold level varies over different image regions
to fit the spatially changing background and lighting conditions as illustrated by Figure 28 - in
other words a threshold surface. This is necessary for automated visual inspection where it is
required to separate objects from the background in conditions of poor and nonuniform
illumination. This surface is determined by interpolating between points of the original image
where the gradient is high, indicating probable edge points. The threshold surface thus obtained
is used to segment the image.

Interpolation _
Grey points. Original image.

level. ‘\\

Cross-section through image.

Figure 28 - Yanowitz and Bruckstein’s Method of Threshold Determination.

3.2.4 Multithresholding Methods.

Many of the methods previously mentioned can be extended to the case of
multi-thresholding. These include the methods of Ostu [OSTU78}, Pun [PUN8O, PUN81], Kapur
et al. [KAPURSS5], moment preserving [TSAI85] and minimum error [KITTLERS6]. Other
multi-thresholding approaches include that due to Boukharouba et al. [BOUKHAROUBASS]
where the intrinsic properties of cumulative distribution frequencies (the integral of the
histogram) are utilised. Zeroes of the curvature of the cumulative distribution function determine

* the thresholds as well as the grey level to be assigned to each class. The curvature will be noisy



81

and oscillatory and should therefore be smoothed and approximated for thresholding. Wang and
Haralick [WANG&84) propose a recursive technique where pixels are initially classed as edge or
non-edge, and edge-pixels classed as dark or relatively dark according to their local
neighbourhood, and two edge histograms constructed. A threshold is selected from the higher
peak of the two histograms. The procedure is recursively applied using only those pixels whose
intensities are smaller than the threshold first and then using only those pixels whose intensities
are larger than the threshold. Uniform contrast is another recursive selection procedure which
was proposed by Kohler [KOHLERS1]. The method is based on the idea that the optimum
threshold for image segmentation is that threshold which detects more high contrast edges and
less low contrast edges than any other. A histogram of the average contrast for each possible
threshold, p(t) is constructed where p(t) = C(t) / N(t) , C(t) being the total contrast detected by
threshold t and N(t) the number of edges detected by t. The peak of the histogram is taken as
the threshold. For multi-thresholding, any initial threshold is first selected and then a new
histogram of p(t) computed by removing the contribution of the already detected edges by the
initial threshold. The procedure continues until the maximum average contrast for any threshold

falls below some minimum average contrast 0 > 1.

33 Edge detection.

3.3.1 Introduction.

No single mathematical definition of an edge exists that covers all images, because of
factors such as edge shape, sampling, noise and blur etc., and hence verbal definitions are often
kept informal deliberately. A description as the boundary between two adjacent extensive
homogeneous regions, where an image property changes abruptly as the border between the two
regions is crossed, is perhaps as good a description as any. The image property is often grey
level and sometimes texture, but is not limited to a choice of these two. Edge detection is of
intqrest for applications other than segmentation. It is efficiently implemented in biological visual
systems, and so a significant part of the advances in edge detection are provided by research
work in this field. Edge detection from this viewpoint has been reviewed by Brady [BRADY82].
It is also of interest for image registration, stereo vision and inference of 3-D structure from

motion, for example the determination of 3-D structure of an object from a series of namral
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scene images in which the object moves. These applications will not be discussed any further,

however.

3.3.1.1 The Ideal Step Edge.

Many papers model an edge as an ideal step edge, as shown in Figure 29. Depending upon the
class of image being analyzed, it is possible to encounter a range of edge cross sections such as
roof and spike edges. For example spike edges are obtained from lines in an image, and roof
edges appear in natural scene images of solid objects which contain surfaces at different
orientations meeting at sharp angles. However the step edge is normally the model of interest
for most edges. Even if an ideal step-edge does occur in the original ’scene’ from which the
image is taken, the edge would be subject to the effects of sampling, noise, blurring and other
application specific degradations. Hence the edge in the image is often a noisy ramp. If edges
are diffuse as in the case of a roof edge, it is impossible to locate them sharply by means of a
small operator. It should be noted that edge operators are generally designed to give a maximal
response for the edge model they are based upon. However factors such as noise etc., may lead

to a high response from areas of the image which do not correspond to edges.

3.31.2 Problems Associated with Edge Detection.

There are many inherent problems associated with edge detection. First only rarely can an
adequate model of an edge be defined that will hold over the whole image (since most images
are not homogeneous) or over all images of a given application. Boundary placement also
presents problems in environments with noise, texture, slowly varying gradients etc. Finally since
edge detection does not necessarily produce a complete segmentation, further procedures for
edge linking and edge cleaning are required to organise the resulting edges. Many dozens of
edge-detection methods have been proposed in the literature and this is not the place for an
extensive review of these. Instead the basic approaches behind a large number of these edge-
detectors will be presented, a few of the more popular methods focused on and some commonly
applied methods of post-processing for edge-images presented. Davis et al. [DAVIS75], Riseman
et al. [RISEMANT77], Rosenfeld et al. [ROSENFELDS82], Pavlidis [PAVLIDIS77] and Fu and
Mui [FUS81] have all reviewed a number of edge-operators in greater detail.
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Ideal step edge.

Roof edge.

Ramp edge.

Spike edge.

Noisy ramp edge.

Figure 29 - Edge types.
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3.3.2 Parallel Edge Detectors.

The following methods can all be described as parallel methods because each pixel could
be independently processed. This has advantages in that given a suitable architecture, each pixel
could be processed in parallel. This is as opposed to the sequential methods such as surface

tracking and contour following where pixels are processed in order. These are reviewed later.

3.3.21 High Emphasis Spatial Filtering.

One approach to edge detection is the use of a spatial frequency filter [DUDA73]. A basic result
from Fourier analysis is that high spatial frequencies are associated with sharp changes in
intensity. So by multiplying in the Fourier domain or convolving in the spatial domain with a
high pass filter (i.e. one that attenuates the low spatial frequencies and enhances the higher ones)
the high frequencies which correspond to edges will be enhanced. One problem is that noise
dominates the very high frequencies, so a filter must also attenuate these frequencies. Hence low
frequencies corresponding to background structure and extremely high frequencies corresponding
to noise are attenuated, whilst the high frequencies corresponding to edges are enhanced. The

problem becomes one of optimum filter design.

3.3.22 Directional Derivative Methods.

The idea underlying a large number of edge detectors is the computation of a local derivative
operator. If f(x,y) represents the grey-level of an image at (x,y) then the simplest edge detector
for say horizontal edges would be to compute If(x,y) - f(x,y+1)l. If this value is high, then there
is a horizontal edge between the two points. This is the digital analog of the directional
derivative of the picture along the direction orthogonal to the edge we are looking for. Many
methods of edge detection use small spatial masks to compute a discrete approximation of a

local derivative.
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The Gradient.
If a directional derivative were to be used as a measurement of edge strength, its response would
vary with the orientation of the edge. To avoid this the magnitude of the gradient is usually
used, since this automatically gives the rate of change in the direction of greatest steepness. The

Gradient of an image f(x,y) at (x,y) is defined in two dimensions as the vector.

il
G
Glfxy)l - H - 2;? (33)
b
9

G is orientated in the direction of maximum rate of change of f at (x,y). For edge detection the
magnitude of this vector is of interest, generally referred to as the gradient and denoted under

a Euclidean metric by

Glfixy)] = [G,’+Gy2]‘” (34
which is often approximated by the City Block Magnitude Gradient (CBMG)

Glfxy) = IG) + G (35)

The orientation of the gradient is given by

ofx,y) = tan™ [%] (36)

x

Computation of the gradient is based on obtaining the partial derivatives df/dx and of/dy at every
pixel location. For a digital picture, first differences rather than first derivatives are used. i.e. the

difference in grey levels between neighbouring pixels.) Therefore

Ax(xy) = f(xy) - fx-1) 37
and

Ay, (x.y) = f(xy) - fxy-1) (3%)

These are digital convolutions which convolve f with the patterns
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[-1,1] and [_}] (39)
Ax; and Ay, could be combined by taking (Ax? + AyZ?)'” but this would not strictly be a correct
approach, since the differences these operators measure are not symmetrically located with
respect to (X,y).

The Roberts operator is given by [f(x,y) - f(x+1y+1)| + |f(x,y+1) - f(x+1,y)|
[ROBERTS65] and detects horizontal or vertical edges. Both of these operators compute the
finite differences about (x+1/2, y+1/2). A small operator such as this is very susceptible to the
effects of noise. A simple extension of this is to compute the difference of the average grey-
levels of two one-dimensional neighbourhoods on opposite sides of a point, to measure 'central

differences’ as below.

A
- }3 Y (glig+n) - glij-n)
n=1

A A
13 g -+ gn) “0
a=1 a=1

This avoids the problem of having an approximation to the gradient at a point between pixels.

For n=1 the values of the edge operators are the convolution of f with

1
[-101] and [o] (41)
-1

Averaging over many points reduces the effect of noise to a great extent and is also more
appropriate for detecting broader edges. However there is a trade off with the localisation ability
of larger operators. Many such operators have been suggested. (HUECKEL73], [BULLOCK74],
[FRAM75], [McKEE75], [MARR75])

The Laplacian.
The Laplacian is a second-order derivative operator defined as

Lifey)] - ;ai’f_ 42)
0 Ox;

in n-dimensions, where x; represents a dimension. Since peaks in the first-order derivative of a

function correspond to zeroes in the second-order derivative of this function, edge detectors can
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be designed by computing an approximation to the second order derivative and looking for zero-
crossings. The Laplacian is an orientation-invariant derivative operator. Its analogue for digital

pictures is given by

(VNG D) = [FG+L, ) + fG-1,)) + fG,j+1) + fG,j-1] - 4G, J) (43)

which is the digital convolution of f with

010
141 (44)
010

It is of particular interest to construct directional derivative operators that are isotropic i.e.
rotation invariant (in the sense that rotating f and then applying the operator gives the same
result) as such operators will detect edges of any orientation. The Laplacian is seldom used by
itself for edge-detection because a second derivative is typically unacceptably sensitive to noise.
The effects of noise on the responses of a difference operator can be reduced by smoothing the
image before applying the operator, and this approach has been successfully applied by Marr and
Hildreth [MARRS0].

3.3.23 Edge Matching.

Gradient operators estimate the edge magnitude and direction at a point using difference
operators in two perpendiculars directions. Another approach is to match local patterns or fit

surfaces to the image at the given point.

Mask Matching.
In choosing edge pattemns or masks to match with a picture, it is customary to use masks that

represent second differences of step edges. In a 3x3 neighbourhood a second-difference mask

for a vertical step edge would have values

-1 0 1
101 4s)
-1 01

which is the Prewitt operator A,, [PREWITT70]. To detect edges by mask matching, a set of
difference-operator-like masks are convolved, in various orientations, with the image. The mask

giving the highest value at a given point determines the local edge orientation, and the value
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determines the edge strength. Both Sobel [SOBEL] and Prewitt have presented masks of this

type. For example, Sobel’s operator corresponds to the following convoluﬁon masks.

J1 21 210 (J10-1 ([0-1-2
~|looo =1 0-1 ~|2 0-2 21 0-1| (6
4|-1 -2 -1 410 -1 -2 411 0 -1 412 10

121 (J2-10 J1 o1 (Jo 12
Zlooo ~l-1 01 |20 2 —{-1 0 1| @)
41121 4101 2 411 0 1 41 2-10

It is not necessary to use all eight masks in practise, since the second four masks are simply the
negative of the first four.

Step Fitting.
Another approach to edge detection is based on fitting an ideal step edge to the given picture
f(x,y) at a point P. For simplicity take P to be the origin. A step edge of slope 0 through P,
having values a and b on its two sides is defined by the function

- a if xsin® 2 ycos0 (48)
Sxy) { b otherwise.

It is necessary to find a,b, and 0 that minimise some measure of the difference between f(x,y)
and s(x,y). These values then provide estimates of the contrast |b-a| and slope 6 of the edge

at P if one exists.

Image Expansion in Terms of Basis Functions.
Hueckel [HUECKEL71] used an orthogonal set of eight basis functions defined in a circular
neighbourhood around each point of the image. His method for edge detection was as follows.

He expanded both the image and a certain number of basic step functions in terms of the chosen
orthogonal set locally at each point; the best-fitting step edge was taken to be the step edge
minimizing the differences between corresponding coefficients in the expansions of edge and
images in the least-squares sense. The multidimensional edge operator of Zucker and Hummel
[ZUCKERS1] followed on from Hueckel’s work. They expanded the grey-level function in terms
of an orthogonal set of basis functions (using Karhuven-Loeve basis functions) locally at each
point. Expansions in terms of the same functions were found for a certain number of step

functions and again, the best-fitting step, if any, was the one which minimized the differences
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between the coefficients of the expansions in the least squares sense. They found that the discrete
approximation to the operator they derived was a generalisation of the Sobel operator into
higher dimensions.

Surface Fitting.
One way to define operators for detecting edges is to fit a surface to a neighbourhood of each

image point using a simple function, for example a polynomial. In two dimensions, a surface
would be fitted to the data using the grey level of the pixels as a third dimension. The function
can then be used for a number of purposes. For example, the function’s gradient and Laplacian
can be taken as approximations to the digital gradient and digital Laplacian of the image at the
given point. The derivation of digital approximations for the gradient and Laplacian from least-
squares fitting of polynomials is due to Prewitt [PREWITT70] and has been very influential.
More recently surface fitting has been extended to 3D images by locally fitting hypersurfaces
to the image data. e.g. [MORGENTHALERS1]

3.3.24 Canny’s Approach to Edge Detection.

Canny’s [CANNY81, CANNY86] work has been very influential. His theoretical approach
defines three common criteria relevant to edge detector performance in general.

(1) Low error rate - edges that occur in the image should not be missed by the operator

and there should be no spurious responses. .

(2) Edge points be well localised, so the edge marked in the output image and the centre

of the true edge should be coincident.

(3) There should not be multiple responses to a single edge.
Canny derives terms for each of the criteria and combines these terms. He discovers an
uncertainty principle relating detection and localisation of noisy step edges and that there is a
direct trade off between the two. One consequence of this relationship is that there is a single
unique "shape" of impulse response for an optimal step edge detector, and that the trade off
between detection and localisation can be varied by changing the spatial width of the detector.
Canny derives optimal operators for ridge and roof edges using numerical optimisation. The
optimal detector has a simple approximate implementation in which edges are marked at maxima

in gradient magnitude of a Gaussian-smoothed image.



3.3.25 The Marr-Hildreth Operator.

The impetus behind Marr and Hildreth’s theory of edge detection [MARRS80] was an attempt to
develop a computational theory of vision. Their operator has been derived to optimise the
enhancement of edges from clearly defined constraints. Marr and Hildreth note that intensity
changes tend to occur over a wide range of scales and they suggest that one should therefore
first take the local averages of the image at various resolutions and then detect the changes that
occur at each one. They select the Gaussian distribution [MARRS2] as an optimal smoothing
filter based on the argument that

"it has the desirable characteristic of being smooth and localises in both the

spatial and frequency domains and, in a strict sense, being the unique

distribution that is simultaneously optimally localized in both domains. And the

reason in turn why this should be a desirable property of the [Gaussian]

blurring function is that if the blurring is as smooth as possible, spatially and

in the frequency domain, it is least likely to introduce any changes that were not

present in the original image."

The non-directional Laplacian operator was selected to localise the intensity changes because it
is more computationally efficient than the use of a range of directional derivative operators. As
the Laplacian is a second derivative, the zero crossings of V2G(x,y)*I(x,y) are detected for image
I(x,y), where G(x,y) is a two-dimensional Gaussian, V? is the Laplacian and * indicates the
convolution operation. The theory explains several basic psychophysical findings, and the
operation of forming oriented zero-crossings segments from the output of VG filters acting on
the image forms the basis for a physiological model of simple cells.

The Laplacian of Gaussian (LoG) operator as it is commonly known is often
implemented with large (30x30 for example) digital convolution masks. It has proven an
effective edge detector in a wide range of images, although the vast majority of researchers only
calculate the edge positions for one variance of the Gaussian, in contrast to the approach which
Marr and Hildreth used when deriving the operator. The operator is also often approximated by
the Difference of Gaussians (DoG) filter which has the advantage of being separable into 1-D
filters, with a consequential saving in terms of both memory and time requirements. The DoG

function may be written as

DoG(c,,0) = 1 = _ 1 %= (49)
y2r o, 2% o,
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which is equal to the LoG within a constant.

3.3.26 Postprocessing of Edge Images.

Ideally an edge detector should only yield points lying on image boundaries. In practise, the
edge map seldom characterizes a boundary completely because of noise, blur and insufficient
contrast at some parts of the boundary. False edge elements also arise because operators often
produce a high response not only at the point located directly on a sharp boundary but in a
whole neighbourhood of that point. Thus edge-detection algorithms are typically followed by
linking and other boundary detection procedures designed to assemble edge pixels into a
meaningful set of object boundaries.

Thresholding of Edge Images.

The output of most parallel edge detection methods is an edge image e(x) where each pixel has
an associated magnitude and sometimes an associated orientation. One common method of
detecting edges is to select a threshold h for extraction of edge elements by the condition
e(x) > h. The threshold is usually selected so as to strike the right balance between omission of
some edge pieces and detection of false edge elements, and is often selected interactively,
although some authors select h automatically on the basis of the global properties of the image.
For example Perkins [PERKINS80] chooses as a threshold the point of maximum curvature in
the histogram of the edge image, and Rosenfeld [ROSENFELD81] uses clustering to define an
edge cluster in the edge image. The thresholded image is then ready for further processing. If
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the operator produces false edge elements because of the high response near to the boundary it
may be necessary to apply thinning. The simplest and most common method of thinning the
edge operator response is based on suppression of non-maximal response values perpendicularly
to the edge, where edge responses within a certain distance of a maximum edge response are
zeroed ([JACOBUS81],[ROSENFELD71)).

Edge Linking.
Thresholding an edge map tends to produce streaking, the term used for incomplete boundaries.

Several methods have been suggested for combining these streaks into complete and meaningful
boundaries. Rosenfeld [ROSENFELDS2] suggests that nonlinear curve detectors or techniques
based on the Hough transform be used for edge linking. The Hough transform is commonly used
as a shape detector, the linking of points is dependent on determining whether or not they lie
on a curve of specific shape (for example an ellipse). Another approach is to examine the
neighbourhoods of each point (typically 3x3 or 5x5) in, or close to, the direction along the edge
(i.e. approximately perpendicular to the gradient direction). If other edge points are found in this
direction on both sides, and if their slope does not differ too greatly from the slope of the given
edge point, it is linked to them, otherwise it is deleted. i.e. the difference between the
magnitudes of the gradient, and the diffemncés between the orientations of the gradient, of
neighbouring pixels must be less than some threshold.

Edge responses can also be improved by making use of both edge detection and
thresholding (or more generally edge and spectral or spatial pixel classification). For example
if an image is thresholded, edge pixels as defined by response to an edge detector, should lie
close to the border determined by the threshold. Other positive responses to the edge detector
can hence be rejected. One final method that can be used if spurious edge points can be
removed, is elastic matching, where a contour is constructed by curve fitting to those edge pixels
which are considered valid. This contour closely resembles the edge required. If edge elements
in a part of the boundary where the curvature changes sharply are missing then the elastic

matching will perform poorly here.



93

3.3.3 Sequential Methods.

3.33.1 Edge Tracking.

Tracking methods can substantially reduce processing times, as a well tuned method will only
track near to edge candidates, as opposed to most other methods where every image pixel is
processed. The tracking method is defined by three rules, the choice of starting point, the rule
for adding the next pixel to the contour, and the stopping rule [FU81]. The starting point may
be determined by a high response of the edge operator. [MINSKII85, EHRICHSI,
KAZMIERCZAKT77], by a specific brightness value between the brightness values of the objects
or interactively. Tracking usually stops when the procedure does not find a new point which
satisfies the adjoining condition. Tracking is a strictly sequential process, yet when taking a
decision to adjoin the next edge pixel, it is possible to simultaneously consider various data -
local, global and data accumulated in the process of edge construction. In this sense, the tracking
process is similar to the sequential region growing process (as described in section 3.4).
Tracking is often based on an edge operator response, but in addition to the magnitude
of the response to an edge detector, denoted by e(x), the orientation of the edge ¢(x) can also
be considered as Kazmierczak [KAZMIERCZAK?77] has done. He specifies two thresholds h and
h,. From the neighbourhood of the last adjoined element x, the procedure selects an element y
such that e(y) > h and the direction from x to y, o(x,y) is maximally close to ¢(x) with
|$(x) - a(x,y) | < h,. If no such element is found, the tracking of the given piece of boundary
ends. It should be noted that in this method, the stopping criterion does not include closing.

3332 Surface Tracking.

The extension of edge tracking into three dimensions is often termed surface tracking. One of
the earliest three-dimensional boundary detection methods reported is due to Liu [LIU77]. His
method is applicable to 2- and 3- dimensional images and utilises backtracking to correct for
errors. A Roberts-like gradient is used in both the 2D and 3D cases to measure contrast level
which the boundary follower attempts to maximise. Global information is limited to the
monitoring of the mean gradient magnitude along the developing boundary and is primarily used
to initiate backtracking. Herman and Liu [HERMAN78] have adapted Liu’s earlier work to 4-

dimensions, so time sequences of 3-D images can be examined. More recently, Cappalletti and
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Rosenfeld have examined three-dimensional boundary following. They presented a graph search
based method for boundary following with a cost function utilizing edge gradient magnitudes,
edge circularity and comparison with neighbouring sections. They found that the use of 3-
dimensional gradient operators greatly reduced search effort and gave slight improvements in

edge localization.

34 Region growing.

Region growing is the process of joining neighbouring points or collections of points
into larger regions subject to certain conditions, where a region is defined as an area in an image
whose points have a common property. Zucker [ZUCKER76A] has written what is widely
acknowledged to be an excellent survey on region extraction methods. Haralick [HARALICKS86]
has presented an in depth survey of region growing. A segmentation by region growing can be

characterised by four conditions which must be met. These are -

(1) The final segmentation must be complete, so that each pixel is assigned to a region, even if
one of more regions may later prove to be border regions.

(2) Pixels in a region must be connected. The particular definition of connectivity chosen may
define the algorithmic structure in choosing the order of pixel processing.

(3) Some property must be chosen to determine the segmentation. This varies from grey level
values to semantic interpretation.

(4) Adjacent regions must not be capable of being merged.

3.4.1 Muerle and Allen’s Approach.

Muerle and Allen [MUERLEG68] carried out some of the earliest work in the field. They
chose to define a region as any portion of an image in which the statistical distribution of grey
levels is reasonably uniform. Their method starts by segmenting the image into non-overlapping
’pattern cells’ which are squares of 2x2, 4x4 or 8x8 pixels. For each cell a statistical measure
is calculated, for example by estimating the probability distribution function of grey levels within
a cell by fitting a Gaussian. A starting point is chosen and the statistics of neighbouring cells
compared with this starting point. If the comparison proves successful then the cells are merged
to form a fragment and the probability distribution of the fragment updated. Otherwise the
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dissimilar cell is labelled as rejected. The fragment growing is continued until all neighbours
have been examined, in which case the fragment is labelled as a completed region. The next
uncompleted cell is then chosen as a new starting point and the above steps repeated until ail
pattern cells are labelled. This is illustrated by Figure 30. In this approach only grey level
information is used, although the potential for using other criteria such as preferred shape or
direction for growing the shape is apparent.

3.4.2 Multi-regional Heuristics.

Although the progress of the region growing process is based on decisions made with
local information, the desired outcome is a satisfactory global segmentation. This lends credence
to the argument that as much global information as possible should be made available to help
make these local decisions. The first step towards a more global approach was to develop
heuristics which evaluated parameters depending upon more than one region, an approach
developed by Brice and Fennema [BRICE70]. Their process begins with lattice points between
individual pixels being defined to provide space for boundary markers. The first stage produces
atomic regions of constant grey level which obviously means a large number of starting regions.
The vector boundary markers are then set between picture points of different intensity. Each
elementary vector is assigned a strength proportional to the magnitude of the difference in the
grey levels between it. The atomic regions are then combined by the successive application of
two heuristics. The 'phagocyte’ heuristic merges two adjacent regions if the boundary between
them is weak, and the new region has a shorter length of weak boundary than the previous two.
The *weakness’ heuristic merges two regions if the weak portion of their common boundary is
some predetermined percentage of their total common boundary. This heuristic is applied to
refine the results of the phagocyte heuristic.

3.43 Functional Approximation and Merging.

Pavlidis and his co-workers [PAVLIDIS72] have adopted functional approximation as
a mathematical foundation for region growing. Loosely speaking, functional approximation is
using one set of functions to approximate another set of functions which might be very complex
or only known at discrete points. The functions can be quite general, the lowest order functions

being constant values. This condition can be interpreted as average grey level over a region. In
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Figure 30 - Muerle and Allen’s Method of Region Growing.

principle the method followed is then similar to the previous techniques described but the

approach is much more theoretically sound. A two-dimensional picture is first sliced into thin

strips, then each strip partitioned into segments and these segments approximated by
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polynomials. These approximated segments can then be merged into regions by comparing the
polynomial coefficients of adjacent segments.

3.44 Issues Related to Region Growing.

There are two important issues integrally related to region growing. These are the
threshold selection method, and for position-dependent threshold values, the order in which

pixels are processed.

3.44.1 Threshold Selection.

The success of region growing systems is often linked to the selection of an appropriate
threshold. The simplest technique is to select a constant threshold for the entire picture. For
example if the difference between the growing region and a neighbouring point is less than a
tolerance threshold, the predicate evaluates to true. A constant threshold could be evaluated on
the basis of a priori assumptions about the class of images at hand. A more interesting idea is
to allow the threshold to vary over the picture. What is leamnt in the early sequential nature of
the region growing algorithms might be used to influence the later stages. Harlow [HARLOW?73]
and his associates have developed a system for processing radiographic images. They use a high-
level scene description algorithm structured as a tree which serves as a model for program
control. The root denotes an entire chest X-ray, with branches to the left lung, heart etc. Picture
points are joined into regions if their grey levels are within some threshold of the average grey
level of the growing region. The description tree directs the program to find regions that
correspond to each of its nodes. The particular node in control dictates the threshold to be used
and the picture area to be examined. If no suitable region can be found the program varies the
threshold, using parameters attached to the node and another search is made. This illustrates the
variety of possibilities for threshold selection.

3.442 Order Dependence.

The advantage of sequential region-growing algorithms is that information acquired in the earlier
stages of processing can be used to influence the later stages. For example, the first picture
points which are processed may affect the choice of which points are processed next. More

importantly, the order in which picture points are processed may affect the final result. An
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algorithm is terminally order independent if the various derivational sequences obtained by
different scannings produces the same final segmentation. The order is important, however, and
may depend on the initial atoms too. The seed point choice can be determined by using features
of the images to be examined, for example a hot spot in military Forward Looking Infra-Red
imaging (FLIR) or the use of a histogram, clustering etc.

345 Regional Interpretation

The previous region growing approaches do not utilise any region interpretation. Other
work has been carried out using information about the class of images being processed. Regions
are interpreted as they are formed, and the interpretations influence the merging criteria. Gupta
and Wintz [GUPTA74a and GUPTA74b] have carried out work on LANDSAT images. In their
method, the image is first segmented into unit cells then neighbouring cells joined if their grey
level distributions are statistically similar. This stage is followed by a minimum distance
classifier which interprets each initial region as belonging to one of a small predetermined
number of classes such as corn, soya bean, water or forest. As region growing does not produce
a perfect segmentation, each physical region may correspond to several segmented regions.
Neighbouring regions can then be merged on the basis of their class membership (see Figure 311].

3.4.6 Region Splitting and Merging

Region growing processes begin with small initial cells which are succéssively joined
to create larger regions. The opposite approach is to start with the entire picture as a single
region and successively divide into smaller regions. This process continues until each smaller
region satisfies an appropriate uniformity criterion. This decreases the amount of overall
processing in uninteresting background regions. Region split and merge is an approach closely
linked to region growing. The ’split and merge’ principle was developed by Horowitz and
Pavlidis [HOROWITZ74]. The principle behind the method is to merge adjacent regions having
similar pixel distributions and to split those regions that have different pixel distributions. The
algorithms use a pyramidal data structure, a stack of pictures of the same image, of decreasing
resolution, from the original image to a single pixel. The data structure consists of non-
overlapping squares of pixels in the image below. The pyramidal data structure can be
represented concisely by a segmentation tree, where the leaves of the tree are individual pixels

and the root is the entire image. Each block is characterised by the minimum and maximum
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Figure 31 - Example of Gupta and Wintz’s Method.

brightness values in the block. Unlike region growing the splitting methods mostly assess
homogeneity by the integral properties of the segment e.g. the brightness variance in the segment
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does not exceed an admissible value [CHENS8Q] or the brightness in a segment is normally
distributed [SAZON-YAROSHEVICH83]

The split method for image segmentation begins with the entire image as the initial
segment. Then it successfully splits each current segment into quarters if the segment is not
homogeneous enough. Homogeneity can be easily established by determining if the difference
between the minimum and maximum grey levels is small enough. Other approaches use the
sample variance instead. Algorithms of this type were first suggested by Robertson
[ROBERTSONT73] and Klinger [KLINGER73]. If only splitting were used, it is likely that the
final partition would contain adjacent regions with identical properties so the splitting part of the
algorithm is followed by merging. The grouping is a sideways merging of adjacent regions.
Efficiency of the split and merge algorithm can be increased by arbitrarily partitioning the image
into square regions of a user selected size, and then splitting these further if they are not
homogeneous. It may be necessary to post-process the image to eliminate small regions. This
is done simply by merging small regions with their most similar adjacent region. Split and link
is a very similar method to split and merge that deserves to be mentioned. It uses a differential
pyramid representation of the image, which is defined by 4x4 block averaging with 50% overlap

in each direction.

3.4.7 Further Work.

The basic approaches discussed above have been used by many groups with slight
adaptation. Miligram [MILIGRAM79] has proposed a method in which candidate object regions
are extracted by thresholding the image in a region dependent way. Candidates are then accepted
or rejected on the coincidence of an edge map with the region boundary. Regions that best match
the edge map are used to describe the objects in the image. Obviously the method will be very
dependent upon the edge detection method used. Gagalowicz and Monga’s [GAGALOWICZ86]
approach begins by obtaining an initial segmentation and constructing an adjacency graph of
region pairs. A number of different statistical region-growing criteria are used to rank adjacent
pairs of regions. An interactive choice and possibly a combination of criteria can then be made.
This may lead to a more adaptive segmentation in some cases. Raafat and Wong [RAAFAT88]
have worked on a texture based method which uses a texture information measure for the
initiation of the texturally homogeneous core regions. The information measure is then used

together with a texture distance measure to direct the growth of various homogeneous regions.
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Pavlidis [PAVLIDIS88] has investigated integrating region detection and edge detection. The
method starts with an over-segmented image from a split and merge algorithm. Region
boundaries are then eliminated or modified on the basis of criteria that integrate contrast with
boundary smoothness, variation of image gradient along the boundary and a criteria that
penalises for artifacts reflecting the quadtree data structure. This is because split and merge
algorithms tend to output noticeably blocked regions, obviously made up of squares of pixels
of differing sizes. As might be expected, region growing has also been extended to parallel
implementations, for example by Gambotoo and Monga [GAMBOTTOS85].

35 Clustering.

Clustering is the multidimensional extension of thresholding. It applies to images with
more than one data value per pixel, for example the RGB components of colour photography,
multispectral remote sensing images, the many parameters of MRI and even values calculated
on the basis of local properties of the image such as texture, gradient etc. The concept of
thresholding becomes one of finding clusters of points in n-dimensional space. Clustering
generally gives better results than thresholding since it is based on several property results rather

than one value. Automatic detection of clusters in multidimensional feature-space is much more

complicated than thresholding since clusters can have complex shapes and can interact in many
ways, for example one cluster surrounding another. Relatively globular clusters which do not
overlap greatly can be segmented quite easily however. Clustering provides groupings of
unlabelled data in terms of sets or clusters of data points. The clusters are assigned labels and

the labels mapped back to the image to give a segmentation.

Rather than accomplish the clustering in the full measurement space, it is possible to
work in multiple lower order projection spaces and then reflect the clusters back to the full
measurement space. Suppose, for example, that the clustering is done using a 4-band image. If
the clustering done in bands 1 and 2 yields clusters c,, C,, ¢; and the clustering done in bands
3 and 4 yields clusters c, and cs, then each possible 4-tuple from a pixel can be given a cluster
label from the set {(C;,C4), (C15Cs)s (€3,Ca)s (C2:Cs)s (€3,C4)s (€3,Cs) }. A 4-tuple (X,X;5,X3,X,) gets the
cluster label (c,,c,) if (x,,X,) is in cluster c, and (x,,x,) is in cluster c,. It should be noted that
difficulties may arise if the clusters have complex geometries with respect to each other in

feature space.
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An important problem eiisting with most clustering algorithms is that the number of
clusters in the data must be specified a priori before using the clustering algorithm. However in
many applications it is desired to estimate this number directly from the observed data since a
priori knowledge is generally not available. This is known as the cluster validation problem.
Some approaches try to determine the number of clusters automatically, but their reliability can
not be guaranteed.

Similarity is most commonly measured by a distance function in the feature space. It is
generally desirable to make this function invariant to image variations that may be encountered
such as translation, rotation and scaling. A criterion function is also used to measure the

clustering quality of a particular partition of the image function value.

'3.51 Methods of Clustering.

The basic operation of clustering is to examine each pixel individually and assign it to
the cluster that best represents the value of its characteristic vector. This assignment is done
according to the selected measure of similarity between data points and the criterion function
measuring clustering quality. This process is repeated if necessary until some condition is
satisfied by the grouping of data points. For example if similarity between pixels is measured
in terms of the distance between the value of their characteristic vectors, then the sum of the
squared distance from the cluster centres can be used as a criterion function; the aim is then to

seck the grouping that minimises this function. For 2-clusters a commonly used algorithm is -

(1) Initialise cluster centres. The cluster centres are assigned the initial values M; = M-S and
M, = M+S, where M is the mean image feature vector and S the mean standard deviation.
(2) Assign feature vectors to closest cluster centres.

€)] Computé new cluster centres by calculating the centre of gravity of the clusters.

(4) Compare new and old cluster centres. If they are close enough, the algorithm terminates;

otherwise the procedure is iterated from step (2).

The IZODATA procedure is a particﬁlarly popular method which partitions the image pixels into
a given number of clusters, minimizing the sum of the mean square deviations of the pixels from

the cluster centres.
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Thresholding is the most popular technique for clustering. The multidimensional feature space
is transformed into a one-dimensional space of a generalised feature (e.g. [KOHLERS1]) and
thresholded using techniques similar to those described for thresholding. Interactive expert
procedures are also very popular. The expert may directly identify clusters or assign a small
group of pixels to particular clusters and the remaining points are classified automatically
between the expert-designated clusters, which is known as classification with leaming. This
approach is applicable when relatively few large images are involved, but would not be
appropriate for many smaller images, since the experts time could be better spent elsewhere.

3,52 Local Information for Improving Clustering.

Clustering methods used in segmentation often consider not only the global properties
of the image, as reflected in the distribution of points in the feature space, but also local
information about the location of image points. If the local information is ignored, the elements
assigned to the cluster may represent an unconnected scatter of points. Schachter et al.
[SHACHTER75, SCHACHTER77] used clustering to perform image segmentation on
multispectral remote sensor imagery. In [SCHACHTER75] they used the grey level values of
several channels as features in the feature space. In [SCHACHTER77] they tried instead to do
clustering using just one monochromatic image and features such as mean grey level and median
filtered minimum total variation, typically computed over a 3x3 local neighbourhood. They
concluded that the results of using one monochromatic image with locally computed features
were not as good as those obtained with grey level values of several channels as features,
however. A number of other authors have used local information to provide an extra dimension

for clustering in a variety of ways. These include

(1) The use of neighbourhood features directly to provide an extra dimension of data.

(2) The use of local image characteristics to form the clusters. Haralick et al., for example, only
allocated points to a cluster centre if at least one point in its neighbourhood has been previously
assigned to that cluster. [HARALICKSS5]

(3) Correcting the clustering result in the image plane after each element has been assigned to
a cluster and labelled. Lattuati et al., for example, have eliminated specks of foreign labels by
shrinking and expanding [LATTUATI82], whilst another common approach is iterative
relabelling with the objective of maximising the segmentation performance.

(4) Conditional clustering, with each element characterised by the degree of membership in each
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cluster. These quantities are then revised allowing for the characteristics of the neighbouring
points (relaxation). The final label is assigned by the maximum degree of membership.

(5) Incomplete clustering in the parameter space, which assigns to clusters (and labels) only
those points that are close to cluster centres (the peaks of the histogram) : the remaining points
are labelled by label propagation in the image plane. [LAI82]

Many authors have used relaxation methods to ensure compatibility of the results of analysis of
the image points in the feature space with the conditions imposed by the relative location of
these points in the image plane, for example [DAVIS83] and [EKLUDHS80). Practical
applications that use clustering have included those reported by Underwood and Aggarwal
[UNDERWOOD?77] for the detection of insect infestation in citrus orchards, and Goldberg and
Shlien [GOLDBERG78] who used clustering for the interpretation of landsat imagery.

Clustering is more immune to noise than for example edge detection methods. However since
the approach is based on the assumption that different classes of an image are represented by
distinct modes, the technique will fail if this assumption is not true. A second drawback is that
because in general the number of segments is not known, unsupervised systems may not produce

the correct number of segments.

3.6 Multiresolution techniques.

3.6.1 Introduction.

Multiresolution techniques attempt to gain a global view of an image by examining it
at many different resolution levels. The lower resolutions provides.a global view of the image,
and the higher resolutions provide the details. There are two ways in which the term resolution
is used in multiresolution segmentation. The first is used to describe the spatial resolution of an
image (i.e. the size of the pixels). In this case a linked pyramid data structure is often used to
describe the relationship between father and son pixels in a stack of images, each subsequent
image being a reduced resolution version of the previous one. The production of lower resolution
images leads to a rather crude blurring by averaging over local neighbourhoods of pixels,

although the median or mode pixel value etc. could also be taken. Alternatively, the term can
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be used to describe a variable parameter which is used to characterise an operator applied to the
image. For example a Gaussian kernel used to blur an image can be characterised by the
Gaussian’s standard deviation or variance. The word "resolution” will in general be used as an
abbreviation for "scale resolution” in this thesis. This parameter of resolution has in the literature
often been termed "the parameter of scale". Witkin [WITKIN83] adopted the expression "scale
space” which is a description of what happens with a grey level image or an edge image when
varying the operator-parameter continuously. Once an appropriate operator has been chosen, a
family of images in scale-space is defined. If one aims to retain all available structure and yet
also vary the resolution (for example in order to be able to identify global objects through
blurring) then the image must be treated on all levels of resolution simultaneously. In both cases
there is an aggregation of information from neighbouring points, but this is much cruder in the
case of the pyramid. It should be noted that parts of both Marr and Hildreth [MARRS80] and
Canny’s [CANNY86] work can be considered as multiresolution techniques, but these have been
included under edge detection (sections 3.3.2.4 and 3.3.2.5) because it is for this that their work

has achieved the most attention and success.

3.62 The Pyramid.

Burt and Hong [BURT81, HONGS82] carried out some of the earlier work in
multiresolution segmémation. They proposed a pyramid of a layered arrangement of square
arrays in which each array is half as long and wide as the next layer with the bottom level
corresponding to the whole image. A sbn-father relationship is defined between nodes in adjacent
layers, but unlike other pyramids, this relationship is not fixed and may be redefined at each
iteration of their algorithm. A son is linked with the best fitting father within a 2x2 matrix just
above this son. Following linking, each father will have between 0 and 16 "legitimate” sons. The
son-father links then define windows in the image, and ultimately the image segments. A
variable quantity is associated with each node of the pyramid representing the image property
computed within the nodes’s window. The value of the node is typically just the average of its’
sons values. Thus the task of computing image properties is implemented as an averaging
process between pyramidal levels. Image segmentation is implemented as the process which
selects a legitimate father for each node from that node’s four candidate fathers. The legitimate
father is the candidate with a value most like that of the node itself. Due to this linking the
selection of a node, and hence all nodes below it tend to correspond to homogeneous regions.

This process is repeated iteratively.
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3.6.3 The Stack Approach.

The stack approach was initially proposed by Koenderink [KOENDERINKS4] and is a
multiresolution image description and segmentation scheme. Koenderink believes that an image
description should be stable against small perturbations of the grey level and the dimensions. A
description should also be natural in that partial descriptions, for example truncations, should be
simpler than the original description. Finally local deletion of detail should not affect global
description. The image description is a method of decomposing the image into light and dark
spots. The often quoted example is of a face described as a light spot containing three dark spots
(the mouth and the two eye regions) and a light spot (reflection from the forehead). In turn the
eye regions would be described as containing a dark spot (the eyebrow), a light spot (the eyelid)
and a dark spot (the eye). These light and dark spots are termed extremal regions, since they

each include a local intensity maximum or minimum.

The most important point to consider when choosing an appropriate convolution kemnel
for blurring is causality - extremum should not be created by blurring. Koenderink derives the

following necessary and sufficient relationship at the locations of extrema
I (xys) + 1 (xys) = ol (x,y.5) (53)

where I(x,y,s) is intensity, s is scale or resolution and a subscript denotes a partial derivative.
This is the heat or diffusion equation. Koenderink has shown that convolution with a Gaussian
kemel can be considered to be an appropriate solution to the diffusion equation for an insulated
bounded image with zero intensity along it’s boundary.

The image description in terms of extremal regions is produced by following the paths
of extrema in a stack of images in which each higher image is a slightly blurred version of the
previous one. Successive blurring causes each extremum to move continuously and eventually
to annihilate as it blurs into the background. This movement is illustrated by Figure 32. Each
path point has an associated iso-intensity contour, as illustrated by Figure 33. This contour has
the same intensity as the path point and surrounds the extremum in the original image. It has
been shown that all extremal paths must start in the original image if Gaussian blurring is used.
The intensity of the topmost point on an extremal path is its annihilation intensity. This is the
intensity of the iso-intensity contour that forms the boundary of the associated extremal region.

When an extremum annihilates at some annihilation intensity, another region’s isointensity
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contour at that intensity encloses the region associated with the annihilating extremum. The two
extrema are only related, however, when the non-extremum path representing the annihilated
extrema joins up with the other extremal path. Extremal paths are represented by solid lines, and
non-extremal paths represented by dotted lines in Figure 33. A tree is a natural way to describe
this relationship.

Amount
of _
Blurring. ,
orgos DAY
Image
Level. :

Spatial Location.

Figure 32 - Extremal paths through the stack.

The theory upon which the stack algorithm is based applies to continuous images
embedded continuously in resolution space. A digital computer deals with discrete images which
produces problems which must be resolved in any practical implementation of the method. Pizer
and Lifshitz hafve carried out work to develop a working system [PIZERS8S, LIFSHITZ90]. The
program has been used and updated by this author, as described in Chapter 8. By picking
appropriate subtrees from the tree description, a segmentation can be made. Lifshitz notes two
difﬁcultiés with the stack algorithm. Firstly, a region of interest might not be precisely
represented by an extremal region. For example in an abdominal CT scan, an extremal region
which includes the liver might also include part of the chest wall near the liver. The second
problem is that a region of interest does not always show up as one explicit subtree in the tree
structure. It may be two subtrees with no common root except the last extremum. For example
the two parts of the kidney may be represented by two extremal regions, both of which link to
the liver so that no single subtree will display the kidney alone. Lifshitz suggests the use of pixel

and tree editing respectively to overcome these problems.
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Figure 33 - Extremum paths and associated isointensity contours. Extremum paths are
represented by solid lines and non-extremum paths by dotted lines.

3.6.4 The DOLP Transform.

Crowley [CROWLEY84a, CROWLEY84b] has examined the use of the Difference of
Low-Pass Transform for image description and segmentation. This representation is based on a
reversible transform that converts an image into a set of bandpass images. Each bandpass image
is equivalent to a convolution of the original image with a bandpass filter b,. Each bandpass

filter is formed by the difference of two size-scaled copies of a low pass filter g, , and g,.
by = 8., - & (54)

Each low pass-filter g, is a copy of the low-pass filter g , scaled larger in size. There is
experimental evidence to suggest that the visual systems of humans and other mammals separate
images into a set of "spatial frequency” channels as a first encoding of visual information. This
"multichannel theory" is based on measurements of the threshold sensitivity to vertical sinusoidal
functions of various frequencies. This suggests that mammalian visual systems employ a set of
bandpass channels with a width of about one octave. Such a set of channels would carry
information from different resolutions in the images. These studies and physiological experiments
supporting the concept of parallel spatial frequency analysis are reviewed by Campbell et al.
[CAMPBELL74] and provide a theoretical impetus to the development of such a method for
segmentation. Peaks and ridges in a DOLP transform provide a structural description of the grey-
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scale shapes in an image. The patterns which are described by this representation are "grey-scale
shapes” or "forms". A form is described by a tree of symbols which represent the structure of
the form at every resolution. There are four types of symbols which mark locations (x,y.k) in
the DOLP three-space where a band pass filter of radius R, is a local "best-fit" to the form. The
symbols represent 1D extrema in bandpass images, 1D extrema in the resolution direction (ie k),
2D extrema in bandpass images and 3D extrema in DOLP space. The segmentation and
problems associated with the method are very similar to those already discussed in relation to
the stack approach.

3.65 Edge Focusing.

Edge detection in a grey-scale image at a fine resolution often yields noise and
unnecessary detail, whereas edge detection at a coarse resolution distorts edge contours. Several
authors have investigated "edge focusing" - a coarse-to-fine tracking in a continuous manner 7
combining high positional accuracy with good noise reduction. Accurate edge detection often '
requires that irrelevant details and noise be suppressed. This is in principle achieved by some
sort of local averaging or smoothing, resulting in the loss of positional accuracy. The combined
use of several prooesées using different degrees of smoothing has been proposed as a solution
to this problem. Bergholm [BERGHOLMS85, BERGHOLM87] proposes a way to achieve these
goals which other authors have examined [BEAULIEU89, LU89, TANIMOTO89]. Firstly the
significant edges should be detected using a high degree of smoothing at a coarse level. Then

the edge’s precise location is determined by tracking them over decreasing scale. This focusing

process uses responses from one level to predict the occurrence of edges at the next, finer, level.
The edges that can be determined at the coarsest level will be determined with high positional
accuracy, including cases where several edges cause a single response at the coarsest level. These
will then split up during the focusing procedure. The procedure for determining the intensity
discontinuities is in principle independent of the focusing process. Bergholm smooths by a
Gaussian and defines edges as maxima along the gradients of the smoothed image as done by
Canny [CANNY81, CANNY86] because of the good theoretical foundation of this method. (See
section 3.3.2.4) One approach to multiresolution edge detection is to compare a few edge images
at different levels of resolution and try to match edge segments. The results of Marr and Hildreth
[MARR81] and Lowe [LOWES5] have not been completely successful in this respect. Intuitively
a continuous approach ought to be more robust, since one obtains a trivial matching problem if

one moves in scale space with sufficiently small steps. Here the general philosophy is to use so
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short a step length in scale space that edge elements do not jump further away than one pixel'
between successive steps. Edge detection is carried out with a small change in blurring parameter
in a thin region close to the old edges. The old edge points are discarded and the new ones
accepted. Subsequent edge focusing steps are performed analogously. Hence the coarse to fine
tracking is carried out with a high degree of spatial accuracy. By restricting the edge detection

to points close to the old edges, processing times are shorter than if more points were processed.
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CHAPTER 4

REVIEW OF MAGNETIC RESONANCE IMAGING
SEGMENTATION.

4.1 Introduction

A plethora of papers exist in the literature which have used MRI images for
segmentation. Many of these appear in conference proceedings, where the data has been used
to demonstrate the effects of an algorithm developed by a computer scientist. Often the
applicability, quality and very nature of the data has been ignored. Following an extensive
literature survey, the author has therefore only reviewed papers from peer reviewed journals or
full length peer reviewed conference papers in this chapter, which has been broken down into
the same categories as in Chapter 3 for convenience. Clinical papers using the methods described
in this chapter are reviewed in section 9.2. Papers primarily concemed with shaded surface
graphics which provide very little detail of segmentation, or merely repeat the methodology

described in other papers by the same authors, have not been included.
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4.2 Thresholding.

Badran et al. [BADRAN90] use segmentation of key features in the head such as the
brain, corpus callosum and cerebellum, for patient realignment in MRI. These features are
chosen because they are consistently stable in position over a long period. T, weighted scans are
used, these being the fastest sequences available on the imager used by Badran. Such scans are
difficult to segment using conventional thresholding or edge based techniques, as poor SNR
gives them a grainy appearance. The need for speed also limits the complexity of processing
algorithms. The authors select a region containing the corpus callosum or the cerebellum
interactively which is thresholded at the region’s grey level mode. Interactive processing of the
thresholded binary image allows parts of the object lost in the binary image to be manually
restored. Mathematical morphology operators are used to eliminate irregular boundaries, remove
concave and convex defects, and clean the noisy background. They state that the

“technique can be applied universally if the windowing can be automated."

Currently the method is highly interactive and their statement optimistic, particularly as they

suggest no avenues for improvements.

Lang et al. [LANG88] start their method by correcting MR images for non-uniformities by low-
pass filtering the image to reduce noise, applying extreme blurring to suppress details and
dividing the original image by the blurred image. The corrected image is then thresholded on
the grounds of both signal intensity and 2-D image homogeneity computed on a slice by slice
basis for 3x3 pixel neighbourhoods. No further details are given. Drawbacks to such a method

of uniformity correction are discussed in section 5.14.

Lim et al. [LIM89] use a cardiac gated dual-echo sequence to provide both PD and T,-weighted
images. They first outline the brain by identifying and stripping away pixels representing the
skull and scalp on the T,-weighted image. Edges are determined by identifying sharp drops in
intensity along radii emanating from the centre of the image, a method which works best for
roughly circular cross-sections. Interactive review and correction, if necessary, then take place.
Image non-uniformity is corrected by a slightly modified form of division by a blurred version
of the image discussed in more detail in section 5.14. Two new images are then created from
the original images; the PD and T,-weighted images are added to enhance grey/white tissue
contrast, and the T,-weighted image subtracted from the PD-weighted image to enhance the

CSF/tissue contrast. Interactive thresholding is used to segment these new images in two stages.
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The first stage separates CSF from tissue by thresholding the early minus late echo combination
image. These CSF pixels are then masked out on the early plus late echo image, and
thresholding is used on the latter to separate grey and white matter. Postprocessing consists of
identifying ambiguous pixels and determining their status based on surrounding pixels. The
results seem encouraging as a semi-automatic method, but only work for relatively circular brain

Cross-sections.

Jernigan et al. [JERNIGAN90] use a method of segmentation similar in some ways to that of
Lim et al. [LIM90]. Again a dual echo dataset is used which provides both PD weighted and T,-
weighted images. The brain and CSF is initially isolated from the image using connectivity and
a dual threshold after a pixel within each brain region (ic one pixel within each of possibly
several brain lobes) has been interactively selected. Linear combinations of images are used to
create two new images with enhanced CSF/tissue and enhanced grey matter/white matter
contrast. Regions of grey and white matter are manually sampled and a threshold to separate the
two tissues calculated from the two distributions. A similar method is used for segmenting CSF

from brain parenchyma.

Pannizzo et al. [PANNIZZ092] use thresholding techniques for segmentation of MR images of
advanced chronic MS patients, which are characterised by extensive multiple lesions. They aim
to remove signal from the fat and scalp and to separate the cerebrum into white/grey matter and
plaques and edema. The work is carried out using three slices per T,-weighted dataset. An area
of brain parenchyma is manually selected to produce a reference intensity and a row by row
search for pixels less than 25% of the reference intensity carried out starting at the centre of the
image. These are then classified as border pixels. The method will not work for all slices
containing the brain. Histogram analysis is then used to segment the lesions. This author does
not believe that processing three slices from a dataset is sufficient to measure total lesion volume

reliably.

Wicks et al. [WICKS92A] have developed a semi-automated thresholding approach to
segmenting MS lesions using T,-weighted images. Image non-uniformity correction
[WICKS92BY], as discussed in section 5.2, is applied to all images. Two thresholds are selected
manually - the first to separate brain from surrounding tissues and the second to isolate lesions.
The same thresholds may be applied to all scans in a serial study of a patient provided image
gains are standardised. The threshold for the brain is applied to the whole image, detecting most
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tissues, but often failing to remove eyes, nose and facial tissues in inferior slices. By carrying
out segmentation slice by slice in a superior to inferior direction it is possible to use 3-D
connectivity to reject regions of similar area and intensity to the desired structures. Once the
brain is identified, the lesion intensity threshold is applied and high intensity regions greater than
4 pixels in size labelled as lesion. Mis-labelled areas are rejected by manual interaction. The
basis of this approach is sbund, but superior results may well be achievable using a multi-echo

approach because of the availability of more (relevant) information.

Brummer et al. [BRUMMERY1] present an algorithm for detection of brain contours in single
echo multi-slice coronal datasets consisting of two major steps - head contour detection and brain
contour detection. The head contour is approximately identified by estimating the background
noise level from an image histogram and thresholding the image above a fit to a Rayleigh noise
distribution. Subtracting the noise peak from the image histogram and restricting processing to
the superior half of the dataset allows the brain contour to be approximately identified by
thresholding. Mathematical morphology operations such as erosion and dilation, along with "salt
and pepper” noise removal steps and comparison of masks are used to generate improved head
and brain masks. This produces approximate masks for the brain and head. The authors suggest
that an interactive editing tool would be useful for correcting segmentation errors, for example
in slices near the end of the datasets, in regions of severe partial volume effect and in regions

of phase encoding artifacts caused by eye motion.

Many authors have claimed that image non-uniformity precludes the application of simple
thresholding techniques for segmentation of MR images (eg [KOHN91]). Whilst image non-
uniformity is particularly marked for images acquired using surface coils and some head and
body coil designs such as the saddle coil, the use of more homogeneous coil designs such as the
birdcage coil [HAYESS85] produces better results. Indeed images from such birdcage coils suffer
from only a small amount of non-uniformity in the axial plane (the source of over 95% of our
head data) although there is a drop off of sensitivity along the long axis of the coil. This is
discussed in chapter 5. Even using a single slice from the highly homogeneous centre of the
birdcage coil, thresholding may not produce satisfactory results. Unlike authors such as Kohn
et al. [[KOHNO91], Cline et al. [CLINE90, CLINE91] correctly note that thresholding does not
generally work as a segmentation method in the head because different tissues have inherently
overlapping intensity ranges. Several of the authors of these thresholding papers have used
uniformity correction methods, with that of Wicks et al. standing out as being simple, 3-D, fully
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automatic and accurate. Work by this author investigating image non-uniformity at 1.5 T is
described in chapter 5. Others have isolated regions of the neuroanatomy prior to thresholding
because of overlapping tissue intensities. This author has used such an approach applied to
thresholding and clustering as discussed in chapters 6 and 7.

43 Edge Detection

Levin et al. [LEVIN89] segment the surface of the brain for display purposes using T,
weighted SE or gradient-echo data. Their volume rendering method allows for partial volume
voxels and does not require a contour that precisely follows the brain surface. A seed point is
chosen within the skull boundary and a contour tracked using a user-selected threshold value for
each slice. Manual editing is used to correct for occasional gaps in the contours. This is a highly
interactive method and uses only simple edge detection methods which could be greatly

improved.

Kennedy et al. [KENNEDY89] use several edge-based approaches to segmentation of MR
images. The use of intensity contours is proposed, as is the use of differential contours.
Differential contours are created relative to a difference image’ in which a pixel’s intensity is
given ’relative’ to a reference pixel manually identified within the region of interest. Sobel edge
images (as discussed in section 3.3.2.3) are also considered. The first two techniques are used
to produce approximate candidate edges, and the Sobel edge image calculated in the vicinity of
these candidate edges to improve precision. Each slice is then manually reviewed and correction

made as necessary. The results for high contrast coronal images are encouraging.

Yla-Jaaski et al. [YLA-JAASKI91] use 3-D edge detection for visualisation of volume data. A
3-D difference of Gaussian’s operator (DoG), as described in section 3.3.2.5, is used. A 20 pixel
convolution in all three directions with a 256* dataset may be achieved in less than 4 minutes
using a vector processor. This requires pre-interpolation of non-isotropic data. Instead of
detecting edges, the authors threshold the DoG dataset to zero to produce a binary image. The
correspondence of the edges of the binary image to anatomical regions is very poor, but
morphological erosion and dilation is used to refine these results. This produces a very rough
approximation to edges of the brain, which can be enhanced by appropriate 3-D graphics
visualisation techniques. 2-D connected components comprising the brain are manually identified

in 4 slices and connectivity used to classify the other slices. This allows an approximation to the
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surface of the brain to be found.

Bomans et al. [BOMANS90] use essentially the same approach as Yla-Jaaski et al. [YLA-
JAASKIO1] with a 3-D difference of Gaussian’s operator and morphological dilation for T,-
weighted gradient echo volume data. Typically 10% of slices require correction, and in each slice
contours corresponding to skin, bone, brain and the ventricular surface are manually identified.
The surface of the brain is also segmented very roughly indeed. These prdblems can be
circumvented for visualisation purposes with appropriate shading methods.

Raman et al. [RAMAN91] use a variation of edge focusing, as discussed in section 3.6.5, to
identify edges. Instead of trabking individual pixels, whole contours are instead tracked. The
authors use edge-focusing in a similar way to Bergholm [BERGHOLMS87] to reduce the effects
of noise. Although Raman’s approach seems to be a good one, no attempt at identifying any of
the numerous contours which remain (including some due to noise in the background) is made.
It would be interesting to see the work extended in this respect. Work carried out by this author

using edge-focusing is discussed in section 6.6.3.

Edge detection methods are appropriate for situations where there are strong borders between
regions and have been commonly used to identify the strong border of the brain. Many authors
have used edge detection as a pre-processing step prior to visualisation. The approach of both
[YLA-JAASKI91] and [BOMANS90] seems to be appropriate for such visualisation, although
the method of [YLA-JAASKI91] has advantages in terms of speed and the degree of automation.
As methods of compensating for segmentation imperfections are available when using 3-D
display techniques, accuracy is not as important as when using segmentation for volume
measurement. The edge detection reported for visualisation has thus often been approximate.
Such methods have tended to use gradient-echo pulse sequences to acquire near isotropic data
in acceptable imaging times. This is because gradient echo imaging tends to be considerably
faster than spin echo imaging. Authors of such papers invariably neglect to mention that the
contrast and image quality required of clinical data may not be available using gradient echo
techniques. It is for this reason that spin echo and inversion recovery data is still used routinely

for most brain imaging.
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4.4 Region Growing

Rusinek et al. [RUSINEKS89] carry out simple segmentation of PD- and T,-weighted
sagittal images of the brain as a pre-processing step for 3-D image display. A brain map is
created by a simple region-growing algorithm which in essence consists of scanning the image
radially from the centre until a signal corresponding to the extra-ventricular CSF is encountered.
Such a method is very simple and appropriate in this case, although the accuracy of borders is
not perfect.

Cline et al. [CLINE87] propose a method for visualisation of soft tissue anatomy using
connectivity algorithms to follow the desired surface in three dimensions. The tissue of interest
is defined by a surface value, selected by choosing a seed point inside the surface of interest in
a similar way to Artizy [ARTZY81]. The connectivity method, using the surface value and seed
point as input, locates the surface and marks those voxels that lie on it. This is done by initially
thresholding the image into object and background using the surface value. A recursive
procedure marks all voxels connected to the seed point and subsequently identifies all non-
surface points. Regions of tissue connected to the brain, such as the optic nerve are eliminated
by adding a more limited concept of connectivity that restricts paths forming small bridges. The
method is also used to show the cerebral ventricular system and the skin of the patient. This
work was reported using two datasets and must be extended to further subjects before comment

can be made.

O’Donrell et al. [0’ DONNELLS86A, O’'DONNELLS6B] propose an IR self-normalising pulse
sequence (that is, a sequence used to calculate T, and T, maps, which compensate for RF non-
uniformity by dividing one image by another) which yields excellent tissue discrimination for
T, maps, but is poor for T, maps. A hierarchical segmentation algorithm is applied to the data,
using both T, and T, information. The basic algorithm is a histogram analysis method in which
each image is recursively parsed into three new subregions. The same analysis is applied to each
of the sub-images until one of a set of parsing rules is violated. The histogram of each subregion
is fitted to a model of a double Gaussian distribution for simplicity. Using this model, one
threshold is placed between the two peaks of the double Gaussian and a second threshold
calculated at the 26 point of the more probable distribution, on the opposite side to the first
threshold. (The addition of a similar threshold for the less probable distribution did not affect
the final segmentation.) Initial parsing is based on T, data and switches to T, data once one of
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the parsing rules is violated. This order of processing is chosen because the T, image SNR is
much higher than the T, image SNR; it should be noted that the switch from T, to T, parsing
will occur at different levels in different sub-images. This approach yields a variety of sub-
images, some of which correspond approximately to anatomical features. The authors believe that
combining the various sub-images may prove a promising method of segmentation. Further work
is needed towards such an approach, and so it is therefore difficult to comment at this stage in
the work. The use of a single pulse sequence to produce the desired images for T, and T,
calculations is an advantage over using several pulse sequences in terms of the problems of
patient movement when appropriate movement-restraint techniques (eg [TOFTS90]) have not
been used.

4.5 Clustering

The use of clustering for segmentation of MR images has mushroomed in the last few
years, possibly because of the more widespread availability of 1.5 T scanners with a higher SNR
than earlier machines. The use of multiple images, acquired using appropriate pulse sequences,
provides more information to be used for segmentation. Two practical problems are the
prolonged scanning time required for multiple sequences, scanning time normally being
minimised on economic grounds and for patient comfort, and difficulty with image registration.

These problems and some approaches to their solution are discussed in section 7.10.1.

Jungke et al. [JUNGKES8] use three SE sequences to calculate T,, T, and PD images. A training
set is used to set up typical tissue clusters and a maximum likelihood classifier used to assign
points in feature space to their nearest tissue type, although points far from any tissue type are
considered as unclassifiable. Clusters are then projected into image space where they are
accepted, rejected or marked as being of special interest by the user. A colour display allows
easy identification of the spatial distribution of a cluster and the simultaneous display of the
original image, (T,,T,), (T,,PD) and (T,,PD) plots to allow visual confirmation of cluster. The
results are far from perfect, part of the problem probably being the noisy data used.

Hyman et al. [HYMANBS9] choose 13 regions of interest in MR images of the brain, dividing
both the grey and white matter into several regions. An IR pulse sequence, three single echo SE
sequences and a four echo SE sequence are used to estimate seven MRI parameters - three T,
values, one T, value and three pseudo-PD values. Each value is calculated from between two and
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four of the images by a variety of methods. These calculated values are estimates of the true T,s,
T,s and PDs. If the correlation between the various estimates is high, then there is little
advantage in using more than one value. If the correlation is low, then the use of several values
will provide more information to use in the clustering process. Discrimination is performed by
a maximum likelihood classifier. They found their seven parameter classification system to be
significantly more accurate than a three parameter system based on the most accurate values of
T,, T, and PD; this result can be attributed to several factors. Firstly, discrimination accuracy
generally increases with the number of classification parameters [LEVYS85]. Secondly, the
inclusion of two T, values determined from ratios of single-echo intensitiecs may have more
discriminating power than a single global T, value. Finally, one T, value is derived to take
account of the non-exponential transverse magnetization decay components. The presence of at
least two transverse magnetization decay components is shown in the paper. Again, a large
number of pulse sequences have been used here, which may provide registration problems,
unless movement restraint has been considered. Their use of 13 ROIs probably means that the

large number of sequences is needed, however.

Vannier et al. [VANNIERSS, VANNIER87, VANNIER89, VANNIER91] apply NASA
supervised and unsupervised LANDSAT segmentation software to a set of three registered
images - one IR and 2 SE images. Training regions are placed over known structures to teach
the system and a number of images segmented. Vanhier states that a training set for one slice
may be used for the scans of a patient at different times, to other slices containing the same
tissues and to other subjects. Image non-uniformity is approximated as a ramp function along
z, with the ramp being subtracted from the data. This is an extremely crude approximation,
however. The group attempt to segment muscle, bone, CSF and various regions of grey matter
and white matter using a variety of statistical classifiers, and conclude that no technique is
especially effective, with even the best having levels of correct identification that leave the
majority of pixels incorrectly identified. This may reflect the medium field strength (0.5 T), the
age of the equipment used, the fact that acquisition parameters were not specifically chosen so

as to give appropriate contrast or that the authors may have tried to segment too many regions.

Gogahan et al. [GOGAHANS87] present preliminary results of multi-parametric analysis of MR
breast images. The studies take nearly 2 hours to perform, and are used to produce T, calculated
images as well as data for preliminary multi-spectral imaging. Noise reduction is carried out with

a 7x7 median filter. Image non-uniformity correction is accomplished using scans of a uniform
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glycol phantom. Scans of the phantom for each sequence are manually registered using glycol
filled tubes attached permanently to the breast coil. Only scans of a standard orientation and
thickness are used for this work. The preliminary work shows good potential for separation of

abnormal tissues.

Brown et al. [BROWNB92] use multi-parametric methods to produce classified colour display of
the female pelvis. Fifteen spin echo and gradient echo images are obtained for each study using
a body coil. A maximum likelihood algorithm is used to classify four of these images after a
training set was used. The results can only be described as preliminary as the classification is
often poor. The authors believe that magnetic field non-uniformities and patient motion may
have contributed to this. The use of gradient echo images may have drawbacks in this respect,
but the authors attempt to classify 12 tissues was probably a major cause. Attempting to optimise
the approach for less tissue classes would probably have produced better results.

Taxt et al. [TAXT92] use multi-parametric MRI analysis to study uterine corpus tumours.
Malignant tumours of the uterine corpus are studied because most of them are surgically
removed, making pathological examination possible to both classify the tumours and determine
their extent. All malignant test tumours are correctly or close to correctly classified as
adenocarcinomas and sarcomas and their extent fairly well determined. Parts of normal
endometrium and other mucosal linings are also classified as adenocarcinoma, however. In a few
patients some of the malignant tissue is classified as normal endometrium. Four images with a
variety of T,, T, and PD-weighting are used.

Cline et al. [CLINE90, CLINE92] report on a clustering-based method of segmentation using
PD and T,-weighted images from a dual-echo sequence. The author’s aim is to create a 3-D
surface model for surgical planning. The initial phase is a training phase where the observer
selects regions of tissues such as CSF, grey matter, white matter, lesion etc. which are used to
define clusters in feature space. The whole dataset is then mapped to these clusters. Connectivity
is used to aid the segmentation. The authors minimise partial volume effects by using 3 mm
thick slices and compensated for the increased scanning time compared with the use of fewer
thicker slices by using 1/2 NEX imaging. These images suffer from very poor SNR and would
be unacceptable clinically in the Institute of Neurology NMR Research Gft)up. In [CLINES1]
angiography images are combined with segmented images of the brain to produce 3-D surface

rendered images of the brain and its vasculature.
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Kohn et al. [KOHN91] use clustering for estimation of brain parenchyma and CSF volumes.
Kohn claims that image non-uniformities including RF and B, non-uniformity precludes the
application of simple thresholding techniques despite recent software and hardware
enhancements. While Kohn is correct that RF and B, non-uniformities affect images, the effect
of the latter is small for the SE images he uses. He does not note the important point that there
is often an intrinsic overlap in signal intensities df tissues, and that the partial volume effect
plays a very major role. Kohn et al. claim that image non-uniformity distorts clusters by
elongating them along a ’shading axis’ parallel to a line extending from the centre of the cluster
towards the origin of the coordinate system. Although image non-uniformity may well be the
major source of this shading in the images used by Kohn, he negleéts the fact that tissue
heterogeneity will have exactly the same effect, due to the correlation between Proton Density
and T, for each pixel, and partial volume effects. The description of the algorithm as one which
will "automatically" segment brain énd CSF is somewhat misleading. The operator must
approximately identify the brain (to exclude skull fat) and CSF for each slice, and identify the
brain and CSF clusters in feature space. The centre of the brain and CSF clusters is calculated
using centre of gravity techniques and a line parallel to the principal axis of the brain cluster that
passes through a point midway between the cluster centres used to segment CSF and brain.

Hillman et al. [HILLMAND91] propose a clustering method to determine CSF, grey matter and
white matter volumes which is claimed to allow for the partial volume effect. A dual echo SE
T,-weighted sequence and a T,-weighted IR sequence are used for six slices above the orbits.

The intracranial region and approximate areas of white matter in the IR image and CSF in the
T,-weighted image are identified by thresholding. The regions are skeletonised and acting on the
assumption that the centremost pixels will be least affected by partial volume averaging with
adjacent components, a distribution of pure tissue intensities identified from these skeletons.
Each pixel is then scored as a mixture of two tissues according to its brightness and location.
One improvement to the method would be to check that voxels adjacent in the third dimension
also correspond to pure tissue. The authors do not account for non-uniformities of the image.
It is rather worrying that the authors have carried out no validation except comparing their

results to grey matter/white matter ratios obtained manually in other publications.

Choi et al. [CHOI91] use a statistical model based on Markov Random Field Theory for
classifying partial volume voxels. They use limited anatomical knowledge to predict possible

tissue combinations. The operator defines samples of pure tissue for input to the classifier, but
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once again, no details of how the operator ensures that tissues are pure are given. Further
phantom studies are needed to assess the accuracy of the method.

It is interesting to note that in a review of MR clustering papers, the most recent papers
describing work done on new high field machines, produce significantly tighter clusters than
earlier papers. The lack of detail in some papers is an obstacle to comment, but it may be that
higher fields (and therefore, in general higher SNRs), better gradients and generally improved
technology are the reason for this. As noted in section 3.5, clustering is the multi-dimensional
extension of thresholding. The premise of the approach is that it may be possible to produce a
superior segmentation using clustering to that obtained using thresholding on a single image. The
problems with thresholding MR data are discussed in section 7.5.

Often T,, T, and PD weighted or calculated images are used to form a 3-D feature space which
allows a clustering approach. In practise however, T,, T, and PD are often positively correlated
in tissue. For example, an increase in water content will increase PD and will also lengthen the
values of T, and T,. The mathematical constraints of producing T,, T, and PD maps may also
give a positive correlation between the calculated values.

Although some papers propose using large numbers of images for clustering, this is normally
an unrealistic approach because of the time necessary to acquire the images. MRI is an expensive
modality and although T,-weighted images and a multi-echo sequence producing PD- and T,-
weighted images may be acquired, it is rare that additional time will be available. Indeed, often
T,-weighted images are not acquired. The cost of MR means that T,-weighted scans are often
acquired using a SE sequence rather than the slower IR sequence which can produce far superior
grey/white matter contrast.

4.6 Multiresolution techniques

Ortendahl et al. [ORTENDAHLS86] initially used a maximum likelihood method of
clustering T,, T, and PD images but this showed variation between patients and gave serious
problems with partial volume artifacts. They therefore use Burt and Kong’s [BURT81] pyramid
approach (as discussed in section 3.6.2) to create an initial over-segmented image from three
images (PD, T, and T,-weighted). A region growing approach is used to merge similar segments

whilst at the same time merging regions of four or less pixels with the surrounding segment.
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Regions of low intensity, which usually correspond to partial volume averaging with bone or air,
are also removed. Finally an operator can interactively merge segments on a colour display. As
acknowledged by the authors the method shows a moderate degree of success, although the
printing of colour images in black and white does not help others to analyze the accuracy of
their results. De Graaf et al. [DE GRAAF86] have adapted Burt and Kong’s [BURT81] pyramid
method of segmentation to MR images to use PD, T, and T, images. Their results are not ideal
and require further post-processing to correct edges and merge smaller regions. Neither of these
methods produces particularly good results.

4.7 Artificial Intelligence Approaches

Artificial Intelligence (Al) is the emulation of mankind’s intelligence using computer
hardware and (often) specific AI computer languages. Some approaches to Al use three principal
comporients to automatically resolve a problem. Firstly, a knowledge base (a set of rules
extracted from experience), secondly a global data base of events, and thirdly a control system,

often called an inference engine.

Lin et al. [LIN88] use a four component rule-based system applied to pairs of MRI and PET
images. The feature computation subsystem extracts features of homogeneous regions segmented
by the low-level image processing subsystem. The domain-independent subsystem employs
knowledge to filter out "obviously impossible" regions, while the domain dependent subsystem
uses domain-specific knowledge to improve results and recognise regions of interest. Perkins’
edge segmentation method [PERKINS89] is used to provide an over-segmented image. The
authors claim reasonable results but use a very simplified system operating on only three slices.
The segmentation aims only to identify features corresponding to anatomy apparent in the PET
images, thus greatly simplifying the problem. The accuracy of the boundaries is also

questionable.

Menhardt and Schmidt [MENHARDTS8] present an approach for automated interpretation of
a single transverse slice which shows the ventricles fully. The head and intracranial region is
identified by iteratively moving border points from the edge of the image towards the image’s
centre of gravity. CSF is identified by thresholding the intracranial region into fluid and brain

regions. The ventricles are identified on the basis of position. The expert system also comprises
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a neurological'infelence engine to utilise knowledge of pathologies to restrict locations of
lesions. After definition of the ’intracranial’ part of the image the regions with high T,-values
are labelled. A tumour is identified by an operator which detects large parameter homogeneous
components. The examples given are simple and the tumour large and obvious, but the spirit of
the segmentation scheme does seem to be quite reasonable. Extending the scheme to a multi-
slice dataset would prove more difficult.

Dellepiane et al. [DELLEPIANESS, DELLEPIANE92] extended a 2-D knowledge-based system
[VERNAZZAR8T7] into a 3-D system applied to images of the head. The head is modelled by
descriptions of each organ such as volume and average grey level and relationships between
organs. To define the relational and intrinsic anatomical properties in a flexible way, the group
uses fuzzy membership functions. The system uses an edge-preserving smoothing algorithm
followed by 3-D region growing. Primitives of the region or volume type are extracted which
are used for the symbolic interpretation process. Finally a group of regions is associated with
an object, and each region assigned a fuzzy membership value related to its degree of reliability.
By utilising previous results in a progressive way, the eyes, skull, grey matter and white matter,
scalp fat, skin and CSF may be recognised although some of the segmentation results are only
approximate. Their use of fuzzy knowledge is very interesting.

Suzuki and Toriwaki [SUZUKI91] propose a method of automatic segmentation of head MRI
images by knowledge guided thresholding. Their statements are somewhat confusing at times.
For example, they state that conventional imagers adjusts some parameters for each slice to
maximise image contrast, and that intensity is normalised for each slice to fully utilise the
dynamic range of the data. To the best of this author’s knowledge both of these statements are
incorrect. The procedure is controlled by a goodness measure, based on knowledge of the
anatomic structure of the head, providing an index reflecting how well soft tissue is separated.
They apply the method to the segmentation of subcutaneous fat, brain and the ventricles. Their

results are quite poor as far as separation of tissues and accurate delineation is concemned.

Raya [RAYA90] uses an automatic rule-based low-level segmentation approach applicable to
multi-slice MR brain images, justifying its use by stating that semi-automatic methods are often
subject to inter- and intra-observer variability. Although Raya is correct when he states that an
automatic system with consistent segmentation criteria will alWays provide the same results,

these results are not, of course, necessarily more accurate than a semi-automated approach even
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allowing for such variability. Raya’s method is used to automatically extract brain parenchyma,
CSF and high-intensity abnormalities such as MS plaques. He uses rules that work with partial
voluming (fuzzy boundaries), uses connectivity extensively and concentrates on a simple and
consistent decision making process in four steps. Firstly the brain parenchyma, CSF and
abnormalities are separated from the background, then the brain and CSF separated. The high
intensity abnormalities are separated and finally misclassified abnommalities identified and
reclassified. It is difficult to assess the quality of the results due to the exceedingly small size
of the illustrations.

Kapouleas [KAPOULEAS90] has developed a method for detecting white matter lesions in MR
brain images using both axial and coronal PD and T,-weighted images and sagittal T,-weighted
images. This large number of images allows many checks for consistency, but is not normally
acquired clinically. The system begins by locating the brain in each slice and then locates
landmarks and suspected lesions. The majority of false positives occur away from the white
matter peri-ventricular area (where the majority of white matter lesions are found) and a model
of this area is used to eliminate most false positives. The accuracy of the method can not be
determined by this author as the illustrations have not been reproduced correctly (ie captions

indicate feature identification, but there is no such indication in the images).

One major problem with many artificial intelligence approaches to MRI segmentation is the
weakness of the initial segmentation. Such methods typically initially over-segment an image
using a region-based method, and then demonstrate various artificial intelligence techniques on
a limited sub-set of specially chosen key slices. As demonstrations of Al techniques, many are
very interesting, but unfortunately their claims to be accurate segmentation methods are
sometimes dubious. As stated in section 1.6.1, this author believes that a more appropriate
approach would be to use Al to interactively drive the segmentation using an anatomical model,
modality specific knowledge, information about the possible pathology, a task plan and

performance data for various stages of the segmentation.
4.8 Discussion
Segmentation is not a trivial task. As this review shows, some segmentation methods

have been developed for restricted clinical application, whilst others appear to be show-cases for

various approaches to segmentation. Some authors have concentrated on data collection to the
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point of writing specific pulse sequences, whilst others appear to have chosen specific slices and
concentrated on segmenting these. This author belicves that better results can be obtained by

combining both the concentration on data collection and the concentration on segmentation. -

This author believes that AI approaches may be apprbpriate for driving a segmentation approach,
but that current low-level procedures are often poor. Thus this thesis does not cover such Al
techniques, but instead concentrates on low and medium level segmentation methods.
Preliminary segmentation work by this author covered a wide variety of approaches. Initial work
on region growing demonstrated that the final segmentation was critically dependent on the
starting point, and often ’leakage’ of the region occurred at a weak border between regions.
Work with a split and merge algorithm led to a distinctly blocked effect and problems
successfully merging regions. Edge detection is a promising method for segmentation of those
regions characterised by large intensity changes at their border. This approach has therefore been
followed up and is discussed in chapter 6.

An approach to segmentation using multiple images is attractive because MRI is intrinsically a
multi-parametric imaging modality, and images acquired using a variety of appropriate pulse
sequences will provide more information to aid the segmentation. The accuracy of clustering and
thresholding approaches is critically dependent upon the non-uniformity of the images. The
factors affecting image non-uniformity for our GE Signa are discussed in chapter S and methods
for their correction used as a pre-processing step prior to segmentation. Other factors affecting
the accuracy of clustering or thresholding are discussed in chapter 7. The use of the stack - a
data-driven multi-resolution approach to segmentation claimed to be a totally general approach
to segmentation - has also been investigated (see chapter 8).

























































































































































































































































































































































































































































































































































































































































































































































