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On some graph densities in locally dense graphs

Joonkyung Lee∗

Abstract

The Kohayakawa–Nagle–Rödl–Schacht conjecture roughly states that every sufficiently large
locally d-dense graph G on n vertices must contain at least (1− o(1))d|E(H)|n|V (H)| copies of a
fixed graph H . Despite its important connections to both quasirandomness and Ramsey theory,
there are very few examples known to satisfy the conjecture.

We provide various new classes of graphs that satisfy the conjecture. Firstly, we prove that
adding an edge to a cycle or a tree produces graphs that satisfy the conjecture. Secondly, we
prove that a class of graphs obtained by gluing complete multipartite graphs in a tree-like way
satisfies the conjecture. We also prove an analogous result with odd cycles replacing complete
multipartite graphs.

1 Introduction

A graph homomorphism is a vertex map from a graph H to another graph G that preserves adja-
cency, and the graph homomorphism density tH(G) is the probability that a random vertex map
from H to G is a graph homomorphism, i.e.,

tH(G) :=
|Hom(H,G)|
|V (G)||V (H)|

.

Many statements in extremal graph theory can be rephrased as inequalities between certain graph
homomorphism densities, especially when H is a fixed graph and the target graph G is large. For
example, we say that, for a constant 0 < d < 1, a graph sequence Gn with |V (Gn)| → ∞ and
tK2(G) → d is quasirandom if and only if

tH(Gn) = (1± o(1))d|E(H)|, (1)

for every fixed graph H, that is, the H-count is random-like in G. A fundamental observation in
the theory of quasirandom graphs, due to Thomason [26] and Chung, Graham, and Wilson [4],
states that Gn is quasirandom if and only if every subset X ⊆ V (Gn) spans

d

2
|X|2 ± o(|V (Gn)|2) (2)

edges. That is, we have a uniform edge density everywhere up to an error dominated by |V (Gn)|2.
It is then natural to ask if some modifications of (1) or (2) imply variations of the other. For

instance, we say that a graph G is (ρ, d)-dense if every vertex subset X ⊆ V (G) of size at least
ρ|V (G)| contains at least d

2 |X|2 edges. This is a weaker condition than (2), as we do not have an
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upper bound for the number of edges spanned by a vertex subset X. Thus, we cannot fully recover
(1), but it is still plausible that we can recover the lower bound

tH(Gn) ≥ (1− o(1))d|E(H)|

when ρ is sufficiently small. This question was in fact formalised by Kohayakawa, Nagle, Rödl, and
Schacht [16].

Conjecture 1.1 ([16]). Let H be a graph and let 0 < d < 1 be fixed. Then for every η > 0, there
exists ρ = ρ(η, d,H) > 0 such that

tH(G) ≥ (1− η)d|E(H)| (3)

for every sufficiently large (ρ, d)-dense graph G.

This conjecture is not an arbitrary variant of graph quasirandomness, but has natural applica-
tions to Ramsey theory. Indeed, the notion of (ρ, d)-dense graphs already appears in a paper of
Graham, Rödl, and Rucinski [12], where they use it to bound the Ramsey number of sparse graphs.
Roughly speaking, given a 2-edge-colouring of a complete graph, one colour is very dense on some
vertex subset or the other colour is somewhat dense on all vertex subsets. In the first case, it is
usually simple to embed a graph H, while in the second case, the problem reduces to an embedding
problem in locally dense graphs. It is therefore of significant interest to understand when we can
embed a graph H in a locally dense graph and how many copies we obtain.

Conjecture 1.1 is also closely related to another beautiful conjecture of Sidorenko [23] and
Erdős–Simonovits [11].

Conjecture 1.2 (Sidorenko’s conjecture [11, 23]). Let H be a bipartite graph and let G be a graph.

Then

tH(G) ≥ tK2(G)
|E(H)|. (4)

We say that a bipartite graph has Sidorenko’s property if and only if (4) holds for all graphs G.
There are a number of graphs known to have Sidorenko’s property [5, 7, 8, 9, 14, 15, 18, 22, 23, 24],
but the conjecture still remains open.

In this paper, we focus on Conjecture 1.1. It is straightforward to see that Conjecture 1.1 is
true for H having Sidorenko’s property with ρ = 1 and d = tK2(G). For example, an even cycle
or a tree has Sidorenko’s property, as was firstly proven by Sidorenko [22], and hence satisfies
Conjecture 1.1. As a partial converse, it is shown in [7] that the 1-subdivision of every H that
satisfies Conjecture 1.1 has Sidorenko’s property.

On the other hand, there are only very few non-bipartite graphs known to satisfy the conjecture.
It is folklore that the complete ℓ-partite graph K(r1, r2, · · · , rℓ) on r = r1+ · · ·+rℓ vertices satisfies
the conjecture,1 and Reiher [20] settled the case where H is an odd cycle. As a consequence, every
cycle satisfies Conjecture 1.1.

Provided that trees and cycles do satisfy Conjecture 1.1, it is then natural to ask if we may add
an edge to those examples. Our first main theorem states that this is indeed true. We say that
a graph is unicyclic if it contains exactly one cycle as a subgraph. A chord of a cycle is a pair of
vertices that is not an edge of the cycle.

Theorem 1.3. Conjecture 1.1 is true if H is a unicyclic graph or a cycle plus a chord.

1 We shall give a simple proof for the case H = Kr in Theorem 4.2.
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Figure 1: The Goldner–Harary graph and its K4-decomposition.

The second example class is obtained by gluing complete multipartite graphs or odd cycles in a
tree-like way, which we shall define precisely in Definition 2.3. To illustrate roughly at the moment,
a J-decomposable graph H is a graph obtained by gluing vertex-disjoint copies of J in a tree-like
way. For example, the Goldner–Harary graph in Figure 1 is obtained by gluing six copies of K4 in
the illustrated tree-like way.

In fact, some J-decomposable graphs have already been studied in different contexts. In partic-
ular, theKr-decomposable graphs have played vital role as maximal graphs with a given tree-width,
a graph parameter studied extensively since Robertson and Seymour’s work [21].

One may expect that the standard application of Cauchy–Schwarz inequality will prove that
the graph H obtained by a pairwise (symmetric) gluing of two copies of J satisfies Conjecture 1.1,
once J does. Our result roughly states that it is possible to extend this standard Cauchy–Schwarz
argument in a tree-like way, using the information theoretic approach developed in [7, 8]. More
details will be discussed in Section 2 and we shall prove the following theorem in Section 4 and 5.

Theorem 1.4. Conjecture 1.1 is true if H is C2k+1-decomposable or K(r1, · · · , rℓ)-decomposable.

We remark that Conlon and the author [8] proved that every J-decomposable graph has
Sidorenko’s property whenever J is weakly norming. Since every even cycle is weakly norming,
C2k-decomposable graphs are already known to satisfy Conjecture 1.1. Thus, Theorem 1.4 together
with the result in [8] implies that every Ck-decomposable graph satisfies Conjecture 1.1. Moreover,
it is easy to check that Theorem 1.3 and 1.4 are enough to complete the proof of Conjecture 1.1
for graphs with at most five vertices.
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The proofs of Theorem 1.3 and 1.4 use recently developed techniques to attack Sidorenko’s
conjecture in non-trivial ways. In particular, the information theoretic approach [7, 8, 15, 18, 24] and
the application of Hölder’s inequality appeared in the very recent work [9] are the key ingredients.

2 Preliminaries

In what follows, let |H| := |V (H)|, e(H) := |E(H)|, and eH [U ] := |E(H[U ])| for U ⊆ V (H). If
H is clear from the context, then we shall also write e[U ] = eH [U ]. Logarithms will always be
understood to be base 2. We denote by Pℓ the ℓ-edge path, to emphasise the number of edges and
its parity.

The proof of Theorem 1.4 relies on the entropy analysis applied in [7, 8] and the proof of
Theorem 1.3 also uses basic entropy inequalities, despite stated in terms of Jensen’s inequality for
logarithmic functions. We state the following facts about entropy without proofs and refer the
reader to [1] for more detailed information on entropy and conditional entropy.

Lemma 2.1. Let X, Y , and Z be random variables and suppose that X takes values in a set S,
H(X) is the entropy of X, and H(X|Y ) is the conditional entropy of X given Y . Then

1. H(X) ≤ log |S|,

2. H(X|Y,Z) = H(X|Z) if X and Y are conditionally independent given Z.

To formalise the definition J-decomposable graphs, it is convenient to use the notion of tree
decompositions, introduced by Halin [13] and developed by Robertson and Seymour [21].

Definition 2.2. A tree decomposition of a graph H is a pair (F ,T ) consisting of a family F of
vertex subsets of H and a tree T on F such that

1.
⋃

X∈F X = V (H),

2. for each e ∈ E(H), there exists a set X ∈ F such that X contains e, and

3. for X,Y,Z ∈ F , X ∩ Y ⊆ Z whenever Z lies on the path from X to Y in T .

Definition 2.3. Given a graph H and an induced subgraph J , a J-decomposition of a graph H is
a tree decomposition (F ,T ) of H satisfying the following two extra conditions:

1. each induced subgraphs H[X], X ∈ F , is isomorphic to J , and

2. for every pair X,Y ∈ F which are adjacent in T , there is an isomorphism between the two
copies H[X] and H[Y ] of J that fixes X ∩ Y .

We call a graph J-decomposable if it allows a J-decomposition, i.e., it can be obtained by symmet-
rically gluing copies of J in a tree-like way. If J is a complete graph then the second condition on
the symmetry between H[X] and H[Y ], XY ∈ E(T ), is automatically satisfied.

We shall use the following simple lemma to count the number of edges in a J-decomposable
graph. The proof will be given in the appendix.

Lemma 2.4. Let (F ,T ) be a tree decomposition of a graph H. Then

e(H) =
∑

X∈F

eH [X] −
∑

XY ∈E(T )

eH [X ∩ Y ]. (5)
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A folklore lemma, essentially implied by the Kolmogorov extension theorem, will be necessary
to obtain an information-theoretic lemma that counts the number of J-decomposable graphs. We
give a simple proof when all the random variables take finitely many values, which suffices for
our purpose, in the appendix. For a modern introduction to product measure spaces and the
Kolmogorov extension theorem, we refer to [25].

Lemma 2.5. Let (X1,X2) and (X ′
2,X3) be random vectors taking values in a finite set. If X2 and

X ′
2 are identically distributed, then there exists (Y1, Y2, Y3) such that Y1 and Y3 are conditionally

independent given Y2, (X1,X2) and (Y1, Y2) are identically distributed, and (X ′
2,X3) and (Y2, Y3)

are also identically distributed.

Let F be a family of subsets of [k] := {1, 2, · · · , k}. Partly motivated by the notion of tree
decompositions, a Markov tree on [k] is a pair (F ,T ) with T a tree on vertex set F that satisfies

1.
⋃

F∈F F = [k] and

2. for A,B,C ∈ F , A ∩B ⊆ C whenever C lies on the path from A to B in T .

Let V be a finite set and for each F ∈ F let XF = (Xi;F )i∈F be a random vector taking values
in V F . We are interested in such random vectors where ‘local’ information is ‘globally’ extendible.
That is, there exist random variables Y1, Y2, · · · , Yk such that, for each F ∈ F , the two random
vectors (Yi)i∈F and XF are identically distributed over V F , and thus, (Yi)i∈F ‘copies’ the given
local information XF . If such Y1, · · · , Yk exist, then (Xi;A)i∈A∩B and (Xj;B)j∈A∩B must be iden-
tically distributed. The following theorem states that the converse is also true and, moreover, the
maximum entropy under such constraints can always be attained. We again postpone the proof
until the appendix.

Theorem 2.6. Let (F ,T ) be a Markov tree on [k]. Let V be a finite set and for each F ∈ F let

XF = (Xi;F )i∈F be a random vector taking values in V F . If (Xi;A)i∈A∩B and (Xj;B)j∈A∩B are

identically distributed whenever AB ∈ E(T ), then there exists Y = (Y1, · · · , Yk) with entropy

H(Y) =
∑

F∈F

H(XF )−
∑

AB∈E(T )

H((Xi;A)i∈A∩B) (6)

such that (Yi)i∈F and XF are identically distributed over V F for all F ∈ F .

Let us discuss how Theorem 2.6 relates to the classical Cauchy–Schwarz inequality. For a simple
example, let V = V (G) be the vertex set of a graph G, and let (X,Y ) and (Y ′, Z) be two uniform
random labelled edges. Since the distributions of Y and Y ′ are identical, Theorem 2.6 implies that
there exists (X1,X2,X3) with entropy

H(X1,X2,X3) = H(X,Y ) +H(Y ′, Z)−H(Y ).

As (X1,X2) and (X2,X3) are identically distributed with (X,Y ) and (Y ′, Z), respectively, they are
uniform random labelled edges in G. Thus, (X1,X2,X3) is a homomorphic copy of K1,2, where
X2 is the image of degree-two vertex. Using basic facts on entropy (see Lemma 2.1), we have
H(X,Y ) = H(Y ′, Z) = log 2e(G), H(Y ) ≤ log |G|, and H(X1,X2,X3) ≤ log |Hom(K1,2, G)|, which
implies tK1,2(G) ≥ tK2(G)

2. This is also an easy consequence of the Cauchy–Schwarz inequality
and furthermore, we may recover many graph homomorphism inequalities obtained by using the
Cauchy–Schwarz inequality by the same argument above with different choice of (X,Y, Y ′, Z).
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In particular, this is same as using |F| = 2 and T the single edge tree for Theorem 2.6. Hence,
(6) may be seen as a tree-like extension of the Cauchy–Schwarz inequality. In fact, analogous
lemmas to Theorem 2.6 have already been used in [7, 8, 17, 24] to obtain such results.

To obtain graph homomorphism inequalities, the following corollary of Theorem 2.6, which
appeared implicitly in [8], is useful.

Theorem 2.7. Let G,H, and J be graphs. Suppose that H is J-decomposable and Hom(J,G) is

non-empty. Fix a J-decomposition (F ,T ) of H. Then the following inequality holds:

tH(G) ≥ tJ(G)
|F|

∏
XY ∈E(T ) tH[X∩Y ](G)

. (7)

Proof. By definition, a J-decomposition (F ,T ) is a Markov tree on V (H). Let XF = (Xi,F )i∈F
be the uniform random homomorphism in Hom(J,G). Then both (Xi,A)i∈A∩B and (Xj,B)j∈A∩B

are supported on the set Hom(H[A ∩ B], G) and moreover, they are identically distributed. This
is because the distributions are projected from the uniform distribution on Hom(J,G) in the same
way, as there exists an isomorphism between H[A] and H[B] that fixes A ∩B. Thus, by Theorem
2.6, there exists (Yv)v∈V (H) such that

H((Yv)v∈V (H)) = |F| log |Hom(J,G)| −
∑

AB∈E(T )

H((Xi;A)i∈A∩B), (8)

where each (Yu)u∈F is identically distributed with XF . Since each XF takes values in Hom(J,G),
(Yu, Yv) is always an ordered edge in G. Thus, (Yv)v∈V (H) is a (not necessarily uniform) random
homomorphism from H to G. Now (8) gives

log |Hom(H,G)| ≥ |F| log |Hom(J,G)| −
∑

AB∈E(T )

H((Xi;A)i∈A∩B)

≥ |F| log |Hom(J,G)| −
∑

AB∈E(T )

log |Hom(H[A ∩B], G)|.

By rescaling by subtracting |H| log |G| on both sides and using the identity (5), we obtain the
inequality (7).

Another technical ingredient we need is Reiher’s lemma [20], which enables the continuous
relaxation of the (ρ, d)-denseness condition.

Lemma 2.8 (Lemma 2.1 in [20]). Let G be a (ρ, d)-dense graph on n vertices, and let f : V (G) →
[0, 1] be a function satisfying

∑
v∈V (G) f(v) ≥ ρn. Then

∑

(u,v)∈Hom(K2,G)

f(u)f(v) ≥ d


 ∑

v∈V (G)

f(v)




2

− 2n. (9)

This lemma is often used in the following form.

Corollary 2.9. Let G be a (ρ, d)-dense graph on n vertices and let f(v;x) : V (G) → [0, 1] be a

function associated with a k-tuple x ∈ V (G)k. If
∑

(v,x)∈V (G)k+1 f(v;x) ≥ αnk+1, then

∑

x∈V (G)k

∑

(u,v)∈Hom(K2,G)

f(u;x)f(v;x) ≥ d
(
α2 − 2αρ− 2/n

)
nk+2.
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Proof. Let Sρ be the set of k-tuples x in V (G)k such that
∑

v∈V (G)k+1 f(v;x) ≥ ρn. Then by
Lemma 2.8, for each x ∈ Sρ,

∑

(u,v)∈Hom(K2,G)

f(u;x)f(v;x) ≥ d


 ∑

v∈V (G)

f(v;x)




2

− 2n.

Thus, summing over all x ∈ Sρ gives

∑

x∈Sρ

∑

(u,v)∈Hom(K2,G)

f(u;x)f(v;x) ≥ d
∑

x∈Sρ


 ∑

v∈V (G)

f(v;x)




2

− 2n|Sρ|

≥ d

|Sρ|


∑

x∈Sρ

∑

v∈V (G)

f(v;x)




2

− 2n|Sρ|,

where the last inequality follows from convexity. As
∑

x/∈Sρ

∑
v∈V (G) f(v;x) ≤ ρnk+1 and |Sρ| ≤ nk,

∑

x∈Sρ

∑

(u,v)∈Hom(K2,G)

f(u;x)f(v;x) ≥ d

|Sρ|
(α− ρ)2 n2k+2 − 2n|Sρ|

≥ d
(
α2 − 2αρ− 2/n

)
nk+2.

This is also a lower bound for
∑

x∈V (G)k
∑

(u,v)∈Hom(K2,G) f(u;x)f(v;x) and hence completes the
proof.

3 Adding an edge to cycles and trees

The two main ingredients in proving Theorem 1.3 are Li–Szegedy smoothness introduced in [18]
and Hölder’s inequality. To sketch very roughly, the crucial caveat in using the local denseness
or its relaxation, Lemma 2.8, is the symmetry. That is, in (9), f(u) and f(v) must be the same

function f evaluated at distinct vertices. If the asymmetry in (9) is allowed, then it closely resembles
more general condition so-called bi-denseness, and an analogue of Conjecture 1.1 will be an easy
consequence.

The starting point is to observe that a recent idea, the ‘Hölder trick’ used in [9], provides
some symmetrisation. However, the Hölder trick inevitably produces rational exponents on the
functions, i.e., the normalised number of graphs supported on fixed vertices, in the expectation.
These rational exponents are in general hard to control, especially if they are smaller than one and
hence allow no convexity inequalities. However, Li–Szegedy smoothness, which will be introduced
shortly, enables us to handle them to deduce Theorem 1.3.

Let U be a vertex subset of H. For each φ ∈ Hom(H[U ], G), denote by tH(G;φ) be the
normalised number of homomorphisms in Hom(H,G) that extend φ, i.e.,

tH(G;φ) :=
|{ψ ∈ Hom(H,G) : ψ|U = φ}|

|G||H|−|U |
.

If U consists of a single vertex or a pair of vertices that are mapped to x ∈ V (G) or (x, y) ∈ V (G)2

and is already specified in the context, we also write tH(G;x) or tH(G;x, y), respectively.

7



We say that U is smooth inH if there exists a probability distribution p : Hom(H[U ], G) → [0, 1]
such that

∑

φ∈Hom(H[U ],G)

pφ log tH(G;φ) ≥ (e(H) − e[U ]) log tK2(G) (10)

and
∑

φ∈Hom(H[U ],G)

pφ log(1/pφ)− |U | log |G| ≥ e[U ] log tK2(G), (11)

where pφ = p(φ). For brevity, we also say that the induced subgraph H[U ] is smooth in H whenever
U is. We also say that such p realises the smoothness of U (or H[U ]) in H. The following theorem
essentially appeared in [18], although we state it in a slightly more general way. We give a short
proof for completeness.

Lemma 3.1 ([18], Corollary 3.1). If there exists U ⊆ V (H) that is smooth in H, then H has

Sidorenko’s property.

Proof. As {ψ ∈ Hom(H,G) : ψ|U = φ}, φ ∈ Hom(H[U ], G), partitions Hom(H,G),

|G||U |tH(G) =
∑

φ∈Hom(H[U ],G)

tH(G;φ). (12)

We denote by Ep[·] the expectation taken by the probability distribution p that realises the smooth-
ness of U in H. Then

log


 ∑

φ∈Hom(H[U ],G)

tH(G;φ)


 = logEp

[
tH(G;φ)

pφ

]

≥ Ep

[
log tH(G;φ) + log(1/pφ)

]

≥ e(H) log tK2(G) + |U | log |G|,

where the first inequality follows from concavity of logarithm and the second from the smoothness
of U in H. Comparing this bound with (12) concludes the proof.

As a partial converse, Li and Szegedy proved that Sidorenko’s property implies the smoothness
of an edge.

Theorem 3.2 ([18], Theorem 5). If H has Sidorenko’s property, then every edge in E(H) is smooth

in H.

If p realises the smoothness of an edge e in H, then (11) reduces to

∑

φ∈Hom(K2,G)

pφ log(1/pφ) ≥ log |Hom(K2, G)| = log 2e(G).

The left hand side is the entropy of the distribution p, whose maximum value is the right hand
side. Thus, the equality holds and moreover, p must be the uniform distribution on Hom(K2, G).
In other words, the smoothness of an edge in H is equivalent to

E
[
log tH(G;φ)

]
≥ (e(H) − 1) log tK2(G), (13)

where the expectation is taken over the set of uniform random ordered edges φ(e) in G.
We are now ready to prove the first half of Theorem 1.3.
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Theorem 3.3. Conjecture 1.1 is true if H is a cycle plus a chord.

Proof. Let G be an n-vertex (ρ, d)-dense graph, where ρ will be specified later in the proof. We
may assume that H is the graph obtained by adding a chord edge to a cycle Ck, where V (Ck) = Zk

and E(Ck) = {{i, i+1} : i = 1, 2, · · · , k}. All the additions to represent vertex labels in Ck will be
taken modulo k throughout the proof, e.g., k − r = −r.

Suppose firstly that k = 2m is an even integer. If the chord edge produces two shorter even
cycles, then by Theorem 2 in [18], H has Sidorenko’s property. Otherwise, H has two odd cycles
C2r+1 and C2m−2r+1 on {−r,−r+1, · · · , r} and {r, r+1, · · · , 2m− r}, respectively, i.e., the chord
edge is {−r, r}.

We shall embed the two antipodal vertices 0 and m to two fixed vertices x, y in G and count
the normalised number of homomorphic H-copies by using Lemma 2.8, denoted by tH(G;x, y). Let
f(v;x, y) be the normalised number of the m-edge (directed) walks from x to y such that v is the
(r + 1)-th vertex in each walk. Here the normalisation means dividing the number of such paths
by nm−2 to guarantee 0 ≤ f(v;x, y) ≤ 1. Then, Sidorenko’s property of paths2 gives

∑

x,y,v∈V (G)

f(v;x, y) = n3tPm(G) ≥ dmn3. (14)

Hence, Corollary 2.9 implies
∑

(x,y)∈V (G)2

tH(G;x, y) =
∑

x,y∈V (G)

∑

(u,v)∈Hom(K2,G)

f(u;x, y)f(v;x, y)

≥ d(dm − ρ)2n2 − 2n

≥ d2m+1 (1− 2ρ/dm − 2/ndm)n2.

Thus, taking ρ = ηdm/4 and n > 4/ηdm gives the desired bound tH(G) ≥ d2m+1(1− η).

Suppose now that k = 2m + 1 is an odd integer. Then adding a chord to Ck always makes
two shorter cycles C2r+1 and C2m−2r+2 with distinct parity. We may assume that the chord edge
is {−r, r}, V (C2r+1) = {−r,−r + 1, · · · , r} and V (C2m−2r) = {r, r + 1, · · · , 2m + 1 − r}. Denote
by h(x, y) the number of (2m − 2r + 1)-edge walks from x to y divided by n2m−2r if (x, y) is an
(ordered) edge in G. Otherwise let h = 0. Let g(x, y) be the edge indicator function of G. Then

tH(G) = E

[
h(xr, x−r)g(xr, x−r)

r−1∏

i=−r

g(xi, xi+1)

]
,

where the expectation is taken over the uniform random vertices xi,−r ≤ i ≤ r. By the natural
symmetry in C2r+1, we may also write

tH(G) = E

[
h(xj , xj+1)g(xr , x−r)

r−1∏

i=−r

g(xi, xi+1)

]

for any −r ≤ j ≤ r − 1. Denote by Fj the product of functions in the expectation above, i.e.,
Fj := h(xj , xj+1)g(xr, x−r)

∏r−1
i=−r g(xi, xi+1), so that tH(G) = E[Fj ]. Then Hölder’s inequality

gives

tH(G) =




r−1∏

j=−r

E[Fj]




1
2r

≥ E




r−1∏

j=−r

F
1
2r
j


 = E

[
g(x−r, xr)

r−1∏

i=−r

g(xi, xi+1)h(xi, xi+1)
1
2r

]
.

2This was obtained multiple times independently by Mullholland–Smith [19], Atkinson–Watterson–Moran [2], and
Blakley–Roy [3], although often cited as the Blakley–Roy inequality.
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We claim that

E

[
r−1∏

i=0

g(xi, xi+1)h(xi, xi+1)
1
2r

]
≥
(
m+

1

2

)
log tK2(G). (15)

Suppose that the claim is true. We may rewrite the lower bound from Hölder’s inequality as

tH(G) ≥ E

[
g(x−r, xr)

r−1∏

i=0

g(xi, xi+1)h(xi, xi+1)
1
2r

−r+1∏

i=0

g(xi, xi−1)h(xi, xi+1)
1
2r

]
. (16)

This allows us to apply Corollary 2.9 with the choice

f(v;x) = E

[
r−1∏

i=0

g(xi, xi+1)h(xi, xi+1)
1
2r

∣∣∣∣∣x0 = x, xr = v

]

and α = dm+1/2, since the lower bound in (16) is exactly E [f(v;x)f(u;x)g(u, v)]. Thus, by Corol-
lary 2.9,

tH(G) ≥ d2m+1(1− 2ρ/dm+1/2 − 2/nd2m).

Taking ρ = 1/4ηdm+1/2 and n > 4/ηd2m completes the proof.

It remains to prove the claim. By Sidorenko’s property of paths, we have

E

[
r−1∏

i=0

g(xi, xi+1)h(xi, xi+1)
1
2r

]
≥ E

[
g(x, y)h(x, y)

1
2r

]r
. (17)

Let Ẽ[.] be the expectation taken by the distribution of a uniform random (labelled) edge, i.e.,
Ẽ[f ] = 1

tK2
(G)E[g(x, y)f ] whenever f is supported on the set of edges. We may then write

E

[
g(x, y)h(x, y)

1
2r

]
= tK2(G)Ẽ

[
h(x, y)

1
2r

]
= tK2(G)Ẽ

[
tC2m−2r+2(G;x, y)

1
2r

]
.

Hence, by using concavity of logarithm, we obtain

logE
[
g(x, y)h(x, y)

1
2r

]
= log tK2(G) + log Ẽ

[
tC2m−2r+2(G;x, y)

1
2r

]

≥ log tK2(G) +
1

2r
Ẽ
[
log tC2m−2r+2(G;x, y)

]

Since even cycles have Sidorenko’s property,3 a pair of vertices that induce an edge is smooth in
the even cycle C2m−2r+2 by Theorem 3.2. The smoothness of an edge, as rephrased in (13), then
yields

Ẽ
[
log tC2m−2r+2(G;x, y)

]
≥ (2m− 2r + 1) log tK2(G).

Together with (17), this concludes the proof of the claim.

To prove Conjecture 1.1 for unicyclic graphs, we need the following fact, already appeared in [18]
and explained in terms of information theory in [7, 24].

3Sidorenko [22] firstly proved this fact, though it was already implicitly proven in Chung–Graham–Wilson’s defi-
nition of quasirandomness [4]. It is also reproved in [14, 18] since then.
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Theorem 3.4 ((7) in [18]). Let T be a tree. Then every induced subtree S is smooth in T . Moreover,

the smoothness of S in T is realised by the same distribution that realises the smoothness of S in T ′

for any tree T ′ that contains S as an induced subtree.

More precisely, the smoothness of an induced subtree in T is always realised by the distribution
induced by the tree branching random walk, that is, starting from a uniform random edge and
branching uniformly at random to obtain a homomorphic copy of a tree. For more details, see [7].

Theorem 3.5. Conjecture 1.1 is true if H is unicyclic.

Proof. If the unique cycle in H is of even length, then H is bipartite. Moreover, H has Sidorenko’s
property, as shown in Theorem 2 in [23] and thus the conclusion easily follows.

Thus, we may assume that the unique cycle in H is of odd length. Let −m,−m+ 1, · · · ,m be
vertices in V (H) that induce an odd cycle of length 2m + 1 with edges {i, i + 1}, −m ≤ i ≤ m,
where the addition is taken modulo 2m+1. Throughout the proof, all the additions of vertex labels
will be taken modulo 2m+ 1.

Let Ti be the subgraph of H induced on V (H) \ ([2m+1] \ {i}). In particular, Ti is a tree that
contains the unique vertex {i} from the cycle. Let τi(x) := tTi

(G;x) for x ∈ V (G), that is, the
number of homomorphisms from Ti to G that maps i to x divided by |G||Ti|−1. Denote by g the
edge indicator of G. We may then write

tH(G) = E

[
m∏

i=−m

g(xi, xi+1)τi(xi)

]
,

or, by the symmetry of C2m+1 that maps i to −i,

tH(G) = E

[
m∏

i=−m

g(xi, xi+1)τ−i(xi)

]
.

Applying the Cauchy–Schwarz inequality then yields

tH(G) ≥ E




m∏

i=−m

g(xi, xi+1)

m∏

j=−m

√
τ−j(xj)τj(xj)


 .

We aim to rephrase above to apply Corollary 2.9. To this end, let σj(x) :=
√
τj(x)τ−j(x) so that

σj = σ−j. Then the right-hand side above is

E


g(x−m, xm)τ0(x0)

m∏

i=1

σi(xi)g(xi, xi−1)

m∏

j=1

σj(x−j)g(x−j , x−j+1)


 . (18)

We claim that

E

[
√
τ0(x0)

m∏

i=1

σi(xi)g(xi, xi−1)

]
≥ 1

2
(e(H)− 1) log tK2(G) (19)

If the claim is true, then by letting

f(v;x) = E

[
√
τ0(x0)

m∏

i=1

σi(xi)g(xi, xi−1)

∣∣∣∣∣x0 = x, xm = v

]
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and α = d
1
2
(e(H)−1) in Corollary 2.9, (18) gives

tH(G) ≥ E
[
f(u;x)f(v;x)g(u, v)

]
≥ de(H)(1− 2ρ/d

1
2
(e(H)−1) − 2/nde(H)−1).

Taking ρ = ηd
1
2
(e(H)−1)/4 and n > 4η/de(H)−1 therefore finishes the proof.

It remains to verify the claim. For i ≥ 0, let T ′
i be the tree induced on V (Ti) ∪ {0, 1, · · · ,m}

and let T ′
−i be the tree obtained by identifying −i ∈ V (T−i) and the vertex i on the m-edge path

P on {0, 1, · · · ,m}. By Theorem 3.4, V (P ) = [m] is smooth in T ′
i and moreover, its smoothness is

realised by the same distribution p(x0, x1, · · · , xm) on Hom(Pm, G) regardless of −r ≤ i ≤ r. Now
write the left-hand side of (19) as

E

[
√
τ0(x0)

m∏

i=1

σi(xi)g(xi, xi−1)

]
= Ẽ

[√
τ0(x0)

∏m
i=1 σi(xi)g(xi, xi−1)

p(x0, x1, · · · , xm)

]
,

where Ẽ[.] = E[p(.)]. This is possible since
√
τ0(x0)

∏m
i=1 σi(xi)g(xi, xi−1) = 0 whenever p = 0.

Then by concavity of logarithm,

log Ẽ

[√
τ0(x0)

∏m
i=1 σi(xi)g(xi, xi−1)

p(x0, x1, · · · , xm)

]
≥ Ẽ

[
log

(√
τ0(x0)

∏m
i=1 σi(xi)g(xi, xi−1)

p(x0, x1, · · · , xm)

)]

=
1

2

m∑

i=0

Ẽ

[
log τi(xi)

]
+

1

2

m∑

i=1

Ẽ

[
log τ−i(xi)

]
+ Ẽ

[
log

m∏

i=1

g(xi, xi−1)

]
+ Ẽ

[
log

(
1

p(x0, · · · , xm)

)]
.

Firstly, as p is supported on Hom(Pm, G),
∏m

i=1 g(xi, xi−1) = 1 whenever p is nonzero. Thus, the

term Ẽ
[
log
∏m

i=1 g(xi, xi−1)
]
is always zero. Secondly, Ẽ

[
log
(

1
p(x0,··· ,xm)

)]
is the entropy of the

distribution p, which is at least m log tK2(G) by (11). Observe that, for each i ≥ 0,

Ẽ

[
log τi(xi)

]
= E

[
p(x0, · · · , xm) log tT ′

i
(G;x0, · · · , xm)

]
and

Ẽ

[
log τ−i(xi)

]
= E

[
p(x0, · · · , xm) log tT ′

−i
(G;x0, · · · , xm)

]
.

Indeed, τi(xi) counts the normalised number of homomorphic copies of Ti such that i is mapped to
xi, which is equal to the normalised number of homomorphic copies of T ′

i such that P is mapped to
the (homomorphic)m-edge path on {x0, x1, · · · , xm}. By the same reason, τ−i(xi) is the normalised
number of homomorphic copies of T ′

−i supported on the m-edge path on {x0, · · · , xm}. Therefore,
by the smoothness condition (10) of V (P ) = [m] in T ′

i or in T ′
−i, it follows that

Ẽ

[
log τi(xi)

]
≥ e(Ti) log tK2(G) and Ẽ

[
log τ−i(xi)

]
≥ e(T−i) log tK2(G)

for each 0 ≤ i ≤ m. Therefore, we obtain

E

[
√
τ0(x0)

m∏

i=1

σi(xi)g(xi, xi−1)

]
≥
(
m+

1

2

m∑

i=−m

e(Ti)

)
log tK2(G),

which, together with the fact e(H) = 2m+ 1 +
∑m

i=−m e(Ti), proves (19).
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4 Counting K(r1, r2, · · · , rℓ)-decomposable graphs

In this section, we prove the following half of Theorem 1.4.

Theorem 4.1. Let r1, r2, · · · , rℓ be non-negative integers. Then Conjecture 1.1 is true if H is a

K(r1, r2, · · · , rℓ)-decomposable graph.

As a warm-up, we begin by proving the folklore fact that Conjecture 1.1 is true for the case
H = Kr. It will also be technically helpful in what follows.

Theorem 4.2. Given η, d > 0 and positive integer r, there exists ρ = ρ(η, d, r) > 0 such that

tKr(G) ≥ (1− η)dr(r−1)/2

for every sufficiently large (ρ, d)-dense graph G.

This follows immediately from a recursive statement, which states that we may add an apex
vertex to any graph satisfying Conjecture 1.1 to obtain another:

Theorem 4.3. Let Ĥ be the graph obtained by adding a vertex to H which is adjacent to all vertices

in H. If Conjecture 1.1 is true for H, then it is also true for Ĥ.

Proof. Let ρ > 0 be such that

tH(G) ≥ (1− η/2)de(H)

whenever J is a sufficiently large (ρ, d)-dense graph. We may assume that ρ ≤ ηd/(2|H|). Let G be
a (ρ2, d)-dense graph on n vertices. Denote by U the set of vertices v in G such that deg(v) ≥ ρn.
Let a be the apex vertex in Ĥ and let c(v) be the number of homomorphisms φ from Ĥ to G such
that φ(a) = v. Observe that for any W ⊆ V (G) of size |W | ≥ ρn, the induced subgraph G[W ] is
(ρ, d)-dense. Thus,

|Hom(Ĥ,G)| =
∑

v∈V (G)

c(v) ≥
∑

u∈U

|Hom(H,G[N(u)])|

≥
∑

u∈U

(1− η/2)de(H)|N(u)||H|

≥ (1− η/2)de(H)

|U ||H|−1

(
∑

u∈U

|N(u)|
)|H|

, (20)

where the last inequality follows from convexity. Note that

∑

u∈U

|N(u)| = 2e(G) −
∑

v/∈U

|N(v)| (21)

≥ (d− ρ)n2 ≥
(
1− η

2|H|

)
dn2, (22)

where the last inequality follows from ρ ≤ ηd/(2|H|). By combining (20) and (21), we obtain

|Hom(Ĥ,G)| ≥ (1− η/2)

(
1− η

2|H|

)|H|

d|H|+e(H)n|H|+1

≥ (1− η)de(Ĥ)n|Ĥ|.
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However, the classical approach above does not give a tight enough comparison between tKr+1(G)
and tKr(G). When applying Theorem 2.7, the main difficulty often lies in bounding the terms
tH[X∩Y ](G) from above in terms of tJ(G). The following lemma gives the control needed to prove
Theorem 4.1.

Lemma 4.4. Given δ > 0 and positive integers ℓ, r1, r2, · · · , rℓ, let r =
∑ℓ

i=1 ri. Then there exists

ρ = ρ(δ, d, r1, r2, · · · , rℓ) such that

tK(r1,r2,··· ,rℓ)(G) ≥ (1− δ)dr−r1tK(r1−1,r2,··· ,rℓ)(G)

for every sufficiently large (ρ, d)-dense graph G.

Proof. Suppose r1 ≥ 2. Then the complete ℓ-partite graph K(r1, r2, · · · , rℓ) can be obtained by
gluing two copies of K(r1 − 1, r2, · · · , rℓ) along their subgraphs induced on each vertex set minus a
vertex in the vertex class of size r1−1 in the ℓ-partition, which is isomorphic to K(r1−2, r2, · · · , rℓ).
Hence, by the Cauchy–Schwarz inequality or Theorem 2.7 with |F| = 2, we have

tK(r1,r2,··· ,rℓ)(G) ≥
tK(r1−1,r2,··· ,rℓ)(G)

2

tK(r1−2,r2,··· ,rℓ)(G)
.

Here we do not worry about the case tK(r1−2,r2,··· ,rℓ)(G) = 0, because by Theorem 4.2 it is always
positive. Repeating this inequality gives the following log-convexity:

tK(r1,r2,··· ,rℓ)(G)

tK(r1−1,r2,··· ,rℓ)(G)
≥
tK(r1−1,r2,··· ,rℓ)(G)

tK(r1−2,r2,··· ,rℓ)(G)
≥ · · · ≥

tK(1,r2,··· ,rℓ)(G)

tK(r2,··· ,rℓ)(G)
. (23)

Thus, the goal reduces to the case r1 = 1. We claim that, given η > 0, there exists ρ =
ρ(η, d, r2, · · · , rℓ) > 0 such that

tK(1,r2,··· ,rℓ)(G) ≥ (1− η)dr2tK(r2+1,··· ,rℓ)(G) (24)

whenever G is (ρ, d)-dense. If the claim is true, then using (24) repeatedly to reduce the number
of colour classes and applying (23) to reduce the number of vertices in each class yields

tK(r1,r2,··· ,rℓ)(G)

tK(r1−1,r2,··· ,rℓ)(G)
≥

(1− η)dr2tK(r2+1,··· ,rℓ)(G)

tK(r2,··· ,rℓ)(G)

≥ · · · ≥ (1− (ℓ− 1)η)dr2+···+rℓ
tK(rℓ+1)(G)

tK(rℓ)(G)
.

Since both K(rℓ + 1) and K(rℓ) consist of isolated vertices, taking η = δ/(ℓ − 1) is enough to
conclude.

Thus, it remains to prove (24). For brevity, let H = K(r2 + 1, r3, r4, · · · , rℓ) and let h = |H|.
Consider ρ > 0 such that ρ1+r2 ≤ 1

2ηd
r2+h(h−1)/2 and tKh

(G′) ≥ 1
2d

h(h−1)/2 whenever G′ is a suf-
ficiently large (ρ, d)-dense graph. Such ρ exists by Theorem 4.2. For a homomorphism φ from
K(r3, r4, · · · , rℓ) to G, define Cφ to be the set of vertices v such that adding v to φ(K(r3, · · · , rℓ))
extends φ as a homomorphism from K(1, r3, r4, · · · , rℓ) to G. Denote by Φ the set of homomor-
phisms φ ∈ Hom(H,G) such that |Cφ| ≥ ρ|G|. Then we have

|Hom(K(1, r2, r3, · · · , rℓ), G)| ≥
∑

φ∈Φ

|Hom(K1,r2 , G[Cφ])| ≥ dr2
∑

φ∈Φ

|Cφ|r2+1, (25)
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where the last inequality follows from the fact tK1,r(J) ≥ tK2(J)
r for any graph J . Note now that

∑

φ∈Φ

|Cφ|r2+1 = |Hom(H,G)| −
∑

φ/∈Φ

|Cφ|r2+1

≥ |Hom(H,G)| − ρ1+r2 |G|1+r2 |Hom(K(r3, · · · , rℓ), G)|
≥ |Hom(H,G)| − ρ1+r2 |G|h.

Substituting this into (25) gives

|Hom(K(1, r2, r3, · · · , rℓ), G)| ≥ dr2 |Hom(H,G)| − ρ1+r2 |G||H|.

Therefore, by normalising both sides by |G||H|,

tK(1,r2,r3,··· ,rℓ)(G) ≥ dr2tH(G)− ρ1+r2 ≥ (1− η)dr2tH(G),

where the last inequality follows from

ρ1+r2 ≤ 1

2
ηdr2+h(h−1)/2 ≤ ηdr2tKh

(G) ≤ ηdr2tH(G).

An immediate corollary is that we may compare tK(r1,r2,··· ,rℓ)(G) and tK(s1,s2,··· ,sℓ)(G) by re-
peatedly applying Lemma 4.4 whenever ri ≥ si ≥ 0 for i = 1, 2, · · · , ℓ.

Corollary 4.5. Suppose δ > 0 and ℓ, r1, · · · , rℓ, and s1, s2, · · · , sℓ are positive integers with ri ≥ si,
i = 1, 2, · · · , ℓ. Let r = e(K(r1, r2, · · · , rℓ)) and s = e(K(s1, s2, · · · , sℓ)). Then there exists a

positive ρ = ρ(δ, d, r1, · · · , rℓ, s1, · · · , sℓ) such that

tK(r1,··· ,rℓ)(G) ≥ (1− δ)dr−stK(s1,··· ,sℓ)(G),

whenever G is a sufficiently large (ρ, d)-dense graph. �

We now turn to the proof of Theorem 4.1.

Proof of Theorem 4.1. . Let K = K(r1, r2, · · · , rℓ) for brevity and let (F ,T ) be a K-decomposition
of a graph H. By Theorem 4.2 we know that Hom(H[X ∩ Y ], G) is non-empty. Hence, Theorem
2.7 gives

tH(G) ≥ tK(G)|F|

∏
XY ∈E(T ) tH[X∩Y ](G)

=
tK(G)e(T )+1

∏
XY ∈E(T ) tH[X∩Y ](G)

, (26)

as e(T ) = |F| − 1. Using the bound tK(G)/tH[X∩Y ](G) ≥ (1− δ)de(K)−eH [X∩Y ] from Corollary 4.5,
we obtain

tH(G) ≥ tK(G)
∏

XY ∈E(T )

(1− δ)de(K)−eH [X∩Y ]

≥ (1− δ)de(K)
∏

XY ∈E(T )

(1− δ)de(K)−eH [X∩Y ].

By Lemma 2.4, e(H) = |F|e(K) −∑XY ∈E(T ) eH [X ∩ Y ], and thus,

tH(G) ≥ (1− δ)|F|de(H).

Taking δ = η/|F| concludes the proof.
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5 Counting C2r+1-decomposable graphs

We shall prove the remaining half of Theorem 1.4 at the end of this section.

Theorem 5.1. Conjecture 1.1 is true if H is a C2k+1-decomposable graph.

In proving Theorem 5.1, we will again follow the same proof strategy. In order to apply Theo-
rem 2.7, the key will be to prove appropriate graph homomorphism inequalities between odd cycles
and the paths they contain.

Lemma 5.2. Given d, δ > 0 and positive integers ℓ and r with ℓ ≤ 2r, there exists ρ = ρ(δ, d, r, ℓ)
such that

tC2r+1(G) ≥ (1− δ)d · tPℓ
(G)2r/ℓ (27)

whenever G is sufficiently large and (ρ, d)-dense.

There are two main ingredients in the proof of Lemma 5.2. The first is Reiher’s lemma,
Lemma 2.8, and the second is the log-convexity of path homomorphisms. In fact, after obtaining
the statement independently, we found that the log-convexity of paths has already been obtained by
Erdős and Simonovits [10]. We include a simple proof in the appendix for the sake of completeness.

Lemma 5.3. For any graph G and positive integers ℓ ≤ 2r, the following inequality holds:

tP2r(G) ≥ tPℓ
(G)2r/ℓ. (28)

By Lemma 5.3, if we prove that there exists ρ > 0 such that

tC2r+1(G) ≥ (1− δ)d · tP2r(G)

whenever G is a sufficiently large (ρ, d)-dense graph, then Lemma 5.2 follows. The proof of this
inequality closely resembles that of Reiher [20] proving Conjecture 1.1 for odd cycles, but, despite
the similarity, the conclusion of Lemma 5.2 is slightly tighter than the standard application of
Corollary 2.9. Hence, our proof only relies on Lemma 2.8.

Proof of Lemma 5.2. Let |G| = n and let q(v) be the normalised number of walks of length r
starting from v, i.e., we divide the number of walks by nr−1. Denote by U := {u : q(u) > ρn} the
set of vertices with large q(u). Then

1

n2r−2
|Hom(P2r, G)| =

∑

u∈U

q(u)2 +
∑

u/∈U

q(u)2,

and hence,
∑

u∈U

q(u)2 ≥ |Hom(P2r, G)|/n2r−2 − ρ2n3.

On the other hand, let fu(v) be the normalised number of walks of length r from u to v. Then by
definition q(u) =

∑
v∈V (G) fu(v), and

∑
v∈V (G) fu(v) > ρn whenever u is in U . For each u ∈ U ,

Lemma 2.8 gives

2
∑

vw∈E(G)

fu(v)fu(w) ≥ d


 ∑

v∈V (G)

fu(v)




2

− 2n ≥ dq(u)2 − 2n.
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Summing this inequality over all u ∈ U is at most the normalised number of homomorphisms
|Hom(C2r+1, G)|/n2r−2. Hence, we have

1

n2r−2
|Hom(C2r+1, G)| ≥

d

n2r−2
|Hom(P2r, G)| − ρ2n3 − 2n2.

Dividing both sides by n3 gives

tC2r+1(G) ≥ d · tP2r(G) − ρ2 − 2/n.

By taking ρ =
√
δd2r+1/4 and n > 4/δd2r+1, the inequality tP2r(G) ≥ d2r finishes the proof.

Proof of Theorem 5.1. Let (F ,T ) be a C2r+1-decomposition of H and set ǫ = η/|F|. By Reiher’s
theorem [20] on odd cycles,4 there exists ρ = ρ(δ, d, ǫ) > 0 such that

tC2r+1(G) ≥ (1− ǫ)d2r+1 (29)

whenever G is a sufficiently large (ρ, d)-dense graph. Let eXY be the number of edges in H[X ∩ Y ]
for XY ∈ E(T ). Each H[X ∩ Y ], XY ∈ E(T ), is a vertex-disjoint union of paths, and thus by
Lemma 5.3 we obtain the upper bound

tH[X∩Y ](G) ≤ tP2r(G)
eH [X∩Y ]/2r.

Combining this bound with Theorem 2.7, we obtain

tH(G) ≥ tC2r+1(G)
|F|

∏
XY ∈E(T ) tH[X∩Y ](G)

≥ tC2r+1(G)
|F|

tP2r(G)
1
2r

∑
XY∈E(T ) eH [X∩Y ]

.

The bound tC2r+1(G) ≥ (1− ǫ)d · tP2r(G) from Lemma 5.2 now gives

tH(G) ≥ (1− ǫ)|F|d|F|tP2r(G)
|F|− 1

2r

∑
XY ∈E(T ) eH [X∩Y ]. (30)

By Lemma 2.4,

e(H) = (2r + 1)|F| −
∑

XY ∈E(T )

eXY = |F|+ 2r


|F| − 1

2r

∑

XY ∈E(T )

eH [X ∩ Y ]


 ,

and thus, (30) yields

tH(G) ≥ (1− |F|ǫ)d|F|tP2r(G)
|F|− 1

2r

∑
XY ∈E(T ) eH [X∩Y ]

≥ (1− η)d|F|tP2r(G)
1
2r

(e(H)−|F|) ≥ (1− η)de(H).

4 Obviously, it also follows from Lemma 5.2 for the case ℓ = 2r, which rephrases Reiher’s argument.
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6 Concluding remarks

On Li–Szegedy smoothness. The smoothness condition (10) and (11) can also be interpreted
in terms of entropy. It is more convenient to use the term relative entropy to the uniform vertex
sampling, as in [24]. Namely, (10) means that the following randomised algorithm guarantees ‘large’
relative entropy: sampling φ with the distribution pφ and sample a homomorphism in Hom(H,G)
that extends φ uniformly at random. Indeed, (11) just means that pφ itself has large enough entropy.
We however used the language of logarithmic concavity instead of entropy, because it clarifies our
key idea to control the rational exponents of tH(G;x, y).

If one takes the information-theoretic approach used in [7, 15, 18, 24] to prove Sidorenko’s
property of a graph H, it is often easy to find an induced subgraph J that is smooth in H. For
instance, if H is a strongly tree-decomposable graph defined in [7], every sub-decomposition defined
in [6] induces a smooth subgraph in H. Moreover, in the proof of Theorem 1.3, no special properties
except the Sidorenko property of even cycles have been used. Thus, it is certainly possible to replace
the even cycles by other graphs having Sidorenko’s property.

It is hence possible to obtain more instances of Conjecture 1.1 using this method, once the
smooth subgraph is ‘symmetric’ enough to apply Lemma 2.8. However, this still seems far from
solving the full conjecture and we do not pursue this further.

Smallest open case for Conjecture 1.1. Using all the results so far and the theorem of Reiher
[20] on odd cycles, one may check that Conjecture 1.1 is true for H with at most five vertices.
However, we do not know how to handle the following special case for 6 vertices and leave it as an
open problem.

Question 6.1. Let H be the graph with 6 vertices and 8 edges, where V (H) = Z6 and E(H) =
{{i, i + 1} : 1 ≤ i ≤ 6} ∪ {{1, 5}, {2, 4}}. Does H satisfy Conjecture 1.1?

Extending Theorem 1.4 to chordal graphs. When using Theorem 2.6, the major caveat is how
to find random variables (Xi,F )i∈F that agree on the marginals (Xj,A)j∈A∩B . In fact, the symmetry
condition in the definition of the J-decomposition is tailored to satisfy the marginal constraints.
However, for non-isomorphic graphs H1 and H2 containing the same induced subgraph J , it is often
hard to find distributions on Hom(H1, G) and Hom(H2, G) that agree on the natural projection to
Hom(J,G).

For example, it is possible to generate a random copy of a tree in such a way that the projection of
the distribution onto a subtree agrees with the distribution generated by the same algorithm, which
Theorem 3.4 essentially implies. This also leads to the definition of strongly tree-decomposable
graphs used in [7]. Another example is Theorem 3.2, whose consequence is that, ifH has Sidorenko’s
property, we may assume that the projection of a uniform random homomorphic copy of H onto a
single edge is again uniform. Therefore, it is possible to glue graphs having Sidorenko’s property
on a single edge while preserving the property. Likewise, if it is possible to generate random copies
of Kr and Ks that have the same marginals on Kt for every t ≤ min(r, s) in locally dense graphs,
then it may be possible to prove Conjecture 1.1 for all chordal graphs. We hence raise the following
question:

Question 6.2. Do all chordal graphs satisfy Conjecture 1.1?
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attention and for many helpful discussions. I would also like to thank Oliver Riordan, Mathias
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A Proofs of auxiliary lemmas

Proof of Lemma 2.4. Let uv ∈ E(H) and let F(uv) be the collection of vertex sets X ∈ F con-
taining both u and v. Since F(uv) = F(u) ∩ F(v) and F(uv) 6= ∅ by (ii) of the definition of tree
decompositions, F(uv) induces a non-empty subtree Tuv of T . In (5), each uv is counted |F(uv)|
times in

∑
X∈F eH [X] and e(Tuv) = |F(uv)| − 1 times in

∑
XY ∈E(T ) eH [X ∩ Y ]. Thus, every edge

is counted once on both sides of (5), which proves the desired identity.

Proof of Lemma 2.5. Suppose X1,X2, and X3 take values in finite sets A,B, and C, respectively.
Note that X ′

2 also takes values in B. Let Y1, Y2, and Y3 be random variables defined by the joint
distribution

P[Y1 = a, Y2 = b, Y3 = c] =
P[X1 = a,X2 = b] P[X ′

2 = b,X3 = c]

P[X2 = b]
(31)

for all possible values of a, b, and c. This is well-defined, since P[X1 = a,X2 = b] = 0 whenever
P[X2 = b] = 0. We claim that (Y1, Y2, Y3) is a random vector with desired properties. Summing
(31) over all a ∈ A gives

P[Y2 = b, Y3 = c] = P[X ′
2 = b,X3 = c] (32)

and the fact that P[X2 = b] = P[X ′
2 = b] gives that by symmetry

P[Y1 = a, Y2 = b] = P[X1 = a,X2 = b].

Moreover, by substituting (32) into (31), we obtain

P[Y1 = a|Y2 = b, Y3 = c] =
P[Y1 = a, Y2 = b, Y3 = c]

P[Y2 = b, Y3 = c]

=
P[X1 = a,X2 = b]

P[X2 = b]
= P[Y1 = a|Y2 = b],

which implies the conditional independence of Y1 and Y3 given Y2.
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Proof of Theorem 2.6. We use induction on |F|. The base case |F| = 1 is trivially true. Fix a leaf
L of T and let T ′ be the tree T \L on F ′ := F \ {L}. By rearranging indices, we may assume that
L = {t, t + 1, · · · , k} for some t ≤ k and that F ′ satisfies ∪F∈F ′F = [ℓ] for some t ≤ ℓ ≤ k. Let P
be the neighbour of L in T . Then {t, t+ 1, · · · , ℓ} = L ∩ P . By the inductive hypothesis, there is
Y = (Y1, Y2, · · · , Yℓ) such that YF := (Yi)i∈F and XF := (Xi;F )i∈F are identically distributed for
each F ∈ F ′ and moreover,

H(Y) =
∑

F∈F ′

H(XF )−
∑

AB∈E(T ′)

H((Xi;A)i∈A∩B). (33)

Since YP and XP are identically distributed and {t, t + 1, · · · , ℓ} ⊆ P , (Yt, Yt+1, · · · , Yℓ) and
(Xt;L,Xt+1;L, · · · ,Xℓ;L) are identically distributed. Thus, we may apply Lemma 2.5 with

X1 = (Y1, Y2, · · · , Yt−1), X2 = (Yt, Yt+1, · · · , Yℓ),
X ′

2 = (Xt;L,Xt+1;L, · · · ,Xℓ;L), and X3 = (Xℓ+1;L,Xℓ+2;L, · · · ,Xk;L).

Then there exists (Z1, Z2, · · · , Zk) such that (Z1, Z2, · · · , Zt−1) and (Zℓ+1, · · · , Zk) are condition-
ally independent given (Zt, Zt+1, · · · , Zℓ), (Z1, · · · , Zℓ) and Y are identically distributed, and
(Zt, Zt+1, · · · , Zk) and XL are identically distributed. By conditional independence, we obtain

H(Z1, Z2, · · · , Zk) = H(Y) +H(XL)−H(Yt, Yt+1, · · · , Yℓ).
Now (33) and the fact that {t, t+ 1, · · · , ℓ} = L ∩ P implies (6).

Proof of Lemma 5.3. We shall repeatedly use the inequality

tPk+t
(G) ≤ tP2k

(G)1/2tP2t(G)
1/2

that easily follows from the Cauchy–Schwarz inequality. If (28) holds for all paths of even length,
then by tP2k+1

(G) ≤ tP2k
(G)1/2tP2k+2

(G)1/2 we are done. Thus, we may assume that our path is of
even length 2ℓ. We claim that the sequence tP2k

(G), k = 1, 2, · · · , r, is log-convex. Observe that
the Cauchy–Schwarz inequality gives log-convexity for adjacent terms, i.e.,

tP2k
(G) ≤ tP2(k+1)

(G)1/2tP2(k−1)
(G)1/2.

We need the following folklore fact for convexity.

Lemma A.1. Let a0, a1, · · · , ar be a real sequence such that, for every i = 1, 2, · · · , r − 1,

ai ≤
ai−1 + ai+1

2
.

Then ak ≤ 1
r (kar + (r − k)a0).

Proof. Note that bi := ai − ai−1 is increasing. As ak − a0 = bk + bk−1 + · · ·+ b1,

r(ak − a0) = k(b1 + · · ·+ bk) + (r − k)(b1 + · · ·+ bk)

≤ k(b1 + · · ·+ bk) + k(bk+1 + bk+2 + · · ·+ br) = k(ar − a0),

which completes the proof.

Now letting ak := log tP2k
(G) in Lemma A.1 gives ak ≤ 1

r (kar + (r − k)a0). Therefore,

tP2ℓ
(G) ≤ tP0(G)

r−ℓ
r tP2r(G)

ℓ
r .

Since P0 is the single vertex graph, this completes the proof.
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