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Abstract
Sidorenko’s conjecture states that for every bipartite graphH on {1, · · · , k}∫ ∏

(i,j)∈E(H)

h(xi, yj)dµ
|V (H)| ≥

(∫
h(x, y) dµ2

)|E(H)|

holds, where µ is the Lebesgue measure on [0, 1] and h is a bounded, non-
negative, symmetric, measurable function on [0, 1]2. An equivalent discrete
form of the conjecture is that the number of homomorphisms from a bipartite
graph H to a graph G is asymptotically at least the expected number of
homomorphisms from H to the Erdős-Rényi random graph with the same
expected edge density as G. In this paper, we present two approaches to
the conjecture. First, we introduce the notion of tree-arrangeability, where a
bipartite graph H with bipartition A∪B is tree-arrangeable if neighborhoods
of vertices in A have a certain tree-like structure. We show that Sidorenko’s
conjecture holds for all tree-arrangeable bipartite graphs. In particular, this
implies that Sidorenko’s conjecture holds if there are two vertices a1, a2 in A
such that each vertex a ∈ A satisfies N(a) ⊆ N(a1) or N(a) ⊆ N(a2), and
also implies a recent result of Conlon, Fox, and Sudakov [3]. Second, if T is
a tree and H is a bipartite graph satisfying Sidorenko’s conjecture, then it is
shown that the Cartesian product T �H of T and H also satisfies Sidorenko’s
conjecture. This result implies that, for all d ≥ 2, the d-dimensional grid with
arbitrary side lengths satisfies Sidorenko’s conjecture.

1 Introduction

In this paper, we study a beautiful conjecture of Sidorenko [20] on a correlation
inequality related to bipartite graphs. The conjecture states that, for every bipartite
graph H on {1, 2, · · · , k},∫ ∏

(i,j)∈E(H)

h(xi, yj)dµ
|V (H)| ≥

(∫
h(x, y) dµ2

)|E(H)|

(1.1)
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holds, where µ is the Lebesgue measure on [0, 1] and h is a bounded, non-negative,
symmetric, measurable function on [0, 1]2. Throughout the paper, a graph means a
simple graph unless specified otherwise.

Sidorenko [20, 21] noted that the functional on the left-hand side of the corre-
lation inequality (1.1) often appears in various fields of science: Feynman integrals
in quantum field theory [25], Mayer integrals in classical statistical mechanics, and
multicenter integrals in quantum chemistry [4].

The correlation inequality resembles the famous FKG inequality [7], which as-
serts that increasing functions are positively correlated when the underlying mea-
sure is log-supermodular over a finite distributive lattice. Despite the similarity,
it is unclear that the FKG inequality can be applied to show (1.1): There ex-
ist a function h and two edge disjoint subgraphs H1 and H2 of a bipartite graph
such that

∏
(i,j)∈E(H1) h(xi, yj) and

∏
(i,j)∈E(H2) h(xi, yj) are not positively correlated

[11]. It is unknown whether every bipartite graph H can be decomposed into two
edge disjoint non-empty subgraphs H1 and H2 (possibly depeding on h) so that∏

(i,j)∈E(H1) h(xi, yj) and
∏

(i,j)∈E(H2) h(xi, yj) are positively correlated.

An equivalent discrete form expresses the conjecture in terms of graph homo-
morphisms. For two graphs H and G, a homomorphism from H to G is a mapping
g : V (H) → V (G) such that {g(v), g(w)} is an edge in G whenever {v, w} is an
edge in H. Let Hom(H,G) denote the set of all homomorphisms from H to G,
and let tH(G) be the probability that a uniform random mapping from H to G is a
homomorphism, i.e.,

tH(G) =
|Hom(H,G)|
|V (G)||V (H)| .

The discrete form of Sidorenko’s conjecture states that for every bipartite graph H,

tH(G) ≥ tK2(G)|E(H)| for all graphs G. (1.2)

If G is the Erdős-Rényi random graph G(n, p), the mean of tH(G(n, p)) is p|E(H)|

plus an error term of smaller order of magnitude. Thus (1.2) roughly asserts that
tH(G) is minimized when G is a random graph.

In fact, many problems in extremal graph theory can be expressed using homo-
morphisms. For instance, the chromatic number χ(H) is the minimum integer r such
that there exists a homomorphism from H to the complete graph Kr on r vertices.
The problem of finding a copy of H in G can be stated as the problem of finding an
injective homomorphism from H to G. A classical theorem of Turán [27] states that,

for all integers r ≥ 3, every graph G with more than
(
1− 1

r−1

) |V (G)|2
2

edges contains
Kr as a subgraph. In terms of graph homomorphisms, it may be re-stated as follows:
For all integers r ≥ 3, if tK2(G) > 1− 1

r−1
, then there exists a homomorphism from

Kr to G. Since the alternative definition of χ(H) given above implies that there
exists a homomorphism from H to Kχ(H), it then follows that for all graphs H, there
exists a homomorphism from H to G whenever tK2(G) > 1− 1

χ(H)−1
, which also fol-

lows from Erdős-Stone Theorem [6]. Lovász and Simonovits [12] conjectured a kind
of generalization of Turán’s theorem in 1983 stating that for an integer r ≥ 3 and
tK2(G) = ρ0 fixed, tKr(G) ≥ F (r, ρ0) + O(|V (G)|−2) for a certain function F (r, ρ0)
of r and ρ0 . Razborov [16] proved the conjecture for r = 3 in 2008, and Nikiforov
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[14] proved it for r = 4 in 2011. Recently, Reiher [17] settled the conjecture for all
values of r. The equality holds for some complete (s + 1)-partite graphs such that
the first s parts are of the same size and the last part is not larger than the others.

Erdős and Simonovits [5, 23] made a similar conjecture for bipartite graphs in
1984. They conjectured that if H is a bipartite graph, then there exists a positive
constant c

H
depending only on H such that

tH(G) ≥ c
H
tK2(G)|E(H)| (1.3)

for all graphs G (their conjecture was originally stated in terms of injective ho-
momorphisms but is equivalent to this form). It turns out that this conjecture is
equivalent to Sidorenko’s conjecture, as Sidorenko himself showed in [20] using a
tensor power trick. Recall that, for a bipartite graph H, Sidorenko’s conjecture for-
malizes the idea that the minimum of tH(G) over all graphs G of the same tK2(G)
must be attained when G is the random graph with the same tK2(G). This is in con-
trast with the Lovász-Simonovits’s conjecture above, which is now Reiher’s theorem,
where the extremal graphs have a deterministic structure. This may be regarded
as an example showing that there is a difference between fundamental structures of
bipartite graphs and complete graphs.

Sidorenko’s conjecture is known to be true only for a few bipartite graphs H. We
say that a bipartite graph H has Sidorenko’s property if (1.2) holds for all graphs G.
That paths have Sidorenko’s property [2, 13] was proved around 1960, earlier than
Sidorenko suggested the conjecture. Sidorenko himself [20] showed that trees, even
cycles, and complete bipartite graphs have Sidorenko’s property. He also proved
that, for a bipartite graph H with bipartition A∪B, H has Sidorenko’s property if
|A| ≤ 4. Recently, Hatami [10] proved that hypercubes have Sidorenko’s property
by developing a concept of norming graphs. He proved that every norming graph
has Sidorenko’s property, and that all hypercubes are norming graphs. Conlon, Fox,
and Sudakov [3] proved that if H is a bipartite graph with a bipartition A ∪B and
there is a vertex in A adjacent to all vertices in B, then H has Sidorenko’s property.
Sidorenko [20] and Li and Szegedy [26] introduced some recursive processes that
construct a new graph from a collection of graphs so that the new one has Sidorenko’s
property whenever all the graphs in the collection have the property. Li and Szegedy
[26] introduced some recursive processes that construct a new graph from a collection
of graphs so that the new one has Sidorenko’s property whenever all the graphs in
the collection have the property. On the other hand, the simplest graph not known
to have Sidorenko’s property is K5,5 \ C10, a 3-regular graph on 10 vertices.

In this paper, we further study Sidorenko’s conjecture by taking two different
approaches. The first approach uses normalizations by certain conditional expec-
tations and Jensen’s inequality for logarithmic functions. This approach is partly
motivated by Li and Szegedy [26]. For a bipartite graph H with bipartition A ∪B,
H is tree-arrangeable if the family of neighborhoods of vertices in A has a cer-
tain tree-like structure. We show that all tree-arrangeable bipartite graphs have
Sidorenko’s property. For instance, if there is a vertex in A adjacent to all vertices
in B, then H is tree-arrangeable with a star as the corresponding tree. Hence our
result generalizes the result of Conlon, Fox, and Sudakov [3].
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Second, we develop a recursive procedure that preserves Sidorenko’s property.
For two graphs H1 and H2, let the Cartesian product H1 �H2 (also known as the
box product) be the graph over the vertex set V (H1)×V (H2) such that two vertices
(u1, u2) and (v1, v2) are adjacent if and only if (i) u1 and v1 are adjacent in H1 and
u2 = v2, or (ii) u2 and v2 are adjacent in H2 and u1 = v1. We prove that if T is
a tree and H is a bipartite graph with Sidorenko’s property, then T �H also has
Sidorenko’s property.

To present the result that the first approach yields, let H be a bipartite graph
with bipartition A∪B. For a vertex u of H, the neighborhood of u in H is denoted
by Λu.

1 An independent set U of H is T -arrangeable for a tree T on U , if

Λu ∩ Λv =
⋂
w∈P

Λw for every path P in T connecting u and v. (1.4)

We say that U is tree-arrangeable if it is T -arrangeable for some tree T , and H is tree-
arrangeable if there exists a bipartition A∪B of H such that A is tree-arrangeable.

For example, an independent set U with |U | ≤ 2 is trivially tree-arrangeable.
Thus, if a bipartite graph H has a bipartition A ∪ B with |A| ≤ 2, then it is tree-
arrangeable. As another example, let H be a bipartite graph with bipartition A∪B.
If H has a vertex a ∈ A adjacent to all vertices in B, then A is T -arrangeable where
T is a star on A centered at a. For complete bipartite graphs H, any tree on A can
be used to show that A, and thus H, is tree-arrangeable. The last example exhibits
the fact that the choice of T is not necessarily unique.

The concept of tree-arrangeability is closely related to tree decompositions [18],
and also to Markov Random Field Models used in statistical physics [8] and image
processing [24]. This will be discussed more in the concluding remarks.

We show that tree-arrangeable bipartite graphs have Sidorenko’s property.

Theorem 1.1. If a bipartite graph H is tree-arrangeable, then H has Sidorenko’s
property.

We have seen that a complete bipartite graph, a bipartite graph with bipartition
A ∪ B and |A| ≤ 2, and a bipartite graph having a vertex adjacent to all vertices
on the other side are tree-arrangeable. Therefore, our theorem implies that these
graphs have Sidorenko’s property. Another interesting example is a bipartite graph
H with bipartition A∪B and two vertices a1, a2 ∈ A such that Λa ⊆ Λa1 or Λa ⊆ Λa2

for every a ∈ A. In this case, we may take a tree T on A such that there is an edge
connecting a1 and a2, and each a 6= a1, a2 in A with Λa ⊆ Λa1 is a leaf adjacent
to a1, and the other vertices are leaves adjacent to a2. It is easy to see that H is
T -arrangeable, and thus H has Sidorenko’s property. This example does not seem
to follow from the recursive procedure introduced by Li and Szegedy [26].

The second theorem proves that Sidorenko’s property is preserved under taking
Cartesian products with trees, here the Cartesian product H1 �H2 of two graphs H1

and H2 is the graph on V (H1) × V (H2) such that two vertices (u1, u2) and (v1, v2)
are adjacent if and only if either (i) u1 and v1 are adjacent in H1 and u2 = v2, or
(ii) u2 and v2 are adjacent in H2 and u1 = v1.

1 We intentionally avoid using standard notation N(a) in order to clarify that the underlying
graph is H, as two different graphs H and G are concerned.
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Theorem 1.2. If T is a tree and H is a bipartite graph having Sidorenko’s property,
then T �H also has Sidorenko’s property.

Since paths of all lengths are known to have Sidorenko’s property, by repeatedly
applying Theorem 1.2 with paths P1, P2, · · · , Pd of various lengths, we obtain that
the d-dimensional grid P1 �P2 � · · · �Pd has Sidorenko’s property. This approach
especially yields a simple proof of the statement that the hypercube K2 �K2 � · · · �K2

satisfies Sidorenko’s property, which was first proven by Hatami [10].

The paper is organized as follows. The proof of Theorem 1.1 will be given in
Section 2. The proof of Theorem 1.2 and its applications will be given in Section
3. In the last section, Section 4, we will further discuss tree-arrangeability in the
context of tree decompositions and Markov Random Field Models, and pose some
open problems.

2 Tree-arrangeable Bipartite Graphs

In this section, we prove Theorem 1.1 using normalizations by certain conditional
expectations and Jensen’s inequality for logarithmic functions. Recall that tH(G)
represents the probability that the uniform random mapping from V (H) to V (G)
is a graph homomorphism. Let x : V (H) → V (G) be a mapping chosen uniformly
at random among all |V (G)||V (H)| mappings from V (H) to V (G). For the sake of
simplicity, we write

xu := x(u) for u ∈ V (H) and x(Λ) := the sequence (xu)u∈Λ for Λ ⊆ V (H).

As in the previous section, Λu is the set of neighbors of u in H, for u ∈ V (H). For
a bipartite graph H with bipartition A ∪B, we now have that

tH(G) = E

[∏
a∈A

1(xa ∼ x(Λa) in G)

]
,

where 1(xa ∼ x(Λa) in G) is the indicator random variable of the event that xa is
adjacent to all vertices in x(Λa) in G and 1(xa ∼ ∅ in G) ≡ 1.

For a vertex v of G, it is convenient to consider the degree density ρG(v) := dG(v)
n

rather than the degree itself. The mean of ρG(v) over all v ∈ V (G) is denoted by
ρ0(G). Then,

ρ0(G) =
1

n

∑
v∈V (G)

ρG(v) =
2|E(G)|
n2

= tK2(G).

We will simply write 1(xa ∼ x(Λa)), ρ(v), and ρ0 for 1(xa ∼ x(Λa) in G), ρG(v),
and ρ0(G), respectively, if no confusion arises.

In these notations, H has Sidorenko’s property if

E

[∏
a∈A

1(xa ∼ x(Λa))

]
≥ ρ|E(H)|

0
, (2.1)
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or equivalently,

lnE

[∏
a∈A

1(xa ∼ x(Λa))

]
≥ |E(H)| ln ρ0 . (2.2)

The case of H being a star, say centered at a, is a simple example that may
illustrate how to show (2.1) or (2.2) using Jensen’s inequality. Taking A = {a}, we
may have that

E [1(xa ∼ x(Λa))] = E
[
E [1(xa ∼ x(Λa))|xa]

]
= E

[
ρ(xa)

|Λa|
]
≥ ρ|Λa|

0
= ρ|E(H)|

0
,

(2.3)
where the last inequality follows from Jensen’s inequality. For another way to
show the inequality, one may normalize the indicator function 1(xa ∼ x(Λa)) by
ρ0ρ(xa)

|Λa|−1, i.e.,

fa :=
1(xa ∼ x(Λa))

ρ0ρ(xa)|Λa|−1
,

provided G has no isolated vertex. (It will be shown that we can always assume so).
A similar argument to that used in (2.3) implies that fa is normalized:

E[fa] = E
[
E[fa|xa]

]
= E

[
E[1(xa ∼ x(Λa))|xa]

ρ0ρ(xa)|Λa|−1

]
= E[ρ(xa)/ρ0 ] = 1. (2.4)

Since
lnE

[
1(xa ∼ x(Λa))

]
= lnE[faρ0ρ(xa)

|Λa|−1] (2.5)

and the logarithmic function is concave, Jensen’s inequality on the new probability
measure P∗[E ] = E[fa1E ] yields

lnE
[
1(xa ∼ x(Λa))

]
≥ E[fa ln

(
ρ0ρ(xa)

|Λa|−1
)
] = E[fa ln ρ0 ] + (|Λa| − 1)E[fa ln ρ(xa)].

As E[fa ln ρ0 ] = E[fa] ln ρ0 = ln ρ0 and

E[fa ln ρ(xa)] = E
[
E[fa ln ρ(xa)|xa]

]
= E

[
E[fa|xa] ln ρ(xa)

]
= ρ−1

0
E[ρ(xa) ln ρ(xa)],

the convexity of the function x lnx gives

E[ρ(xa) ln ρ(xa)] ≥ E[ρ(xa)] lnE[ρ(xa)] = ρ0 ln ρ0

and thus

lnE
[
1(xa ∼ x(Λa))

]
≥ ln ρ0 + (|Λa| − 1)ρ−1

0
E[ρ(xa) ln ρ(xa)] ≥ |E(H)| ln ρ0 .

This scheme is motivated by Li and Szegedy [26]. Though it looks much more
complicated than (2.3), this approach turns out to be more powerful in proving that
certain bipartite graphs have Sidorenko’s property.

We first show that it is enough to consider G with no isolated vertex.

Lemma 2.1. Let H be a bipartite graph. If tH(G) ≥ (tK2(G))|E(H)| for all graphs
G with no isolated vertex, then H has Sidorenko’s property.
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Proof. Let G be a graph on n vertices with k ≥ 1 isolated vertices. Then, for the
induced subgraph H1 (resp. G1) of H on the set of all non-isolated vertices in H
(resp. G), it follows that

tH(G) = tH1(G) = tH1(G1)

(
n− k
n

)|V (H1)|

and

(tK2(G))|E(H)| = (tK2(G1))|E(H)|
(
n− k
n

)2|E(H)|

,

where (n−k
n

)|V (H1)| is the probability that all vertices in V (H1) are mapped to non-
isolated vertices of G and similarly (n−k

n
)2 is the probability that the two vertices

in V (K2) are mapped to non-isolated vertices of G. Since tH(G1) ≥ (tK2(G1))|E(H)|

by the hypothesis and |V (H1)| ≤ 2|E(H1)| ≤ 2|E(H)|, we have that tH(G) ≥
(tK2(G))|E(H)|, as desired.

We now assume that G has no isolated vertex. To bound

tH(G) = E
[∏
a∈A

1(xa ∼ x(Λa))
]

from below, we plan to normalize the indicator random variable 1(xa ∼ x(Λa))
twice, first by ρ0ρ(xa)

|Λa|−1 as before, and then by a certain conditional expectation.
In both cases, it is important that we avoid dividing by zero. Since G has no isolated
vertex, the first normalization causes no problem. The second normalization will be
possible if 1(xa∼x(Λa))

ρ0ρ(xa)|Λa|−1 is not zero, which is unfortunately not true in general. Hence,

we consider a slight variation of the function. Namely, for a vertex u of H,

fu = fε,u =
1(xu ∼ x(Λu)) + ερ(xu)

|Λu|

ρ0ρ(xu)|Λu|−1
,

where ε > 0 will go to 0. The term involving ε is purely technical to make the
second normalizing factor below non-zero. Though it is a slight abuse of notation,
we have written fu for fε,u for the sake of simplicity.

The second normalization requires some notations: Let H be a bipartite graph
and let T be a tree on an independent set U of H. For vertices r, u ∈ U , Tr
denotes the tree T rooted at r, and Γ(u;Tr) = (xv, x(Λv))v∈C , where C is the
component of T \ {u} containing the root r. That is, Γ(u;Tr) is a vector-valued
random variable, the components of which are the pairs (xv, x(Λv)), v ∈ C. If u = r,
then C = ∅, Γ(r;Tr) = ∅ and hence E[ g |Γ(r;Tr)] = E[g] for all g. In particular,
E[fr|Γ(r;Tr)] = E[fr] = 1 + ε by the same argument as in (2.4). The denominator
for the second normalization is E[fu|Γ(u;Tr)] for each u ∈ U . Note that, for u 6= r,

E[fu|Γ(u;Tr)] = E[fu|x(∪v∈C(Λu ∩ Λv))] = Exu
[1(xu ∼ x(∪v∈C(Λu ∩ Λv)))

ρ0ρ(xu)|∪v∈C(Λu∩Λv)|−1

]
+ ε

(2.6)
is a random variable depending only on x(∪v∈C(Λu∩Λv)), where C is the component
of Tr\{u} containing r and the last expectation Exu is taken over the uniform random
vertex xu of G.
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We now define, for a tree T on an independent set of a bipartite graph H and
r ∈ V (T ),

f
Tr

:=
∏

a∈V (T )

fa
E[fa|Γ(a;Tr)]

.

For a bipartite graph H with bipartition A ∪B, since

tH(G) = E

[∏
a∈A

1 (xa ∼ x(Λa))

]
= lim

ε→0
E

[∏
a∈A

(
1 (xa ∼ x(Λa)) + ερ(xa)

|Λa|
)]

by, e.g., the dominated convergence theorem, it suffices to show that

E

[∏
a∈A

(
1 (xa ∼ x(Λa)) + ερ(xa)

|Λa|
)]
≥ ρ|E(H)|

0
,

which is equivalent to

E

[
f
Tr

∏
a∈A

(
ρ0ρ(xa)

|Λa|−1E[fa|Γ(a;Tr)]
)]
≥ ρ|E(H)|

0
, (2.7)

provided T is a tree on A and r ∈ A.
Recall that an independent set U of a bipartite graph H is tree-arrangeable if

there is a tree T on U such that

Λu ∩ Λv =
⋂
w∈P

Λw for every path P in T connecting u and v, (2.8)

and that a bipartite graph H is tree-arrangeable if there exists a bipartition A ∪ B
of H such that A is tree-arrangeable.

The main lemma in this section is

Lemma 2.2. Suppose an independent set U of a bipartite graph H is T -arrangeable
for a tree T on U . Then, fTr is root-invariant, that is, fTr = fTs for all r, s ∈ U .
Moreover, for u ∈ U and a random variable g = g(xu, x(Λu)) determined by xu and
x(Λu),

E[gfTr ] =
E[gfu]

1 + ε
,

regardless of the choice of r ∈ U . In particular, E[fTr ] = 1.

Once this is established, one may prove Theorem 1.1 using Jensen’s inequality for
logarithmic functions, as we have seen above.

We first prove the following lemma.

Lemma 2.3. Suppose U is an independent set of a bipartite graph H and is T -
arrangeable for a tree T on U . Then the following hold.

(i) If S is a subtree of T , then V (S) is S-arrangeable.
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(ii) For each u ∈ U , each component C of T \ {u} and the vertex u∗ in C adjacent
to u, we have that ⋃

v∈C

(Λu ∩ Λv) = Λu ∩ Λu∗ . (2.9)

(iii) For distinct vertices u, r ∈ U , let ur be the parent of u in the rooted tree Tr, or
equivalently, ur be the vertex adjacent to u in the path in T connecting u and
r. Then

E[fu|Γ(u;Tr)] = E[fu|x(Λu ∩ Λur )] = Exu
[1(xu ∼ x(Λu ∩ Λur ))

ρ0ρ(xu)
|Λu∩Λur

|−1

]
+ ε

where the expectation Exu is taken over the uniform random vertex xu of G.

Proof. Since a path in S is also a path in T , (2.8) holds for every path P in S. Thus
(i) holds. For (ii), clearly Λu ∩ Λu∗ ⊆

⋃
v∈C(Λu ∩ Λv). On the other hand, for every

vertex v ∈ C, the path P in T connecting u and v must contain u∗ and hence

Λu ∩ Λv =
⋂
w∈P

Λw ⊆ Λu ∩ Λu∗ .

Therefore, ⋃
v∈C

(Λu ∩ Λv) ⊆ Λu ∩ Λu∗ .

The equalities in (iii) follows from (2.6) and (ii) as u∗ = ur in this case.

Remark. It is not difficult to show that (2.9) is a necessary and sufficient condition
for the T -arrangeability.

Proof of Lemma 2.2. For the first part, it is enough to show that f
Tr

= f
Ts

for
all adjacent pairs r, s in T . Suppose r, s are adjacent in T . If u 6= r, s, then
E[fu|Γ(u;Tr)] = E[fu|Γ(u;Ts)] since s and r are in the same component of T \ {u}.
Thus, E[fr|Γ(r;Tr)] = E[fs|Γ(s;Ts)] = 1 + ε implies that

f
Ts

f
Tr

=
E[fs|Γ(s;Tr)]

E[fr|Γ(r;Ts)]
.

As s and r are adjacent in T , (iii) of Lemma 2.3 gives

E[fs|Γ(s;Tr)] = Exs
[1(xs ∼ x(Λs ∩ Λr))

ρ0ρ(xs)|Λs∩Λr|−1

]
+ε = Exr

[1(xr ∼ x(Λs ∩ Λr))

ρ0ρ(xr)|Λs∩Λr|−1

]
+ε = E[fr|Γ(r;Ts)].

Therefore,
f
Tr

f
Ts

=
E[fs|Γ(s;Tr)]

E[fr|Γ(r;Ts)]
= 1.

For the second part, we first have that

E[gfTr ] = E[gfTu ].
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If |V (T )| = |U | = 1, then E[gfTu ] = E[g fu
E[fu]

] = E[gfu]
1+ε

, as desired. Suppose |V (T )| =
|U | ≥ 2. Then, for a leaf ` of T other than u and the tree S = T \ {`}, the set
U \ {`} is S-arrangeable by (i) of Lemma 2.3, and, for v ∈ U \ {`} with v 6= u, it
follows from (iii) of Lemma 2.3 that

E[fv|Γ(v;Su)] = E[fv|x(Λv ∩ Λvu)] = E[fv|Γ(v;Tu)],

where vu is the parent of v in Su, as vu is also the parent of v in Tu. Therefore,
E[fu|Γ(u;Tu)] = E[fu|Γ(u;Su)], and

fTu =
fSuf`

E[f`|Γ(`;Tu)]
.

Hence

E [gfTu ] = E
[
E
[ gfSuf`
E[f`|Γ(`;Tu)]

∣∣∣Γ(`;Tu)
]]

= E
[
gfSuE

[ f`
E[f`|Γ(`;Tu)]

∣∣∣Γ(`;Tu)
]]

= E [gfSu ] ,

as both of g and fSu are determined by Γ(`;Tu). Keep deleting vertices of Tu by the
same way, we eventually have

E[gfTr ] = E[gfTu ] = E
[
g
fu

E[fu]

]
=

E[gfu]

1 + ε
,

as desired. By taking g ≡ 1, we have that

E[fTr ] =
E[fu]

1 + ε
= 1.

We are now ready to prove Theorem 1.1:

Theorem 1.1. (Restated) If a bipartite graph H is tree-arrangeable, then H has
Sidorenko’s property.

Proof. Let H be a bipartite graph with bipartition A∪B and let A be T -arrangeable
for a tree T on A. As seen earlier in (2.7), it suffices to show that, for a fixed vertex
r ∈ A,

E

[
f
Tr

∏
a∈A

(
ρ0ρ(xa)

|Λa|−1E[fa|Γ(a;Tr)]
)]
≥ ρ|E(H)|

0
.

Since E[fTr ] = 1, Jensen’s inequality gives

lnE
[
f
Tr

∏
a∈A

(
ρ0ρ(xa)

|Λa|−1E[fa|Γ(a;Tr)]
)]
≥ E

[
f
Tr

ln
∏
a∈A

(
ρ0ρ(xa)

|Λa|−1E[fa|Γ(a;Tr)]
)]

The right hand side is

|A|E[fTr ln ρ0 ] +
∑
a∈A

(|Λa| − 1)E[fTr ln ρ(xa)] +
∑
a∈A

E
[
f
Tr

lnE[fa|Γ(a;Tr)]
]
.

10



First, as E[fTr ] = 1,
E[fTr ln ρ0 ] = ln ρ0 (2.10)

Second, since ln ρ(xa) is determined by xa, Lemma 2.2 together with the same
argument used in (2.4) gives

E[fTr ln ρ(xa)] =
E[fa ln ρ(xa)]

1 + ε
= ρ−1

0
E[ρ(xa) ln ρ(xa)].

Jensen’s inequality further gives

E[fTr ln ρ(xa)] = ρ−1
0

E[ρ(xa) ln ρ(xa)] ≥ ρ−1
0

E[ρ(xa)] lnE[ρ(xa)] = ln ρ0 . (2.11)

Third, as E[fa|Γ(a;Tr)] is determined by x(a) and x(Λa), Lemma 2.2 yields

E
[
f
Tr

lnE[fa|Γ(a;Tr)]
]

=
1

1 + ε
E
[
fa lnE[fa|Γ(a;Tr)]

]
=

1

1 + ε
E
[
E
[
fa lnE[fa|Γ(a;Tr)]

∣∣∣Γ(a;Tr)
]]

=
1

1 + ε
E
[
E[fa|Γ(a;Tr)] lnE[fa|Γ(a;Tr)]

]
.

Applying Jensen’s inequality for the convex function z ln z, and using E
[
E[fa|Γ(a;Tr)]

]
=

E[fa] = 1 + ε, we have that

E
[
f
Tr

lnE[fa|Γ(a;Tr)]
]
≥ 1

1 + ε
E
[
E[fa|Γ(a;Tr)]

]
lnE

[
E[fa|Γ(a;Tr)]

]
= ln(1 + ε) ≥ 0. (2.12)

Combining (2.10)-(2.12), we have that

lnE
[
f
Tr

∏
a∈A

(
ρ0ρ(xa)

|Λa|−1E[fa|Γ(a;Tr)]
)]
≥ |A| ln ρ0+

∑
a∈A

|(Λa|−1) ln ρ0 = |E(H)| ln ρ0 ,

or equivalently,

E
[
f
Tr

∏
a∈A

(
ρ0ρ(xa)

|Λa|−1E[fa|Γ(a;Tr)]
)]
≥ ρ|E(H)|

0
,

as desired.

3 Cartesian products

Recall that the Cartesian product H1 �H2 of two graphs H1 and H2 is defined as the
graph on V (H1)× V (H2) such that two vertices (u1, u2) and (v1, v2) are adjacent if
and only if either (i) u1 and v1 are adjacent in H1 and u2 = v2, or (ii) u2 and v2 are
adjacent in H2 and u1 = v1. In this section we prove Theorem 1.2, which is restated
for reader’s convenience.

Theorem 1.2. (Restated) If T is a tree and H is a bipartite graph having Sidorenko’s
property, then T �H also has Sidorenko’s property.

11



Figure 1: T �K2 in T �H.

The following alternative description of the graph T �H provides insight to the
proof of Theorem 1.2. Let T1, · · · , T|V (H)| be vertex-disjoint copies of the graph T .
For each edge {a, b} of H, place an edge between the copy of each v ∈ V (T ) in Ta
and Tb so that Ta and Tb together form a copy of T �K2. It is not too difficult to
check that the resulting graph is T �H.

We wish to count the number of homomorphisms from T �H to a given graph
G, through counting the number of homomorphisms from H to an auxiliary graph
constructed from G. For each vertex v of H, there exists a copy Tv of T in T �H
over the vertices V (T )× {v}. Moreover, as seen above, for each edge e = {v, w} of
H, the two copies of Tv and Tw form a copy of T �K2 in T �H (see Figure 1). Thus,
a copy of T �K2 in G needs to be contracted into an edge in the desired auxiliary
graph of G. This motivates the following definition of the operation ψT on G.

Definition. For given graphs T and G, let ψT (G) be the graph with vertex set
Hom(T,G) such that two vertices h1, h2 ∈ Hom(T,G) are adjacent if and only if
h1(v) and h2(v) are adjacent in G for all v ∈ V (T ).

The observation above essentially is equivalent to saying that a copy of T �H in
G can be mapped to a copy of H in ψT (G), and the following lemma formalizes this
intuition.

Lemma 3.1. For all graphs T , H and G, there exists a one-to-one correspondence
between Hom(T �H,G) and Hom(H,ψT (G)). In particular,

|Hom(T �H,G)| = |Hom(H,ψT (G))|.

Proof. We will define ξ : Hom(T �H,G)→ Hom(H,ψT (G)) and ϕ : Hom(H,ψT (G))→
Hom(T �H,G) such that ξ ◦ ϕ = id.

For a given h ∈ Hom(T �H,G), for each v ∈ V (H), define hv : V (T ) → V (G)
as hv(w) = h(w, v) for each w ∈ V (T ). Whenever w,w′ ∈ V (T ) are adjacent, the
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vertices hv(w) = h(w, v) and hv(w
′) = h(w′, v) are adjacent. Thus hv ∈ Hom(T,G)

for all v ∈ V (H). Moreover, if v, v′ are adjacent vertices of H, then hv(w) = h(w, v)
and hv′(w) = h(w, v′) are adjacent, and thus hv and h′v are adjacent in ψT (G). Hence
if we let ξ(h) : V (H) → Hom(T,G) be defined by ξ(h)(v) = hv, then ξ is a map
from Hom(T �H,G) to Hom(H,ψT (G)).

On the other hand, given a map g ∈ Hom(H,ψT (G)), define ϕ(g) : V (T ) ×
V (H) → V (G) as ϕ(g)(w, v) = g(v)(w) for each v ∈ V (H) and w ∈ V (T ). We
first prove that ϕ(g) ∈ Hom(T �H,G). For edges of the form {(w, v), (w′, v)},
ϕ(g)(w, v) = g(v)(w) and ϕ(g)(w′, v) = g(v)(w′) are adjacent since g(v) ∈ V (ψT (G)) =
Hom(T,G). For edges of the form {(w, v), (w, v′)}, we have ϕ(g)(w, v) = g(v)(w)
and ϕ(g)(w, v′) = g(v′)(w), and these two vertices are adjacent in G since g(v) and
g(w) are adjacent in ψT (G). Hence we established that ϕ(G) ∈ Hom(T �H,G).

It suffices to prove the ξ ◦ ϕ = id. This follows from the fact that for h ∈
Hom(T �H,G), v ∈ V (H) and w ∈ V (T ),

((ϕ ◦ ξ)(h)) (w, v) = hv(w) = h(w, v),

for the map hv defined as above.

By Lemma 3.1, we can now estimate the size of Hom(T �H,G) through estimat-
ing the size of Hom(H,ψT (G)), where Sidorenko’s property of H provides a lower
bound on the size of Hom(H,ψT (G)). We can use this idea to show the simplest
case of Theorem 1.2, i.e., when T = K2. Here we give a full proof of this simple
case, as the result will be used in the proof of Theorem 1.2.

Theorem 3.2. If H is a bipartite graph having Sidorenko’s property, then K2 �H
has Sidorenko’s property.

Proof. Let G be a given graph and put ψ(G) = ψK2(G) for simplicity. By Lemma 3.1
and the fact that H has Sidorenko’s property, we have

|Hom(K2 �H,G)| = |Hom(H,ψ(G))|

≥ |V (ψ(G))||V (H)|
(
|Hom(K2, ψ(G))|
|V (ψ(G))|2

)|E(H)|

= |V (ψ(G))||V (H)|−2|E(H)||Hom(K2, ψ(G))||E(H)|. (3.1)

We have
|V (ψ(G))| = |Hom(K2, G)| = |V (G)|2tK2(G).

On the other hand, by Lemma 3.1 with H = K2, we have

|Hom(K2, ψ(G))| = |Hom(K2 �K2, G)|,

where since K2 �K2 is isomorphic to C4, by Sidorenko’s property of C4, we have

|Hom(K2 �K2, G)| = |V (G)|4tC4(G) ≥ |V (G)|4(tK2(G))4.

Therefore in (3.1), we get

|Hom(K2 �H,G)| ≥
(
|V (G)|2tk2(G)

)|V (H)|−2|E(H)|
·
(
|V (G)|tK2(G)

)4|E(H)|

= |V (G)|2|V (H)|tK2(G)|V (H)|+2|E(H)|.
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Since |V (K2 �H)| = 2|V (H)| and |E(K2 �H)| = 2|E(H)|+ |V (H)|, we deduce that
K2 �H has Sidorenko’s property.

If one attempts to use the same idea as in the proof of Theorem 3.2 to prove
Theorem 1.2 for general graphs T other than K2, then the inequality corresponding
to (3.1) will be

|Hom(T �H,G)| ≥ |V (ψT (G))||V (H)|−2|E(H)||Hom(K2, ψT (G))||E(H)|.

Thus we need estimates on |V (ψT (G))| = |Hom(T,G)| and |Hom(K2, ψT (G))| =
|Hom(K2 �T,G)|. If T has Sidorenko’s property, then K2 �T also has Sidorenko’s
property by Theorem 3.2. Hence in this case we have lower bound estimates on both
|V (ψT (G))| and |Hom(K2, ψT (G))|. Unfortunately, these bounds do not transfer to
a lower bound on |Hom(T �H,G)|, since such a lower bound requires an upper bound
on |V (ψT (G))| if |V (H)| − 2|E(H)| < 0.

We solve this problem when T is a tree, through the following lemma asserting
that it suffices to consider graphs G with bounded maximum degree.

Lemma 3.3. A bipartite graph H has Sidorenko’s property if and only if for all
graphs G with maximum degree at most 4|E(G)|

|V (G)| ,

tH(G) ≥ tK2(G)|E(H)|.

We also need the following lemma. We omit the proof, which is based on tensor
products of graphs. One may refer to Remark 2 of [20] (English version) for more
details.

Lemma 3.4. Let H be a bipartite graph. If there exists a constant c depending only
on H such that

tH(G) ≥ c(tK2(G))|E(H)| for all graphs G,

then H has Sidorenko’s property.

Proof of Lemma 3.3. We may assume that H has no isolated vertex, as adding an
isolated vertex to a graph does not affect the value of tH(G) and |E(H)|.

Suppose that H is a bipartite graph satisfying the given condition, and let G be
an arbitrary graph (not necessarily satisfying the maximum degree condition).

Let ∆ = 2|E(G)|
|V (G)| , and let G′ be a graph obtained from G by the following process.

Fix an ordering of the vertices of G, and take vertices v one at a time according to
the ordering. Replace v with t = ddeg(v)

∆
e vertices v1, · · · , vt and choose the neighbors

of these new vertices so that (i) N(vi) ⊆ N(v), (ii) N(vi)∩N(vj) = ∅ for all distinct
pairs i, j, and (iii) deg(vi) ≤ ∆ for all i. Note that such a choice exists, as one
can greedily assign the neighbors of v to the vertices vi under the given constraints.
Further note that during this process, deg(v) remains the same until v is replaced,
and the number of edges always remains the same as |E(G)|.

Define a function π : V (G′) → V (G) as π(vi) = v for all i. Since π is a
homomorphism from G′ to G, we obtain a map φ : Hom(H,G′)→ Hom(H,G) such
that ϕ(h) := π ◦ h. Further note that for an adjacent pair of vertices v, w ∈ V (G),
there exists a unique choice of v′ ∈ π−1(v) and w′ ∈ π−1(w) such that v′ and w′ are
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adjacent in G′. Therefore if π ◦ h1 = π ◦ h2 for some h1, h2 ∈ Hom(H,G′), then for
each edge {x, y} of H, we must have h1(x) = h2(x) and h1(y) = h2(y). Since H has
no isolated vertex, we see that h1(x) = h2(x) for all x ∈ V (H), i.e. h1 = h2. This
implies that our map ϕ from Hom(H,G′) to Hom(H,G) is an injection. Therefore,
|Hom(H,G)| ≥ |Hom(H,G′)|.

The graph G′ has the same number of edges as the graph G, and the number of
vertices is at most

|V (G′)| =
∑

v∈V (G)

⌈
deg(v)

∆

⌉
≤ |V (G)|+

∑
v∈V (G)

deg(v)

∆
= |V (G)|+ 2|E(G)|

∆
= 2|V (G)|.

Combining this with the fact |E(G′)| = |E(G)|, it follows that G′ has maximum de-

gree ∆ = 2|E(G)|
|V (G)| ≤

4|E(G′)|
|V (G′)| . Hence G′ satisfies the given maximum degree condition,

so

|Hom(H,G)| ≥ |Hom(H,G′)| ≥ |V (G′)||V (H)|
(

2|E(G′)|
|V (G′)|2

)|E(H)|

≥ 2|V (H)|−2|E(H)||V (G)||V (H)|
(

2|E(G)|
|V (G)|2

)|E(H)|

.

By Lemma 3.4, this concludes the proof.

We are now ready to prove Theorem 1.2. As mentioned above, the proof follows
the same line as of the proof of Theorem 3.2, and uses Theorem 3.2 as an ingredient.

Proof of Theorem 1.2. We may assume that H has no isolated vertex, as adding an
isolated vertex to a graph does not affect the value of tH(G) and |E(H)|.

Let T be a tree with τ vertices, and let G be a given graph. By Lemma 3.3,
we may assume that G has maximum degree at most 4|E(G)|

|V (G)| = 2|V (G)|tK2(G). By
Lemma 3.1 and the fact that H has Sidorenko’s property, we have

|Hom(T �H,G)| = |Hom(H,ψT (G))|

≥ |V (ψT (G))||V (H)|
(
|Hom(K2, ψT (G))|
|V (ψT (G))|2

)|E(H)|

= |V (ψT (G))||V (H)|−2|E(H)||Hom(K2, ψT (G))||E(H)|. (3.2)

Recall that V (ψT (G)) = Hom(T,G). We can construct an element in Hom(T,G) by
starting from an arbitrary vertex of T , defining its image in V (G), and then extend-
ing the homomorphism one vertex at a time. By the condition on the maximum
degree of G, we thus have

|V (ψT (G))| = |Hom(T,G)| ≤ |V (G)|
(

2|V (G)|tK2(G)
)τ−1

= 2τ−1|V (G)|τ tK2(G)τ−1. (3.3)
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On the other hand, by Lemma 3.1 with H = K2 and Theorem 3.2, we have

|Hom(K2, ψT (G))| = |Hom(T �K2, G)| ≥ |V (G)|2τ tK2(G)3τ−2. (3.4)

Since H has no isolated vertex, we have |V (H)| ≤ 2|E(H)|, and thus in (3.2), we
may use the bounds from (3.3) and (3.4) to obtain

|Hom(T �H,G)|

≥
(

2τ−1|V (G)|τ tK2(G)τ−1
)|V (H)|−2|E(H)|(

|V (G)|2τ tK2(G)3τ−2
)|E(H)|

= 2(τ−1)(|V (H)|−2|E(H)|) · |V (G)|τ |V (H)|tK2(G)(τ−1)|V (H)|+τ |E(H)|.

Since |V (T �H)| = τ |V (H)| and |E(T �H)| = (τ − 1)|V (H)|+ τ |E(H)|, by Lemma
3.4, we deduce that T �H has Sidorenko’s property.

Since an arbitrary d-dimensional grid can be obtained from the Cartesian product
of d paths, we obtain the following corollary.

Corollary 3.5. For all d ≥ 1, all d-dimensional grids have Sidorenko’s property.

4 Concluding Remarks

In this section, we will say more about tree-arrangeability and possible extensions
of Theorem 1.2. First, we will provide a simple description of tree-arrangeability
in terms of the vertices with maximal neighbors. Second, we will explain how the
tree-arrangeability is related to tree decompositions and Markov Random Field. We
conclude by proposing a couple of open questions related to Cartesian products that
may illuminate a way to attack Sidorenko’s conjecture.

Tree-arrangeability and vertices with maximal neighborhood. To see whether
a bipartite graph H with bipartition A∪B is tree-arrangeable, it suffices to consider
only the vertices in A whose neighborhoods are maximal with respect to inclusion.
A subset U of A is called neighbor covering if for each a ∈ A, there exists u ∈ U
such that Λa ⊆ Λu. If a neighbor covering set U is T -arrangeable for a tree T on
U , then the tree on A obtained by adding each a ∈ A \ U to T as a leaf adjacent
to u ∈ U with Λa ⊆ Λu (if more than one such u exists, then choose arbitrary one
among them) makes A tree-arrangeable. Hence H is tree-arrangeable if and only
if there exists a neighbor covering set U ⊆ A that is tree-arrangeable. The cases
when there exists a neighbor covering set of size one or two were discussed in the
introduction.

Tree-arrangeability and tree decompositions. Tree-arrangeability can be al-
ternatively defined using tree decompositions. A tree decomposition of a graph H,
introduced by Halin [9] and developed by Robertson and Seymour [18], is a pair
(F , T ) of a family F of vertex subsets and a tree T with vertex set F satisfying

1.
⋃
X∈F X = V (H),

2. for each {v, w} ∈ E(H), there exists a set X ∈ F such that v, w ∈ X, and
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3. for X, Y, Z ∈ F , X ∩ Y ⊆ Z whenever Z lies on the path from X to Y in T .

It is straightforward to check that a bipartite graph H with bipartition A ∪ B is
tree-arrangeable if and only if there exists a tree decomposition of H with F =
{Λa ∪ {a} | a ∈ A}.

Markov Random Field. Tree-arrangeability and the functions fu defined in Sec-
tion 2 are also closely related to Markov Random Field theory.

A sequence of random variables (yv)v∈V (G) is said to be a Markov Random Field
with respect to a graph G if for each S ⊆ V (G) that makes G \ S disconnected,
whenever C1 and C2 are the vertex sets of distinct components of G \ S, the pair of
sequences of random variables (yv)v∈C1 and (yv)v∈C2 is independent, conditioned on
(yv)v∈S.2 Lemma 2.3 (iii) shows that if a bipartite graph H with bipartition A∪B is
tree-arrangeable with a tree T on A, then (fv)v∈A for the random variables fv defined
in Section 2 is a Markov Random Field with respect to T . It would be interesting
to further investigate the connection between the theory of Markov Random Fields
and Sidorenko’s conjecture.

Extension of Cartesian product to non-bipartite graphs. For a given (not
necessarily bipartite) graph H, define a bipartite graph φ(H) as follows: The bipar-
tition of φ(H) consists of two disjoint copies of V (H). Two vertices in distinct parts
are adjacent in φ(H) if they are copies of the same vertex in H, or two adjacent
vertices in H. In particular, φ(H) has 2|E(H)|+ |V (H)| edges.

Figure 2: Blow-up via φ.

It is not too difficult to see that for bipartite graphs H, we have φ(H) = K2 �H.
Hence the operation φ is more restricted than Cartesian products when considering
bipartite graphs. However, the operation φ has the advantage of being applicable
to non-bipartite graphs. For example, since φ(Kk) = Kk,k, we know that φ(Kk)
has Sidorenko’s property for all k ≥ 2. Thus φ(H) may have Sidorenko’s property
even if H is a non-bipartite graph. Also note that φ(C5) is K5,5 \ C10 which is the
minimal bipartite graph unknown to satisfy Sidorenko’s conjecture. The operation
φ provides many interesting graphs for which Sidorenko’s conjecture is not known
to be true.

We conclude the paper with some open problems regarding the operator φ. We
believe that the family {φ(C2k+1)}k≥1 can be an interesting starting point in fur-

2There are a few non-equivalent definitions of a Markov Random Field. Here we state the most
general definition.
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ther studying Sidorenko’s conjecture. The only known graph to have Sidorenko’s
property in this family is C3.

Question 4.1. Does there exist an integer k ≥ 2 such that φ(C2k+1) has Sidorenko’s
property?

Since φ(H) = K2 �H for bipartite graphs, Theorem 1.2 implies that φ(H) has
Sidorenko’s property as long as H does. Hence φ(H) is ‘more likely’ to have
Sidorenko’s property than H. For example, since φ(Kr) = Kr,r for integers r ≥ 1,
we know that φ(Kr) has Sidorenko’s property, while Kr is not even a bipartite
graph. (Recall that a graph H with odd cycles cannot satisfy Sidorenko’s property
as tH(G) = 0 for bipartite graphs G). Thus, the following question may be posed.

Question 4.2. For a (not necessarily bipartite) graph H, does there exist a non-
negative integer k = k

H
such that φk(H) has Sidorenko’s property?

If Sidorenko’s conjecture is true, then it certainly implies that the answers to the
questions above are both yes. Even if Sidorenko’s conjecture turns out to be false,
it is possible that the answers to the questions are positive.
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[2] G. Blakley and P. Roy, Hölder type inequality for symmetrical matrices with
non-negative entries, Proc. Amer. Math. Soc. (1965) 16, 1244-1245.

[3] D. Conlon, J. Fox, and B. Sudakov, An approximate version of Sidorenko’s
conjecture, Geom. Funct. Anal. 20 (2010), 1354-1366.

[4] R. Daudel, R. Lefebvre, and C. Moser, Quantum chemistry: Methods and
applications, Interscience Publishers, New York-London (1959).
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[6] P. Erdős and A. H. Stone, On the structure of linear graphs, in Bull. Amer.
Math. Soc. 52(12) (1946), 1087-1091.

[7] C. M. Fortuin, P.W. Kasteleyn, and J. Ginibre, Correlation inequalities on
some partially ordered sets, Comm. Math. Phys. 22 (1971), 89-03.

18



[8] Hans-Otto Georgii, Gibbs measures and phase transitions, Walter de
Gruyter (1988).

[9] R. Halin, S-functions for graphs, J. Geom. 8 (1976), 171-186.

[10] H. Hatami, Graph norms and Sidorenko’s conjecture, Israel J. Math.175
(2010), 125-150.

[11] D. London, Two inequalities in nonnegative symmetric matrices. Pac. J. Math.
16, 515-536 (1966)

[12] L. Lovász and M. Simonovits, On the number of complete subgraphs in a
graph II, Studies in pure mathematics, Birkhäuser (1983), 459-495.
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