Lee, C;
Lee, J;
Oum, S-I;
(2012)
Rank-width of random graphs.
Journal of Graph Theory
, 70
(3)
pp. 339-347.
10.1002/jgt.20620.
Preview |
Text
rankwidth.pdf - Accepted Version Download (156kB) | Preview |
Abstract
Rank‐width of a graph G, denoted by rw(G), is a width parameter of graphs introduced by Oum and Seymour [J Combin Theory Ser B 96 (2006), 514–528]. We investigate the asymptotic behavior of rank‐width of a random graph G(n, p). We show that, asymptotically almost surely, (i) if p∈(0, 1) is a constant, then rw(G(n, p)) = ⌈n/3⌉−O(1), (ii) if urn:x-wiley:03649024:jgt20620:equation:jgt20620-math-0001, then rw(G(n, p)) = ⌈1/3⌉−o(n), (iii) if p = c/n and c>1, then rw(G(n, p))⩾rn for some r = r(c), and (iv) if p⩽c/n and c81, then rw(G(n, p))⩽2. As a corollary, we deduce that the tree‐width of G(n, p) is linear in n whenever p = c/n for each c>1, answering a question of Gao [2006].
Type: | Article |
---|---|
Title: | Rank-width of random graphs |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1002/jgt.20620 |
Publisher version: | https://doi.org/10.1002/jgt.20620 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences |
URI: | https://discovery.ucl.ac.uk/id/eprint/10120245 |
Archive Staff Only
View Item |