
OpenAccess.©2019S. Cooper andA.Savostianov, publishedbyDeGruyter. Thiswork is licensedunder theCreativeCommons
Attribution alone 4.0 License.

Adv. Nonlinear Anal. 2020; 9: 745–787

Shane Cooper and Anton Savostianov*

Homogenisation with error estimates of
attractors for damped semi-linear anisotropic
wave equations
https://doi.org/10.1515/anona-2020-0024
Received September 16, 2018; accepted March 1, 2019.

Abstract:Homogenisation of globalAε
and exponentialMε

attractors for the damped semi-linear anisotropic

wave equation ∂2

t uε + γ∂tuε − div

(
a
( x
ε
)
∇uε

)
+ f (uε) = g, on a bounded domain Ω ⊂ R3

, is performed.

Order-sharp estimates between trajectories uε(t) and their homogenised trajectories u0

(t) are established.

These estimates are given in terms of the operator-norm di�erence between resolvents of the elliptic operator

div

(
a
( x
ε
)
∇
)
and its homogenised limit div

(
ah∇

)
. Consequently, norm-resolvent estimates on the Haus-

dor� distance between the anisotropic attractors and their homogenised counter-partsA0

andM0

are estab-

lished. These results imply error estimates of the form distX(Aε
,A0

) ≤ Cεκ and dist

s
X(Mε

,M0

) ≤ Cεκ in the

spaces X = L2

(Ω) ×H−1

(Ω) and X = (Cβ(Ω))

2

. In the natural energy space E := H1

0
(Ω) × L2

(Ω), error estimates

distE(Aε
, TεA0

) ≤ C
√
εκ and dist

s
E(Mε

, TεM0

) ≤ C
√
εκ are established where Tε is �rst-order correction for

the homogenised attractors suggested by asymptotic expansions. Our results are applied to Dirchlet, Neu-

mann and periodic boundary conditions.

Keywords:dampedwave equation, global attractor, exponential attractor, homogenisation, homogenization,

error estimates

MSC: 35B40, 35B45, 35L70, 35B27

Introduction
In this article we consider the following damped semi-linear wave equation in a bounded smooth domain

Ω ⊂ R3

with rapidly oscillating coe�cients:{
∂2

t uε + γ∂tuε − div

(
a
( x
ε
)
∇uε

)
+ f (uε) = g(x), x ∈ Ω, t ≥ 0,

(uε , ∂tuε)|t=0
= ξ , uε|∂Ω = 0.

(0.1)

Such equations appear, for example, in the context of non-linear ascoustic oscillations in periodic composite

media (see for example [1]).

For �xed ε > 0, the long-time behaviour of uε has been intensively studied in many works under various

assumptions on the non-linearity f and force g. In the context of dissipative PDEs the long-time dynamics

can be studied in terms of global attractors. Intuitively speaking, the global attractor is a compact subset of

the in�nite-dimensional phase space which attracts all trajectories that originate from bounded regions of

phase space. Therefore, the global attractor is in some sense a ‘much smaller’ subset of phase space that

characterises the long-time dynamics of the system (see for example [2–7]).
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It is well-known that for suitable assumptions on the non-linearity (cf. [2, 7]) that problem (0.1) possesses

a global attractor Aε
and an important question to ask, from the point of view of applications, is about the

asymptotic structure, with respect to ε, of the global attractorAε
in the limit of small ε. Asymptotics for global

attractors have been studied, in the context of reaction di�usion equations and the damped wave equation,

with respect to ‘lower-order’ rapid spatial oscillations in the dampening, non-linearity and/or forces g (see

[8–11]). Yet surprisingly, to the best knowledge of the authors, little or no work has been performed on the

asymptotics of attractors for hyperbolic dissipative systemswith ‘higher-order’ rapid spatial oscillations such

as in (0.1). We mention here the works [12] that perform a quantitative analysis of the asymptotics of global

attractors in the context of reaction di�usion equations. We also mention the works [13, 14] that determine

the limit-behaviour of global attractors, in the context of reaction-di�usion and hyperbolic equations, for a

particular choice of rapidly oscillating coe�cients that degenerate in the limit of small period. Aside from

the very limited amount of work done on the asymptotics of global attractors for dissipative PDEs with rapid

oscillations, no work has been done on the asymptotics of exponential attractors. This article is dedicated to

performing these studies for problems of the form (0.1).

In this article we aim to study the long-time behaviour of trajectories uε to (0.1), for small parameter ε,
from the point of view of homogenisation theory. In homogenisation theory, the mapping

Aεu := −div

(
a(

·

ε )∇u
)
,

for periodic uniformly elliptic and bounded coe�cients a(·), is well-known to converge (in an appropriate

sense) in the limit of small ε to
A

0
u := −div

(
ah∇u

)
,

where ah is the ‘e�ective’ or ‘homogenised’ constant-coe�cient matrix associated to a(·) (see for example

[15] and references therein). As such, it is natural to compare the long-time dynamics of uε to the long-time

dynamics of u0

the solution to homogenised problem∂
2

t u0

+ γ∂tu0

− div

(
ah∇u0

)
+ f (u0

) = g(x), x ∈ Ω, t ≥ 0,

(u0

, ∂tu0

)|t=0
= ξ , u0|∂Ω = 0.

(0.2)

Homogenisation theory has been studied intensively since the 1970’s and amongst the extensive works

we focus on works related to quantitative estimates of the form

‖A−1

ε − A−1

0
‖L(L2

(Ω))
≤ Cε, (0.3)

where themappings have been equippedwith appropriate boundary conditions. Such (sharp) order-ε results,
that are now standard, has been proved by various authors using various techniques (see themonograph [16]

for a review of some of these techniques). We mention here the results of particular interest to our article; in

the case of bounded domain with Dirichlet or Neumann boundary conditions the order-sharp estimates were

proved for the �rst time in [17, 18] and utilised the (order-sharp) estimate proved in [19, 20] for the whole

space (and periodic torus).

While some work has been done to provide order-sharp operator estimates for individual trajectories in

the parabolic (cf. [15, 16]) or hyperbolic settings (for smooth enough initial data) (cf. [21–24]), no work is done

on providing order-sharp operator estimates for attractors in dissipative PDEs.

Our �rst main result is the following estimate¹ between the global attractors Aε
and A0

, associated to

problem (0.1) and (0.2) respectively, in the energy spaces E−1

:= L2

(Ω) × H−1

(Ω) and (Cβ(Ω))

2

(see Theorem

4.3 and Corollary 4.1):

distE−1

(
Aε

,A0

)
≤ C‖A−1

ε − A−1

0
‖κL(L2

(Ω))

,

dist

(Cβ(Ω))
2

(
Aε

,A0

)
≤ C‖A−1

ε − A−1

0
‖θκL(L2

(Ω))

,

(0.4)

1 Here distX(A, B) denotes the one-sided Hausdor� metric between sets A and B in the strong topology of X.
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for some κ, θ ∈ (0, 1). Upon combining this result with the operator estimate (0.3) gives the desired error

estimates between global attractors.

The above inequality is new in the homogenisation theory of attractors. Moreover, this result is important

from the general perspective as it establishes the upper semi-continuity of global attractors of the damped

wave equation in terms of the elliptic part of the PDE. Indeed, in the proof of this result we do not use the

asymptotic structure in ε of Sε(t) in terms of S
0

(t). The arguments are purely operator-theoretic in nature and

only require that the elliptic operator is self-adjoint and boundedly invertible (see Section 4). In particular,

if Aε and A0
were positive elliptic operators A = div(a∇) and B = div(b∇) for two di�erent matrices a and

b, the above continuity result still holds. Additionally, the same can be said for di�erent boundary condi-

tions: one can replace Dirichlet boundary conditions with other types of boundary conditions under the sole

requirement that A = div(a∇) de�nes a self-adjoint operator in L2

(Ω) (see Section 7 for details).

Let us say a few words on the method of proof of (0.4). This result is essentially proved by establishing

the following (sharp) estimate between trajectories uε(t) and u0

(t) for initial data inAε
(Theorem 4.2):

‖uε(t) − u0

(t)‖L2

(Ω)
+ ‖∂tuε(t) − ∂tu0

(t)‖H−1

(Ω)
≤ MeKt‖A−1

ε − A−1

0
‖L(L2

(Ω))
, t ≥ 0. (0.5)

Then, to prove (0.4), we combine this novel estimate with the exponential attraction property ofA0

which is

known to hold ‘generically’ on an open dense subset of forces g:{
∃ σ > 0 such that for every bounded set B ⊂ E the following estimate holds:

distE(S
0

(t)B,A0

) ≤ M(‖B‖E)e−σt , t ≥ 0.

Notice that estimate (0.5) is optimal; indeed, upon substituting the right-hand side with ε we arrive at the

expected order-sharp estimates in ε (just as in the elliptic case (0.3)).

Aside from (0.4), a natural question to ask is if we can compare the global attractors in the energy space

E := H1

0
(Ω) × L2

(Ω). In general estimates of the form (0.4) are not to be expected in E and this is due to the

fact that, on the level of asymptotic expansions, the trajectories∇uε(t) are not close to∇u0

(t) but instead are

close to

Tεu0

(t, x) := u0

(t, x) + ε
3∑
i=1

Ni
( x
ε
)
∂xiu0

(t, x).

Here Ni are the solutions to the so-called auxiliary cell problem (see Section 1). Indeed, in Homogenisation

theory it is known that (0.3) does not generally hold in H1

(Ω) but rather the following ‘corrector’ estimate

‖A−1

ε g − TεA−1

0
g‖H1

(Ω)
≤ C
√
ε‖g‖L2

(Ω)
,

holds (cf. the above citations on error estimates in homogenisation of elliptic systems). For this reason, we

introduce the notion of correction to attractors:

Tεξ := (Tεξ1

, ξ2

), ξ = (ξ1

, ξ2

) ∈ A0

,

and our next main result is the following corrector estimate (Theorem 5.3):

distE

(
Aε

, TεA
0

)
≤ C
√
εκ . (0.6)

To the best of our knowledge, in all previous works, no corrector estimates were provided in the homogeni-

sation of attractors. To prove this result we naturally aim to establish an inequality of the form:

‖uε(t) − Tεu0

(t)‖H1

0

(Ω)

≤ MeKt
√
ε, t ≥ 0, (0.7)

for initial data ξ ∈ Aε
. It turns out that for such initial data the trajectory u0

(t) does not contain enough

regularity for such a result to hold. This issue is due to the hyperbolic nature of the problem and does not

appear, for example, in the context of parabolic equations. To overcome this issue we introduce specially

prepared initial data ξ
0
for the trajectory u0

as follows: ξ1

0
∈ H1

0
(Ω) is the solution to

div(ah∇ξ1

0
) = div(a(

·

ε )∇ξ1

) in Ω.
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Then, for such a choice of initial data, we readily establish inequality (0.7) (Theorem 5.2 and Corollary 5.1) and

consequently prove (0.6). Such initial data was originally introduced in [25] in the homogenisation (without

error estimates) of the linear wave equation.

An important question from the point of view of applications is whether or not the estimates (0.4), (0.6)

hold in the symmetric Hausdor� distance

dist

s
(Aε

,A0

) = max

{
dist(Aε

,A0

), dist(A0

,Aε
)

}
.

To prove this onewould need to show that for su�ciently small ε the global attractorAε
is in fact (generically)

an exponential attractor with exponent, and set of generic forces, independent of ε. Such a result seems

reasonable from the perspective of consideringAε
to be an ‘appropriate’ perturbation of the global attractor

A0

and applying the theory of regular attractors, see for example [2, 26]. Such a result has yet to be established

and we intend to carry out this study in future work.

That being said, it is known that, in general, global attractors are not continuous (in the symmetricHaus-

dor� distance) under perturbations and that the rate of attraction can be arbitrarily slow. For this reason the

theory of exponential attractors was developed; such exponential attractors are known to be stable under

perturbations and attract bounded sets exponentially fast in time. Importantly, exponential attractors also

occupy ‘small’ subsets of phase space in the sense that they have �nite fractal dimension, cf. [27–30].

Motivated by the above discussion, and the desire for estimates in the symmetric Hausdor� distance,

we also study the relationship between exponential attractors associated to problems (0.1) and (0.2). In fact

we construct exponential attractorsMε
andM0

whose (�nite) fractal dimension and exponents of attraction

are independent of ε, and we determine the following analogues of (0.4) and (0.6) in the symmetric distance

(Theorem 6.1, Corollary 6.1 and Theorem 6.3):
dist

s
E−1

(
Mε

,M0

)
≤ C‖A−1

ε − A−1

0
‖κL(L2

(Ω))

,

dist

s
(Cβ(Ω))

2

(
Mε

,M0

)
≤ C‖A−1

ε − A−1

0
‖θκL(L2

(Ω))

,

dist

s
E

(
Mε

, TεM
0

)
≤ C
√
εκ .

(0.8)

To establish the last inequality above we developed further (in Theorem 6.4) the known abstract construction

of exponential attractors of semi-groups to include the case of semi-groups that admit asymptotic expansions

(i.e. ‘corrections’ such as Tε).

We end the introduction with some words on the structure of this article. In Section 1, we formulate pre-

cise assumptions on the non-linearity f and the elliptic part of (0.1), (0.2). Also, we recall relevant known

well-posedness results as well as results on the existence of global attractors associated with (0.1), (0.2). For

the reader’s convenience, details on the corresponding attractor theory is provided in Appendix A. In Sec-

tion 2, for the dynamical systems generated by problems (0.1), (0.2), we establish existence and smoothness

results for an attracting set (which contains the global attractors). These results will be crucial in justifying

error estimates between anisotropic and homogenised attractors. In Section 3, we establish the convergence,

in the limit of ε → 0, of the anisotropic global attractor Aε
to the homogenised attractor A0

in the spaces

E−1

and (Cβ(Ω))

2

. In Section 4, we derive the central (order-sharp) estimate (0.5) on the di�erence between

trajectories uε(t) and u0

(t) of the corresponding anisotropic and homogenised problems. Then, based on this,

we demonstrate the quantitative estimates (0.4) on the distance between global attractors Aε
and A0

. Esti-

mate (0.6) between the global attractor Aε
and �rst-order correction TεA0

in the energy space E is proved

in Section 5. Section 6 is devoted to exponential attractorsMε
,M0

associated with problems (0.1), (0.2) and

consists of two parts. In Subsection 6.1, existence of the exponential attractors is proved and estimates (0.8)

in E−1

and (Cβ(Ω))

2

are obtained. The results in this section rely on a variant of a standard abstract result

on the construction of exponential attractors; this construction is included in Appendix B. In Subsection 6.2,

we compare the distance between the exponential attractorMε
and the �rst-order correction TεM0

in the en-

ergy space E. Subsection 6.2 rests on a new abstract theorem, presented in Appendix C, which compares the

distance between exponential attractors which admit correction. We discuss, and prove the corresponding

results for the cases of Neumann and periodic boundary conditions in Section 7. Some re�nements of the
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results obtained in Sections 2-4 related to boundary corrections in homogenisation theory are the subject of

Appendix D.

Notations
We document here notations frequently used throughout the article. The L2

(Ω) inner product is given by

(u, v) :=

∫
Ω u(x)v(x) dx, with norm denoted by ‖u‖ := (u, u)

1/2

for u, v ∈ L2

(Ω). We frequently con-

sider initial data in the energy spaces E−1

:= L2

(Ω) × H−1

(Ω), and E := H1

0
(Ω) × L2

(Ω). These spaces are

equipped with norms whose squares are given as ‖ξ‖2

E−1
:= ‖ξ1‖2

+ ‖ξ2‖2

H−1

(Ω)

and ‖ξ‖2

E := ‖∇ξ1‖2

+ ‖ξ2‖2

for admissible pairs² ξ = (ξ1

, ξ2

). For any function z(t) we set ξz(t) to be the pair (z(t), ∂tz(t)) where ∂tz
denotes the distributional (time) derivative. For a Banach space E, BE(0, r) denotes the ball centered at 0

of radius r in E; the symbol [ · ]E denotes the closure in E; the one-sided and symmetric Hausdor� dis-

tances between two sets A, B ⊂ E are respectively de�ned as distE(A, B) := supa∈A infb∈B ‖a − b‖E and

dist

s
E(A, B) := max

{
distE(A, B), distE(B, A)

}
. The standard Euclidean basis is denoted by {ek}3

k=1

.

1 Preliminaries
Throughout the article, unless stated otherwise, we adopt the convention that M and K denote generic con-

stants whose precise value may vary from line to line.

For a given matrix a(·) = {aij(·)}3

i,j=1

we denote by ah = {ahij}3

i,j=1

the homogenised matrix corresponding

to a(·) whose constant coe�cients are given by the formula

ahij :=

∫
Q

(
aij(y) +

3∑
k=1

aik(y)∂ykNj(y)

)
dy.

Here Ni, i ∈ {1, 2, 3}, is the solution to the so-called cell problem:−divy
(
a(y)∇yNi(y)

)
= divy

(
a(y)ei

)
, y ∈ Q = [0, 1)

3

,∫
Q Ni(y) dy = 0, Ni(· + ej) = Ni(·) j ∈ {1, 2, 3}.

(1.1)

It iswell-known that if a(·) is symmetric, boundedanduniformly elliptic, then so is ah with the exact same

bounds (see for example [15, Section 1]). Furthermore, as ah is constant it is clearly periodic. Consequently,

both problem (0.1) and (0.2) are problems of the form{
∂2

t u + γ∂tu − div (a∇u) + f (u) = g(x), x ∈ Ω, t ≥ 0,

(u, ∂tu)|t=0
= ξ , u|∂Ω = 0,

(1.2)

with the same generic assumptions on coe�cients, forces and non-linearity; we collect these assumptions

together here:

Let Ω ⊂ R3 be a bounded smooth domain, g ∈ L2

(Ω), a(·) = {aij(·)}3

i,j=1
satisfying

aij ∈ L∞(R3

), aij = aji , aij(· + ek) = aij(·), i, j, k ∈ {1, 2, 3},

& ν|η|2 ≤ a(y)η.η ≤ ν−1|η|2, ν > 0, ∀y ∈ R3

, ∀η ∈ R3

;

and f ∈ C2

(R) satisfying
f (s)s ≥ −K

1
, f ′(s) ≥ −K

2
, |f ′′(s)| ≤ K

3
(1 + |s|), f (0) = 0, s ∈ R,

(H1)

2 Here we adopt the common clash of notation for (·, ·) to mean both an inner product and represent a pair in a product space. It

will be clear from the context which meaning is appropriate.
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for some positive constants ν, Ki.

Remark 1.1. We note that above assumptions on f imply the following bounds which are important in ob-
taining dissipative estimates.

a. There exists K
4
> 0 and K

5
> 0 such that |f ′(s)| ≤ K

4
(1 + |s|2), |f (s)| ≤ K

5
(1 + |s|3), s ∈ R.

b. The anti-derivative³ F(s) =

∫ s
0

f (τ) dτ satis�es − K2

2

s2

≤ F(s) ≤ f (s)s +

K
2

2

s2

, s ∈ R.
c. For all µ > 0 there exists Kµ > 0 such that F(s) ≥ −Kµ − µs2

, s ∈ R.
Also note that the assumption f (0) = 0 is, in fact, not a restriction since f (0) always can be included into

the forcing term g.

We begin with some basic existence, continuity and dissipative estimate results. Particular attention is paid

to the dependence of these results on the matrix a, assuming that the other variables (Ω and f ) are �xed.

As these results are standard we shall omit the proofs, commenting here that they are easily argued by the

techniques employed in Appendix A.

Theorem 1.1. Assume (H1). Then, for any initial data ξ ∈ E, problem (1.2) possesses a unique energy solution
u with ξu ∈ C(R

+
;E). Moreover, the following dissipative estimate is valid:

‖ξu(t)‖2

E +

∞∫
t

‖∂tu(τ)‖2 dτ ≤ M(‖ξ‖E)e−βt + M(‖g‖), t ≥ 0, (1.3)

for some non-decreasing function M and constant β > 0 that depend only on ν.

A consequence of the dissipative estimate (1.3), growth restrictions on f , and uniform ellipticity of a(·) we

have the following continuous dependence on initial data.

Corollary 1.1. Let u
1
and u

2
be two energy solutions to problem (1.2) with initial data ξ

1
, ξ

2
∈ E respectively.

Then the following estimate
‖ξu

1

(t) − ξu
2

(t)‖E ≤ MeKt‖ξ1
− ξ

2
‖E, t ≥ 0,

holds for some constant M > 0 and K = K(‖ξ
1
‖E, ‖ξ2

‖E, ‖g‖, ν).

Additionally, we have the following continuous dependence in E−1

.

Corollary 1.2. Let u
1
and u

2
be two energy solutions to problem (1.2) with initial data ξ

1
, ξ

2
∈ E respectively.

Then the following estimate

‖ξu
1

(t) − ξu
2

(t)‖E−1 ≤ MeKt‖ξ
1
− ξ

2
‖E−1 , t ≥ 0,

holds for some constant M > 0 and K = K(‖ξ
1
‖E, ‖ξ2

‖E, ‖g‖, ν).

Wenowproceed to study the long-time behaviour of solutions u from the point of view of in�nite-dimensional

dynamical systems. In particular the problem (1.2) de�nes a dynamical system (E, S(t)) by

S(t) : E→ E, S(t)ξ = ξu(t), (1.4)

where u is a solution to the problem (1.2) with initial data ξ . The limit behaviour of a dissipative dynamical

system as time goes to +∞ can be described in terms of a so-called global attractor. Let us brie�y recall its

de�nition (see [2, 3, 5, 7]).

De�nition 1.1. Let S(t) : E → E be a semi-group acting on a Banach space E. Then a set A is called a global
attractor for the dynamical system (E, S(t)) if it possesses the following properties:

3 The upper-bound follows from noting that g(s) =

∫ s
0

f (r) dr − f (s)s − K
2

2

s2

attains its maximum at s = 0.
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1. The setA is compact in E;
2. The setA is strictly invariant:

S(t)A = A, ∀t ≥ 0;

3. The setA uniformly attracts every bounded set B of E, that is

lim

t→+∞

distE

(
S(t)B,A

)
= 0.

One can show that if a global attractor exists then it is unique. Also, the following description of the global

attractor in terms of bounded trajectories is known (see e. g. [2, 3]):

A = {ξ
0
∈ E : ∃ ξ (t) ∈ L∞(R;E), ξ (0) = ξ

0
, S(t)ξ (s) = ξ (t + s), s ∈ R, t ≥ 0}. (1.5)

Now, the dissipative estimate (1.3) implies the existence of a bounded positively invariant absorbing set

B ⊂ E (which depends only on ν):
S(t)B ⊂ B, ∀t ≥ 0. (1.6)

To prove that a global attractor exists for problem (1.2) we utilise the following classical result ([2, 3, 5, 7]).

Theorem 1.2. A dynamical system (E, S(t)) possesses a global attractorA in E if the following conditions hold:
1. The dynamical system (E, S(t)) is asymptotically compact: there exists a compact set K ⊂ E such that

lim

t→+∞

distE(S(t)B,K ) = 0, for all bounded sets B ⊂ E;

2. For each t ≥ 0 the operators S(t) : E→ E are continuous.
Under such conditions, it follows thatA not only exists but alsoA ⊂ K .

Note that Corollary 1.1 implies that the evolution operator S(t), given by (1.4), has continuous dependence on

the initial data. Let us focus on the existence of a compact attracting set.

Introducing the space{
E1

:= {ξ = (ξ1

, ξ2

) ∈ E | div(a∇ξ1

) ∈ L2

(Ω), ξ2 ∈ H1

0
(Ω)},

‖ξ‖2

E1 := ‖div(a∇ξ1

)‖2

+ ‖∇ξ2‖2

,

(1.7)

we have the following known result that states there exists an attracting ball in E1

.

Theorem 1.3. Assume (H1), and let S(t) be the semi-group de�ned by (1.4). Then, there exists a ball in E1 that
attracts the setB, from (1.6), in E. More precisely, the inequality

distE

(
S(t)B, BE1 (0, R)

)
≤ Me−βt , t ≥ 0,

holds for some positive constants R, M and β that depend only on ν.

The proof of Theorem 1.3 is presented for the reader’s convenience in Appendix A and is based on a splitting

of trajectory u, into the smooth and contractive parts, that was developed in [31].

Consequently, as E1

is compact in Ewe see from Theorem 1.3 that K = BE1 (0, R) is a compact attracting

set and, by Theorem 1.2, there exists a global attractor. That is, the following result holds.

Theorem 1.4. Assume (H1). Then, the dynamical system (E, S(t)) given by (1.4) possesses a global attractor
A ⊂ E1 such that:

‖A‖E1 ≤ M(‖g‖), A = K|t=0
, (1.8)

whereK is the set of bounded energy solutions to problem (1.2) de�ned for all t ∈ R, cf. (1.5).
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2 Smoothness of the global attractor
Above we demonstrated that the global attractor A is a bounded subset of E1

. We shall now establish some

additional regularity ofA. These results will be used later on to derive homogenisation error estimates.

We are going to show thatA is contained in the more regular set{
E2

:=

{
ξ ∈ E1 |

(
div(a∇ξ1

) + g
)
∈ H1

0
(Ω) and div(a∇ξ2

) ∈ L2

(Ω)

}
,

‖ξ‖2

E2 := ‖div(a∇ξ1

) + g‖2

H1

0

(Ω)

+ ‖div(a∇ξ1

)‖2

+ ‖div(a∇ξ2

)‖2

,

and thatA is bounded in the following sense: ‖A‖E2 ≤ M.

To this end, we shall show that BE1 (0, R) is exponentially attracted, in E, to some ‘ball’ ⁴

BE2 (0, R
1

) := {ξ ∈ E2 | ‖ξ‖E2 ≤ R
1
}.

Then by utilising the so-called transitivity property of exponential attraction we establish thatB (from (1.6))

is attracted to BE2 (0, R
1

) exponentially in E and, therefore, we will show thatA is bounded in E2

.

Let us begin with the following theorem which provides a useful dissipative estimate for problem (0.2)

with initial data in E1

(see (1.7)).

Theorem 2.1. Assume (H1). Then for any initial data ξ ∈ E1 the energy solution u to problem (1.2) is such that
ξu ∈ L∞(R

+
;E1

), and the following dissipative estimate is valid:

‖∂2

t u(t)‖ + ‖ξu(t)‖E1 ≤ M(‖ξ‖E1 )e−βt + M(‖g‖), t ≥ 0,

for some non-decreasing function M and constant β > 0 that depend only on ν.

Since this result is standard we omit the proof. We only remark here that, by di�erentiating the �rst equation

of (1.2) in time, one �rst obtains a dissipative estimate for ‖ξ∂tu(t)‖E which readily implies the uniform bound

on ‖div(a∇u)(t)‖.

Remark 2.1. Note that by elliptic regularity we have the inequality

‖u‖Cα(Ω)

≤ C‖div(a∇u)‖, C = C(ν) > 0, (2.1)

for su�ciently small α = α(ν) and admissible u. Here Cα(Ω) is the Hölder space of order α:

Cα(Ω) =

{
u ∈ C(Ω) : sup

x,y∈Ω,
x= ̸y

|u(x)−u(y)|
|x−y|α < ∞

}
, ‖u‖Cα(Ω)

:= max

x∈Ω
|u(x)| + sup

x,y∈Ω,
x= ̸y

|u(x)−u(y)|
|x−y|α .

Thus, we have a dissipative estimate for u, given by Theorem 2.1, in the Cα(Ω) norm.

Consider G ∈ H1

0
(Ω) such that −div(a∇G) = g ∈ L2

(Ω), and, for initial data ξ ∈ BE1 (0, R), the decomposition

of the solution u to (1.2) as follows: u = v + w where{
∂2

t v + γ∂tv − div(a∇v) = 0, x ∈ Ω, t ≥ 0,

ξv|t=0
= (ξ1

− G, ξ2

), v|∂Ω = 0,

(2.2)

and {
∂2

t w + γ∂tw − div(a∇w) = −f (u) + g, x ∈ Ω, t ≥ 0,

ξw|t=0
= (G, 0), w|∂Ω = 0.

(2.3)

4 Note that the convex functional ‖ · ‖E2 is not a norm and the set E2

is an a�ne subset of E1

.
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It is clear from standard linear estimates (e.g. Theorem 1.1 for f = g = 0) that

‖ξv(t)‖E ≤ e−βtM(‖g‖), t ≥ 0, (2.4)

for some constant β > 0 and non-decreasing function M that depend only on ν. Additionally, we have the

following lemma on the regularity of w.

Lemma 2.1. Assume (H1), ξ ∈ BE1 (0, R) and w solves (2.3). Then

‖div(a∇w)(t) + g‖H1

0

(Ω)

+ ‖div(a∇∂tw)(t)‖ ≤ M(‖g‖), t ≥ 0,

for some non-decreasing function M that depends only on ν.

Proof. By di�erentiating the �rst equation of (2.3) in time and by our choice of initial data (G, 0) we �nd that

p := ∂tw solves {
∂2

t p + γ∂tp − div(a∇p) = −f ′(u)∂tu =: G
1
, x ∈ Ω, t ≥ 0,

ξp|t=0
=

(
0, −f (ξ1

)

)
, p|∂Ω = 0.

(2.5)

Moreover, q := ∂tp solves{
∂2

t q + γ∂tq − div(a∇q) = −f ′′(u)|∂tu|2 − f ′(u)∂2

t u =: G
2
, x ∈ Ω, t ≥ 0,

ξq|t=0
=

(
− f (ξ1

), γf (ξ1

) − f ′(ξ1

)ξ2

)
, q|∂Ω = 0.

By the dissipative estimate in E1

(cf. Theorem 2.1 and Remark 2.1) we �nd that

‖∇∂tu(t)‖ + ‖u(t)‖Cα(Ω)

≤ M(‖g‖), t ≥ 0.

This inequality and the conditions on the non-linearity f (see (H1)) imply that

‖ξp(0)‖E + ‖G
1
‖L∞(R

+
;L2

(Ω))
≤ M(‖g‖);

‖ξq(0)‖E + ‖G
2
‖L∞(R

+
;L2

(Ω))
≤ M(‖g‖).

Therefore, using the dissipative estimate in E ((1.3)) we conclude

‖∇p(t)‖ + ‖∂tp(t)‖ ≤ M(‖g‖), & ‖∇q(t)‖ + ‖∂tq(t)‖ ≤ M(‖g‖), t ≥ 0.

Returning back to p = ∂tw, we rewrite (2.5) to �nd

‖div(a∇∂tw)(t)‖ = ‖ − G
1

(t) + γ∂tp(t) + ∂tq(t)‖ ≤ M(‖g‖), t ≥ 0.

Rewriting the �rst equation in (2.3), and using cubic growth of f (see Remark 1.1.a) gives

‖div(a∇w)(t) + g‖H1

0

(Ω)

= ‖q(t) + γp(t) + f (u(t))‖H1

0

(Ω)

≤ M(‖g‖), t ≥ 0.

Hence, the desired result holds and the proof is complete.

Combining (2.4) and Lemma 2.1 produces the following result.

Corollary 2.1. Assume (H1) and let S(t) be the semi-group de�ned by (1.4). Then, there exists a ‘ball’ in E2 that
attracts BE1 (0, R) in E. More precisely, the inequality

distE

(
S(t)BE1 (0, R), BE2 (0, R

1
)

)
≤ Me−βt , t ≥ 0,

holds for some positive constants R
1
, M and β that depend only on ν.

Let us now recall the so-called transitivity property of exponential attraction (cf. [30, Theorem5.1] for a proof):
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Theorem 2.2. Let E be a Banach space, S(t) a semi-group acting on E, and E
1
be a positively invariant subset

of E, i.e. S(t)E
1
⊂ E

1
for all t ≥ 0, such that

‖S(t)ξ1

− S(t)ξ2‖E ≤ M0
eK0

t‖ξ1

− ξ2‖E , ξ1

, ξ2 ∈ E
1
,

for some constants M
0
, K

0
> 0. Furthermore, assume that there exist subsets E

2
⊂ E

1
and E

3
⊂ E such that

distE
(
S(t)E

1
, E

2

)
≤ M

1
e−β1

t
, distE

(
S(t)E

2
, E

3

)
≤ M

2
e−β2

t
, t ≥ 0,

for some M
1
,M

2
, β

1
> 0 and β

2
> 0. Then

distE
(
S(t)E

1
, E

3

)
≤ Me−βt , t ≥ 0,

for M = M
0
M

1
+ M

2
and β =

β
1
β

2

K
0

+β
1

+β
2

.

Note that Theorem 1.1 (in particular (1.6)), Theorem 1.3 and Corollary 2.1 imply that the assumptions of the

above theorem hold for E = E, E
1

= B, E
2

= BE1 (0, R) and E
3

= BE2 (0, R
1

). Therefore, we see that BE2 (0, R
1

)

attracts the positively invariant absorbing setB and, therefore, bounded sets in E. That is the following result

holds.

Theorem 2.3. Assume (H1), S(t) given by (1.4) and BE2 (0, R
1

) given by Corollary 2.1. Then, for every bounded
B in E the following assertion

distE

(
S(t)B, BE2 (0, R

1
)

)
≤ M(‖B‖E)e−βt , t ≥ 0,

holds for some non-decreasing M and β > 0 that depend only on ν.

We are now ready to prove that the global attractor is bounded in E2

.

Theorem 2.4. Assume (H1) and let A be the global attractor of the dynamical system (E, S(t)) given by (1.4).
Then

‖A‖E2 ≤ M(‖g‖), (2.6)

for some non-decreasing M that depends only on ν.

Remark 2.2. Note that (2.6) implies the following estimate

‖A‖
(Cα(Ω))

2
≤ M(‖g‖), (2.7)

for a non-decreasing function M that depends only on ν and the exponent α from Remark 2.1.

Proof of Thoerem 2.4. The proof follows from the strict invariance of the global attractor (property 2. of De�-

nition 1.1) and Theorem 2.3. Indeed, for an arbitrary δ-neighbourhood Oδ(BE2 (0, R
1

)) of BE2 (0, R
1

) in E, one

has

A = S(t)A ⊂ Oδ(BE2 (0, R
1

)),

for some t = t(δ). Therefore A ⊂ [BE2 (0, R
1

)]E and it remains to note that, since BE2 (0, R) is closed in E, the

identity [BE2 (0, R
1

)]E = BE2 (0, R
1

) holds.

We end this section with one more result which will be useful later.

Theorem 2.5. Assume (H1). Then, for any initial data ξ ∈ E2, the energy solution u to problem (1.2) is such that
ξu ∈ L∞(R

+
;E2

) and the following dissipative estimate is valid:

‖∂3

t u(t)‖ + ‖∇∂2

t u(t)‖ + ‖ξu(t)‖E2 ≤ M(‖ξ‖E2 )e−βt + M(‖g‖), t ≥ 0, (2.8)

for some non-decreasing function M and constant β > 0 that depend only on ν > 0.
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The proof is very close to the proof of Lemma 2.1 and for this reason is omitted. We only remark that, since

E2 ⊂ E1

and the dissipative estimate in E1

is already known, we see that the quantity ‖u(t)‖L∞(Ω)
is bounded.

Thus, basically, one applies linear dissipative estimates to the equations for p and q in the proof of Lemma

2.1 with the appropriately changed initial data.

3 Homogenisation and convergence of global attractors
Let us now consider the dynamical systems Sε(t) and S0

(t) generated by problems (0.1) and (0.2) respectively.

In Theorem 2.4we established that Sε (respect. S0
) has a global attractorAε

(respect.A0

). Moreover, Theorem

2.4 informs us thatAε
is a, uniformly in ε, bounded subset of E2

ε andA0

is a bounded subset of E2

0
, where{

E2

ε :=

{
ξ ∈ (H1

0
(Ω))

2 |
(

div(a(

·

ε )∇ξ1

) + g
)
∈ H1

0
(Ω), div(a(

·

ε )∇ξ2

) ∈ L2

(Ω)

}
,

‖ξ‖2

E2

ε
:= ‖div(a(

·

ε )∇ξ1

) + g‖2

H1

0

(Ω)

+ ‖div(a(

·

ε )∇ξ1

)‖2

+ ‖div(a(

·

ε )∇ξ2

)‖2

,

(3.1)

and E2

0
:=

{
ξ ∈ (H1

0
(Ω))

2 |
(

div(ah∇ξ1

) + g
)
∈ H1

0
(Ω), div(ah∇ξ2

) ∈ L2

(Ω)

}
,

‖ξ‖2

E2

0

:= ‖div(ah∇ξ1

) + g‖2

H1

0

(Ω)

+ ‖div(ah∇ξ1

)‖2

+ ‖div(ah∇ξ2

)‖2

.

(3.2)

Remark 3.1. We note that, by elliptic regularity (see Remark 2.1), the global attractors Aε are uniformly in ε
bounded subsets of E2

ε ∩ (Cα(Ω))

2. Additionally for A0, as ah is constant, we can readily deduce that A0 is a
bounded subset of E2

0
∩ (H2

(Ω))

2. That is, the inequalities

‖Aε‖E2

ε
+ ‖Aε‖

(Cα(Ω))
2
≤ M(‖g‖), & ‖A0‖E2

0

+ ‖A0‖
(H2

(Ω))
2 ≤ M(‖g‖),

hold for some non-decreasing function M independent of ε.

Themain result of this section is the following theoremwhich establishes convergence of the global attractors

Aε
to the global attractorA0

in the one-sided Hausdor� distance.

Theorem 3.1. The global attractor Aε of the problem (0.1) converges to the global attractor A0 of the ho-
mogenised problem (0.2) in the following sense

lim

ε→0

dist

(Cβ(Ω))
2
(Aε

,A0

) = 0,

for any 0 ≤ β < α where α is given in Remark 3.1.

To prove Theorem 3.1 we shall use the following classical homogenisation theorem for elliptic PDEs (see for

example [15, Section 1]).

Theorem 3.2. (Homogenisation theorem) Let Ω ⊂ R3 be a bounded smooth domain, a(·) a positive bounded
periodic matrix and εn → 0 as n → ∞. Then for any sequence gn ∈ H−1

(Ω) that strongly converges to g in
H−1

(Ω) we have that un ∈ H1

0
(Ω) the weak solution of

div(a(

x
εn )∇un) = gn ,

weakly converges in H1

0
(Ω) to u

0
the weak solution of

div(ah∇u
0

) = g.

Remark 3.2. In general, one cannot expect strong convergence of un to u0
in H1

0
(Ω) since this would imply that

the homogenised matrix ah is simply the average
∫
Q a(y) dy. Clearly this formula for the homogenised matrix

is, in general, not true and it is known that the equality ah =

∫
Q a(y) dy holds if, and only if, divy a = 0 in weak

sense.
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A consequence of the above observation is that, in general, we can not expect convergence of the attractors
Aε to A0 in the strong topology of E. To obtain such convergence results a correction to A0 needs to be made,
see Section 5 for further information.

Proof of Theorem 3.1. Fix an arbitrary sequence εn → 0 and ξn ∈ Aεn
. To prove the result it is su�cient to

show that there exists ξ
0
∈ A0

such that ξn converges, up to some subsequence, to ξ
0
in (Cβ(Ω))

2

as n →∞.

For each n ∈ N, we denote by un ∈ Kεn
the bounded (for all time) in E solution of (0.1) that satis�es

ξun (0) = ξn. Now,Aε
is a (uniformly in ε) bounded subset of

(
H1

0
(Ω) ∩ Cα(Ω)

)
2

(see Remark 3.1). Moreover, it

is well-known that Cα(Ω) is compactly embedded in Cβ(Ω), for any 0 ≤ β < α. Therefore, up to some discarded

subsequence,

ξn converges strongly in (Cβ(Ω))

2

to some ξ
0
∈
(
H1

0
(Ω) ∩ Cβ(Ω)

)
2

. (3.3)

It remains to prove that ξ
0
∈ A0

, and this is established if we demonstrate that ξ
0

= ξu
0

(0) for some

bounded (for all time) in E solution u
0
to (0.2). The remainder of the proof is to establish the existence of such

a u
0
. In what follows convergence is meant up to an appropriately discarded subsequence.

By Remark 3.1 and the strict invariance ofAε
(property 2 of De�nition (1.1)) there exists M > 0 such that

‖∇un(t)‖ + ‖div(a(

x
εn )∇un)(t)‖ + ‖un(t)‖Cα(Ω)

+ ‖∇∂tun(t)‖ + ‖div(a(

x
εn )∇∂tun)(t)‖ + ‖∂tun(t)‖Cα(Ω)

≤ M,

(3.4)

for all n ∈ N and all t ∈ R.

Let us �x z ∈ Z. Using (3.4) we �nd

un is bounded inW
1

:= {w ∈ L∞
(

[z, z + 2];H1

0
(Ω)

)
| ∂tw ∈ L∞

(
[z, z + 2]; L2

(Ω)

)
}.

Similarly, since (cf. (0.1))

∂2

t un = −γ∂tun + div(a(

x
εn )∇un) − f (un) + g, (3.5)

assertion (3.4) and the cubic growth condition of f (Remark 1.1(a)) imply that

∂tun is bounded inW
1
.

Furthermore, di�erentiating (3.5) in t gives

∂3

t un = −γ∂2

t un + div(a(

x
εn )∇∂tun) − f ′(un)∂tun .

This equation, along with (3.4), the boundedness of ∂tun inW
1
and growth assumption on f imply that

∂2

t un is bounded in {w ∈ L∞
(

[z, z + 2]; L
2

(Ω)

)
| ∂tw ∈ L∞

(
[z, z + 2];H−1

(Ω)

)
}.

Therefore, since the embeddings H1

0
(Ω) ⊂ L2

(Ω) and L2

(Ω) ⊂ H−1

(Ω) are compact, by Aubin-Lions lemma

we deduce that

un −→ u strongly in C
(

[z, z + 2]; L2

(Ω)

)
as n −→∞;

∂tun −→ ∂tu strongly in C
(

[z, z + 2]; L2

(Ω)

)
as n →∞;

∂2

t un −→ ∂2

t u strongly in C
(

[z, z + 2];H−1

(Ω)

)
as n →∞.

(3.6)

Let us demonstrate that u solves (0.2) on the time interval [z, z + 2]. To this end we are going to pass to

the limit in

−div

(
a(

x
εn )∇un

)
= −∂2

t un − γ∂tun − f (un) + g =: hn . (3.7)

Due to (3.6) we know that

hn(t) −→ −∂2

t u(t) − γ∂tu(t) − f (u(t)) + g strongly in H−1

(Ω) for all t ∈ [z, z + 2].
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Therefore, by an application of the homogenisation theorem (Theorem 3.2), we conclude, that for every t ∈
[z, z + 2], un(t) weakly converges in H1

0
(Ω) to the solution u

0
(t) of the homogenised problem

−div(ah∇u
0

(t)) = −∂2

t u(t) − γ∂tu(t) − f (u(t)) + g.

It follows from (3.6) and the weak convergence un(t) ⇀ u
0

(t) in H1

0
(Ω) that u(t) = u

0
(t) for all t ∈ [z, z + 2].

Consequently, from this identity and the above equation, we see that u
0
(weakly) solves

∂2

t u0
+ γ∂tu0

− div

(
ah∇u

0

)
+ f (u

0
) = g, t ∈ [z, z + 2].

Let us argue that the above equation holds for all time. Indeed, by a Cantor diagonalisation argument we see

that the convergences (3.6) can be taken to hold for all z ∈ Z. Then, by noting that any ϕ ∈ C∞
0

(R; C∞
0

(Ω))

can be represented as a �nite sum of smooth functions whose individual supports (w.r.t to time) are in some

[z, z + 2], we deduce that u
0
weakly solves the homogenised equation (0.2). Hence, u

0
is a bounded in E

solution to (0.2) for all time.

It remains to show that ξu
0

(0) = (u
0

(0), ∂tu0
(0)) equals ξ

0
. On the one hand, from (3.3) we see that ξn

converges strongly to ξ
0
in (L2

(Ω))

2

. On the other hand, by (3.6) (for z = 0) ξn = (un(0), ∂tun(0)) converges

strongly to (u
0

(0), ∂tu0
(0)) in (L2

(Ω))

2

. Hence, (u
0

(0), ∂tu0
(0)) = ξ

0
and the proof is complete.

4 Rate of convergence to the homogenised global attractor
Weshall beginwith recalling an important result on error estimates inhomogenisation theory of elliptic PDEs.

Recall, for �xed ε > 0, the mappings

Aεu := −div(a(

·

ε )∇u), & A
0
u := −div(ah∇u). (4.1)

Theorem 4.1 (Theorem 3.1, [16]). Let Ω ⊂ R3 be a bounded smooth domain, symmetric periodic matrix a(·)

satisfying uniform ellipticity and boundedness assumptions, Aε and A0
given by (4.1) and g ∈ L2

(Ω). Let also
uε , u0 ∈ H1

0
(Ω) solve the problems{

Aεuε = g, in Ω,
uε|∂Ω = 0,

&

{
A

0
u0

= g, in Ω,
u0|∂Ω = 0.

Then, the following estimate
‖uε − u0‖ ≤ Cε‖g‖, (4.2)

holds for some constant C = C(ν, Ω).

Remark 4.1. Note that inequality (4.2) is equivalent to the following operator estimate on resolvents:

‖A−1

ε − A−1

0
‖L(L2

(Ω))
≤ Cε.

In what follows we wish to compare properties of the semi-groups associated to (0.1) and (0.2) via estimates

in terms of ε. In fact, we shall provide stronger estimates in terms of the di�erence ‖A−1

ε − A−1

0
‖L(L2

(Ω))
. The

mentioned ε estimates then immediately follow by Remark 4.1.

Our �rst important result is the following continuity estimate.

Theorem 4.2. Let E2

ε be the set (3.1), R > 0. Then, for all ξ ∈ BE2

ε
(0, R) = {ξ ∈ E2

ε , ‖ξ‖E2

ε
≤ R}, the inequality

‖Sε(t)ξ − S0
(t)ξ‖E−1 ≤ MeKt‖A−1

ε − A−1

0
‖L(L2

(Ω))
, t ≥ 0, (4.3)

holds for some non-decreasing functions M = M(R, ‖g‖) and K = K(R, ‖g‖) which are independent of ε > 0.
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Proof of Theorem 4.2. Let us �x ξ , set ξuε (t) := Sε(t)ξ , ξu0 (t) := S
0

(t)ξ , and de�ne rε := uε−u0

. Then, rε solves{
∂2

t rε + γ∂trε + A
0
rε = A

0
uε − Aεuε + f (u0

) − f (uε), x ∈ Ω, t ≥ 0,

ξrε |t=0
= 0, rε|∂Ω = 0.

(4.4)

By testing the �rst equation in (4.4) with A−1

0
∂trε we deduce that

d
dt
(

1

2

(
∂trε , A−1

0
∂trε

)
+

1

2

‖rε‖2

)
+ γ
(
∂trε , A−1

0
∂trε

)
=(

A
0
uε − Aεuε , A−1

0
∂trε

)
+

(
f (u0

) − f (uε), A−1

0
∂trε

)
. (4.5)

We compute(
A

0
uε − Aεuε , A−1

0
∂trε

)
=

(
A

0
uε , A−1

0
∂trε

)
−

(
Aεuε , A−1

0
∂trε

)
=

(
uε , ∂trε

)
−

(
Aεuε , A−1

0
∂trε

)
=

(
Aεuε , A−1

ε ∂trε
)
−

(
Aεuε , A−1

0
∂trε

)
=

(
Aεuε , (A−1

ε − A−1

0
)∂trε

)
.

Furthermore, (
Aεuε , (A−1

ε − A−1

0
)∂trε

)
=

d
dt
(
Aεuε , (A−1

ε − A−1

0
)rε
)
−

(
Aε∂tuε , (A−1

ε − A−1

0
)rε
)
.

Therefore, we can rewrite (4.5) as

d
dt Λ + γ

(
∂trε , A−1

0
∂trε

)
= −

(
Aε∂tuε , (A−1

ε − A−1

0
)rε
)

+

(
f (u0

) − f (uε), A−1

0
∂trε

)
, (4.6)

for

Λ(t) :=

1

2

(
∂trε(t), A−1

0
∂trε(t)

)
+

1

2

‖rε(t)‖2

−

(
Aεuε(t), (A−1

ε − A−1

0
)rε(t)

)
, t ≥ 0.

We now aim to bound the right-hand-side of (4.6) in terms of ‖A−1

ε − A−1

0
‖2

L(L2

(Ω))

and Λ, then subsequently

apply Gronwall’s inequality and the following standard estimate

ν‖ϕ‖2

H−1

(Ω)

≤

(
ϕ, A−1

0
ϕ
)
≤ ν−1‖ϕ‖2

H−1

(Ω)

, ϕ ∈ H−1

(Ω) (4.7)

to deduce the desired result.

To this end, let us �rst estimate the non-linear term. Using the growth restriction on f ′ (see Remark 1.1a)

and Hölder’s inequality (for exponents (p
1
, p

2
, p

3
) = (3, 2, 6)) we compute∣∣∣(f (uε) − f (u0

), A−1

0
∂trε

)∣∣∣ ≤ M((1 + |uε|2 + |u0|2)|rε|, |A−1

0
∂trε|

)
≤ M‖1 + |uε|2 + |u0|2‖L3

(Ω)
‖rε‖‖A−1

0
∂trε‖L6

(Ω)
.

(4.8)

Then, by the Sobolev embedding L6

(Ω) ⊂ H1

(Ω), the fact that uε and u0

are bounded in E (see dissipative

estimate (1.3)) and (4.7) we compute∣∣∣(f (uε) − f (u0

), A−1

0
∂trε

)∣∣∣ ≤ M‖rε‖‖A−1

0
∂trε‖H1

(Ω)
≤ M‖rε‖‖∂trε‖H−1

(Ω)

≤ M‖rε‖
(
∂trε , A−1

0
∂trε

) 1

2

≤ M
1

(
1

2

‖rε‖2

+

1

2

(
∂trε , A−1

0
∂trε

))
,

for some positive M
1
. By utilising the above inequality in (4.6) we infer that

d
dt Λ ≤

(
2M

1
Aεuε − Aε∂tuε , (A−1

ε − A−1

0
)rε
)
− 2M

1

(
Aεuε , (A−1

ε − A−1

0
)rε
)

+

+ M
1

(
1

2

‖rε‖2

+

1

2

(
∂trε , A−1

0
∂trε

))
.

Now, by the dissipative estimate in E2

ε (Theorem 2.5) we have the following uniform bounds in t and ε:

‖Aεuε(t)‖ + ‖Aε∂tuε(t)‖ ≤ M, t ≥ 0, ε > 0, (4.9)
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which we use along with the Cauchy-Schwarz inequality to compute∣∣∣(2M1
Aεuε − Aε∂tuε , (A−1

ε − A−1

0
)rε
)∣∣∣ ≤ M‖A−1

ε − A−1

0
‖2

L(L2

(Ω))

+

M
1

2

‖rε‖2

.

By collecting the above inequalities together we deduce that

d
dt Λ ≤ M‖A

−1

ε − A−1

0
‖2

L(L2

(Ω))

+ 2M
1
Λ.

Consequently, by applying Gronwall’s inequality and the initial data ξrε |t=0
= 0 we have

1

2

(
∂trε(t), A−1

0
∂trε(t)

)
+

1

2

‖rε(t)‖2

−

(
Aεuε(t), (A−1

ε − A−1

0
)rε(t)

)
≤ e2M

1
t M
M

1

‖A−1

ε − A−1

0
‖2

L(L2

(Ω))

, t ≥ 0.

Now, we compute ∣∣∣(Aεuε , (A−1

ε − A−1

0
)rε
)∣∣∣ ≤ ‖Aεuε‖‖A−1

ε − A−1

0
‖L(L2

(Ω))
‖rε‖

≤ ‖Aεuε‖2‖A−1

ε − A−1

0
‖2

L(L2

(Ω))

+

1

4

‖rε‖2

.

Hence, the above two inequalities along with (4.7) and (4.9) demonstrate (4.3) and the proof is complete.

Along with Theorem 4.2, to prove error estimates on the distance between global attractors we need the fol-

lowing exponential attraction property ofA0

:
there exists a constant σ > 0 such that for every bounded set B ⊂ E the estimate

distE(S
0

(t)B,A0

) ≤ M(‖B‖E)e−σt , t ≥ 0,

holds for some non-decreasing function M.

(H2)

It is known that, for problem (0.2), the property (H2) is a generic assumption in the sense that it holds for an

open dense subset of forces g ∈ L2

(Ω) (cf. [2]).

We are now ready to formulate and prove our main result of this section.

Theorem 4.3. Assume (H1) and (H2). LetAε andA0 be the global attractors of the dynamical systems (E, Sε(t))
and (E, S

0
(t)) corresponding to the problems (0.1) and (0.2). Then the following estimate

distE−1 (Aε
,A0

) ≤ M‖A−1

ε − A−1

0
‖κL(L2

(Ω))

, κ =

σ
(K + σ)

, (4.10)

holds. Here, K is as in Theorem 4.2, σ as in (H2), and M = M(‖g‖) is a non-decreasing function independent of
ε.

Proof. The assertion follows from the already obtained estimate (4.3) and the exponential attraction prop-

erty (H2). Indeed, let ξε ∈ Aε ⊂ BE2

ε
(0, R

1
) be arbitrary. Then due to (2.6) there exists a complete bounded

trajectory ξuε (t) ∈ Kε
, such that ξuε (0) = ξε. Let us �x an arbitrary T ≥ 0 and consider ξ

−T,ε = ξuε (−T) ∈ Aε
.

By Theorem 4.2 we deduce

‖ξε − S0
(T)ξ

−T,ε‖E−1 ≤ MκeKT , for κ = ‖A−1

ε − A−1

0
‖L(L2

(Ω))
.

for someM and K which are independent of ε and ξε ∈ Aε
. On the other hand, due to exponential attraction

(H2) we have

distE−1 (S
0

(T)ξ
−T,ε ,A

0

) ≤ Me−σT .
Therefore, using the triangle inequality, we derive

distE−1 (ξε ,A0

) ≤ M(κeKT + e−σT). (4.11)

We recall that T ≥ 0 is arbitrary and therefore we choose T that minimizes the right hand side of (4.11). For

example, taking T = T(ε) such that κeKT = e−σT yields

distE−1 (ξε ,A0

) ≤ 2M‖A−1

ε − A−1

0
‖κL(L2

(Ω))

, κ =

σ
(K + σ)

,

and since ξε ∈ Aε
is arbitrary we obtain the desired inequality (4.10).



760 | S. Cooper and A. Savostianov, Homogenisation with error estimates of attractors

To complement the convergence result in Theorem 3.1, we have the following error estimates.

Corollary 4.1. Assume (H1) and (H2). Let α > 0 be given by Remark 2.1, κ as in Theorem 4.3 and 0 ≤ β < α.
Then the inequality

dist

(Cβ(Ω))
2
(Aε

,A0

) ≤ M‖A−1

ε − A−1

0
‖θκL(L2

(Ω))

, θ =

α−β
2+α ,

for some non-decreasing function M = M(‖g‖) which is independent of ε.

Proof. The corollary follows directly from the uniform boundedness of Aε
and A0

in

(
Cα(Ω)

)
2

(Remark 3.1),

the estimate on the distance between attractors in E−1

(cf. (4.10)) and the interpolation inequalities

‖u‖L∞(Ω)
≤ C‖u‖ϑH−1

(Ω)

‖u‖1−ϑ
Cα(Ω)

, ∀u ∈ H−1

(Ω) ∩ Cα(Ω), where ϑ =

α
2+α ,

‖u‖Cβ(Ω)

≤ 2‖u‖β/α
Cα(Ω)

‖u‖(1−β/α)

L∞(Ω)

, ∀u ∈ Cα(Ω).

5 Approximation of global attractors with error estimates in the
energy space E

In addition to the obtained estimates in Section 4 on the distance in E−1

we would like to obtain estimates

in the energy space E. Note that we can not expect, in general, convergence of the global attractors in the

strong topology of E, cf. Remark 3.2. As in the elliptic case, estimates in H1

(Ω)-norm require involving the

correction ε
∑

i Ni( ·ε )∂xiu0

of homogenised trajectories u0

. To this end, we introduce the ‘correction’ operator

Tε : H2

(Ω)→ H1

(Ω) given by

Tεw(x) := w(x) + ε
3∑
i=1

Ni
( x
ε
)
∂xiw(x), x ∈ Ω. (5.1)

Here, Ni, i ∈ {1, 2, 3}, are the solutions to the cell problem (1.1).

Now, it is known that Ni, i = 1, 2, 3, are multipliers in H1

(Ω) (see [32, Section 13] and [33, Proposition

9.3]); in particular the following non-trivial estimate holds (see [16, Section 3]): there exists C = C(ν, Ω) such

that ∫
Ω

|∇yNi( xε )u(x)|2 dx ≤ C
∫
Ω

(
|u(x)|2 + ε2|∇u(x)|2

)
dx, ∀u ∈ H1

(Ω).

Consequently, the following inequality

‖∇Tεw‖ ≤ C
(
‖∇w‖ + ε‖w‖H2

(Ω)

)
, ∀w ∈ H2

(Ω), (5.2)

holds for some C > 0 independent of ε and w. Indeed, this follows from the above multiplier estimate and

the fact Ni ∈ L∞(Q) (by elliptic regularity).

Now, we are ready to present the well-known corrector estimate result in elliptic homogenisation theory

which improves the L2

-estimate given in Theorem 4.1 to H1

-norm.

Theorem 5.1 (Theorem 3.1, [16]). Let Ω ⊂ R3 be a bounded smooth domain, periodic matrix a(·) satisfying
uniform elliptic and boundedness assumptions, Aε and A0

given by (4.1) and g ∈ L2

(Ω). Let also uε , u0 ∈ H1

0
(Ω)

solve the problems {
Aεuε = g, in Ω,
uε|∂Ω = 0,

&

{
A

0
u0

= g, in Ω,
u0|∂Ω = 0.

Then, the following estimate
‖uε − Tεu0‖H1

0

(Ω)

≤ C
√
ε‖g‖, (5.3)

holds for some constant C = C(ν, Ω).
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Remark 5.1. Note that inequality (5.3) is equivalent to the following operator estimate:

‖A−1

ε g − TεA−1

0
g‖H1

0

(Ω)

≤ C
√
ε‖g‖, g ∈ L2

(Ω).

As in Theorem 4.3, wewould like to compare the distance between Sε(t)ξ , for ξ ∈ E2

ε , to some trajectory for S
0

but this time in the energy space E. However, here the trajectory S
0

(t)ξ is not a suitable candidate as it does

not have the su�cient regularity needed to apply the above corrector estimates. To overcome this di�culty

we carefully choose our initial data for the homogenised problem (0.2).

More precisely, let us recall the spaces E2

ε , E
2

0
given in (3.1), (3.2), and introduce the bounded linear oper-

ator Πε : E2

ε → E2

0
given by

Πε(ξ1

, ξ2

) := (ξ1

0
, ξ2

0
), where

{
the term ξ i

0
∈ H2

(Ω) ∩ H1

0
(Ω), i = 1, 2, satis�es

div(ah∇ξ i
0

) = div(a
(
·

ε
)
∇ξ i).

(5.4)

The operator Πε has the following nice properties.

Lemma 5.1. The operator Πε : E2

ε → E2

0
is a bijection that satis�es:

‖Πεξ‖E2

0

= ‖ξ‖E2

ε
, ξ ∈ E2

ε ;

‖Πεξ − ξ‖
(L2

(Ω))
2 ≤ ‖A−1

ε − A−1

0
‖L(L2

(Ω))
‖ξ‖E2

ε
, ξ ∈ E2

ε .

(5.5)

(5.6)

Proof. The bijective property and equality (5.5) directly follow from the de�nitions of E2

ε , E
2

0
and the identity

Πε(ξ1

, ξ2

) = (A−1

0
Aεξ1

, A−1

0
Aεξ2

). Inequality (5.6) follows from the identity

A−1

0
Aεξ i − ξ i = (A−1

0
− A−1

ε )Aεξ i .

We now compare Sε(t)ξ with S
0

(t)Πεξ in E for ξ ∈ E2

ε . The following result is the direct analogue of Theorem

4.2 when one replaces the initial data ξ by Πεξ in problem (0.2).

Theorem 5.2. Let E2

ε be the set (3.1). Then, for every ξ ∈ BE2

ε
(0, R), the following inequalities

‖Sε(t)ξ − S0
(t)Πεξ‖E−1 ≤ MeKt‖A−1

ε − A−1

0
‖L(L2

(Ω))
, t ≥ 0,

‖∂tSε(t)ξ − ∂tS0
(t)Πεξ‖E−1 ≤ MeKt‖A−1

ε − A−1

0
‖1/2

L(L2

(Ω))

, t ≥ 0,

(5.7)

(5.8)

hold for some non-decreasing functions M = M(R, ‖g‖) and K = K(R, ‖g‖) which are independent of ε > 0.

Proof. First note that inequality (5.7) is a consequence of the Lipschitz continuity of S
0
in E−1

(Corollary 1.2),

Lemma 5.1 and (4.3). Indeed,

‖Sε(t)ξ − S0
(t)Πεξ‖E−1 ≤ ‖Sε(t)ξ − S0

(t)ξ‖E−1 + ‖S
0

(t)ξ − S
0

(t)Πεξ‖E−1

≤ ‖Sε(t)ξ − S0
(t)ξ‖E−1 + MeKt‖ξ − Πεξ‖E−1 ≤ MeKt‖A−1

ε − A−1

0
‖L(L2

(Ω))
.

It remains to prove (5.8).

Set ξuε (t) := Sε(t)ξ , ξu0 (t) := S
0

(t)Πεξ . We begin by noting the following uniform bounds in t and ε:

‖∂2

t uε‖ + ‖∇uε‖ + ‖Aε∂tuε‖ + ‖∂2

t u0‖ + ‖∇u0‖ ≤ M. (5.9)

Indeed, these bounds are a consequence of identity ΠεBE2

ε
(0, R) = BE2

0

(0, R) and the dissipative estimates

for uε and u0

in E2

ε and E2

0
respectively (Theorem 2.5 for a = a(

·

ε ) and a = ah respectively).
Now, the di�erence rε := uε − u0

solves{
∂2

t rε = −γ∂trε + A
0
u0

− Aεuε + f (u0

) − f (uε), x ∈ Ω, t ≥ 0,

ξrε |t=0
= ξ − Πεξ , rε|∂Ω = 0.

(5.10)
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Note that by the de�nition of Πε , (5.4), we have

ξ∂t rε |t=0
=

(
ξ2

− ξ2

0
, γ(ξ2

0
− ξ2

) + f (ξ1

0
) − f (ξ1

)

)
.

Upon handling the non-linearity as in (4.8), and utilising Lemma 5.1 we conclude that

‖ξ∂t rε (0)‖E−1 ≤ C‖A−1

ε − A−1

0
‖L(L2

(Ω))
. (5.11)

Now, by di�erentiating the �rst equation in (5.10) in time (and then adding A
0
∂trε to both sides) we �nd

that qε := ∂trε solves{
∂2

t qε + γ∂tqε + A
0
qε = A

0
∂tuε − Aε∂tuε + f ′(u0

)∂tu0

− f ′(uε)∂tuε , x ∈ Ω, t ≥ 0,

ξqε |t=0
= ξ∂t rε (0), qε|∂Ω = 0.

Testing the �rst equation in the above problem with A−1

0
∂tqε gives

d
dt
(

1

2

(
∂tqε , A−1

0
∂tqε

)
+

1

2

‖qε‖2

)
+ γ
(
∂tqε , A−1

0
∂tqε

)
=(

A
0
∂tuε − Aε∂tuε , A−1

0
∂tqε

)
+

(
f ′(u0

)∂tu0

− f ′(uε)∂tuε , A−1

0
∂tqε

)
.

We aim to prove the inequality

d
dt Λ ≤ Me

Kt‖A−1

ε − A−1

0
‖L(L2

(Ω))
+ MΛ, Λ :=

1

2

(
∂tqε , A−1

0
∂tqε

)
+

1

2

‖qε‖2

(5.12)

for someM and K independent of ε and ξ
0
, which subsequently implies the desired result via an application

of Gronwall’s inequality and (5.11). As usual, we shall utilise the H−1

-norm equivalence given by (4.7).

So it remains to prove (5.12). By arguing as in Theorem 4.2, we utilise the identity ∂tqε = ∂2

t uε − ∂2

t u0

and

uniform bounds (5.9) to compute

|
(
A

0
∂tuε − Aε∂tuε , A−1

0
∂tqε

)
| = |

(
Aε∂tuε , (A−1

ε − A−1

0
)∂tqε

)
|

≤ ‖Aε∂tuε‖‖A−1

ε − A−1

0
‖L(L2

(Ω))
‖∂tqε‖

≤ M‖A−1

ε − A−1

0
‖L(L2

(Ω))
.

(5.13)

Let us now handle the non-linear term. We compute(
f ′(u0

)∂tu0

− f ′(uε)∂tuε , A−1

0
∂tqε

)
= −

(
f ′(u0

)qε , A−1

0
∂tqε

)
+

(
(f ′(u0

) − f ′(uε))∂tuε , A−1

0
∂tqε

)
=: I

1
+ I

2
.

The arguments to bound I
1
and I

2
will use the uniform bounds on uε and u0

given by (5.9).

By the growth condition on f and the H−1

-norm equivalence (4.7), we compute

|I
1
| = |

(
f ′(u0

)qε , A−1

0
∂tqε

)
| ≤ M

(
(1 + |u0|2)|qε|, |A−1

0
∂tqε|

)
≤ M‖1 + |u0|2‖L3

(Ω)
‖qε‖‖A−1

0
∂tqε‖L6

(Ω)

≤ M‖qε‖‖∂tqε‖H−1

(Ω)
≤ M

(
1

2

‖qε‖2

+

1

2

(∂tqε , A−1

0
∂tqε)

)
.

Additionally, by Hölder’s inequality (for exponents (p
1
, p

2
, p

3
, p

4
) = (6, 2, 6, 6)) we compute

|I
2
| = |

(
(f ′(u0

) − f ′(uε))∂tuε , A−1

0
∂tqε

)
| ≤ M

(
(1 + |u0| + |uε|)|rε||∂tuε|, |A−1

0
∂tqε|

)
≤ M‖1 + |u0| + |uε|‖L6

(Ω)
‖rε‖‖∂tuε‖L6

(Ω)
‖A−1

0
∂tqε‖L6

(Ω)

≤ M
(

1

2

‖rε‖2

+

1

2

(∂tqε , A−1

0
∂tqε)

)
.

The above assertion and (5.7) imply

|I
2
| ≤ C

(
e2Kt‖A−1

ε − A−1

0
‖2

L(L2

(Ω))

+

1

2

(∂tqε , A−1

0
∂tqε)

)
.

Combining the above calculations leads to the inequality (5.12). The proof is complete.

The following estimate is an immediate consequence of Theorem 5.2 and standard elliptic theory.
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Corollary 5.1. Let E2

ε be the set (3.1), ξ ∈ BE2

ε
(0, R) and set ξuε (t) := Sε(t)ξ , ξu0 (t) := S

0
(t)Πεξ . Let Tε be given

by (5.1). Then, the following inequality

‖uε(t) − Tεu0

(t)‖H1

(Ω)
≤ MeKt

√
ε, t ≥ 0, (5.14)

holds for some non-decreasing M = M(R, ‖g‖) and K = K(R, ‖g‖) which are independent of ε > 0.

Proof. Note that uε ∈ H1

0
(Ω) satis�es the equation

Aεuε = −∂2

t uε − γ∂tuε − f (uε) + g =: Fε(t), t ≥ 0,

and u0 ∈ H1

0
(Ω) satis�es

A
0
u0

= −∂2

t u0

− γ∂tu0

− f (u0

) + g =: F
0

(t), t ≥ 0.

Since ξ ∈ BE2

ε
(0, R) then by (5.5) we have Πεξ ∈ BE2

0

(0, R) and the dissipative estimate in E2

0
(Theorem 2.5

for a = ah) gives F
0
∈ L∞

(
R

+
; L2

(Ω)

)
. Let us introduce the intermediate function ũε = ũε(t) ∈ H1

0
(Ω) the

solution to

Aε ũε = F
0

(t), t ≥ 0.

Then, by Theorem 5.1 we have

‖ũε(t) − Tεu0

(t)‖H1

0

(Ω)

≤ C
√
ε‖F

0
(t)‖, t ≥ 0,

and, since A−1

ε is uniformly bounded in L(H−1

(Ω), H1

0
(Ω)), we have

‖uε(t) − ũε(t)‖H1

0

(Ω)

≤ C‖Fε(t) − F0
(t)‖H−1

(Ω)
, t ≥ 0.

Therefore, by the triangle inequality, we have

‖uε(t) − Tεu0

(t)‖H1

0

(Ω)

≤ C
(√
ε‖F

0
‖L∞(R

+
;L2

(Ω))
+ ‖Fε(t) − F0

(t)‖H−1

(Ω)

)
, t ≥ 0. (5.15)

Now, upon estimating the non-linear term as in the proof of Theorem 5.2, along with utilising Remark 4.1

and Theorem 5.2, we readily deduce that

‖Fε(t) − F0
(t)‖H−1

(Ω)
≤ MeKt

√
ε, t ≥ 0.

The above inequality along with (5.15) imply the desired result and the proof is complete.

Let us now provide estimates on the distance in the energy space. As in Corollary 5.1 this re-

quires adding an appropriate correction to the attractor A0

. To this end, we introduce the corrector

Tε : E2

0
→
(
L2

(Ω)

)
2

which maps the pair ξ = (ξ1

, ξ2

) to the pair

Tεξ = (Tεξ1

, ξ2

). (5.16)

By (5.2), we readily deduce the following inequality: there exists a constant C > 0, independent of ε, such
that the inequality

dist

s
E(TεA, TεB) ≤ C

(
dist

s
E(A, B) + ε dist

s
E2

0

(A, B)

)
, A, B ⊂ E2

0
, (5.17)

holds.

By inequality (5.8) and Corollary 5.1 we have shown the following result.

Corollary 5.2. Let E2

ε be the set (3.1), ξ ∈ BE2

ε
(0, R) and set ξuε (t) := Sε(t)ξ , ξu0 (t) := S

0
(t)Πεξ . Then, the

inequality
‖Sε(t)ξ − TεS0

(t)Πεξ‖E ≤ MeKt
√
ε,

holds for some non-decreasing M = M(R, ‖g‖) and K = K(R, ‖g‖) independent of ε.
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The following estimate on the global attractors in E holds.

Theorem 5.3. Assume (H1) and (H2). Let Aε and A0 the global attractors of problems (0.1) and (0.2) respec-
tively, and let Tε be given by (5.16). Then, the following estimate

distE(Aε
, TεA0

) ≤ M
√
εκ ,

holds for some M = M(‖g‖) which is independent of ε. Here κ is as in Theorem 4.3.

Proof. The method of proof follows along the same lines as the argument for Theorem 4.3 and so we shall

only sketch it here.

For ξε ∈ Aε
and T > 0, consider ξ

−T,ε ∈ Aε
that satis�es Sε(T)ξ

−T,ε = ξ
0
. Then, by Corollary 5.2 we have

‖ξε − TεS0
(T)Πεξ−T,ε‖E ≤ MeKT

√
ε.

Furthermore, by (5.17) we have

distE(TεS0
(T)Πεξ−T,ε , TεA0

) ≤ C
(

distE(S
0

(T)Πεξ−T,ε ,A0

) + ε distE2

0

(S
0

(T)Πεξ−T,ε ,A0

)

)
.

Now, to control the second term on the above right we use the fact that ΠεAε
andA0

are bounded subsets of

E2

0
(see Remark 3.1 and inequality (5.5)) and that we have a dissipative estimate for S

0
(t) on E2

0
(see Theorem

2.5). Consequently, we compute

distE(ξε , TεA0

) ≤ distE(ξε , TεS0
(T)Πεξ−T,ε) + distE(TεS0

(T)Πεξ−T,ε , TεA0

)

≤ M
1
eKT
√
ε + M

2
distE(S

0
(T)Πεξ−T,ε ,A0

),

and the remainder of the proof utilises the exponential attraction property ofA0

, as in Theorem 4.3.

Remark 5.2.

1. The appearance of
√
ε in (5.3) is a well-known consequence of the fact that the correction Tεu0 does not

approximate well the function uε in a ε-neighbourhood of the boundary. In particular, the reduced power of
ε appears in the estimate due to the fact that Tεu0 does not satisfy the Dirichlet boundary conditions and
a ‘boundary correction’ is needed. In general, the explicit ε-dependence (i.e. leading-order asymptotics) of
this boundary correction is not known.

2. In certain situations, such as when Ω is the whole space or a torus (see Remark 7.2), there is no need for
the boundary correction and, consequently, the error estimate (5.3) is order ε. In such situations we expect
order εκ in our estimate on the distance between global attractors in E (Theorem 5.3). As it stands, our
argument does not provide such an estimate and this is because the power in the right-hand side of (5.8) is
not optimal. This is consciously done to avoid unnecessary complications and we provide an argument in
Appendix D that gives the expected power.

3. Let us return to Remark 3.2. In this case it is interesting to note that estimate (5.3) is order ε. This is simply
because the cell solutions Ni are trivial (Ni ≡ 0) and there is no need for boundary corrections; indeed, this
can be readily seen by noting that the right-hand-side in problem (1.1) is zero in this situation. Consequently
Tε = I and (under the re�nement in Appendix D) we have the following improvement of Theorem 5.3:

distE

(
Aε

,A0

) ≤ Mεκ .

6 Exponential attractors: existence, homogenisation and
convergence rates

Let us recall the de�nition of an exponential attractor for a dynamical system.
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De�nition 6.1. Let S(t) : E→ E, t ≥ 0, be a semi-group acting on a Banach space E. Then a setM is called an
exponential attractor for the dynamical system (E, S(t)) if it possesses the following properties:

1. The setM is compact in E with �nite fractal (box-counting) dimension dimf (M, E);
2. The setM is positively invariant:

S(t)M ⊂M, ∀t ≥ 0;

3. The setM exponentially attracts every bounded set B of E, that is

distE(S(t)B,M) ≤ M(‖B‖E)e−σt , t ≥ 0,

for some non-decreasing M and constant σ > 0.

6.1 Existence of exponential attractors and continuity in E−1

Let us present our main result for this subsection.

Theorem 6.1. Assume (H1). Then, the dynamical systems (E, Sε(t)), ε > 0 and (E, S
0

(t)) generated by prob-
lems (0.1) and (0.2) respectively possess exponential attractors Mε

, M0 ⊂ (H1

0
(Ω))

2 such that the following
properties hold:

1. ‖div(a(

·

ε )∇ξ1

) + g‖H1

0

(Ω)

+ ‖div(a(

·

ε )∇ξ2

)‖ + ‖ξ‖
(Cα(

¯Ω))
2
≤ M(‖g‖), for all ξ = (ξ1

, ξ2

) ∈Mε
;

2. ‖div(ah∇ξ1

) + g‖H1

0

(Ω)

+ ‖div(ah∇ξ2

)‖ + ‖ξ‖
(H2

(Ω))
2 ≤ M(‖g‖), for all ξ = (ξ1

, ξ2

) ∈M0

;

3. For every bounded set B ⊂ E one has

distE(Sε(t)B,Mε
) + distE(S

0
(t)B,M0

) ≤ M(‖B‖E)e−σt , t ≥ 0;

4. dimf (M
ε
, E) + dimf (M

0

, E) ≤ D;

5. dist

s
E−1 (Mε

,M0

) ≤ M‖A−1

ε − A−1

0
‖κL(L2

(Ω))

.

Here α is the same as in Remark 2.1 and the constants M > 0, σ > 0, 0 < κ < 1 and D ≥ 0 are independent of ε.

Corollary 6.1. Assume (H1). Let α > 0 be given by Remark 2.1, κ as in Theorem 6.1 and 0 ≤ β < α. Then the
inequality

dist

s
(Cβ(Ω))

2

(Mε
,M0

) ≤ M‖A−1

ε − A−1

0
‖θκL(L2

(Ω))

, θ =

α−β
2+α ,

for some non-decreasing function M = M(‖g‖) which is independent of ε.

The remainder of the section is dedicated to the proof of Theorem 6.1. First, we recall a variation of an abstract

result which establishes the existence of an exponential attractor Mε
, for a parameter-dependent family of

semi-groups Sε, whose characteristics are independent of ε (see Appendix B, [29, Theorem 2.10] and [30,

Section 3, Theorem 3.1]).

Theorem 6.2. Let E be a Banach space and E1

ε , ε ≥ 0, be a family of Banach spaces compactly embedded into
E uniformly in the following sense:

(i) There exists c
0
independent of ε ≥ 0 such that ‖ξ‖E ≤ c0

‖ξ‖E1

ε
for all ξ ∈ E1

ε ;
(ii) For all µ > 0, r > 0 there exists a �nite cover of BE1

ε
(0, r) consisting of balls radius of µ in E with centers

Uε(µ, r) ⊂ BE1

ε
(0, δr), for some δr ≥ r, satisfying

cardUε(µ, r) ≤ N(µ, r),

for some �nite N(µ, r) independent of ε.
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Let us consider, for each ε ≥ 0, a map de�ned on E such that

Sε : O(Bε)→ Bε , O(Bε) :=

Bε +

⋃
r∈[0,1]

rUε( 1

4K , 1)

⋃Uε( 1

K , R),

where the set Bε ⊂ BE1

ε
(0, R) is closed in E. Furthermore, we assume Sε satis�es the following properties:

1. for every ξ
1
and ξ

2
from O(Bε), the di�erence Sεξ1

− Sεξ2
can be represented in the form:

Sεξ1
− Sεξ2

= vε + wε , with ‖vε‖E ≤ 1

2

‖ξ
1
− ξ

2
‖E, ‖wε‖E1

ε
≤ K‖ξ

1
− ξ

2
‖E, (6.1)

for K > 0 independent of ε.
2. Furthermore, there exists a Banach space E−1 ⊃ E such that

‖ξ‖E−1 ≤ c
−1
‖ξ‖E, ∀ξ ∈ E; ‖S

0
ξ

1
− S

0
ξ

2
‖E−1 ≤ L‖ξ

1
− ξ

2
‖E−1 , ∀ξ

1
∈ O(Bε), ∀ξ2

∈ O(B
0

),

for constants c
−1

and L > 0.

Then, for every ε ≥ 0, the discrete dynamical system (Bε , Sε) possesses an exponential attractor Mε ⊂ O(Bε).
The exponent of attraction σ > 0 is independent of ε ≥ 0 and dimf (M

ε
, E) ≤ D for some positive D independent

of ε (see De�nition 6.1). Moreover

dist

s
E-1 (Mε

,M0

) ≤C
(

sup

ξ∈O(Bε)

‖Sεξ − S0
ξ‖E-1 + dist

s
E-1 (Bε , B0

)

dist

s
E-1
(
Uε( 1

4K , 1),U
0

(

1

4K , 1)

)
+ dist

s
E-1
(
Uε( 1

K , R),U
0

(

1

K , R)

))κ
,

(6.2)

where the constants C > 0 and κ = κ(c
0
, L, K, δ

1
) are independent of ε.

The proof of Theorem 6.2 is postponed to Appendix B.

We now move on to the proof of Theorem 6.1. As in the usual way, we �rst construct exponential attrac-

tors for the discrete dynamical systems with maps Sε := Sε(T), S
0

:= S
0

(T), for large enough T > 0. Then

by a standard procedure, clari�ed below, one arrives at exponential attractors for the continuous dynamical

systems (E, Sε(t)), t ≥ 0.

Proof of Theorem 6.1.
Step 1: Construction of discrete exponential attractors. Recall the maps Aε and A0

given by (4.1). Let E =

H1

0
(Ω) × L2

(Ω), E−1

= L2

(Ω) × H−1

(Ω), and let E1

ε and E1

0
be given by (1.7) for a(·) = a(

·

ε ) and a(·) = ah

respectively). Then property (i) is an immediate consequence of the uniform ellipticity of a(·) and Poincaré’s

inequality.

Proof of (ii). We shall provide an explicit construction for the covers. Moreover, it will be important later

that we produce a cover such that

Uε(µ, r) ⊂ E2

ε ∩ BE1

ε
(0, δr), & dist

s
E−1

(
Uε(µ, r),U0

(µ, r)
)
≤ Cr‖A−1

ε − A−1

0
‖L(L2

(Ω))
, (6.3)

for some Cr > 0 independent of ε ≥ 0.

For this reason we seek a cover of BE1

ε
(0, r) in the form

N(µ,r)⋃
i=1

BE
(
ξiε , µ

)
, for ξiε = (A−1

ε (pi + g), qiε) ∈ E2

ε .

To ensure ξiε are in E2

ε we see that (pi , qiε) should belong to (H1

0
(Ω))

2

with Aεqiε ∈ L2

(Ω).
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We now proceed with the construction of such a cover. As L2

(Ω) × H1

0
(Ω) is compactly embedded in

H−1

(Ω) × L2

(Ω) then, for each µ̂ > 0, there exist �nitely many (pi , qi0), i = 1, . . . , N(µ̂, r), such that

BL2

(Ω)×H1

0

(Ω)

(
(−g, 0), r

)
⊂

N(µ̂,r)⋃
i=1

BH−1

(Ω)×L2

(Ω)

(
(pi , qi0), µ̂

)
, (pi , qi0) ∈ BL2

(Ω)×H1

0

(Ω)

(
(−g, 0), r

)
.

Additionally, due to density arguments, we can suppose

(pi , qi0) ∈ H1

0
(Ω) × H2

(Ω).

Moreover, as the eigenfunctions of Aε form an orthonormal basis for L2

(Ω) we can �nd qiε such that Aεqiε ∈
L2

(Ω) and

‖qiε − qi0‖ ≤ min{µ̂, ‖A−1

ε − A−1

0
‖L(L2

(Ω))
}, i = 1, . . . , N(µ̂, r). (6.4)

Therefore, we have the covering

BL2

(Ω)×H1

0

(Ω)

(
(−g, 0), r

)
⊂

N(µ̂,r)⋃
i=1

BH−1

(Ω)×L2

(Ω)

(
(pi , qiε), 2µ̂

)
, ε ≥ 0.

Now, for �xed ξ ∈ BE1

ε
(0, r) we readily deduce from the ellipticity of a that

‖∇
(
ξ1

− A−1

ε (pi + g)

)
‖ ≤ ν−1‖Aεξ1

− pi − g‖H−1

(Ω)
.

Furthermore, it is clear that (Aεξ1

−g, ξ2

) ∈ BL2

(Ω)×H1

0

(Ω)

(
(−g, 0), r

)
. Consequently, one can readily check that

BE1

ε
(0, r) ⊂

N(µ̂,r)⋃
i=1

BE
(

(A−1

ε (pi + g), qiε), 2(1 ∨ ν−1

)µ̂
)
.

Additionally, since qiε are obtained by truncating qi0 with respect to the eigenfunctions of Aε, we compute

‖∇qiε‖2

≤ ν−1

(Aεqiε , qiε) ≤ ν−1

(Aεqi0, qi0) ≤ ν−2‖∇qi0‖2

,

and so we deduce that

(A−1

ε (pi + g), qiε) ∈ BE1

ε
(0, (1 ∨ ν−1

)r).

Hence, upon setting µ̂ =

1

2(1∨ν−1

)

µ, we see that the centers

Uε(µ, r) :=

{(
A−1

ε (pi + g), qiε
)
| i = 1, . . . , N

(
1

2(1∨ν−1

)

µ, r
)}
, ε ≥ 0, (6.5)

satisfy (ii) for δr = (1 ∨ ν−1

)r. Also the additional desired properties (6.3) hold.

Construction of Bε and Sε. We set Bε := BE2

ε
(0, R

2
) to be the absorbing ball provided by Theorem 2.5 for

E2

= E2

ε , and a(·) = a
(
·

ε
)
in the case ε > 0 and a(·) ≡ ah for ε = 0. The radius R

2
is independent of ε and

clearly Bε is closed in E.

Since Bε is an absorbing set in E2

ε and, by (6.3), O(Bε) is a subset of E2

ε , we can choose T
1
large enough

(and independent of ε) such that Sε := Sε(T), ε ≥ 0, satis�es

Sε : O(Bε)→ Bε , O(Bε) =

Bε +

⋃
r∈[0,1

rUε( 1

4K , 1)

⋃Uε( 1

K , R).

Let us verify properties (1) and (2) of Sε.
Proof of (1). For ξi ∈ O(Bε) ⊂ E2

ε , i = 1, 2, let ξui (t) = Sε(t)ξi. Consider the splitting ui = vi + wi given by

(2.2)-(2.3), and set v = v
1
− v

2
and w = w

1
− w

2
.

As the equation for v is linear then obviously the inequality

‖v(T
2

)‖E ≤ 1

2

‖ξ
1
− ξ

2
‖E,
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holds for large enough time T
2
(independent of ε).

From (2.3) we �nd that w solves{
∂2

t w + γ∂tw − div(a∇w) = f (u
2

) − f (u
1

), x ∈ Ω, t ≥ 0,

ξw|t=0
= (0, 0), w|∂Ω = 0,

(6.6)

for a = a(

·

ε ) or a ≡ ah. Moreover, p = ∂tw solves{
∂2

t p + γ∂tp − div(a∇p) = f ′(u
2

)∂tu2
− f ′(u

1
)∂tu1

, x ∈ Ω, t ≥ 0,

ξp|t=0
= (0, f (ξ1

2
) − f (ξ1

1
)), p|∂Ω = 0.

(6.7)

Using the fact that our initial data is from E2

ε we conclude that ui, ∂tui are bounded in L∞(Ω) uniformly in ε.
Then upon testing the �rst equation in (6.7) with ∂tp, rewriting the subsequent right-hand-side in the form(

f ′(u
2

)(∂tu2
− ∂tu1

), ∂tp
)

+

(
(f ′(u

2
) − f ′(u

1
))∂tu1

, ∂tp
)
,

we obtain via standard arguments, and the Lipschitz continuity of Sε(t) in E (Corollary 1.1), the uniform esti-

mate

‖∂tp(t)‖ + ‖∇p(t)‖ ≤ MeKt‖ξ
1
− ξ

2
‖E, t ≥ 0.

Consequently, we use p = ∂tw and (6.6) to conclude

‖ξw(t)‖E1

ε
≤ MeKt‖ξ

1
− ξ

2
‖E, t ≥ 0,

for some positive constants M and K independent of ε and ξi. Therefore, for T = max{T
1
, T

2
}, property (1)

holds.

Proof of (2). This property is given by Corollary 1.2 for a ≡ ah.
Hence, the assumptions of Theorem 6.2 hold and therefore Theorem 6.1 holds for the discrete dynamical

systems (Bε , Sε(T))withdiscrete exponential attractorsMε
d. Indeed, Theorem6.1 (1)-(4)holddue to the choice

of Bε andUε, and (5) follows from (6.2), (6.3), Theorem 4.2, Lemma 5.1 and the fact that themap Πε : Bε → B
0

is a bijection.

Step 2: Discrete to continuous dynamics. From the discrete exponential attractors Mε
d we can build ex-

ponential attractorsMε
for the original dynamical systems (E, Sε(t)) by the following standard construction

([5]):

Mε
:=

⋃
τ∈[0,T]

Sε(τ)Mε
d , ε ≥ 0. (6.8)

Indeed, the properties (1)-(4) can be easily veri�ed due to dissipative estimate inE2

ε , Lipschitz continuitywith

respect to initial data in E (Corollary 1.1) on the bounded set Bε:

‖Sε(t)ξ1
− Sε(t)ξ2

‖E ≤ M‖ξ1
− ξ

2
‖E, ξ

1
, ξ

2
∈ Bε , ε ≥ 0,

and Lipschitz continuity with respect to time:

‖Sε(τ1
)ξ − Sε(τ2

)ξ‖E ≤ M|τ1
− τ

2
|, τ

1
, τ

2
∈ [0, T], ξ ∈ Bε , ε ≥ 0,

for some constant M > 0 (independent of ε). Indeed, the continuity in time follows from the uniform bound-

edness of Bε in the space E1

ε . It remains to check the continuity property (5) for the exponential attractorsMε
.

This readily follows from the fact that (5) holds for the discrete exponential attractors Mε
d, Theorem 4.2 and

the following computation:

dist

s
E−1 (Mε

,M0

) = dist

s
E−1

( ⋃
τ∈[0,T]

Sε(τ)Mε
d ,

⋃
τ∈[0,T]

S
0

(τ)M0

d
)

≤ sup

τ∈[0,T]

dist

s
E−1

(
Sε(τ)Mε

d , S0
(τ)M0

d
)

≤ sup

τ∈[0,T]

dist

s
E−1

(
Sε(τ)Mε

d , S0
(τ)Mε

d
)

+ sup

τ∈[0,T]

dist

s
E−1

(
S

0
(τ)Mε

d , S0
(τ)M0

d
)

≤ sup

τ∈[0,T]

MeKτ‖A−1

ε − A−1

0
‖L(L2

(Ω))
+ sup

τ∈[0,T]

L dist

s
E−1

(
Mε
d ,M

0

d
)
.
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6.2 Continuity of exponential attractors in E.

Theorem 6.1(5) demonstrates Hölder continuity between the exponential attractors Mε
and M0

in the

space E−1

. In this section we provide continuity results in the energy space E. Unlike in E−1

, in the stronger

topology of E this requires a correction (such as in De�nition 5.16) of the exponential attractor M0

. More

precisely, the main result of this section is the following theorem.

Theorem 6.3. Assume (H1) and let Mε, M0 be the exponential attractors constructed in Theorem 6.1. Then,
the following estimate is valid:

dist

s
E(Mε

, TεM0

) ≤ M
√
εκ , ε > 0, (6.9)

where the ‘correction’ operator Tε is given by (5.16), 0 < κ < 1 as in Theorem 6.1 and the constant M > 0 is
independent of ε.

To prove this result, we make an important development of Theorem 6.2 to provide estimates between expo-

nential attractors which admit correction. That is we establish the following new result.

Theorem 6.4. Let assumptions of Theorem 6.2 be satis�ed and Mε, M0 be the exponential attractors con-
structed therein. Additionally, assume that:

3. for every ε > 0 there exists a bijection Πε : E1

ε → E1

0
that satis�es

ΠεBε = B
0

;

4. for every ε > 0 there exists a ‘correction’ operator Tε : E1

0
→ E which possesses the property

‖Tεξ1
− Tεξ2

‖E ≤ Lcor
‖ξ

1
− ξ

2
‖E + m(ε) for all ξ

1
, ξ

2
∈ O(B

0
);

for some constant L
cor

> 0 independent of ε and positive function m(·) with m(0

+

) = 0.
5. the maps Sε are uniformly Lipschitz continuous in E with respect to ε > 0, that is

‖Sεξ1
− Sεξ2

‖E ≤ L‖ξ1
− ξ

2
‖E, ∀ξ

1
, ξ

2
∈ O(Bε),

with some constant L > 1 independent of ε > 0.

Then the following estimate

dist

s
E(Mε

, TεM0

) ≤C
(

sup

ξ∈O(B
0

)

‖SεΠ−1

ε ξ − TεS0
ξ‖E + sup

ξ∈O(B
0

)

‖Tεξ − Π−1

ε ξ‖E + m(ε)

dist

s
E

(
Uε( 1

4K , 1), Tε U0
(

1

4K , 1)

)
+ dist

s
E

(
Uε( 1

K , R), Tε U0
(

1

K , R)

))κ
,

(6.10)

holds for constant C > 0 independent of ε and κ as in Theorem 6.2.

The proof of this result is presented in Appendix C.

Proof of Theorem 6.3. Let the sets Bε, O(Bε), ε ≥ 0, and the operator Sε = Sε(T) be as in Theorem 6.1.

We �rst establish, based on the abstract result Theorem6.4, the estimate (6.9) for the discrete exponential

attractorsMε
d (de�ned in the proof of Theorem 6.1). That is we prove the following inequality:

dist

s
E(Mε

d , TεM
0

d) ≤ M
√
εκ , ε > 0, (6.11)

for some constant M > 0.
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Let us check that the assumptions of Theorem 6.4 hold. Indeed, assumption (3) follows from the fact that

Bε = BE2

ε
(0, R

2
) (see the proof of Theorem 6.1) and De�nition 5.4 of the projector Πε (where we note that

Πε can be trivially extended to the map from E1

ε onto E1

0
, preserving the bijection property). Assumption (4)

holds with m(ε) = Cε (for some constant C > 0, independent of ε) due to the multiplier estimate (5.17) and

the fact that O(B
0

) is a bounded subset of E2

0
by construction. Assumption (5) is a consequence of Corollary

1.1. Hence the assumptions of Theorem 6.4 hold and (6.10) holds for the discrete exponential attractors Mε
d

andM0

d.

Let us now estimate the terms on the right-hand side of (6.10) in terms of ε. Since Πε : E2

ε → E2

0
is

bijective and preserves the norm (Lemma 5.1), and sinceO(B
0

) ⊂ E2

0
is bounded, we see that ‖Π−1

ε O(B
0

)‖E2

ε
=

‖O(B
0

)‖E2

0

; that is the set Π−1

ε O(B
0

) is bounded in E2

ε . Therefore, this observation and Corollary 5.2 imply that

sup

ξ∈O(B
0

)

‖SεΠ−1

ε ξ − TεS0
ξ‖E = sup

ξ∈Π−1

ε O(B
0

)

‖Sεξ − TεS0
Πεξ‖E ≤ M

√
ε, (6.12)

for some M > 0 independent of ε > 0. Also from the identity

TεA−1

0
Aεw − w = (TεA−1

0
− A−1

ε )Aεw, (6.13)

and Remark 5.1 we deduce that

sup

ξ∈O(B
0

)

‖Tε ξ − Π−1

ε ξ‖E = sup

ξ∈Π−1

ε O(B
0

)

‖Tε Πε ξ − ξ‖E ≤ M
√
ε, (6.14)

for some constantM > 0 independent of ε > 0. It remains to compare the distance between the covers present

in the right-hand side of (6.10). To this end, we notice that if ξiε := (A−1

ε (pi + g), qiε) ∈ Uε(µ, r), then

ξiε − Tεξi0 =

(
(A−1

ε − TεA−1

0
)(pi + g), qiε − qi0

)
, ε > 0. (6.15)

Consequently, due to Remark 5.1 and the properties of qiε (see (6.4)) one can see that

dist

s
E(Uε(µ, r), Tε U0

(µ, r)) ≤ Cr
√
ε, (6.16)

for some constant Cr > 0 independent of ε, µ. Upon collecting the above estimates we derive (6.11).

It remains to establish (6.9) for the exponential attractorsMε
. It is su�cient to show that

dist

s
E(Mε

, TεM
0

) ≤ L dist

s
E(Mε

d , TεM
0

d) + L sup

ξ∈Π−1

ε O(B
0

)

‖TεΠεξ − ξ‖E+

+ sup

τ∈[0,T]

sup

ξ∈Π−1

ε O(B
0

)

‖Sε(τ)ξ − TεS0
(τ)Πεξ‖E.

(6.17)

Indeed, since κ < 1, the above inequality, (6.11), (6.14) and Corollary 5.2 implies (6.9).

Let us demonstrate (6.17):

dist

s
E(Mε

, TεM
0

) = dist

s
E

( ⋃
τ∈[0,T]

Sε(τ)Mε
d ,

⋃
τ∈[0,T]

TεS0
(τ)M0

d
)

≤ sup

τ∈[0,T]

dist

s
E

(
Sε(τ)Mε

d , TεS0
(τ)M0

d
)

≤ sup

τ∈[0,T]

dist

s
E

(
Sε(τ)Mε

d , Sε(τ)Π−1

ε M0

d
)

+ sup

τ∈[0,T]

dist

s
E

(
Sε(τ)Π−1

ε M0

d , TεS0
(τ)M0

d
)

≤ L dist

s
E(Mε

d , Π−1

ε M0

d) + sup

τ∈[0,T]

dist

s
E

(
Sε(τ)Π−1

ε M0

d , TεS0
(τ)M0

d
)

≤ L dist

s
E(Mε

d , TεM
0

d) + L dist

s
E(TεM

0

d , Π−1

ε M0

d) + sup

τ∈[0,T]

dist

s
E

(
Sε(τ)Π−1

ε M0

d , TεS0
(τ)M0

d
)

≤ L dist

s
E(Mε

d , TεM
0

d) + L sup

ξ∈O(B
0

)

‖Tεξ − Π−1

ε ξ‖E + sup

τ∈[0,T]

sup

ξ∈O(B
0

)

‖Sε(τ)Π−1

ε ξ − TεS0
(τ)ξ‖E

≤ L dist

s
E(Mε

d , TεM
0

d) + L sup

ξ∈Π−1

ε O(B
0

)

‖TεΠεξ − ξ‖E + sup

τ∈[0,T]

sup

ξ∈Π−1

ε O(B
0

)

‖Sε(τ)ξ − TεS0
(τ)Πεξ‖E.

Hence the theorem is proved.
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7 The case of di�erent boundary conditions
In this section we are going to show that the analogues of the obtained homogenisation error estimates for

the global and exponential attractors still hold if we change the Dirichlet boundary conditions to be either

Neumann or periodic.

Let Ω ⊂ R3

be a smooth bounded domain and H1

:= H1

(Ω) or Ω be a three-dimensional torus T3

:=

[0, `)

3

, ` > 0, with

H1

:=

{
u ∈ H1

(Ω)| u(x + `ek) = u(x), k ∈ {1, 2, 3}
}
.

In both cases we endowH1

with the norm

‖u‖2

H1 := ‖∇u‖2

+ ‖u‖2

, u ∈ H1

.

For the maps Aε be given by (4.1), ε ≥ 0, we consider the problem{
∂2

t uε + γ∂tuε + (Aε + 1)uε + f (uε) = g(x), x ∈ Ω, t ≥ 0,

(uε , ∂tuε)|t=0
= ξ ,

(7.1)

endowed with either Neumann a
(
·

ε
)
∇uε · n|∂Ω = 0, ε > 0,

ah∇u0

· n|∂Ω = 0, ε = 0,

(N)

or periodic {
uε(x + `ek) = uε(x),

∇uε(x + `ek) = ∇uε(x),

k ∈ {1, 2, 3}, ε ≥ 0, (P)

boundary conditions.

It is well-known that problem (7.1) with either boundary conditions (N) or (P) is well-posed in the energy

space E := H1

× L2

(Ω) and, therefore, de�nes a dynamical system (E, Sε(t)) where

Sε(t)ξ := ξuε (t), t ≥ 0,

for uε(t) the unique solution of the corresponding problem with initial data ξ .
Moreover, is well-known that Aε + 1 : D(Aε + 1) ⊂ L2

(Ω)→ L2

(Ω) is self-adjoint, where

D(Aε + 1) =

{
{u ∈ H1| Aεu ∈ L2

(Ω), a
(
·

ε
)
∇u · n|∂Ω = 0}, ε > 0,

{u ∈ H1| A
0
u ∈ L2

(Ω), ah∇u · n|∂Ω = 0}, ε = 0,

for condition (N) or

D(Aε + 1) = {u ∈ H1| Aεu ∈ L2

(Ω),∇u(x + `ek) = ∇u(x), k ∈ {1, 2, 3}}, ε ≥ 0,

for condition (P). Setting{
E2

ε :=

{
ξ ∈

(
D(Aε + 1)

)
2 |
(
Aεξ1

− g
)
∈ H1

}
,

‖ξ‖2

E2

ε
:= ‖Aεξ1

− g‖2

H1 + ‖(Aε + 1)ξ1‖2

+ ‖(Aε + 1)ξ2‖2

,

ε ≥ 0, (7.2)

it is straightforward to see from Appendix A and Sections 2-6 that the following theorem holds.

Theorem 7.1. Assume (H1). Then, for every ε ≥ 0, the dynamical systems (E, Sε(t)) generated by problem (7.1)

with boundary conditions (N) or (P) possesses a global attractor Aε, and exponential attractor Mε, of �nite
fractal dimension such that:

Aε ⊂Mε ⊂ E2

ε , ‖Aε‖E2

ε
≤ ‖Mε‖E2

ε
≤ M(‖g‖), Aε

= Kε|t=0
,

distE(Sε(t)B,Mε
) ≤ e−σtM(‖B‖E), t ≥ 0, for all bounded B ⊂ E,

dimf (A
ε
, E) ≤ dimf (M

ε
, E) ≤ D,

where the constants σ, D > 0 and non-decreasing function M are independent of ε. Here Kε is the set of all
bounded energy solutions to problem (7.1), with (N) or (P), de�ned for all t ∈ R.
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Let us now discuss error estimates between the anisotropic and homogenised attractors. It is known that

the main homogenisation results, Theorems 4.1 and 5.1, remain valid for the case of Neumann and periodic

boundary conditions.

Theorem 7.2 ([16]). Let Ω ⊂ R3 be a bounded smooth domain or three-dimensional torus T3, ε > 0, periodic
matrix a(·) satisfying uniform ellipticity and boundedness assumptions, Aε and A0

given by (4.1) and g ∈ L2

(Ω).
Let also uε ∈ D(Aε + 1), u0 ∈ D(A

0
+ 1), solve the equations

(Aε + 1)uε = g in Ω, (A
0

+ 1)u0

= g in Ω.

Then, the following estimates
‖uε − u0‖ ≤ Cε‖g‖,
‖uε − Tεu0‖H1 ≤ C

√
ε‖g‖,

(7.3)

(7.4)

hold for some constant C = C(ν, Ω). Here the operator Tε is given in (5.1).

Remark 7.1. Note that inequalities (7.3) and (7.4) are equivalent to the following operator estimates:

‖(Aε + 1)

−1

− (A
0

+ 1)

−1‖L(L2

(Ω))
≤ Cε,

‖(Aε + 1)

−1g − Tε(A0
+ 1)

−1g‖H1 ≤ C
√
ε‖g‖, ∀g ∈ L2

(Ω).

Remark 7.2. In the case of periodic boundary conditions (P), where Q = [0, 1)

3 and Ω = [0, `)

3, if `
ε ∈ N then

for w ∈ D(A
0

+ 1) the corrector Tεw belongs to H1. In this setting it is well-known that one can improve the
bound in (7.4) from

√
ε to ε. Consequently, as discussed in Remark 5.2, for this case we can replace

√
ε with ε in

the relevant results below.

Let us also de�ne the energy space of order −1:

E−1

:= L2

(Ω) × (H1

)

*

,

where (H1

)

*

stands for the dual space ofH1

.

We now draw the reader’s attention to the fact that the key theorems (Theorems 4.2 and 5.2) on the dis-

tance between trajectories in E−1

are in terms of resolvents of the operator Aε, ε ≥ 0. The key point to note

is that the proofs of these results essentially rely on the fact Aε is self-adjoint and (uniformly in ε) bounded
and positive. Since the operator Aε + 1, for Neumann (N) or periodic (P) boundary conditions, also possesses

these properties one can see that analogues of Theorems 4.2-5.2 readily hold (after appropriately changing

the projector Πε). Namely, upon de�ning Πε : E2

ε → E2

0
, for E2

ε given by (7.2), as follows

Πε(ξ1

, ξ2

) := (ξ1

0
, ξ2

0
), where

{
the term ξ i

0
∈ D(A

0
+ 1), i = 1, 2, satis�es

(A
0

+ 1)ξ i
0

= (Aε + 1)ξ i ,
(7.5)

we have the following result.

Theorem 7.3. Let E2

ε be given by (7.2) and Sε(t) be the solution operator to the problem (7.1) with Neumann (N)

or periodic (P) boundary conditions. Then, for all ξ ∈ E2

ε , ‖ξ‖E2

ε
≤ R, R > 0, the inequalities

‖Sε(t)ξ − S0
(t)ξ‖E−1 + ‖Sε(t)ξ − S0

(t)Πεξ‖E−1 ≤ MeKt‖(Aε + 1)

−1

− (A
0

+ 1)

−1‖L(L2

(Ω))
,

‖∂tSε(t)ξ − ∂tS0
(t)Πεξ‖E−1 ≤ MeKt‖(Aε + 1)

−1

− (A
0

+ 1)

−1‖1/2

L(L2

(Ω))

,

‖Sε(t)ξ − TεS0
(t)Πεξ‖E ≤ MeKt

√
ε,

t ≥ 0,

hold for some non-decreasing functions M = M(R, ‖g‖) and K = K(R, ‖g‖) which are independent of ε > 0.

Based on Theorem 7.3 and arguing along the same lines as in Sections 4 - 6 we obtain the following theorem

on the comparison of distances between anisotropic and homogenised attractors in terms of ε.
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Theorem 7.4. Assume (H1) and (H2). Let Aε, Mε, ε ≥ 0 be attractors corresponding to problem (7.1), with
Neuman (N) or periodic (P) boundary conditions, provided by Theorem 7.1. Let also α > 0 be such an exponent
that (Aε + 1)

−1 ∈ L
(
L2

(Ω), Cα(Ω)

)
and 0 ≤ β < α. Then, the following estimates

distE−1 (Aε
,A0

) ≤ Mεκ , distE(Aε
, TεA0

) ≤ M
√
εκ , dist

(Cβ(Ω))
2
(Aε

,A0

) ≤ Mεθκ ,

dist

s
E−1 (Mε

,M0

) ≤ Mεκ , dist

s
E(Mε

, TεM0

) ≤ M
√
εκ , dist

s
(Cβ(Ω))

2

(Mε
,M0

) ≤ Mεθκ ,

hold for some non-decreasing M = M(‖g‖) and constants κ ∈ (0, 1), θ =

α−β
2+α independent of ε. Here Tε is the

‘correction’ operator de�ned by (5.16).

A Proof of Theorem 1.3
To prove Theorem 1.3 we perform a splitting of the solution u = v + w to the problem (1.2) into asymptotically

contractive and compact parts. This form of splitting was intoduced in [31].

Let us consider {
∂2

t v + γ∂tv − div(a∇v) + Lv + f (u) − f (w) = 0, x ∈ Ω, t ≥ 0,

ξv|t=0
= ξu(0), v|∂Ω = 0,

(A.1)

and {
∂2

t w + γ∂tw − div(a∇w) + Lw + f (w) = Lu + g, x ∈ Ω, t ≥ 0,

ξw|t=0
= 0, w|∂Ω = 0,

(A.2)

where the �xed constant L > 0 is speci�ed below.

Recall that B denotes a positive invariant absorbing set of the semigroup (E, S(t)) (see (1.6)). Similar to

Theorem 1.1 we have the following result.

Lemma A.1. Assume (H1), ξu(0) ∈ B, L > 0 be an arbitrary constant and w solve the equation (A.2). Then the
estimate

‖ξw(t)‖E ≤ ML(‖B‖E), t ≥ 0,

holds for some non-decreasing function ML that depends only on ν and L.

The proof of Lemma A.1 follows from the multiplication of the �rst equation in (A.2) by ∂tw + κw with suf-

�ciently small κ > 0 and the fact that we already know that ‖ξu(t)‖E ≤ M(‖B‖E) for all t ≥ 0 (due to the

dissipative estimate (1.3)).

Lemma A.2. Assume (H1), ξu(0) ∈ B, L > 0 be an arbitrary constant and w solve (A.2). Then, for every µ > 0

the estimate
t∫
s

‖∂tw(τ)‖2 dτ ≤ µ(t − s) +

ML(‖B‖E)

µ , t ≥ s ≥ 0, (A.3)

holds for some non-decreasing function ML that depends only on ν and L.

Proof. Multiplying the equation (A.2) by ∂tw, integrating in Ω and using Lemma A.1 we obtain

d
dt Λ + γ‖∂tw‖2

= −L(∂tu, w) ≤ γµ +

γ−1L2ML(‖B‖E)

µ ‖∂tu‖2

, (A.4)

where

Λ =

1

2

(
‖∂tw‖2

+ (a∇w,∇w) + L‖w‖2

)
+ (F(w), 1) − L(u, w) − (g, w).
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From the dissipative estimate (1.3) and positive invariance (1.6) we see that

t∫
s

‖∂tu(τ)‖2 dτ ≤ M(‖B‖E), t ≥ s ≥ 0. (A.5)

Integrating (A.4) in time from s to t, using LemmaA.1 and (A.5) we derive the desired inequality (A.3) for some

new function ML.

Before continuing, let us recall the following modi�ed Gronwall’s lemma.

Lemma A.3 (Modi�ed Gronwall’s Lemma [31]). Let Λ : R+ → R+ be an absolutely continuous function satis-
fying

d
dt Λ(t) + 2µΛ(t) ≤ h(t)Λ(t) + k,

where µ > 0, k ≥ 0 and
∫ t
s h(τ) dτ ≤ µ(t − s) + m, for all t ≥ s ≥ 0 and some m ≥ 0. Then

Λ(t) ≤ Λ(0)eme−µt +

kem
µ , t ≥ 0.

We are now ready to show that v exponentially goes to 0 in the energy space E.

Proposition A.1. Assume (H1) and ξu(0) ∈ B. Then, for su�ciently large constant L = L(γ, ν, f ), the estimate

‖ξv(t)‖E ≤ ML(‖B‖E)e−βt , t ≥ 0,

holds for some non-decreasing function ML and constant β > 0 that depend only on ν and L.

Proof. Fix κ > 0 to be speci�ed below. Multiplying equation (A.1) by ∂tv + κv in L2

(Ω) we �nd (after some

algebraic manipulation) that

d
dt Λ + (γ − κ)‖∂tv‖2

+ κ
(

(a∇v,∇v) + L‖v‖2

+ (f (u) − f (w), v)

)
=

(f ′(u) − f ′(w), ∂twv) −

1

2

(f ′′(u)∂tu, |v|2),

(A.6)

for

Λ :=

1

2

(
‖∂tv‖2

+ (a∇v,∇v) + L‖v‖2

)
+ κ(∂tv, v) +

κγ
2

‖v‖2

+

(f (u) − f (w), v) −

1

2

(f ′(u), |v|2).

(A.7)

Now by the lower bound on f ′ (see (H1)) we compute

L‖v‖2

+ (f (u) − f (w), v) = L‖v‖2

+

( 1∫
0

f ′(λu + (1 − λ)w)dλ, |v|2
)
≥ (L − K

2
)‖v‖2

.

Thus, for L > K
2
, (A.6) implies

d
dt Λ + (γ − κ)‖∂tv‖2

+ κ(a∇v,∇v) ≤ (f ′(u) − f ′(w), ∂twv) −

1

2

(f ′′(u)∂tu, |v|2). (A.8)

We shall establish below, for su�ciently large L, the equivalence

CνΛ ≤ 1

2

‖∂tv‖2

+

1

2

(a∇v,∇v) ≤ 2Λ. (A.9)

as well as the inequalities

(f ′(u) − f ′(w), ∂twv) ≤

κ
4

(a∇v,∇v) + ML(‖B‖E)‖∂tw‖2Λ,

−

1

2

(f ′′(u), ∂tu|v|2) ≤

κ
4

(a∇v,∇v) + M(‖B‖E)‖∂tu‖2Λ,

(A.10)

(A.11)
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Consequently, for 0 < κ < γ/2, inequalities (A.8)-(A.11) imply

d
dt Λ + CνκΛ ≤ hΛ, for h(t) = ML(‖B‖E)(‖∂tw(t)‖2

+ ‖∂tu(t)‖2

).

This inequality, Lemma A.2 (with small enough µ) and (A.5) show that the assumptions of the Modi�ed Gron-

wall’s Lemma (Lemma A.3) hold. Whence

Λ(t) ≤ M(‖B‖)Λ(0)e−
1

2

Cνκt
, t ≥ 0.

From (A.9), and the fact ξv(0) = ξu(0), we prove the desired result. Therefore, to complete the proof it remains

to establish (A.9)-(A.11).

Let us prove (A.9). We shall prove the upper bound, as the argument for the lower bound is similar. For

κ ∈ (0, γ/2), utilising the dissipative estimate for u (1.3) and the bounds on f ′ (see (H1) and Remark 1.1.a) we

compute

Λ ≥ 1

4

‖∂tv‖2

+

1

2

(
(a∇v,∇v) + L‖v‖2

)
+ κ(

γ
2

− κ)‖v‖2

+ (

1∫
0

f ′(λu + (1 − λ)w)dλ, |v|2) −

1

2

(f ′(u), |v|2)

≥

1

4

‖∂tv‖2

+

1

2

(
(a∇v,∇v) + L‖v‖2

)
− K

2
‖v‖2

−

K
4

2

(1 + |u|2, |v|2)

≥

1

4

‖∂tv‖2

+

1

2

(
(a∇v,∇v) + L‖v‖2

)
−

(
K

2
+

K
4

2

)
‖v‖2

−

K
4

2

‖u‖2

L4

(Ω)

‖v‖1/2‖v‖3/2

L6

(Ω)

≥

1

4

‖∂tv‖2

+

1

4

(a∇v,∇v) +

( L
2

− K
2
−

K
4

2

−M(‖B‖E)

)
‖v‖2

.

Then for large enough L, we deduce Λ ≥ 1

4

‖∂tv‖2

+

1

4

(a∇v,∇v) and the upper bound in (A.9) holds.

To prove (A.10) and (A.11),weuse dissipative bounds on u andw (LemmaA.1) plus the growth assumption

on f ′′ to establish

(f ′(u) − f ′(w), ∂twv) ≤ K
5

(1 + |u| + |w|, |∂tw||v|2) ≤ K
5
‖1 + |u| + |w|‖L6

(Ω)
‖∂tw‖ ‖|v|2‖L3

(Ω)

≤ ML(‖B‖E)‖∂tw‖‖∇v‖2

≤

κν
4

‖∇v‖2

+ ML(‖B‖E)‖∂tw‖2‖∇v‖2

,

and

−

1

2

(f ′′(u), ∂tu|v|2) ≤ M(‖B‖E)‖∂tu‖‖v‖2

L6

(Ω)

≤

κν
4

‖∇v‖2

+ M(‖B‖E)‖∂tu‖2‖∇v‖2

.

Then the desired inequalities follow by invoking the ellipticity of a and the now established (A.9). The proof

is complete.

To complete the proof of Theorem 1.3 it remains to prove that ξw is a bounded trajectory in E1

, this is the

subject of the next result.

Proposition A.2. Assume (H1) and ξu(0) ∈ B. Then, for su�ciently large constant L = L(γ, ν, f ), the inequality

‖div(a∇w)(t)‖ + ‖∇∂tw(t)‖ + ‖∂2

t w(t)‖ ≤ ML(‖B‖E), t ≥ 0,

holds for some non-decreasing function ML that depends only on ν and L.

Proof. Let us set q := ∂tw, then q solves{
∂2

t q + γ∂tq − div(a∇q) + Lq + f ′(w)q = L∂tu, x ∈ Ω, t ≥ 0,

ξq|t=0
= (0, Lu(0) + g), q|∂Ω = 0.

Multiplying the �rst equation above by ∂tq + κq and integrating in Ω we �nd

d
dt Λ + (γ − 2κ)‖∂tq‖2

+ κ
(
‖∂tq‖2

+ (a∇q,∇q) + L‖q‖2

+ (f ′(w), |q|2)

)
=

L(∂tu, ∂tq) + κL(∂tu, ∂tw) +

1

2

(f ′′(w)∂tw, |q|2),

(A.12)
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for

Λ :=

1

2

(
‖∂tq‖2

+ (a∇q,∇q) + L‖q‖2

+ (f ′(w), |q|2)

)
+ κ(∂tq, q) +

κγ
2

‖q‖2

.

The identity (A.12) can be rewritten in the form

d
dt Λ + (γ − 2κ)‖∂tq‖2

+ 2κΛ = 2κ2

(∂tw, ∂tq) + κ2γ‖∂tw‖2

+

+ L(∂tu, ∂tq) + κL(∂tu, ∂tw) +

1

2

(f ′′(w), ∂tw|q|2) =: H.
(A.13)

Arguing in a similar manner as in the proof of (A.9) we have

Cν‖ξq‖2

E ≤ Λ (A.14)

for some Cν, as long as L = L(γ, ν, f ) is large enough. Using the growth condition of f ′′ (see (H1)), the dissipa-

tive estimate for u (1.3), energy estimate forw (LemmaA.1) and arguing as in the proof of (A.10), the right-hand

side H(t) can be estimated as follows:

H ≤ ML(‖B‖E)

δ + δ‖ξq‖2

E +

ML(‖B‖E)

δ ‖∂tw‖2‖ξq‖2

E, (A.15)

for any δ > 0. Choosing 0 < κ < γ
2

, δ small, and collecting (A.13), (A.14), (A.15) we derive

d
dt Λ + κΛ ≤ ML(‖B‖E) + ML(‖B‖E)‖∂tw‖2 Λ.

Consequently, using Lemma A.2 (with small enough µ) and applying the modi�ed Gronwall’s lemma we de-

termine that

‖∇∂tw(t)‖ + ‖∂2

t w(t)‖ ≤ ML(‖B‖E), t ≥ 0. (A.16)

It now readily follows that

‖div(a∇w)‖ ≤ ML(‖B‖E), t ≥ 0.

Indeed, by rewriting equation (A.2) in the form

−div(a∇w) = −∂2

t w − γ∂tw − Lw − f (w) + Lu + g =: H, x ∈ Ω, t ≥ 0,

then due to Theorem 1.1, Lemma A.1 and (A.16) we see that ‖H(t)‖ ≤ ML(‖B‖E). Hence, the proof is complete.

B Proof of Theorem 6.2
The proof of Theorem 6.2 is an adaptation of a construction for exponential attractors presented in [29, Theo-

rem 2.10]. The di�erence here is one needs to keep track on the parameter dependence of all the sets used in

the construction and incorporate the fact we compare the symmetric distance in a topology di�erent to that

in which the exponential attractors are constructed. For the reader’s conveniencewe shall provide the details

here.

B.1 Construction of the exponential attractors.

Let us introduce notations for the ‘starting’ cover Uε( 1

K , R) and the ‘model’ cover Uε( 1

4K , 1):

V
0

(ε) := Uε( 1

K , R), U(ε) := Uε( 1

4K , 1) = {ξiε}Ni=1
, ε ≥ 0,

where N
0

:= cardV
0

(ε) = N(

1

K , R) and N := N(

1

4K , 1) are, by assumption, independent of ε ≥ 0.
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We shall begin with constructing a family of sets Vk(ε), k ∈ N, that satisfy⁵

Vk(ε) ⊂ O(Bε), Sε(k)Bε ⊂
⋃

ξ∈Vk(ε)

BE
(
ξ , 1

K
(

3

4

)k )
, k ∈ N, ε ≥ 0. (B.1)

Note that, by the assumptions of Theorem 6.2, the above property holds for k = 0. We now assume that the

set Vk(ε) exists, for some �xed k, and are going to construct from it the set Vk+1
(ε). From (B.1) it follows that

Sε(k + 1)Bε ⊂
⋃

ξ∈Vk(ε)

SεBE(ξ , 1

K
(

3

4

)k
), ε ≥ 0.

Let us consider an element Sεζ ∈ SεBE(ξ , 1

K
(

3

4

)k
) for some ξ ∈ Vk(ε). Due to the splitting (6.1) we have

Sεζ − Sεξ = vε + wε , ‖vε‖E ≤ 1

2K
(

3

4

)k
, ‖wε‖E1

ε
≤

(
3

4

)k
, ε ≥ 0.

Therefore, by using the model cover U(ε) of BE1

ε
(0, 1), we see that

wε ∈ BE1

ε

(
0,

(
3

4

)k ) ⊂ N⋃
i=1

BE
((

3

4

)k ξiε , 1

4K
(

3

4

)k)
.

Since Sεζ = Sεξ + vε + wε we deduce that

Sε(k + 1)Bε ⊂
⋃

ξ∈Vk(ε)

N⋃
i=1

BE
(
Sεξ +

(
3

4

)k ξiε , 1

K
(

3

4

)k+1

)
, ε ≥ 0.

As ‖ξi,ε‖E1

ε
≤ δ

1
we conclude that (B.1) holds for

Vk+1
(ε) := SεVk(ε) +

(
3

4

)k
U(ε) ⊂ O(Bε), k ∈ Z

+
, ε ≥ 0. (B.2)

Now, it is straightforward to verify the following properties of Vk(ε):
cardVk(ε) = N

0
Nk ,

distE(Sε(k)Bε ,Vk(ε)) ≤

1

K
(

3

4

)k
,

dist

s
E(Vk+1

(ε), SεVk(ε)) ≤ c
0
δ

1

(
3

4

)k
,

k ∈ N, ε ≥ 0. (B.3)

Based on the sets Vk(ε) we construct the sets Ek(ε) ⊂ O(Bε):

E
1

(ε) := V
1

(ε), Ek+1
(ε) := Vk+1

(ε) ∪ SεEk(ε), k ∈ N, ε ≥ 0, (B.4)

that clearly satisfy 
cardEk(ε) ≤ kN

0
Nk ,

SεEk(ε) ⊂ Ek+1
(ε),

distE(Sε(k)Bε , Ek(ε)) <

1

K
(

3

4

)k
,

k ∈ N, ε ≥ 0. (B.5)

We shall now demonstrate that the sets

Mε
:=

[
ˆMε
]
E
,

ˆMε
:=

∞⋃
k=1

Ek(ε), ε ≥ 0, (B.6)

are exponential attractors for the discrete dynamical systems (Bε , Sε). To this endwe use the following result.

5 Here Sε(k) denotes the kth iteration of Sε .
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Lemma B.1. Let the assumptions of Theorem 6.2 hold and the sets Ek(ε), k ∈ N, ε ≥ 0, be given by (B.4). Then,
there exist constants M

1
= M

1
(c

0
, K, δ

1
) > 0 and ω = ω(c

0
, K, δ

1
) ∈ (0, 1) (both independent of ε) such that

for all ε ≥ 0 we have

distE(Ek(ε), Sε(n)Bε) ≤ M1

(
3

4

)ωk
, for all n ∈ N, k ∈ N : k ≥ n

ω .

The proof of this lemma, basically, repeats the proof of Lemma 2.3 from [29], so we omit the proof.

Now,we are ready to verify that the constructed setsMε
satisfy De�nition 6.1. The positive invariance and

the uniform exponential attraction property (with σ = ln

(
4

3

)
)

distE(Sε(k)Bε ,Mε
) ≤

1

K

(
3

4

)k
, k ∈ N, ε ≥ 0, (B.7)

follow directly from (B.5)
2
, (B.5)

3
and (B.6). From the construction it also follows that Mε ⊂ O(Bε) and thus

Mε
is compact in E for every ε ≥ 0. Let us check that dimf (M

ε
, E) ≤ D uniformly with respect to ε ≥ 0. To this

end we need to estimate the minimal number Nr(Mε
, E) of open balls with radius r > 0 in E needed to cover

Mε
. Note that, since the cover is open, Nr(Mε

, E) = Nr( ˆMε
, E). We argue that for any r > 0 there exist kr ∈ N

and nr ∈ N (independent of ε) such that

distE

(
∞⋃

k=kr+1

Ek(ε),Vnr (ε)

)
< r, ε ≥ 0. (B.8)

Indeed, let kr and nr be parameters, then by the triangle inequality we have

distE

(
∞⋃

k=kr+1

Ek(ε),Vnr (ε)

)
≤ distE

(
∞⋃

k=kr+1

Ek(ε), Sε(nr)Bε
)

+ distE

(
Sε(nr)Bε ,Vnr (ε)

)
, ε ≥ 0.

Using (B.3)
2
and taking nr ≥ ⁶

⌊
1

ln(4/3)

ln

(
2

rK
)⌋
∨ 0 + 1 we obtain

distE

(
Sε(nr)Bε ,Vnr (ε)

)
<

r
2

, ε ≥ 0.

Also applying Lemma B.1 for any kr ∈ N such that kr ≥ nr
ω , we �nd that

distE

(
∞⋃

k=kr+1

Ek(ε), Sε(nr)Bε
)
≤ M

1

(
3

4

)ωkr
≤ M

1

(
3

4

)nr
<

r
2

, ε ≥ 0,

if nr ≥
⌊

1

ln(4/3)

ln

(
2M

1

r

)⌋
∨ 0 + 1. Therefore (B.8) is valid for nr and kr of the form

nr =

⌊
1

ln(4/3)

ln

(
1

r
)⌋
∨ 0 + C

1
(c

0
, K, δ

1
), kr =

⌊
1

ω ln(4/3)

ln

(
1

r
)⌋
∨ 0 + C

2
(c

0
, K, ω, δ

1
).

Using the control on thenumber of elements forVk(ε)and Ek(ε), (B.6) and (B.8)we canestimateNr( ˆMε
, E)

as follows

Nr( ˆMε
, E) ≤

kr∑
k=1

cardEk(ε) + cardVnr (ε) ≤

kr∑
k=1

kN
0
Nk + N

0
Nnr ≤ (k2

r + 1)N
0
Nkr .

This estimate readily yields

dimf (M
ε
, E) := lim sup

r→+0

ln Nr(Mε
,E)

ln

(
1

r
) ≤

ln N
ω ln(4/3)

=: D, ε ≥ 0. (B.9)

6 Here bcc denotes the largest integer which does not exceed c ∈ R.
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B.2 Estimate on the symmetric distance

Derivation of the estimate on the symmetric distance dist

s
E−1 (Mε

,M0

) relies on the following result.

Lemma B.2. Let the assumptions of Theorem 6.2 hold and the sets Ek(ε), k ∈ N, ε ≥ 0, be given by (B.4). Then
for all k ∈ N and ε ≥ 0 the following estimate

dist

s
E−1 (Ek(ε), Ek(0)) ≤ MLk

(
sup

ξ∈O(Bε)

‖Sεξ − S0
ξ‖E−1 + dist

s
E−1

(
Uε( 1

4K , 1),U
0

(

1

4K , 1)

)
+ dist

s
E−1

(
Uε( 1

K , R),U
0

(

1

K , R)

)
,

(B.10)

holds for some constant M = M(L) independent of ε and k.

Proof. Fix ε ≥ 0.

Step 1. We �rst establish (B.10) for the sets Vk(ε), Vk(0). To this end it is convenient to introduce the

notations

dk := dist

s
E−1 (Vk(ε),Vk(0)), k ∈ Z

+
,

ˆd
0

:= dist

s
E−1 (U(ε),U(0));

s
0

:= sup

ξ∈O(Bε)

‖Sεξ − S0
ξ‖E−1 .

It is su�cient to establish that the following recurrent chain of inequalities

dk+1
≤ s

0
+

ˆd
0

+ Ldk , k ∈ Z
+
. (B.11)

Indeed, upon iterating these inequalities one �nds

dk ≤ Lk+1

−1

L−1

(s
0

+
ˆd

0
+ d

0
), k ∈ Z

+
. (B.12)

Let us prove (B.11). Note that, from the construction of Vk(ε) (B.2), we readily have the following inequal-

ities

dist

s
E−1 (Vk+1

(ε),Vk+1
(0)) ≤ dist

s
E−1 (SεVk(ε), S

0
Vk(0)) +

ˆd
0
, k ∈ Z

+
. (B.13)

Let us now verify the inequality

dist

s
E−1 (SεA, S0

C) ≤ s
0

+ L dist

s
E−1 (A, C), for all A ⊂ O(Bε), C ⊂ O(B

0
). (B.14)

Fixing arbitrary a ∈ A, c ∈ C and using Lipschitz continuity of S
0
in E−1

we obtain

‖Sεa − S0
c‖E−1 ≤ ‖Sεa − S0

a‖E−1 + ‖S
0
a − S

0
c‖E−1

≤ ‖Sεa − S0
a‖E−1 + L‖a − c‖E−1 ≤ s

0
+ L‖a − c‖E−1 .

Consequently (B.14) holds. Hence, upon combining (B.13) with (B.14), we deduce (B.11) and step 1 is complete.

Step 2. We claim that the sets Ek(ε), Ek(0) satisfy the same inequality as in (B.12), namely

dist

s
E−1 (Ek(ε), Ek(0)) ≤

Lk+1

−1

L−1

(s
0

+ d
0

+
ˆd

0
), k ∈ N. (B.15)

Since E
1

(ε) = V
1

(ε) for all ε ≥ 0, the above inequality is true for k = 1. Assume (B.15) holds for k = m and

let us verify it for k = m + 1. It is straightforward to check that for any A
1
, A

2
⊂ O(Bε), C1

, C
2
⊂ O(B

0
) the

following inequality

dist

s
E−1 (A

1
∪ A

2
, C

1
∪ C

2
) ≤ dist

s
E−1 (A

1
, C

1
) ∨ dist

s
E−1 (A

2
, C

2
) (B.16)

holds. Therefore, due to (B.4), it is enough to show that

dist

s
E−1 (SεEm(ε), S

0
Em(0)) ≤ (s

0
+ d

0
+

ˆd
0

)

Lm+2

− 1

L − 1

.
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This inequality is a direct consequence of (B.14) and the induction assumption. Indeed, we compute

dist

s
E−1 (SεEm(ε), S

0
Em(0)) ≤ s

0
+ L dist

s
E−1 (Em(ε), Em(0))

≤ (s
0

+ d
0

+
ˆd

0
)

(
1 + L Lm+1

−1

L−1

)
= (s

0
+ d

0
+

ˆd
0

)

Lm+2

−1

L−1

,

as required. Hence, inequality (B.15) yields the desired result with M(L) =

L
L−1

.

We proceed to the proof of the estimate (6.2) on the distance dist

s
E−1 (Mε

,M0

). We �x ε ≥ 0 and set

˜d := sup

ξ∈O(Bε)

‖Sεξ − S0
ξ‖E−1 + dist

s
E−1 (Bε , B0

) + dist

s
E−1

(
Uε( 1

4K , 1),U
0

(

1

4K , 1)

)
+ dist

s
E−1

(
Uε( 1

K , R),U
0

(

1

K , R)

)
.

(B.17)

In fact, we will only demonstrate how to obtain the estimate (6.2) for distE−1 (Mε
,M0

) as the other side

(distE−1 (M0

,Mε
)) can be done similarly. Let k ∈ N be arbitrary and �x ξε ∈ Ek(ε). Due to the just proved

Lemma B.2 we have

distE−1 (ξε ,M0

) ≤ distE−1 (ξε , Ek(0)) ≤ MLk˜d, k ∈ N, ε ≥ 0. (B.18)

On the other hand, we will show below that

distE−1 (ξε ,M0

) ≤ M
(

˜dL
n
ω +

(
3

4

)n )
, for all n ∈ N, k ∈ N : k ≥ n

ω . (B.19)

Using (B.18) for k ≤ n
ω and (B.19) we deduce that

distE−1 (ξε ,M0

) ≤ M
(

˜dL
n
ω +

(
3

4

)n)
, (B.20)

for someM = M(c
0
, c
−1
, K, L, δ

1
) which is independent of ε. Optimizing n in the above inequality, for exam-

ple taking n =

⌊
ω

ω ln(4/3)+L ln

(
ω ln(4/3)

˜d ln L

)⌋
∨ 0, we conclude the desired estimate (6.2) with κ =

ω ln(4/3)

ω ln(4/3)+ln(L)

.

It remains to prove (B.19). By the triangle inequality we have

distE-1 (ξε ,M0

) ≤ distE-1 (ξε , Sε(n)Bε) + distE-1 (Sε(n)Bε , S0
(n)B

0
) + distE-1 (S

0
(n)B

0
,M0

). (B.21)

Let us estimate each of the terms on the right hand side of (B.21) separately. Using LemmaB.1 and considering

k ≥ n
ω we obtain

distE−1 (ξε , Sε(n)Bε) ≤ M1

(
3

4

)n
, for all n ∈ N, k ∈ N : k ≥ n

ω . (B.22)

Iterating (B.14) we �nd

distE−1 (Sε(n)Bε , S0
(n)B

0
) ≤ (s

0
+ dist

s
E−1 (Bε , B0

))

Ln+1

L−1

≤
˜d Ln+1

L−1

. (B.23)

Finally, due to the continuous embedding E ⊂ E−1

(assumption (2)) and the exponential attraction prop-

erty ofM0

(B.7) we see that

distE−1 (S
0

(n)B
0
,M0

) ≤ c
−1

distE(S
0

(n)B
0
,M0

) ≤ c
−1

1

K
(

3

4

)n
, n ∈ N. (B.24)

Hence (B.19) holds and the proof is complete.

C Proof of Theorem 6.4
Derivation of the estimate on the symmetric distance with correction relies on the following

interesting modi�cation of Lemma B.2.
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Lemma C.1. Let the assumptions of Theorem 6.4 hold and the sets Ek(ε), k ∈ N, ε ≥ 0, be given by (B.4). Then
for all k ∈ N and ε ≥ 0 the following estimate

dist

s
E

(
Ek(ε), TεEk(0)

)
≤ MLk

(
sup

ξ∈O(B
0

)

‖SεΠ−1

ε ξ − TεS0
ξ‖E + sup

ξ∈O(B
0

)

‖Tεξ − Π−1

ε ξ‖E

+ dist

s
E

(
Uε( 1

4K , 1), Tε U0
(

1

4K , 1)

)
+ dist

s
E

(
Uε( 1

K , R), Tε U0
(

1

K , R)

))
, (C.1)

holds with some constant M = M(L) which is independent of ε and k.

Proof. We follow the strategy of Lemma B.2 and �x ε ≥ 0.

We �rst derive an estimate on the distance between Vk(ε) and TεVk(0). Let us introduce the notations

dk := dist

s
E

(
Vk(ε), TεVk(0)

)
, k ∈ Z

+
,

ˆd
0

:= dist

s
E

(
U(ε), Tε U(0)

)
;

s
0

:= sup

ξ∈O(B
0

)

‖SεΠ−1

ε ξ − TεS0
ξ‖E + L sup

ξ∈O(B
0

)

‖Π−1

ε ξ − Tεξ‖E.

We are going to verify the recurrent chain of inequalities

dk+1
≤ s

0
+

ˆd
0

+ Ldk , k ∈ Z
+
. (C.2)

From the construction of Vk(ε) (B.2) we see

dist

s
E

(
Vk+1

(ε), TεVk+1
(0)

)
≤ dist

s
E

(
SεVk(ε), TεS0

Vk(0)

)
+

ˆd
0
, k ∈ Z

+
. (C.3)

We now argue that

dist

s
E

(
SεA, TεS0

C
)
≤ s

0
+ L dist

s
E

(
A, TεC

)
, for all A ⊂ O(Bε), C ⊂ O(B

0
). (C.4)

Indeed, �xing a ∈ A, c ∈ C and using the uniform (with respect to ε > 0) Lipschitz continuity of Sε in E

(assumption (5) of Theorem 6.4) we compute

‖Sεa − TεS0
c‖E ≤ ‖Sεa − SεΠ−1

ε c‖E + ‖SεΠ−1

ε c − TεS0
c‖E

≤ L‖a − Π−1

ε c‖E + ‖SεΠ−1

ε c − TεS0
c‖E

≤ L‖a − Tεc‖E + L‖Tεc − Π−1

ε c‖E + ‖SεΠ−1

ε c − TεS0
c‖E.

The above inequality, obviously, implies (C.4). Combining (C.3) and (C.4) we establish the recurrent inequal-

ities (C.2) which yield

dk ≤ (s
0

+ d
0

+
ˆd

0
)

Lk+1

−1

L−1

, k ∈ Z
+
.

To derive the estimate (C.1) on the distance dist

s
E

(
Ek(ε), TεEk(0)

)
we simply argue as in Step 2 of Lemma

B.2.

We are ready to prove the theorem. We �x ε ≥ 0 and set

˜d := sup

ξ∈O(B
0

)

‖SεΠ−1

ε ξ − TεS0
ξ‖E + sup

ξ∈O(B
0

)

‖Tεξ − Π−1

ε ξ‖E

+ dist

s
E

(
Uε( 1

4K , 1), Tε U0
(

1

4K , 1)

)
+ dist

s
E

(
Uε( 1

K , R), Tε U0
(

1

K , R)

)
.

As in the proof of Theorem 6.2 wewill only consider distE(Mε
, TεM0

) as the other side can argued in a similar

manner. Let k ∈ N and ξε ∈ Ek(ε) be �xed. Then according to Lemma C.1 we have

distE

(
ξε , TεM0

)
≤ distE

(
ξε , TεEk(0)

)
≤ MLk˜d, k ∈ N, ε ≥ 0. (C.5)

On the other hand we deduce below that

distE(ξε , TεM0

) ≤ M
(

˜dL
n
ω +

(
3

4

)n )
+ m(ε), k ≥ n

ω , n ∈ N, (C.6)
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for ω given in Lemma B.1. The estimate (C.5) for k ≤ n
ω together with (C.6) implies

distE(ξε , TεM0

) ≤ M
(

(
˜d + m(ε))L

n
ω +

(
3

4

)n )
, (C.7)

for some M = M(c
0
, K, L, L

cor
, δ

1
) which is independent of ε. Optimizing n in the above inequality provides

the desired result.

It remains to prove (C.6). By the triangle inequality we deduce that

distE

(
ξε , TεM0

)
≤

distE(ξε , Sε(n)Bε) + distE(Sε(n)Bε , TεS0
(n)ΠεBε) + distE(TεS0

(n)ΠεBε , TεM0

).

(C.8)

The �rst term on the right hand side of (C.8) can be controlled by Lemma B.1 for k ≥ n
ω :

distE(ξε , Sε(n)Bε) ≤ M1

(
3

4

)n
. (C.9)

By the identityΠεBε = B
0
(assumption (3) of Theorem 6.4) and iterations of (C.4) we estimate the second term

on the right hand side of (C.8):

distE(Sε(n)Bε , TεS0
(n)ΠεBε) = distE(Sε(n)Bε , TεS0

(n)B
0

) ≤ s
0

Ln−1

L−1

≤
˜d L
L−1

Ln . (C.10)

The last term on the right hand side of (C.8) can be estimated using ΠεBε = B
0
and the property of Tε

(assumption (4) of Theorem 6.4) and the exponential attraction property ofM0

:

distE(TεS0
(n)ΠεBε , TεM0

) = distE(TεS0
(n)B

0
, TεM

0

)

≤ L
cor

distE(S
0

(n)B
0
,M0

) + m(ε) ≤ L
cor

1

K
(

3

4

)n
+ m(ε).

(C.11)

Hence (C.6) follows from (C.8)-(C.11) and the theorem is proved.

D On the re�nement of inequality (5.8)

Let us begin by noting that in Section 5 we were actually in the position to prove the following improvement

of inequality (5.8) (in Theorem 5.2).

Proposition D.1. For every ξ ∈ BE2

ε
(0, R) the inequality

‖∂tSε(t)ξ − ∂tS0
(t)Πεξ‖E−1 ≤ MeKt‖A−1

ε − A−1

0
‖2/3

L(L2

(Ω))

, t ≥ 0, (D.1)

holds for some non-decreasing functions M = M(R, ‖g‖) and K = K(R, ‖g‖) which are independent of ε > 0.

Proof. The proof of this result follows along the same lines as in the proof of Theorem 5.2 except for the

following minor alterations:

1. In the uniform bounds (5.9) (due to Theorem 2.5) we actually have

‖∂2

t uε‖2

H1

0

(Ω)

+ ‖∂2

t u0‖2

H1

0

(Ω)

≤ M.

2. From (1) we can see that qε = ∂tuε − ∂tu0

satis�es the bound

‖∂tqε‖ ≤ ‖∂tqε‖1/2

H−1

(Ω)

‖∂tqε‖1/2

H1

0

(Ω)

≤ M‖∂tqε‖1/2

H−1

(Ω)

,

and so we can improve (5.13) as follows:

|
(
A

0
∂tuε − Aε∂tuε , A−1

0
∂tqε

)
| = |

(
Aε∂tuε , (A−1

ε − A−1

0
)∂tqε

)
| ≤ ‖Aε∂tuε‖‖A−1

ε − A−1

0
‖L(L2

(Ω))
‖∂tqε‖

≤ M‖A−1

ε − A−1

0
‖L(L2

(Ω))
‖∂tqε‖1/2

H−1

(Ω)

≤ M
(

3

4

‖A−1

ε − A−1

0
‖4/3

L(L2

(Ω))

+

1

4

‖∂tqε‖2

H−1

(Ω)

)
.
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3. From (2) we can replace (5.12) with

d
dt Λ ≤ M1

eKt‖A−1

ε − A−1

0
‖4/3

L(L2

(Ω))

+ M
2
Λ, Λ :=

1

2

(
∂tqε , A−1

0
∂tqε

)
+

1

2

‖qε‖2

,

which then leads to the desired result.

In order to further improve (5.8) (or rather (D.1)), and achieve the optimal bound with power one, we intend

to argue as in the proof of Theorem 4.2. For this reason, we require additional regularity on the initial data ξ .
In particular, we shall show that it is su�cient for ξ ∈ E2

ε to be such that the solution uε to (0.1) (with initial

data ξ ) satis�es
‖Aε∂2

t uε‖ ≤ M, t ≥ 0.

Then, we shall demonstrate that this additional regularity is ‘natural’ in the sense that the global attractor

Aε
possesses such smoothness under the additional mild assumption on the non-linearity f :

f ∈ C3

(R), |f ′′′(s)| ≤ K
6
, s ∈ R. (H3)

Let us introduce the mapping

Au := −div(a∇u),

recall {
E2

=

{
ξ ∈ (H1

0
(Ω))

2 |
(
Aξ1

− g
)
∈ H1

0
(Ω) and Aξ2 ∈ L2

(Ω)

}
,

‖ξ‖2

E2 = ‖Aξ1

− g‖2

H1

0

(Ω)

+ ‖Aξ1‖2

+ ‖Aξ2‖2

,

and introduce {
E3

:=

{
ξ ∈ E2 |A

(
Aξ1

+ f (ξ1

) − g
)
∈ L2

(Ω) and Aξ2 ∈ H1

0
(Ω)

}
,

‖ξ‖2

E3 := ‖A
(
Aξ1

+ f (ξ1

) − g
)
‖2

+ ‖∇Aξ2‖2

+ ‖ξ‖2

E2 .

Our �rst result is that a dissipative estimate holds in E3

.

Theorem D.1. Assume (H1) and (H3). Then for any initial data ξ ∈ E3 the energy solution u to problem (1.2) is
such that ξu ∈ L∞(R

+
;E3

) and the following dissipative estimate is valid:

‖∂4

t u(t)‖ + ‖∂3

t u(t)‖H1

0

(Ω)

+ ‖A∂2

t u(t)‖ + ‖ξu(t)‖E3 ≤ M(‖ξ‖E3 )e−βt + M(‖g‖), t ≥ 0,

for some non-decreasing function M and constant β > 0 that depend only on ν > 0.

Proof. We begin by noting that since ξ ∈ E2

then, by the dissipative estimate in E2

(Theorem 2.5), ξu(t) :=

S(t)ξ satis�es

‖∂3

t u(t)‖ + ‖∇∂2

t u(t)‖ + ‖ξu(t)‖E2 ≤ M(‖ξ‖E2 )e−βt + M(‖g‖), t ≥ 0. (D.2)

In particular, we have

‖u(t)‖Cα(Ω)

+ ‖∂tu(t)‖Cα(Ω)

≤ M(‖ξ‖E2 )e−βt + M(‖g‖), t ≥ 0, (D.3)

where α is given in Remark 2.1.

Now upon di�erentiating (1.2), in time, three times we deduce that r(t) := ∂3

t u(t) solves the equation

∂2

t r + γ∂tr + Ar = −f ′′′(u)(∂tu)

3

− 3f ′′(u)∂tu ∂2

t u − f ′(u)∂3

t u =: F(t), t ≥ 0,

with initial data

r(0) = γ2ξ2

+ γ(Aξ1

+ f (ξ1

) − g) − Aξ2

− f ′(ξ1

)ξ2

,

and

∂tr(0) = −γr(0) + γAξ2

+ A
(
Aξ1

+ f (ξ1

) − g
)
− f ′′(ξ1

)

(
ξ2

)
2

+ f ′(ξ1

)

(
γξ2

+ Aξ1

+ f (ξ1

) − g
)
.
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Nowby (D.2) and (D.3)we readily deduce that F ∈ L∞(R
+

; L2

(Ω)). Additionally, since ξ ∈ E3

we see that r(0) ∈
H1

0
(Ω) and ∂tr(0) ∈ L2

(Ω), i.e.

(
r(0), ∂tr(0)

)
∈ E. Consequently, by standard linear dissipative estimates for

r, we �nd

‖∂4

t u(t)‖ + ‖∂3

t u(t)‖H1

0

(Ω)

≤ M(‖ξ‖E3 )e−βt + M(‖g‖), t ≥ 0, (D.4)

for some M that depends only on ν.
Now, the remaining claims are proven by di�erentiating (1.2) once to get

‖A∂tu(t)‖H1

0

(Ω)

≤ M(‖ξ‖E3 )e−βt + M(‖g‖), t ≥ 0.

Then di�erentiating (1.2) one more time to get

‖A∂2

t u(t)‖ ≤ M(‖ξ‖E3 )e−βt + M(‖g‖), t ≥ 0,

and �nally re-arranging (1.2) to get

‖A
(
Au(t) + f (u(t)) − g

)
‖ ≤ M(‖ξ‖E3 )e−βt + M(‖g‖), t ≥ 0.

Equipped with Theorem 2.1 we are ready to prove the desired improvement of (D.1). Namely, upon setting E3

ε
to be E3

for the case a = a(

·

ε ) and BE3

ε
(0, R) := {ξ ∈ E3

ε | ‖ξ‖E3

ε
≤ R}, the following result holds.

Theorem D.2. Assume (H1) and (H3). Then, for every ξ ∈ BE3

ε
(0, R), the following inequality

‖∂tSε(t)ξ − ∂tS0
(t)Πεξ‖E−1 ≤ MeKt‖A−1

ε − A−1

0
‖L(L2

(Ω))
, t ≥ 0,

holds for some non-decreasing functions M = M(R, ‖g‖) and K = K(R, ‖g‖) which are independent of ε > 0.

Proof. The argument is similar to that in Theorem 4.2 so we shall just outline the main ideas.

Set ξuε (t) := Sε(t)ξ , ξu0 (t) := S
0

(t)Πεξ and recall ξ
0

= Πεξ . Then by the dissipative estimates for ξuε in E3

ε
(Theorem D.1) and ξu0 in E2

0
(Theorem 2.5) we have the following uniform bounds in t and ε:

‖uε‖H1

0

(Ω)

+ ‖Aε∂tuε‖ + ‖Aε∂2

t uε‖ + ‖u0‖H1

0

(Ω)

≤ M.

The di�erence qε := ∂tuε − ∂tu0

solves{
∂2

t qε + γ∂tqε + A
0
qε = A

0
∂tuε − Aε∂tuε + f ′(u0

)∂tu0

− f ′(uε)∂tuε , x ∈ Ω, t ≥ 0,

ξqε |t=0
=

(
ξ2

− ξ2

0
, γ(ξ2

0
− ξ2

) + f (ξ1

0
) − f (ξ1

)

)
, qε|∂Ω = 0,

and we have

‖ξqε |t=0
‖E−1 ≤ C‖A−1

ε − A−1

0
‖L(L2

(Ω))
.

After testing the �rst equation in the above problem with A−1

0
∂tqε and some algebra (similar to that in

Theorem 4.2) we deduce that

d
dt Λ ≤ −

(
Aε∂2

t uε , (A−1

ε − A−1

0
)qε
)

+

(
f ′(u0

)∂tu0

− f ′(uε)∂tuε , A−1

0
∂tqε

)
,

where Λ :=

1

2

‖qε‖2

+

1

2

(
∂tqε , A−1

0
∂tqε

)
−

(
Aε∂tuε , (A−1

ε − A−1

0
)qε
)
.

Now in the proof of Theorem 5.2 we showed that∣∣(f ′(u0

)∂tu0

− f ′(uε)∂tuε , A−1

0
∂tqε

)∣∣
≤ M

1

(
eKt‖A−1

ε − A−1

0
‖2

L(L2

(Ω))

+

1

2

‖qε‖2

+

1

2

(∂tqε , A−1

0
∂tqε)

)
.

Therefore

d
dt Λ ≤

(
2M

1
Aε∂tuε − Aε∂2

t uε , (A−1

ε − A−1

0
)qε
)
− 2M

1

(
Aε∂tuε , (A−1

ε − A−1

0
)qε
)

+ M
1

(
eKt‖A−1

ε − A−1

0
‖2

L(L2

(Ω))

+

1

2

‖qε‖2

+

1

2

(∂tqε , A−1

0
∂tqε)

)
,
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and since ∣∣(
2M

1
Aε∂tuε − Aε∂2

t uε , (A−1

ε − A−1

0
)qε
)∣∣
≤ C‖A−1

ε − A−1

0
‖2

L(L2

(Ω)

+ M
1

1

2

‖qε‖2

,

we �nd

d
dt Λ ≤ 2M

1
Λ + CeKt‖A−1

ε − A−1

0
‖2

L(L2

(Ω))

,

from which the desired result follows.

We �nish this section with the following result on the smoothness of the global attractor.

Theorem D.3. Assume (H1) and (H3), and letA be the global attractor of the dynamical system (E, S(t)) given
by (1.4). Then

‖A‖E3 ≤ M(‖g‖),

for some non-decreasing M that depends only on ν.

Indeed this result can be proved by arguing as in Section 2 for the following splitting: for initial data ξ ∈
BE2 (0, R

1
) we consider H ∈ H1

0
(Ω) that satis�es

−div(a∇H) = −f ′(ξ1

)ξ2 ∈ L2

(Ω),

and G ∈ H1

0
(Ω) that satis�es

−div(a∇G) = g − f (ξ1

) − γH ∈ L2

(Ω).

Then, we decompose the solution u to (1.2) as u = v + w where{
∂2

t v + γ∂tv − div(a∇v) = 0, x ∈ Ω, t ≥ 0,

ξv|t=0
= (ξ1

− G, ξ2

− H), v|∂Ω = 0,

and {
∂2

t w + γ∂tw − div(a∇w) = −f (u) + g, x ∈ Ω, t ≥ 0,

ξw|t=0
= (G, H), w|∂Ω = 0.

Themain points to highlight are that we can argue as in the proof of Theorem 2.1 (to produce an analogue

of Lemma 2.1) and establish that

distE

(
S(t)BE2 (0, R

1
), BE3 (0, R

2
)

)
≤ Me−βt , t ≥ 0,

holds for some positive constants R
2
, M and β that depend only on ν. Then, we use the transitivity of expo-

nential attraction (Theorem 2.2) and Corollary 2.1 to deduce that BE3 (0, R
2

) attracts bounded sets in E:

distE

(
S(t)B, BE3 (0, R

2
)

)
≤ M(‖B‖E)e−βt , t ≥ 0.

This �nally allows us to argue as in the proof of Theorem 2.4 to prove Theorem D.3.

Consequently, the improved regularity of the attractor (Theorem D.3) allows us to apply, when appro-

priate, the improved inequality (Theorem D.2) in obtaining error estimates in homogenisation (cf. Remark

5.2).
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