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SUMMARY 1 

Understanding the cellular organization of tissues is key to developmental 2 

biology. In order to deal with this complex problem, researchers have taken 3 

advantage of reductionist approaches that have revealed fundamental 4 

morphogenetic mechanisms and quantitative laws. For epithelia, their two-5 

dimensional representation as polygonal tessellations has been proved 6 

successful for understanding tissue organization. Yet, epithelial tissues bend 7 

and fold to shape organs in three dimensions. In this context, epithelial cells are 8 

too often simplified as prismatic blocks with a limited plasticity. However, there 9 

is increasing evidence that a realistic approach, even from a reductionist 10 

perspective, must include apico-basal intercalations (i.e. scutoidal cell shapes) 11 

for explaining epithelial organization convincingly. Here, we present an historical 12 

perspective about the tissue organization problem. Specifically, we analyse past 13 

and recent breakthroughs, and discuss how and why simplified, but realistic, in 14 

silico models require scutoidal features to address key morphogenetic events. 15 
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Introduction 1 

 2 

The invention of the microscope led to the discovery of the fundamental unit of 3 

life: the cell. Yet, the collective organization of cells in tissues is far from obvious 4 

under the microscope and requires the combination of reliable staining methods 5 

and detailed analyses. For example, the neuron doctrine that set the 6 

foundations of modern neuroscience was only possible due to the combination 7 

of the staining method developed by Golgi (Golgi, 1885) and the histological 8 

analyses (and artistic talent) of Ramón y Cajal (de Castro et al., 2007; Ramón y 9 

Cajal, 1888; Ramón y Cajal, 1899) that in fact shared, for the first time, the 10 

Nobel prize in Medicine and Physiology. 11 

Packed tissues, such as epithelia, pose additional problems at the time of 12 

elucidating the cellular organization since it is difficult to obtain detailed three-13 

dimensional (3D) cellular shapes. This has led to the adoption of diverse 14 

reductionist approaches to understanding the epithelial tissue organization. The 15 

polygonal-like shape of epithelial cells on the apical surface of tissues is the 16 

source of the most important and prevalent simplification: epithelial cells have a 17 

prismatic-like shape (Fig. 1A). Thus, textbooks have traditionally depicted 18 

schematically the cells of epithelial monolayers as prisms with polygonal bases 19 

representing their apical and basal surfaces (Boyle, 2008; Gilbert, 2013). In the 20 

case of complex tissue rearrangements (e.g. folding and bending of epithelia) 21 

cells have been also represented by prismatic shapes. Still, under those 22 

circumstances, the cells necessarily reduce one of the polygonal surfaces 23 

(apical or basal) to accommodate to the curvature of the tissue (Fig. 1B). The 24 

term ‘bottle shape’ was coined to describe the cell shape that corresponds, 25 

geometrically speaking, to a truncated pyramid also known as ‘frustum’ 26 

(Schneider and Eberly, 2003). Epithelial cells with a bottle shape do appear 27 

during the invagination processes that occur during embryo development, such 28 

as gastrulation or the formation of the neural tube in vertebrates (Davidson, 29 

2012; Lecuit and Lenne, 2007; Pearl et al., 2017). An important implication of 30 

the ‘prismatic simplification’ is that apical and basal surface bases necessarily 31 

have the same number of sides (but may differ in size in the case of bottle-32 

shaped cells). Consequently, such representation assumes tacitly that it is 33 
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enough to know the organization of the apical layer to understand the global 3D 1 

architecture and the cellular connectivity. Thus, until very recently, most studies 2 

have inferred the 3D organizational and biophysical information of epithelia by 3 

examining and modelling the apical cell surface alone. However, the natural 4 

shape of the epithelial cells is far more complex. In particular, several works 5 

have revealed the existence, predominantly in curved tissues, of apico-basal 6 

intercalations that challenge the idea of prismatic epithelial cells (Fig. 1C). This 7 

feature appears to be essential to understand dynamical events in different 8 

morphogenetic processes and to shed light into the biophysical forces that drive 9 

homeostatic epithelial packing. We notice that although cell-cell contacts are far 10 

from being straight in a number of well-studied epithelia, as shown, for example, 11 

by the curvature of the lateral membranes of columnar cells, here, we discuss 12 

efforts to develop reductionist representations of tissues based on "simple", yet 13 

faithful, representations of cell shapes away, in some cases, from the prismatic-14 

like paradigm. Thus, we review the study of epithelial organization from a 15 

historical perspective and argue that such methodological approaches are 16 

particularly required for the implementation of computational models. These 17 

models, still limited, are extremely helpful to unveil the underlying biophysical 18 

cues driving morphogenesis. 19 

  20 

A historical perspective on the 3D epithelial organization 21 

The structure and cellular organization of developing tissues have been 22 

studied since the development of the first microscopes. Interestingly, the term 23 

‘cell’ was in fact coined in 1655 by Hooke when describing the organization of a 24 

tissue rather than an individual entity. Thus, when describing his observations 25 

under the microscope of thin slices of cork in ‘Observation XVIII’ of his 26 

celebrated book Micrographia, , he wrote that this tissue resembled ‘much like a 27 

Honey-comb, but the pores of it were not regular; [...] these pores, or cells [...]’ 28 

(Hooke, 1665). Still, it was not until the 19th century that the cell theory was 29 

widely accepted and experimental embryology began to flourish, during which 30 

the question of how cells collectively organize became paramount. Soon 31 

enough, embryologists acknowledged that the cells were necessarily under the 32 

influence of the physical laws that govern nature. Robert, in 1903, thoroughly 33 
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analysed the early changes of the development of embryos of the genus 1 

Trochus (marine univalve mollusc) from this perspective (Robert, 1903). 2 

Typically, a four-cell embryo is composed of two lateral cells contacting two 3 

central cells, such that the central cells make contact between them and also 4 

with the lateral ones. However, Robert found cellular configurations where all 5 

four cells were sharing surface contacts (Fig. 2). To understand the processes 6 

leading to these configurations, Robert pioneered the usage of biophysically-7 

inspired models based on soap bubble experiments. Thus, he studied the 3D 8 

structures derived from four-bubble motifs by perturbing the force equilibrium 9 

(e.g. in motifs where the bubbles had the same volume) by removing air from 10 

the two bubbles at the end of the polar furrow (lateral cells). With these 11 

experiments, he was able to reproduce the different configurations observed in 12 

real embryos (Fig. 2). He then concluded that surface tension was the most 13 

important physical phenomenon underlying the organization of both cells and 14 

foam bubbles. Years later, the mathematical biologist Sir D’Arcy Thompson, in 15 

his seminal book On Growth and Form (Thompson, 1917), remarked the 16 

presence of the configurations analysed by Robert and added other 17 

configurations found in embryos of different animals, such as the starfish (genus 18 

Asterina) (Ludwig, 1882) or the freshwater anostracan (genus Branchipus) 19 

(Spangenberg, 1875), and pollen-grains of orchids (genus Neottia) (Goebel et 20 

al., 1887) (Fig. 2). 21 

Parallel to these efforts, in 1887 Lord Kelvin proposed a solution to the classic 22 

problem of dividing the space with cells with minimum surface area. He 23 

introduced the idea of 14-sided shapes, or ‘tetrakaidecahedral’ cells, and 24 

demonstrated their appearance in soap-films (Thomson, 1887) (Fig. 2). Later, 25 

Frederic T. Lewis made a careful study that considered the possibility that such 26 

a shape was present in the cells of ordinary vegetable parenchyma (specifically, 27 

in Sambucus canadensis) (Lewis, 1923). Lewis examined quantitatively the 28 

cellular 3D contacts and observed cells with a diverse number of sides and 29 

conformations. Notably, he found predominantly 14-sided cells as Kelvin 30 

predicted, thus validating, indirectly, that surface tension was the main driver of 31 

cellular organization. Lewis also observed later the same prevalence of the 32 

tetrakaidecahedral shape in human fat cells (Lewis, 1925) (Fig. 2) and in the 33 
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precartilate tadpole of the common toad (Bufo lentiginous) (Lewis, 1933). 1 

Moreover, Marvin confirmed the presence of the tetrakaidecahedron in metal 2 

(using compressed lead shots) (Marvin, 1939a), and in the pith of the weed 3 

Eupatorium purpureom (Marvin, 1939b). Altogether, these studies suggested 4 

that similar physical principles led to the same geometric configurations in living 5 

tissues, inert froths, and even metals. 6 

Subsequent advances in microscopy allowed scientists to dig deeper into the 7 

knowledge of 3D cell shapes and tissue organization. Importantly, it became 8 

possible not only to study the cell packing of complex organs, but also its 9 

relationship to the underlying developmental processes. In 1976, Menton 10 

described in detail the cell packing of the parenchymal cells of Cork cambium 11 

(from commercial cork bottle stoppers), the pith of shrub stems (Sambucus 12 

canadensis) and the stratified epithelium of one of the epidermal layers of the 13 

mouse inner ear (Allen and Potten, 1976; Menton, 1976). He found that the cell 14 

arrangements of these very diverse organisms were ‘universally’ formed by 15 

columns of flattened 14-sided cells once again (Fig. 2) (Allen and Potten, 1976; 16 

Menton, 1976). In fact, a recent work (Yokouchi et al., 2016) revisited the 17 

problem of the organization of epithelial cells in the mouse ear skin by using in 18 

vivo live imaging and computational models (Fig. 2). The authors corroborated 19 

previous experiments and highlighted that the flattened Kelvin’s 20 

tetrakaidecahedron is indeed the optimal shape to fill the space of this stratified 21 

epithelium. In biological terms, the authors suggested that these cell structures 22 

promote an accurate barrier to maintain homeostasis and, in addition, increase 23 

the physical strength of this tissue. 24 

The relationship between cell morphology and its primary role in 25 

morphogenetic events was also an object of study in monolayer epithelia. In this 26 

context, it is worth mentioning the investigation carried out by Condic and 27 

colleagues (Condic et al., 1991) (Fig. 2). In their study, the elongation of the 28 

Drosophila leg imaginal disc was analysed from the perspective of cellular 29 

organization. Importantly, by comparing the cellular organization of apical and 30 

basal surfaces, it was shown that the cells did not preserve the same number of 31 

neighbours. These findings thus revealed, indirectly, the existence of apico-32 

basal intercalations (Glossary) that challenged, for the first time, the ‘prismatic 33 
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simplification’ in an epithelia monolayer (Fig. 1B,C; Fig. 2). On the 1 

computational side, it was not until 2008 when Honda and colleagues 2 

developed the first 3D model that suggested transient apico-basal intercalations 3 

as a way to enable tissue elongation (Honda et al., 2008) (Fig. 2). Additional 4 

experimental studies have subsequently revealed – either directly or indirectly – 5 

these non-prismatic epithelial shapes in different tissue monolayers. Thus, cell-6 

neighbouring changes between apical and basal surfaces (non-compatible with 7 

prism-like cells) were also reported on the Wolffian duct epithelium in mouse 8 

(Xu et al., 2016). Notably, from a dynamics viewpoint, Sun and colleagues 9 

demonstrated that during the Drosophila germ-band extension the active tissue 10 

elongation was driven by basolateral protrusions and transient apico-basal 11 

intercalations among cells (Sun et al., 2017) (Fig. 2). More recently, these 12 

dynamical intercalations have been shown to be relevant in different contexts, 13 

such as the development of the salivary glands placode in Drosophila 14 

(Sanchez-Corrales et al., 2018) and during the Drosophila embryo 15 

cellularization (Rupprecht et al., 2017) (Fig. 2). Finally, the mathematical 16 

formalization of a novel geometrical shape in connection to the apico-basal 17 

intercalations, the scutoid, uncovered important biophysical consequences for 18 

the 3D tissue organization (Gómez-Gálvez et al., 2018) (Fig. 1C). In particular, 19 

it was suggested, for the first time, how the thickness and curvature of tissues 20 

modulate the appearance of apico-basal intercalations. Additionally, it was 21 

proposed that the underlying motive for this new shape, was to minimize 22 

surface energy expenditure when tissues are subjected to anisotropic bending. 23 

This hypothesis was further confirmed by a study in froth monolayers that 24 

revived the idea of the surface tension as the main driver of cellular organization 25 

in the context of epithelial monolayers (Mughal et al., 2018) (Fig. 2). 26 

 27 

The mathematics and biophysics of epithelial organization 28 

Mathematical tools/laws to quantify epithelial organization 29 

One important advantage of the ‘prismatic’ approximation is that it makes it 30 

possible to implement common elements of mathematical topology to 31 

investigate tissue packing. In particular, the analysis of the topology of the 32 
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apical surface of epithelia has provided useful information about metazoan 1 

development. Reinhart used Euler's principle for convex polyhedrons, Vertices-2 

Edges+Faces=2 (Glossary) (Euler, 1767), to formally deduce that the average 3 

number of sides of the cells in a plane tessellation of convex polygons should 4 

be six (Reinhardt, 1918) (Fig. 3A,B). Later, this conclusion was experimentally 5 

confirmed in epithelia by Wetzel (Wetzel, 1926).  6 

Lewis further analysed tissues from a geometrical and topological viewpoint, 7 

and established the existence of a linear relationship between the average cell 8 

areas and the number of neighbours (Lewis, 1928) (Fig. 3C). Rivier and 9 

Lissowski subsequently demonstrated mathematically that the so-called ‘Lewis' 10 

law’ (Glossary) originates in a maximum entropy principle given the constraints 11 

of the cellular topology (Rivier and Lissowski, 1982). The Lewis’ law was 12 

successfully confirmed afterwards in a number of biological tissues and two-13 

dimensionsal (2D) Voronoi tessellations (Glossary) (Farhadifar et al., 2007; 14 

Gibson et al., 2006; Sánchez-Gutiérrez et al., 2016). In relation with the 15 

similarities between Voronoi diagrams and epithelial tissues, a breakthrough 16 

was established in 1978, when Honda and colleagues showed that the Voronoi 17 

compartmentalization of a 2D space fitted well the pattern of cellular contacts 18 

found in epithelial surfaces (Honda, 1978). 19 

Another example of a mathematical principle observed in convex 20 

tessellations of the plane is the Aboav-Weaire’s law (Glossary) that states an 21 

inverse relationship between the mean number of sides of the neighbours of a 22 

cell and its number of neighbours (Aboav, 1970; Chiu, 1995) (Fig. 3D). This law 23 

was first observed in the grains of growing polycrystals but was also satisfied in 24 

2D Voronoi tessellations (Glossary) (Zhu et al., 2001) and in the apical plane of 25 

growing epithelia (Bi et al., 2014; Sánchez-Gutiérrez et al., 2016). 26 

The aforementioned principles and properties refer to statistical moments 27 

(e.g. averages), but the details of the underlying polygonal distribution have 28 

been also the focus of research. Thus, Lewis quantified for the first time the 29 

polygonal distribution of cells in the Cucumis epidermis (Lewis, 1928). More 30 

recently, a seminal work by Gibson and colleagues demonstrated that the origin 31 

of a conserved polygonal distribution of cells among Metazoa is a consequence 32 

of cell proliferation (Gibson et al., 2006) (Fig. 3E). Subsequent studies 33 
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introduced elements of Graph Theory (Glossary) to analyse the polygonal 1 

distribution of cell contacts and to quantify in some cases the epithelial topology 2 

under physiological and pathological conditions (Escudero et al., 2011; Kursawe 3 

et al., 2016; Sanchez-Gutierrez et al., 2013; Vicente-Munuera et al., 2020; 4 

Yamashita and Michiue, 2014). Other complementary methods combined the 5 

polygon distribution analysis with the application of in silico models, such as 6 

vertex models (Glossary) or Voronoi tessellations, trying to reproduce and 7 

explain the biological behaviour by mathematical/computational means (Aland 8 

et al., 2015; Bi et al., 2016; Curran et al., 2017; Farhadifar et al., 2007). These 9 

analyses suggested that the conserved metazoan polygon distribution was not 10 

exclusively dependent on cell division mechanisms, but a consequence of the 11 

physical restrictions found in natural tessellations and of the homogeneous size 12 

of the epithelial cells (Sánchez-Gutiérrez et al., 2016). 13 

The mathematical principles and properties described above were assumed 14 

to be valid in a 3D context in epithelial monolayers given the ‘prismatic 15 

simplification’. However, the unveiling of cellular scutoidal shapes challenges 16 

some of these organizational principles. We envision further generalizations of 17 

the mathematical organizational principles to a 3D context in the future years 18 

(see Discussion) (Fig. 3A–F). 19 

 20 

Forces and stresses inference 21 

A mechanistic approach towards developmental biology ultimately seeks to 22 

elucidate the forces that drive cellular shapes and their collective properties. 23 

Such knowledge is required for developing realistic, predictive modeling 24 

frameworks and, ultimately, to understand the determinants of the 25 

organizational and mathematical features displayed by tissues. During the last 26 

few decades, different approaches have been developed to characterize forces 27 

and stresses at the cellular and collective levels, both in 2D and in 3D (Gómez-28 

González et al., 2020; Roca-Cusachs et al., 2017; Sugimura et al., 2016; Xu et 29 

al., 2018). In this context, geometric force inference (GFI) methods are of 30 

special interest to understand epithelial organization. This methodology is 31 

based on either imposing a force equilibrium on the vertices that define either 32 

the polygonal (2D) or prismatic-like (3D) shapes of cells, or on applying the 33 
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Young-Laplace formula (Glossary) to balance the normal stresses (Fig. 4A). 1 

While GFI has limitations (e.g. only relative values of tensions and pressure 2 

differences can be estimated), it also has many advantages (e.g. it is non-3 

invasive) and has been instrumental to understand a number of morphogenetic 4 

events (Gómez-González et al., 2020; Noll et al., 2020; Sugimura et al., 2016; 5 

Vasan et al., 2019; Veldhuis et al., 2017). Notably, GFI has traditionally focused 6 

on the 2D cellular organization of tissues and, to our knowledge, only two recent 7 

works have proposed a 3D extension (Veldhuis et al., 2017; Xu et al., 2018). 8 

Veldhuis and colleagues introduced CellFIT-3D, a tool based on the inference 9 

of 3D properties using 2D slides (e.g. confocal images). This approach avoids 10 

the methodological bottleneck of cellular reconstruction and has been also 11 

proposed to derive statistical properties of the 3D cell geometry in tissues 12 

(Sharp et al., 2019). More recently, normal stresses and tensions have also 13 

inferred in 3D to better understand the cellular organization in the early C. 14 

elegans embryo (Xu et al., 2018). However, as of today, no GFI approach has 15 

been used to infer forces in 3D epithelial monolayers where apico-basal 16 

intercalations develop. One of reasons lies in the lack of a precise 17 

characterization of the existing lateral cell-cell interactions. Consequently, 18 

besides the proposal that line/surface tension plays a key role in determining 19 

novel cellular geometries in curved 3D environments (Gómez-Gálvez et al., 20 

2018; Mughal et al., 2018), there is still a gap of knowledge about how the 21 

balance of different acting forces (e.g. contractility versus adhesion) lead to a 22 

cellular organization in 3D. In that regard, further advances in the 23 

implementation of the microbulge technique (controlled formation and 24 

manipulation of tissue domes and, possibly, of other 3D tissue micropatterns) 25 

might shed light into this problem (Latorre et al., 2018). This methodology 26 

allows to control the remodelling of cellular and tissue shapes in 3D and to 27 

correlate those changes with the acting forces and a compatible cellular 28 

mechanics. In particular, the authors of this study, by using a 3D biophysical 29 

tissue model, were able to reveal the so-called ‘active super-elasticity 30 

phenomenon’ in bent epithelial monolayers: cells have the capability to deform, 31 

reversibly, at a constant tension. This example highlights the importance for 32 

developing convincing biophysical tissue models (see below), and the need to 33 
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develop and implement realistic force inference methods to 3D epithelia, in 1 

order to unveil the processes that control 3D tissue organization. 2 

 3 

Epithelia simulation models: from 2D to 3D 4 

Modern developmental biology is built upon the combined effort of novel 5 

biological techniques and computational approaches in order to describe the 6 

biological and biophysical behaviour of tissues. Following this trend, the field is 7 

experiencing a slow, yet steady, evolution towards the study of tissues from a 8 

more realistic perspective. Specifically, 2D simulations have contributed 9 

enormously to the progress of the field, but the next step is the implementation 10 

of 3D simulation schemes that make possible to understand how animals 11 

develop in a four dimensional context (three spatial dimensions + time). Here 12 

we describe major advances in the context of 2D simulation models and 13 

elaborate about the challenges for implementing 3D computational approaches. 14 

There is a great number of cell-based computational solutions towards the 15 

simulation of tissues (Fletcher and Osborne, 2020; Metzcar et al., 2019).  They 16 

are particularly useful for describing epithelia: they are computationally efficient 17 

and allow to make direct comparisons with GFI methods by describing the 18 

acting forces on cell connectivity loci. Honda and Eguchi laid the foundations of 19 

the ‘vertex model’ by showing that cell boundary contraction processes in the 20 

surface of epithelia could be described by a model of packed convex polygons 21 

with an area-conservation property (Honda and Eguchi, 1980). Later, Nagai and 22 

Honda formalized the model by proposing a simulation technique that linked the 23 

polygonal geometry of cells in epithelial surfaces with the forces acting at cell 24 

vertices (Nagai and Honda, 2001). This seminal study showed that a 25 

deterministic approach that included line-tension and elastic force terms, 26 

together with topological changes (T1 transitions), was enough to describe the 27 

organization in epithelia in equilibrium. Further developments of the vertex 28 

model have included, on the one hand, additional mechanical effects, such as 29 

contractility force terms due to the acto-myosin ring (Farhadifar et al., 2007) or 30 

to anisotropies in acto-myosin activity (Canela-Xandri et al., 2011) (Fig. 4B). On 31 

the other hand, it has been shown that non-equilibrium contributions due to 32 
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migration, cellular proliferation, and oriented cell divisions can explain 1 

transitions from soft to solid phases in tissues (Farhadifar et al., 2007), jamming 2 

transitions (Bi et al., 2016), remodelling at the tissue level (Anbari and Buceta, 3 

2020; Mao et al., 2011), the appearance of pathological and mutant conditions 4 

deviating from tissue homeostasis (Ramanathan et al., 2019; Sánchez-5 

Gutiérrez et al., 2016), or wound-healing processes (Staddon et al., 2018; 6 

Tetley et al., 2019). Recent developments of the vertex model have also 7 

included viscoelastic and mechanosensitive effects (Canela-Xandri et al., 2020; 8 

Staddon et al., 2019). All these studies have shown that the aforementioned 9 

mathematical laws accomplished by real epithelia are satisfied by vertex model 10 

simulations thus providing additional support to this computational method 11 

(Fig. 3,4). 12 

During the last few years, a number of modifications of the vertex model have 13 

been proposed, aimed at adapting this simulation methodology to more 14 

complex geometries. For example, simulations of 2D cross-sections along the 15 

apico-basal axis of curved epithelial monolayers have been used to study 16 

Drosophila's ventral furrow formation (Polyakov et al., 2014) or the buckling and 17 

folding of cell cultures (Merzouki et al., 2018). Also, vertex models have been 18 

modified to simulate either the apical or the basal surfaces of curved tissues. 19 

Some examples include the dorsal appendage formation in the egg chamber 20 

(Osterfield et al., 2013), epithelial folding (Monier et al., 2015), and the 21 

tubulogenesis process (Hirashima and Adachi, 2019). 22 

The generalization of the vertex model to 3D poses some challenges. To 23 

start, an accurate description of the tissue behaviour must account for the 24 

mechanical polarization of cells along the apico-basal axis. This implies the 25 

need to prescribe distinct mechanical interactions among cells in apical and 26 

basal surfaces and through the lateral contacts. In addition, the possible effects 27 

of the extracellular matrix become more relevant. Finally, the computational 28 

implementation of some cellular processes that shape tissues, such as growth, 29 

division, apico-basal intercalations, and/or extrusion/apoptosis, become more 30 

complex. 31 

In this context, some attempts have been made to generalize the vertex 32 

model to a 3D environment. The first 3D vertex model was proposed by Honda 33 
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and colleagues to simulate cell aggregates (Honda et al., 2004). Further 1 

implementations have been used in the context of epithelial monolayers to 2 

simulate proliferation, deformation and invagination during morphogenesis 3 

(Bielmeier et al., 2016; Du et al., 2014; Inoue et al., 2020; Misra et al., 2016; 4 

Okuda et al., 2015; Okuda et al., 2018a; Sui et al., 2018), as well as branching 5 

growth (Okuda et al., 2018b), microbulge dome dynamics (Latorre et al., 2018), 6 

tubulogenesis (Inaki et al., 2018; Inoue et al., 2016), tumour progression 7 

(Messal et al., 2019), and 3D buckling instabilities in epithelial monolayers 8 

(Hannezo et al., 2014). For additional information about the foundations of the 9 

vertex model, both in 2D and 3D and other examples about its applicability to 10 

morphogenesis we refer the reader to the following studies (Alt et al., 2017; 11 

Fletcher et al., 2014). However, regardless of the progress achieved thanks to 12 

the vertex model to understand the link between energetic traits (i.e. forces) and 13 

epithelial organization, all the aforementioned studies disregard apico-basal 14 

intercalations. On top of the early work of Honda and colleagues (Honda et al., 15 

2008), some recent exceptions include the work by Okuda and clleauges that 16 

suggests that scutoids may develop during cell rearrangements due to 17 

fluctuations and an asymmetry between the line tension of apical and basal 18 

surfaces (Okuda et al., 2019). We argue that these sort of modeling approaches 19 

along with novel, hybrid, simulations schemes are a must to describe accurately 20 

the 3D epithelial organization and shed light into the forces involved (especially 21 

in the context of curved tissues) (Fig. 4B). By hybrid simulation schemes we 22 

mean computational methods that combine, on the one hand, the simplicity of 23 

the vertex model such that can be easily parametrized by force inference 24 

methods (i.e. GFI). On the other hand, these novel methods must include 25 

enough complexity elements to generate the observed self-organization in 26 

tissues containing complex cellular geometries. Some recent promising results 27 

have been shown by Ioannou and colleagues, that have proposed a 28 

methodology that accounts for the reported asymmetries between apical and 29 

basal surfaces, and applied it to study wound healing (Ioannou et al., 2020). 30 

 31 
Discussion and conclusions 32 

For over a century, the morphology of the cells has intrigued researchers from 33 

different fields. In On Growth and Form, D'Arcy W. Thompson made a unifying, 34 
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quantitative effort and put together the accumulated knowledge from different 1 

fields to understand the basis of shape establishment. In this way, he linked the 2 

complex process of morphogenesis to the emergence of mathematical patterns 3 

and the physical nature of cells. Notably, in many of these pioneering works that 4 

he compiled, there was an exquisite description of the three-dimensional shape 5 

of the cells. These depictions included artistic drawings and quantitative 6 

approaches that helped to infer the physics underlying the formation of shapes 7 

(Fig. 2). Now, researchers have far more microscopy resources than in D’Arcy 8 

W. Thompson’s day to explore and analyse in depth the form of cells, their 9 

dynamic changes, and how they integrate within tissues. Interestingly, these 10 

advances in microscopy have led to a re-examination of some of the 11 

phenomena presented by D'Arcy W. Thompson. In parallel to this experimental 12 

progress, different computational tools have been designed to model 13 

morphogenetic processes. These tools are based on reductionist approaches 14 

that capture the essential biophysical cues and mathematical principles that 15 

drive tissue shape and cellular organization. Together, these tools aim to find 16 

‘universality’ in developmental processes, as D'Arcy W. Thompson aspired to as 17 

well. 18 

As reviewed here in the context of epithelial morphogenesis, most studies that 19 

have analysed tissue organization and its biophysics have limited the study to a 20 

single epithelial surface. While informative and extremely useful, these 21 

investigations also neglect the realistic 3D cellular shapes in monolayer tissues. 22 

Moreover, only a few examples have analysed the organization of stratified 23 

epithelia (Fig. 2). These two aspects are promising research challenges in the 24 

field. In this Review, we have particularly focused on single layer epithelia 25 

development, that we identify as the first – and easiest – step to design realistic 26 

in silico tools coupled to force inference methods. To that end, on the one hand, 27 

further progress is needed to elucidate the forces that determine the epithelial 28 

organization in 3D. On the other hand, the parametrization and calibration of 29 

in silico models must be consistent with those force estimations. Fortunately, 30 

recent results seem to suggest that realistic 3D tissue organizational traits, such 31 

as the scutoidal shapes, can be reproduced in force-driven models without 32 

implementing excessive complexity (Okuda et al., 2019, Ioannou et al., 2020). 33 
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This will facilitate the exploration of dynamical phenomena in the near future, 1 

because apico-basal intercalations also appear involved in active cell 2 

movements, such as the Drosophila germ band extension, egg chamber 3 

rotation, or the early morphogenesis of salivary glands (Gómez-Gálvez et al., 4 

2018; Sanchez-Corrales et al., 2018; Sun et al., 2017). Another equally 5 

important avenue of research is the influence of the global tissue shape on the 6 

3D cellular packing of epithelia. Recent results by Saunders' lab described a 7 

relationship between curvature and the emergence of apico-basal intercalations 8 

on the curved tips of the Drosophila embryo (Rupprecht et al., 2017). This 9 

phenomenon was later generalized through computational models and 10 

experiments to show that the appearance of scutoids is directly dependent on 11 

the anisotropy of the tissue curvature, and scutoids are more frequently 12 

observed in tubular epithelia (Gómez-Gálvez et al., 2018). 13 

Further progress in understanding 3D tissue organizational relies on the 14 

advances in microscopy to obtain high-resolution imaging of epithelia and 15 

provide precise information of 3D and 4D cell conformations. In combination 16 

with improvements in machine learning techniques aimed at performing fixed- 17 

and live-tissue segmentation, these methodologies will soon allow realistic 18 

elucidation of the cellular changes that drive morphogenesis (Arganda-Carreras 19 

et al., 2017; Chamier et al., 2020; Falk et al., 2019; Haberl et al., 2018; Lee et 20 

al., 2020; Wolny et al., 2020). Moreover, the precise quantification of the 3D 21 

tissue structure in epithelia will enable the study of quantitative principles and 22 

mathematical laws that, so far, have only been tested in 2D planar epithelia. We 23 

stress that the advantage of these quantitative principles lies in their ability to 24 

identify biological functionalities in homeostasis (Escudero et al., 2011; 25 

Farhadifar et al., 2007; Gibson et al., 2006) and in pathological conditions 26 

(Sánchez-Gutiérrez et al., 2016; Tsuboi et al., 2018). Interestingly, there are 27 

already promising 3D approaches modelling cancer disease in tubular 28 

geometries (Messal et al., 2019). Unfortunately, the ‘prismatic simplification’ has 29 

led to the (wrong) assumption that some of these principles are automatically 30 

satisfied in 3D. However, there are some clear examples that it is not the case. 31 

Specifically, the average number of cellular neighbours in 3D (i.e. the average 32 

cellular connectivity) cannot possibly be six if apico-basal intercalations occur 33 
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(Euler, 1767; Reinhardt, 1918). In this regard, recent studies have highlighted 1 

the importance of cellular connectivity in different developmental contexts, such 2 

as supervising neuroepithelial morphogenesis (Sharma et al., 2019), or 3 

controlling cell fate decisions (Guignard et al., 2020). Interestingly, one study 4 

has recently uncovered the principle that describes how scutoids modify the 3D 5 

cellular connectivity: the Flintstones’ law (Glossary) (Gomez-Galvez et al., 6 

2020) (Fig. 3F). We anticipate that there will be additional discoveries of 7 

quantitative principles in the context of 3D cellular organization in the years to 8 

come, which will help to justify D'Arcy W. Thompson's claim: ‘The harmony of 9 

the world is made manifest in Form and Number, and the heart and soul and all 10 

the poetry of Natural Philosophy are embodied in the concept of mathematical 11 

beauty’. 12 

Some final words refer to promising applications to the field of biomedicine. 13 

The possibility of generating human 3D cultures that resemble specific organs 14 

(organoids) has opened up enormous possibilities (Rossi et al., 2018; Tuveson 15 

and Clevers, 2019). However, recent advances in organoid technology, 16 

although highly promising, are hindered by its current lack of reproducibility 17 

(Huch et al., 2017). We believe that the combination of an accurate 18 

understanding about how the cells self-organize and pack in 3D, and the 19 

advances on the knowledge on how substrate curvature guide spatiotemporal 20 

cell and tissue organization (Callens et al., 2020), will help to control the growth 21 

of organoid cultures. Altogether, the realistic analysis of epithelial packing can 22 

also advance the biomedical field, especially in tissue and organ engineering 23 

(Hendow et al., 2016; Yin et al., 2016).  24 
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Glossary 1 

 2 

Aboav-Weaire’s law: It establishes that, in the surface of an epithelium, cells 3 

with a larger number of sides tend to have cell neighbours with few sides, and 4 

vice versa.  5 

Apico-basal intercalation: Cells rearrangement along the apico-basal axis in 6 

which the cells exchange their neighbours between the basal and the apical 7 

surfaces. Roughly speaking an apico-basal intercalation is similar to a T1 8 

transition, but the neighbour exchange between cells occurs in space (along the 9 

apico-basal cell axis) instead of as a function of time. 10 

Euler's principle: The Euler formula relates the number of vertices (V), edges 11 

(E) and faces (F) of polygons with the so-called Euler characteristic (2 in convex 12 

tessellations of the plane): V - E + F = 2. 13 

Flintstones’ law: It states that the average number of 3D connections of cells 14 

of monolayer tubular epithelia grows as a function of the surface ratio (apico-15 

basal coordinate) following a logistic-like formula. 16 

Graph Theory: Branch of mathematics that focuses on the study of network 17 

properties. Typically, a network is constituted by a set of nodes connected by 18 

edges, and these pairwise relationships are the object of analysis. 19 

Lewis' law: It states that, in the surface of an epithelium, the fractional apical 20 

cell area increases linearly with the number of neighbours of a cell (so, small 21 

cells tend to have less sides than larger cells).  22 

Vertex models: Off-lattice tissue simulation scheme based on the balance of 23 

forces acting on a limited set of points that describe every cell: the vertices that 24 

define their polygonal shape. 25 

Voronoi tessellations: Mathematical concept based on compartmentalizing 26 

the Euclidean space by proximity, in which, each one of the compartments is 27 

called Voronoi cell. For developing a Voronoi diagram is necessary a set of 28 

seeds. From each seed will emerge a Voronoi cell filling the surface preventing 29 

gaps among the cells, and not allowing overlapping between the regions, 30 

resulting in a subdivision of convex polygons that follow the rule that a Voronoi 31 
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cell contains all the points of space that are closer to its seed than any other 1 

seed. 2 

Young-Laplace formula/equation: Given a thin interface that separates two 3 

fluids, the Young-Laplace formula evaluates the balance of normal stresses 4 

acting on the interface (i.e. surface) and relates the pressure differences with 5 

the surface tension and the local geometry (principal curvatures). 6 
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Fig. 1. Schematic representation of monolayer epithelial tissues. (A) 1 

Illustration of a planar epithelium where cells are represented as prismatic 2 

columns. (B) Cells in (A) adapt their conformation to the tissue curvature by 3 

adopting the shape of a truncated pyramid (i.e. frustum). (C) A Voronoi tubular 4 

model mimicking a monolayer epithelial tube, where some cells have been 5 

peeled-off (from left to right) to reveal their three-dimensional arrangement. The 6 

four-cell motif formed by the blue, red, green and yellow cells undergoes an 7 

apico-basal intercalation (spatial T1 transition). Red and green cells in contact 8 

at the basal surface (outer surface), but they are not at the apical surface (inner 9 

surface). The opposite happens with blue and yellow cells: they are neighbours 10 

in the apical surface but not in the basal surface. All four cells have scutoidal 11 

shapes. The colours of the cells in (A) and (B) are consistent to track the 12 

changes that occur during the transition from a planar to a bent tissue. In the 13 

center and right panels in (C) the cells that do not belong to the four-cell motif 14 

have been shaded to highlight the cells with a scutoidal shape. 15 

 16 

Fig 2. Historical timeline summarizing breakthroughs in the 17 

characterization of 3D cell shapes and their arrangements. A timeline of 18 

different realistic descriptions of cell shapes. Yellow-golden colours highlight 19 

studies related to solids with 14 faces. The grey-blue-pink colours highlight 20 

studies connected to the existence of apico-basal cell intercalations in 21 

monolayer epithelia. In 1887, Lord Kelvin proposed the geometrical shape of a 22 

‘orthic tetrakaidekahedrum’ as a theoretical solution to fill the space optimally. In 23 

1925, Lewis confirmed the existence of tetrakaidecahedra cells, also found by 24 

Menton as predominant on the epidermal tissue. In 2016, Yokouchi and 25 

colleagues supported Lord Kelvin’s tetrakaidekahedrum as a cellular shape, 26 

revealing its predominance and important role in stratified epithelia. In a 27 

different context, in 1903, Robert found early scutoidal-like cellular 28 

configurations later revisited by, D’Arcy Thompson in 1917, highlighting its 29 

importance. In 1991, Condic and colleagues challenged the ‘prismatic 30 

approximation’ by showing that the cellular organization at the apical and basal 31 

layers of an epithelium changed during Drosophila development, suggesting the 32 

existence of apico-basal intercalations. These intercalations where theoretically 33 

postulated by Honda and colleagues as transient cellular configurations to 34 
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achieve tissue elongation, and were later envisioned as cellular protrusions by 1 

Sun and colleagues during Drosophila's germ-band extension. Recently, two 2 

studies emphasized the role of T1-spatial transitions or interleaving in different 3 

contexts of developmental biology: in 2018, Gómez-Gálvez and colleagues 4 

formally proposed that the spatial intercalations entailed a new cell shape 5 

(scutoid) that develops as a consequence of biophysical and geometrical 6 

constraints, which were confirmed in a study using soap bubbles. 7 

 8 

Fig 3. Mathematical approaches towards the analysis of epithelia. The 9 

analysis of epithelia from the perspective of space tessellations using convex 10 

polygons has led to a number of quantitative laws in morphogenesis. (A) Euler's 11 

principle for convex polyhedra implies that Vertex (V) - Edges (E) + Faces (F) = 12 

2. In this figure the labels inside the polygons indicate their number of vertices 13 

or edges, �. In this case, V=13, E=15, and F=4 (note that the external face 14 

surrounding all polygons is also included in the face count). (B) Euler's formula 15 

implies that in the thermodynamic limit, that is, as the number of cells becomes 16 

very large, the average number of neighbours (edges) if a cell in 2D, i.e. � � �, 17 

approaches six. (C) By denoting by ����  the average area of cells with � 18 

number of edges and by ��� the average cell area, Lewis' law states that the 19 

fractional area of cells, ����/���, that belong to a polygonal class (i.e. triangles, 20 

squares, pentagons...) increases linearly with the polygonal class (i.e. with �). 21 

Lewis' law is a consequence of a maximum entropy principle and cellular 22 

topological constraints. (D) On the other hand, Aboav-Weaire's law provides an 23 

analytical dependence of the average number of neighbours of neighbouring 24 

cells on the polygonal class. Thus, ���� indicates the average number of edges 25 

of cells that are neighbour with a cell with � edges: the larger the polygonal 26 

class, �, the smaller the number of edges of neighbouring cells. (E) Gibson and 27 

colleagues later established the universality of the polygonal distribution of cells 28 

due to division events. In agreement with Euler's formula the average of this 29 

distribution is 6. (F) More recently, laws are being proposed in the context of the 30 

3D shape of cells. In particular, the Flintstone's law states that, as a function of 31 

the so-called surface ratio, 	�/	�, tubular epithelia increase their 3D 32 
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connectivity (i.e. the 3D number of neighbours) in a logistic manner as a 1 

consequence of apico-basal intercalations. 2 

 3 

Fig. 4. Non-invasive force inference methods. (A) Force inference methods 4 

based on the geometrical analysis of cellular arrangements ultimately rely on 5 

applications of a force equilibrium principle on the cellular vertices (top) and/or 6 

on the Laplace-Young law (bottom). As for the former, the equilibrium of forces 7 

at cell junctions (vertices) implies a balance between pressure terms, 
, and 8 

membrane tensions, �. That hypothesis leads to the estimation of parameters 9 

(� and � in this panel), that measure the relative pressure/tension force 10 

contributions. On the other hand, the methodology based on the Laplace-Young 11 

law is based on the assumption that cells behave mechanically as fluid objects. 12 

Thus, it relates the cellular, or the tissue-level, membrane tension, 
, the acting 13 

normal stresses, �
, that modulate the cell (tissue) shape, and the principal 14 

curvatures at a given location, 1/	� and 1/	�, that define the local geometry. 15 

(B) On the modelling side, the vertex model has successfully reproduced a 16 

number of morphogenetic processes. The canonical form of the vertex model 17 

includes mechanical contributions at cell vertices due to a) the area, �, that 18 

leads to spring-like forces (volume conservation), b) the action of the 19 

actomyosin ring along the cell perimeter, �, that simulate contractile effects, and 20 

adhesion terms that mimics membrane tension along cell contacts, �. By 21 

including non-equilibrium effects, such as cell growth and division, and 22 

assuming a fast balance of the mechanical forces, the position of cell vertices 23 

can be tracked in space and time and hence the cellular motion. Current 24 

challenges in the field of epithelial tissue simulation schemes include the 25 

development of techniques that reproduce realistically the 3D arrangements of 26 

cells and clarify the driving forces underlying apico-basal intercalations. 27 
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