
Journal of Network Theory in Finance 5(3), 53–72
DOI: 10.21314/JNTF.2019.056

Copyright Infopro Digital Limited 2020. All rights reserved. You may share
using our article tools. This article may be printed for the sole use of the
Authorised User (named subscriber), as outlined in our terms and condi-
tions. https://www.infopro-insight.com/termsconditions/insight-subscriptions

Research Paper

Network sensitivity of systemic risk

Amanah Ramadiah,1 Domenico Di Gangi,2

D. Ruggiero Lo Sardo,3 Valentina Macchiati,2,4

Tuan Pham Minh,5 Francesco Pinotti,6

Mateusz Wilinski,2,7 Paolo Barucca1 and
Giulio Cimini8,9,10

1Department of Computer Science, University College London, London WC1 E6BT, UK;
email: amanah.ramadiah.14@ucl.ac.uk
2Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy;
emails: domenico.digangi@sns.it, valentina.macchiati@sns.it
3Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria;
email: losardor@gmail.com
4Department of Physics, University of Turin, Via Pietro Giuria 1, 10125 Torino, Italy;
email: valentina.macchiati@sns.it
5N/A; email: physicsidea@gmail.com
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ABSTRACT

A growing body of studies on systemic risk in financial markets has emphasized
the key importance of taking into consideration the complex interconnections among
financial institutions. Much effort has been put into modeling the contagion dynamics
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of financial shocks and into assessing the resilience of specific financial markets,
either using real network data, reconstruction techniques or simple toy networks.
Here, we address the more general problem of how shock propagation dynamics
depend on the topological details of the underlying network. To this end, we consider
different realistic network topologies, all consistent with balance sheet information
obtained from real data on financial institutions. In particular, we consider networks
of varying density and with different block structures. In addition, we diversify in the
details of the shock propagation dynamics. We confirm that the systemic risk proper-
ties of a financial network are extremely sensitive to its network features. Our results
can aid in the design of regulatory policies to improve the robustness of financial
markets.

Keywords: financial networks; systemic risk and contagion; DebtRank; network reconstruction;
mesoscale structure.

1 INTRODUCTION

The crises that hit the financial world in the last two decades led scientists and reg-
ulators to rethink, with a systemic perspective, the approach used to assess market
risk, with an increased interest in the entangled structure of financial relationships
(Acemoglu et al 2015; Allen and Gale 2007; Allen et al 2014), its role in the poten-
tial propagation of risk (Gai and Kapadia 2010) and its consequences for risk man-
agement and macroprudential regulation (Battiston et al 2016b; Haldane and May
2011). A common denominator that has emerged from the many empirical works on
systemic risk is the importance of considering the role of the structure of financial
dependencies (Boss et al 2004; Cocco et al 2009; Georg 2013; Nier et al 2007). It
has also become clear that centrality measures in financial networks can be crucial
to identify systemically important financial institutions (Battiston et al 2012).

While the evidence of the role of interconnections and the need for their direct
measurement or reconstruction (Anand et al 2018) has grown, at the same time, the
research on designing novel and more realistic systemic risk mechanisms has greatly
developed in recent years. Starting with the seminal works on clearing mechanisms
(Eisenberg and Noe 2001) and default contagion (Furfine 2003), a growing number
of extensions have been introduced (Acharya et al 2017; Amini et al 2016; Benoit
et al 2017; Caccioli et al 2018), and we now have methods ranging from the semi-
nal default contagion approaches to distress contagion, such as DebtRank centrality
(Battiston et al 2012) and network valuation (Barucca et al 2016). These kinds of net-
work methodologies are nowadays implemented in stress tests and stability analysis
performed by central banks (Bardoscia et al 2019; Covi et al 2019). Therefore, the
current scientific challenge is no longer to generically quantify systemic risk, but
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to be able to understand in more detail the interplay between systemic risk mea-
sures and network structures, as different contagion mechanisms may yield different
risks and vulnerabilities depending on the underlying network structure. Only with
this increased level of understanding can specific regulatory solutions to improve the
structure of the system and reduce risk become reliable. To this end, it is essential
to understand which features of a financial network make it more or less resilient to
systemic risk.

One of the first contributions in this direction was the work of Gai and Kapadia
(2010), who showed that random Erdős–Rényi networks are “robust-yet-fragile”: the
probability of contagion is maximal for intermediate network densities, whereas the
amount of systemic losses monotonically increases with the network connectivity.
Further, Mastromatteo et al (2012) showed that, under the Furfine dynamics, sparse
Erdős–Rényi networks in general lead to more defaults than very dense networks.
Roukny et al (2013) noted that no single topology can always lead to the lowest
risk levels (in particular, scale-free networks can be both more robust and more frag-
ile than Erdős–Rényi architectures). León and Berndsen (2014) argued that modu-
lar scale-free architectures can favor robustness, whereas Montagna and Lux (2017)
pointed out that the dependence of systemic risk on the density will change if shocks
are correlated. Hurd et al (2017) observed that, under the Gai and Kapadia dynam-
ics, degree assortativity can strongly affect the course of contagion cascades (Hurd
et al 2017). With regard to the DebtRank dynamics, Bardoscia et al (2017) showed
that the stability of the system decreases monotonically with the link density due to
the presence of cycles, whereas Krause et al (2019) recently pointed out that degree
assortativity correlates well with the level of systemic risk.

In this work, for the first time, we generalize one of the most consolidated meth-
ods for reconstructing realistic financial networks (Anand et al 2018) for the case
of weighted heterogeneous networks with core–periphery and modular block struc-
tures, respectively. Further, we introduce a robust and efficient network sensitivity
methodology that explores a range of weighted financial networks with varying den-
sity (from extremely sparse low-density networks to complete ones) and applies
two paramount models of both default contagion and distress contagion, display-
ing the significant differences in relative losses that can arise from different network
structures, shocks applied and contagion mechanisms.

2 METHODOLOGY

In this section, we explain the two-step procedure we use in our framework. In a nut-
shell, first we generate a reconstructed financial network with some key characteris-
tics, and then we run shock propagation dynamics, Furfine and DebtRank algorithms,
over it in order to assess its level of systemic risk.
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2.1 Data

We base our reconstruction of financial (specifically, interbank) networks on Bank-
scope data (Battiston et al 2016a) containing the balance sheet of the 100 largest
European banks. In particular, we have information about the interbank assets Ai ,
the interbank liabilities Li and the equities Ei of each i of these banks, and we
consider data for the years 2008 and 2013 (ie, during and after the global financial
crisis) (Angelini et al 2011). We recall that the equity of a bank is the difference
between its total positive positions and its total obligations to creditors. When the
equity is positive, the bank is solvent; otherwise, it goes bankrupt (defaults) because
it is not able to refund its debts. Since the chosen group of banks is not an isolated
system, interbank assets and liabilities do not sum up to the same value. In order to
have a closed system, we rescale them such that

P
j Aj D

P
j Lj .

2.2 Network generation

In the literature on financial networks, interbank markets are typically reconstructed
from balance sheet data (before being tested for systemic risk) (Anand et al 2018).
Here, we use and generalize the approach of Cimini et al (2015) to generate recon-
structed financial networks (that is, compatible with balance sheet information) with
different underlying topologies. The method is grounded in statistical physics con-
cepts applied to networks (see further details in Squartini et al (2018) and Cimini
et al (2019)).

To create a single network instance, we first generate an unweighted directed graph
by drawing each link i ! j independently with probability

pi!j D
zAiLj

1C zAiLj
; (2.1)

where z 2 .0;1/ is a parameter that controls the density of the network. Indeed,
since the values of assets and liabilities are given, this probability is an increas-
ing function of z; hence, the link density of the network is proportional to the
parameter z.

After the link generation process, we assign a weight to each realized link as
follows:

wi!j D
AiLj

˝pi!j
ai!j ; (2.2)

where the adjacency matrix element ai!j equals 1 if the draw of (2.1) was successful
(and zero otherwise), and ˝ D Œ.

P
j Aj /.

P
j Lj /�

1=2. The final result is a weighted
directed network given by the corresponding adjacency matrix W , whose entries are
the weights fwi!j g. In the economic network literature, this matrix is referred to as
the asset matrix, while its transpose is called the liability matrix.
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Overall, this recipe is used to generate an ensemble of networks, having the
property that the interbank assets and liabilities of each bank are constrained in
probability to their real values as�X

j

wi!j

�
D Ai and

�X
j

wj!i

�
D Li

(here, h�i denotes the average over the ensemble). Note that by using (2.1) we allow
the formation of self-loops in the network, because some of the top European banks
do represent banking groups with an internal flow of money. The alternative possi-
bility would be to use the RAS algorithm to get rid of them, while preserving the
imposed constraints (Squartini et al 2017).

Importantly, the distribution of assets and liabilities across banks is heterogeneous,
and with such an input our network construction method automatically generates a
core–periphery structure, independently of the network density. In order to tune this
outcome, we introduce a generalization of (2.1):

pi!j D
z.AiLj /

�

1C z.AiLj /�
; � 2 Œ0; 1�: (2.3)

The new parameter � allows us to model a wide range of network topologies
(for fixed z), interpolating between the fitness-induced configuration model and the
Erdős–Rényi random graph as the two limits � D 1 and � D 0, respectively. Besides,
weights assignment as for (2.2) satisfies the constraints on the interbank assets and
liabilities of each bank whatever the choice of connection probabilities fpi!j g.

2.3 Block structure

The network reconstruction method just illustrated allows for the exploration of
different network structures. To this end, we can further decompose the adjacency
matrix W into blocks. Here, for simplicity, we shall restrict our attention to the case
of W having only four blocks:

W D

 
W11 W12

W21 W22

!
:

Each block Wnm, n;m D 1; 2, represents a subgraph of the network in which the
link density is characterized by znm, ie, which is generated via (2.1) and (2.2) using
this znm. Among all possible topological block configurations, there are three dis-
tinct ones that we shall focus on: namely, the core–periphery as well as the modular
assortative and disassortative structures (see Figure 1).
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FIGURE 1 Examples of block structures obtained with the proposed models.
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(a) Core–periphery structure, generated using (2.3) with � D 1. (b) Modular assortative structure (� D 1, � D 0.1).
(c) Modular disassortative structure (� D 1, ˇ D 0.1). For all cases, we used z D 10�9. In the top row, we report the
heatmaps of the connection probability matrixes (with yellow and purple representing denser and sparser regions
of the network, respectively). In the bottom row, we show the shape of a corresponding sample network. For the
core–periphery case (part (a)), we display the core nodes (the top 20% biggest banks) in yellow and the peripheral
nodes in violet. For the other two cases, the two colors refer to the two modules (of equal size).

2.3.1 Core–periphery topology

Of special interest in the investigation of financial networks is the core–periphery
topology. Here, there are two groups of banks (core and periphery), with a much
higher link density in the first group than in the second group as well as an interme-
diate link density between the two groups. As mentioned in the last section, the net-
work generated by (2.1) inherently possesses a core–periphery structure. Therefore,
further using a parameterization of the form z11 D z, z12 D z21 D z, z22 D 2z,
where  2 Œ0; 1�, would already result in a core–periphery structure for  D 1, with
smaller values of  simply marginalizing the peripheries. This is why we only use
(2.3) to explore the transition between core–periphery and homogeneous topologies.

2.3.2 Assortative modular topology

In this case, the network is clustered into two groups of nodes (modules), with dense
connections within the groups and sparse connections between them. This config-
uration corresponds to the choice of z11 and z22 both much larger than z12 and
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z21. Without loss of generality, we implement the assortative topology by setting
z11 D z22 D z and z12 D z21 D �z, where � 2 Œ0; 1�.

2.3.3 Disassortative modular topology

As an opposing configuration to the assortative modular structure, one can consider
the case in which the interconnections between the two modules dominate over the
connections inside each module. The parameterization now is given by z12 D z21 D
z and z11 D z22 D ˇz, where ˇ 2 Œ0; 1�. Note that the limiting case ˇ ! 0

corresponds to a purely bipartite structure.
We remark that for both the assortative and disassortative topologies we consider

in this paper, each block is generated using (2.3) with the corresponding value of znm
and with � D 1. As such, we have the signature of core–periphery structure within
each module (as is clearly visible in Figure 1).

2.4 Shock propagation dynamics

Once a network instance is constructed, we use the Furfine and DebtRank algorithms
to model the propagation of shocks on top of it (Bardoscia et al 2015, 2016; Furfine
2003).

2.4.1 Furfine algorithm

The Furfine algorithm can be expressed entirely as a function of equities, interacting
through the liabilities network and with a given value of external assets or liabilities.
The iterative map that represents the contagion dynamics is given by (Barucca et al
2016)

Ei .t C 1/ D ei C

NX
jD1

Aij .�.Ej .t//CR�.�Ej .t/// � Li ; (2.4)

where R is the exogenous recovery rate and ei is the external net balance, which can
be determined by looking at the initial discrepancy between the equity values and the
interbank net balance.

In particular, for the data set under study, if the initial equity is larger or smaller
than the net balance of interbank assets and liabilities, then this will imply the
presence of a net external source of assets or liabilities, ei D Ei � Ai C Li .

From the iterative map, it is possible to define multiple measures of contagion loss.
In particular, we will focus on one measure of contagion loss: the average relative
equity loss, ie, we assume a relative shock to our set of banks, and we consider
the shocked values as our initial value of the equity vector. Starting from this new
equity vector, we identify the fixed point vector of the equity dynamics (2.4), E�.
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The average relative equity loss is then given by

NEloss D

P
i E
�
i �Ei .0/P
j E

pre
j

; (2.5)

where the losses are computed relative to the initial pre-shock values, Epre
i .

2.4.2 DebtRank

Alternatively, for a given step t of the dynamics, we consider the relative loss of
equity hi .t/ and the interbank leverage matrix �ij .t/ of each bank i :

hi .t/ D
Ei .0/ �Ei .t/

Ei .0/
; (2.6)

�ij .t/ D

8<:
wi!j .0/

Ei .0/
if bank j has not defaulted up to time .t � 1/;

0 otherwise;
(2.7)

where Ei .0/ is the initial equity of i . Assuming a loss given default of 100%, the
dynamical equation for the relative equity loss hi .t/ reads:

hi .t C 1/ D min
�
1; hi .t/C

NX
jD1

�ij .t/Œp
D
j .t C 1/ � p

D
j .t/�

�
; (2.8)

where pD
j .t/ D hj .t/e˛Œhj .t/�1� is the probability of default of bank j at step t .

The controlling parameter ˛ 2 .0;1/ allows switching continuously from the linear
DebtRank (˛ D 0, meaning that the default probability is directly proportional to
equity losses) (Bardoscia et al 2015) to the Furfine algorithm (˛ ! 1, ie, default
occurs only when equity is depleted, and the bank is not contagious otherwise)
(Furfine 2003). The average relative equity loss at the end of the shock propagation
dynamics t� is

NEloss D
X
i

Œhi .t
�/ � hi .1/�Ei .0/P

j Ej .0/
; (2.9)

where hi .1/ is the initial shock on i . Hence, NEloss does not account for the initial
shock on the system, but only for the network effect on systemic losses.

We use two kinds of stopping conditions for simulations: either when the differ-
ence kŒh.t/�h.t�1/�E.0/k2 becomes smaller than a tolerance tol D 10�5, or when
the number of interactions is equal to maxiter D 10

5.

3 RESULTS

As mentioned before, our operative framework consists of building an ensemble of
interbank networks (using balance sheet data for either the year 2008 or the year
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FIGURE 2 NEloss (computed with linear DebtRank) as a function of the link density and the
magnitude of the uniform shock, for core–periphery networks built with data from (a) 2008
and (b) 2013 using (2.3) with � D 1.
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Darker (brighter) color refers to the higher (smaller) DebtRank, which corresponds to a more fragile (resilient)
financial network.

2013) and then using the DebtRank shock propagation dynamics to run stress tests on
each of these networks. NEloss is the average outcome of the process over an ensemble
of cardinality 100.

The first and most basic exercise we perform focuses on studying the standard
fitness configuration model of Cimini et al (2015), generated using (2.3) with � D 1,
and varying network density �. In terms of initial shock, we consider a uniform shock
by reducing the equity of each bank by a fraction � of its initial value, which means
hi .1/ D � for all i . Figure 2 shows the result of this exercise for � ranging from 0 to
1 and � ranging from 0 to 0.6. We see that NEloss increases monotonically with �. This
implies that the network becomes more fragile when it becomes more dense, which
is consistent with the findings of Bardoscia et al (2017). In 2008, we find a very high
value of NEloss for very small � : network amplification effects are so important that
they can wipe out the whole system when the initial perturbation is minimal. The
decreasing of NEloss with � is instead mainly due to the fact that initial shocks are
not included in the computation of NEloss, and indeed this quantity is bounded from
above by 1 � � . Finally, by comparing the 2008 data and the 2013 data, we find that
the NEloss for every combination of � and � has substantially changed: the network is
much more robust in 2013 than in 2008, especially for what concerns small shocks
(even in the high density regime) (Cimini and Serri 2016).
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Note that in this exercise we have looked at the case of linear DebtRank, which
corresponds to the choice ˛ D 0 in (2.8). We now perform an analogous exercise
but looking at different values of ˛. In particular, we are interested in the cases of
DebtRank, Furfine and the nonlinear default probability in between. To this end, we
consider in Figure 3 the values ˛ D 0; 2; 4; 6:25; 6:5; 6:75; 7;1. This set of param-
eters was chosen so that the reader can see a clear transition in NEloss behavior but,
at the same time, the number of curves is small enough for the plot to be readable.
Concerning 2008 networks, in general, for small ˛, we see that NEloss increases with
� and converges toward the highest value of NEloss D 1 � � . In contrast, for large ˛,
equity losses due to the network remain very small for both very dense and very
sparse networks, and they attain a maximum for intermediate density values. The
transition between these two regimes appears around the case ˛ D 5, corresponding
to a highly nonlinear default probability. Moving to 2013 networks, the increasing
behavior of NEloss with � is also generally observed in this case; however, NEloss for
completely connected networks does depend on the value of ˛. The regime of non-
linear default probability shows very moderate losses, in line with the interpretation
that in 2013 the interbank market was much more stable than in 2008.

The flat, and equal to zero, curve for the ˛ D 1 case is a technical consequence
of using homogeneous shocks with Furfine. To address this issue, in addition to the
uniform shock, we study the effect of defaulting a single bank either from the core
or from the periphery. In the latter case, we divide all the banks into core, middle
and periphery (with around thirty banks in each group) by ordering them accord-
ing to their reconstructed degree, ie, to their exposure (as a consequence of the fit-
ness ansatz used in the reconstruction procedure). Then we choose to default one of
them randomly and average the result over 100 picks from a given group. As shown
in Figure 4, the behavior of NEloss is significantly different for core and periphery
shocks. The latter result in either an increase of the risk as a function of density for
˛ D 0 (linear case) or a decrease when ˛ > 0. When shocking the core, however, we
observe an increase of risk for small densities, but at some point it reaches a maxi-
mum and then drops (nonlinear case) or remains at the same level (linear case). In
addition, Figure 5 shows how this dependence is affected by the recovery rate R in
the Furfine case. Obviously, the losses are decreased with increasing R, but the over-
all function form does not change. Although qualitatively 2008 and 2013 are very
similar, 2013 is more robust for all analyzed cases.

Up to this point, we have considered core–periphery interbank network structures
generated using (2.3) with � D 1. We now consider other values of �, up to the
case � D 0 corresponding to an Erdős–Rényi topology. Figure 6 shows network
losses NEloss as a function of � and for different types of initial shocks. We see that
uniform shocks cause a loss that is increasing with �, so the more core–periphery
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FIGURE 3 NEloss as a function of the link density for a fixed value � D 0:4 of uniform initial
shock, for networks built with data from (a) 2008 and (b) 2013 using (2.3) with � D 1.
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Different curves correspond to different magnitudes of nonlinearity in the DebtRank default probabilities entering in
(2.8).

the structure, the more fragile the system is. This behavior is observed for different
values of the network density and for both 2008 and 2013. Moreover, as we already
observed in Figure 2, small uniform shocks cause higher relative losses than bigger
ones in 2008, whereas the opposite is true in 2013. One should note, however, that if
we sum the relative loss and the initial loss, such a sum is always higher for a higher
initial shock. In addition, 2013 is much more robust with NEloss not exceeding 0:5
even for � D 1:0 and � D 0:3.

Interestingly, the behavior changes when we consider single bank defaults. When
the network is more random (� � 0), both types of shock result in a similar value
of NEloss. Yet, as the distinction between core and periphery emerges and becomes
more marked, the result of shocking either of them changes. As can be seen in all
four panels of Figure 6, shocking the periphery is almost equivalent to the small
uniform shock scenario. Indeed, the average initial shock corresponding to a single
bank default in the periphery is around 0.1% of the whole initial equity. Having said
that, the loss induced by defaulting a bank belonging to the core is not an increasing
function of �. For denser networks, with � D 0:15, it decreases in the near random
regime and then stays constant. In the case of � D 0:05, NEloss reaches a minimum
and then increases with �. The existence of an optimal �, from a core defaults per-
spective, is an important observation from a regulatory point of view. Note that the
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FIGURE 4 NEloss as a function of the link density for point initial shocks in (a), (b) the core
or (c), (d) the periphery, for networks built with data from (a), (c) 2008 and (b), (d) 2013
using (2.3) with � D 1.
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average initial loss corresponding to the default of a core bank is more than 4% of
the entire system equity.

We finally consider the modular assortative and disassortative topologies, by vary-
ing the structural parameters � and ˇ but for fixed � D 1. Figure 7 shows the
results of an exercise in which we uniformly shock banks from the first module and
measure NEloss for the second module. We observe that the assortative structure can
be quite resilient if the different blocks are scarcely connected. However, above a

Journal of Network Theory in Finance www.risk.net/journals



Network sensitivity of systemic risk 65

FIGURE 5 NEloss for the Furfine model as a function of the link density for point ini-
tial shocks in (a), (b) the core or (c), (d) the periphery, for networks built with data from
(a), (c) 2008 and (b), (d) 2013 using (2.3) with � D 1.
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given value of � the structure becomes almost as fragile as in the case without the
blocks (� D 1). Concerning disassortative structures, systemic risk decreases when
we move away from a pure bipartite structure. The differences are relatively small
though, and there is no jump similar to the one observed for assortative structures.
For a constant density, this may be the result of a decreasing number of connections
between the two groups when we increase ˇ. In this way, the losses are not transmit-
ted to the other side as quickly as in the purely bipartite case. Qualitatively similar
results were obtained for the 2013 data.
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FIGURE 6 NEloss (computed with linear DebtRank) as a function of the parameter � of
(2.3) tuning the strength of the core–periphery structure, for both (a) 2008 and (b) 2013
interbank networks.
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We consider fixed values of the density � D 0.05 (top two panels) and � D 0.15 (bottom two panels) as well
as different initial shocks: either uniform for all banks, or consisting of a single initial default (in the core or in the
periphery).

4 DISCUSSION

In this work, we have examined different structures of the interbank network and
have shown how they affect systemic risk. In addition, we have used a variety of
shock types and changed the way they propagate across the network. These results
provide additional evidence of how complex the interbank system is and how many
variables are involved in determining its resilience.

In the simplest situation of a single-block network with a core–periphery structure,
systemic risk monotonically increases with density, but there is a quantitative differ-
ence between the behavior observed in 2008 and 2013: the crisis (and the consequent
regulatory interventions) shaped banks’ balances in such a way that, afterward, the
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FIGURE 7 NEloss (computed with linear DebtRank) as a function of the uniform initial
shock � and model parameter � and ˇ of the modular (a) assortative and (b) disassortative
topological structure, respectively.
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In both cases, � D 1 and � D 0.1, and the interbank networks refer to the year 2008.

interbank market became much more robust to small shocks even in the high density
regime.

Our analysis of the different shapes of bank default probability further shows the
differences between the pre- and postcrisis landscape. In 2008, there are basically
two regimes of shock propagation, depending on the network density and the param-
eter ˛, which can also be seen as the amount of confidence market participants have
in the ability of counterparties to recover from equity losses. Indeed, if the confidence
in the system is not high enough, systemic losses become widespread; otherwise,
they remain small. In 2013, however, even for low confidence levels, increasing the
density does not lead to overall losses equal to those observed for the linear case (ie,
that corresponding to the lowest level of trust in the counterparty). Note that these
results were obtained with uniform shocks across all banks. As shown in Mastromat-
teo et al (2012), if we consider the defaults of single banks as initial shocks, then we
might expect that increasing the density will help the system to withstand the shock.

As a matter of fact, the core–periphery structure is naturally generated by the
network (re)construction method described by (2.1), where assets and liabilities are
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shown to have fat-tailed distributions. In this scenario, the only topological param-
eter that can be tuned is the network density, which allows us to switch from net-
works with a few contracts of large amounts to networks with many contracts of
small amounts. However, by introducing the parameter � in (2.3), we were also
able to continuously change the network structure from a random one (� D 0) to
a core–periphery one (� D 1). We then found that the core–periphery structure is
less resilient, at least for uniform shocks. This confirms the well-known observation
that strongly connected nodes enhance shock propagation (Hüser 2015).

For the data set under study, default contagion algorithms (ie, Furfine or Debt-
Rank for ˛ ! 1) would not yield any equity losses for uniform shocks, ie, no
propagation occurs unless a bank actually defaults. Meanwhile, distress contagion
algorithms (ie, DebtRank for finite ˛) distinguished between the vulnerabilities of
different institutions before any default occurred.

In the case of initial bank defaults, the propagation depends on whether the
defaults appeared in the core or in the peripheries. The peripheries are clearly more
fragile, as the structure becomes more core–periphery than random. Importantly, the
core is quite robust, especially between the two extreme structures. In this case, both
default and distress contagion algorithms display equity losses.

In the last step of our analysis, we looked at the block structure of the network. On
the one hand, we found that an assortative modular structure can faithfully represent
a market of several countries, in which home and foreign connectivities are different
(the former being typically much larger). On the other hand, the disassortative mod-
ular case is often observed in financial networks, especially at a low data aggregation
scale for which a bank is either a lender or a borrower, but not both (Barucca and
Lillo 2016). In both cases, we showed how a shock originating in one block propa-
gates to another. For the assortative case, we observed a significant jump in systemic
risk above some given density of connections between the blocks. The disassortative
structure, however, does not reveal any kind of similar discontinuity. Nevertheless,
moving away from the pure bipartite case slowly decreases the systemic risk.

Overall, we showed that the outcome of a systemic event is very much dependent
on the details of both the underlying network and shock propagation. We believe
this observation is relevant for more general frameworks such as multilayer financial
networks (Bargigli et al 2015; Battiston and Martńez-Jaramillo 2018; Poledna et al
2015) and networks of portfolio holdings (Caccioli et al 2014; Cont and Wagalath
2016; Greenwood et al 2015; Gualdi et al 2016; Pichler et al 2018). Our results may
thus inspire more in-depth analyses, and may provide useful insights to regulators in
trying to shape a more resilient financial system. In the latter case, knowledge about
the systemic consequences of changing the interbank network density or reshaping
its structure would be valuable in arguments either for or against a given solution.
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Moreover, studying the effects caused by different shock propagation types can help
in predicting the outcomes of different stress scenarios.
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