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Abstract

With the ever-increasing numbers in population and quality in healthcare, it is
inevitable for the demand of energy and natural resources to rise. Therefore, it
is important to design highly efficient and sustainable chemical processes in the
pursuit of sustainability. The performance of a chemical plant is highly affected by
its design and control. A design cannot be evaluated without its controls and vice
versa. To optimally address design and control simultaneously, one must formulate
a bi-level mixed-integer nonlinear program with a dynamic optimization problem
as the inner problem; this, is intractable. However, by computing an optimal
policy using reinforcement learning, a controller with close-form expression can
be found and embedded into the mathematical program. In this work, an approach
using a policy gradient method along with mathematical programming to solve
the problem simultaneously is proposed. The approach was tested in two case
studies and the performance of the controller was evaluated. It was shown that
the proposed approach outperforms current state-of-the-art control strategies. This
opens a whole new range of possibilities to address the simultaneous design and
control of engineering systems.

1 Introduction

As the human population grows, the demand of consumables and natural resources increases. There-
fore, it is important to design sustainable and efficient processes. The performance of a chemical
plant is substantially affected by its design and its ability to maintain the optimal operating conditions
under operational uncertainty (Diangelakis et al., 2017). A design cannot be evaluated without the
control and vice versa. Hence, it is essential to formulate simultaneous process design and control
approaches to create energy and cost-efficient processes in the pursuit of sustainability.

The PSE (Process Systems Engineering) community has been challenging these problems since
decades ago (Burnak et al., 2019). Several frameworks have been proposed in the past to tackle
simultaneous process design and control problems such as formulation and solution of a bi-level
mixed-integer dynamic optimization (MIDO) problem by transformation to mixed-integer nonlinear
programming problem (Flores-Tlacuahuac and Biegler, 2007), model-based flow sheet and process
group contribution method (Alvarado-Morales et al., 2010) and control structure selection and
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design (Skogestad and Morari, 1987). The controller used in previous studies were mainly the PI
and PID controllers as they are simple and robust. However, it comes with its shortcomings such as
not being able to handle slow disturbances (Sung and Lee, 1996). Multi-parametric methods which
depends on the solution of the bi-level optimization problem has been used previously to address
these problems (Sakizlis et al., 2004; Diangelakis et al., 2017), however, these rely in linearizations
which do not represent well nonlinear dynamics.

To solve this intractable bi-level optimization problem, it is proposed to take advantage of the closed
form (explicit) nature of reinforcement learning controllers. Although the technology is not mature
yet, reinforcement learning (RL) controllers (Sutton and Barto, 2018), has been proven to be able to
handle disturbances, highly non-linear and complex processes (Petsagkourakis, Sandoval, Bradford,
Zhang and del Rio-Chanona, 2020).

2 Method and Integration

2.1 Problem Statement

The approach proposed here builds upon the work done by Diangelakis et al. (2017). Given a
simultaneous process design and control problem, first a bi-level optimization problem is formulated
and then split into two, the design problem and the control problem. The design problem is formulated
as a mixed integer dynamic optimization (MIDO) problem as shown in Equation 1

min
Y ,des

JSDC =

∫ TF

0

P(x,y,u,Y ,d,des)dτ

s.t.
dx

dτ
= f(x,y,u,Y ,d,des)

ymin ≤ y = g(x,u,Y ,d,des) ≤ ymax

ut = πθ(x
obs
t ,xobst−1,y

obs
t ,yobst−1,des

obs) ∀t ∈ {1, ...nT − 1}
Y ∈ {0, 1}, xobst ∈ xt, y

obs
t ∈ yt, des

obs ∈ des

[xmin,dmin] ≤ [xτ ,dτ ] ≤ [xmax,dmax] ∀τ ∈ [0, TF ]

desmin ≤ des ≤ desmax

(1)

where τ is the continuous variable time τ ∈ [0, TF ], TF is the time horizon discretized in nT time
steps of size ∆τ = TF /nT . The subscript t is the time step number, it represents the value of a
variable at time τ = t∆τ where t ∈ {0, 1, ..., nT − 1, nT }. While x is the vector of states of
the system, y is the vector of systems outputs, u is the control action represented discretely as a
piece-wise constant variable, d is the disturbance vector, des is the design variable vector including
the steady-state manipulated variables, P is the integral function of the objective function JSDC , f is
the differential equation describing the process dynamics and g is the constraints. The vectors with
superscript obs are the values of the vector which is observable by the controller since it may not
necessarily need to or able to see the whole state of the process. πθ represents the controller, which
can be a linearized one or an optimization problem like in Equation 2. This means that the problem
turns into bi-level as there is an outer optimization for the design and an inner optimization for the
control.

So, the goal of this problem is to find combinations of the design and binary variables (for example,
reactor type, process layout, etc.), given an optimized controller in the form of an ANN (artificial
neural network) to minimize an objective function JSDC over a time horizon TF discretized in nT
number of time steps of size ∆τ = TF /nT while satisfying the constraints f and g. To get the
optimized controller, an optimal control problem (OCP) is formulated in a way that the controller
would also take in the observable design variable as its input. The formulation is shown in Equation 2.

2



max
πθ

E[JOCP (xobst ,yobst ,ut,des)]

s.t. x(0) = x0

xt+1 = f(xt,ut,dt,des) ∀t ∈ {1, ..., nT − 1}
ut = π(θ,xobst ,xobst−1,y

obs
t ,yobst−1,des

obs)

xobst ∈ xt, y
obs
t ∈ yt, des

obs ∈ des

[xmin,umin] ≤ [xt,ut] ≤ [xmax,umax] ∀t ∈ {1, ..., nT − 1}
ymin ≤ yt ≤ ymax ∀t ∈ {1, ..., nT − 1}

(2)

where all of the notations have the same meaning as before except for the cost function JOCP just to
indicate that the cost function is not the same as the one in the MIDO formulation. The goal of this
problem is to find the optimum parameters of the policy for which it maximizes the expectation of
the objective function.

Using traditional approach would deem this bi-level optimization problem containing a MINLP on
the outside and an OCP in the inner loop intractable, however, by using RL method this problem can
be addressed. The bi-level optimization problem can be separated and formulated as presented in
Equation 2. The OCP problem formulated in Equation 2 shows that the resulting controller also takes
in the observable design variables to calculate the control output, this is why it can operate for a wide
range of design. Furthermore, the final form of a policy gradient controller is an explicit function,
this is why it can be used easily in the MIDO problem formulated in Equation 1.

2.2 Full Approach

Given a simultaneous process design and optimization problem, the approach shown in Algo-
rithm 1 can be used. For training the controller, any policy optimization algorithm can be used (e.g.
TRPO (Schulman et al., 2017), PPO (Schulman et al., 2017), DDPG (Lillicrap et al., 2019)) but for
simplicity the Reinforce algorithm with baseline (Sutton and Barto, 2018) was used in this work.

Algorithm 1 Full approach for simultaneous design and control optimization using RL.

Input: Simultaneous process design and control problem.
Output: Optimal design and controller.

1. State design-control simultaneous optimization: Formulate the design problem
as a mixed-integer dynamic optimization (MIDO) problem as presented in Equa-
tion 1.

2. Optimal Control problem: Pose the optimal control problem (OCP) based on the
design problem as in Equation 2.

3. OCP as RL: Formulate the OCP to be solved via a RL policy optimization frame-
work.
(a) Pre-training: pre-train from an initial policy either via simulation or plant

data, this can be done via supervised or apprenticeship learning, amongst
others.

(b) Policy learning via policy gradients:Begin full-training using a policy opti-
mization algorithm.

4. Embedded bi-level program: Embed the final policy obtained from step 3 into
the design (MIDO) problem and solve using an appropriate solver.

It is important to highlight, that without a policy based method, the OCP is an optimization problem,
hence the integrated formulation in Equation 1 is an intractable bi-level optimization problem.

3



3 Results and Discussions

There are two case studies considered in this work, a more complete description can be found
in (Diangelakis et al., 2017).

3.1 Tank Design

In this simpler case study, it is desired to design a simple tank with continuous inlet and outlet flows.
There are no reactions involved, the inlet flow is in the form of a sinusoidal signal and it has a nominal
inlet flow of Fnom with a maximum deviation of Fdev. The outlet flow is the manipulated variable
of the PG (policy gradient) controller. A setpoint which depends on the values of Fnom and Fdev is
inputted into the controller.

The goal of the design problem is to determine the maximum deviation for which the controller is
able to maintain the desired setpoint. While the goal of the OCP is setpoint tracking. The design
problem was formulated as a MIDO problem presented in Equation 3 and the OCP in Equation 4.τ
is the continuous time variable, V (t) is the volume of liquid in the tank, Fin(t) and Fout(t) are the
inlet and outlet flows in m3 s−1, respectively, a is the valve position (0 is closed, 1 is open), and freq
is the frequency of the sinusoidal wave disturbance in s−1. VSP is the volume set point, Vtank is
the volume of the tank, errπθ is the integral set point error, ε is the maximum allowable error and is
equal to 1 %, at is the control action output from the policy applied to the system.

max
Vtank,Fdev,Fnom,V (0)

JSDC =

∫ 1

0

Fdevdτ

s.t.
dV (τ)

dτ
= Fin(τ)− Fout(τ)

Fout(τ) = αtV (τ)

Fin(τ) = Fnom + Fdev sin (τ/freq)

freq =
1

2π
VSP = Fnom + Fdev ≤ Vtank

errπθ =

∫ 1

0

||V (τ)− VSP ||
VSP

dτ

End-point constraints:
(1− ε/100)V (0) ≤ V (TF ) ≤ (1 + ε/100)V (0)

errπθ ≤ ε/100

Interior-point constraints:
at = πθ(Fin,t, VSP , Vt, Vt−1) ∀t ∈ {0, ..., nT − 1}

(3)

max
πθ

JOCP = −10

nT∑
t=0

(Vt − VSP )2

s.t.
dV (τ)

dτ
= Fin(τ)− Fout(τ)

Fout(τ) = αtV (τ)

Fin(τ) = Fnom + Fdev sin (τ/freq)

freq =
1

2π
VSP = Fnom + Fdev ≤ Vtank
at = πθ(Fin,t, VSP , Vt, Vt−1) ∀t ∈ {0, ..., nT − 1}

(4)

In this case study, a proportional derivative (PD) controller were also used to compare its performance
with the policy gradient (PG) controller. The problem was solved using the approach proposed here
and a solution to the bi-level optimization problem (intractable using traditional approaches) was
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found. The final results showed that the PG controller were able to handle deviation values of up to
3.84 m3 s−1. The control performances are plotted in Figure 1.

Figure 1 shows the performance of the controllers in the tank case study at the MIDO solution
averaged over 1000 simulations with 2 % measurement noise. It can be seen clearly that the PG
controller outperforms the PD controller. The PD control action shows a large variance on its control
action indicating very chaotic response. The mean setpoint error of the PD controller is two times
larger than the PG controller mean error. Furthermore, the PG controller were able to perform better
than the mpMPC used by Diangelakis et al. (2017) as the PG controller managed to handle a higher
maximum deviation even with the presence of measurement noise.
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3.2 Continuous Stirred Tank Reactor (CSTR) Design

The second case study considers the design of a CSTR (continuous stirred tank reactor). The reaction
in the CSTR is a first-order endothermic reaction and a heating jacket is equipped. The temperature
of the jacket is controlled by the PG controller. The feed flowrate and concentrations are disturbed by
a sinusoidal wave similar to the tank case study. The controller is not able to see the value of inlet
feed flowrate, however, in this case study, there is an option to have a settling tank before the CSTR
to normalize the feed mass flowrate to its nominal value.

The goal of the design problem is to minimize a cost related objective function while satisfying
the temperature constraint. While the goal of the OCP is to minimize the concentration of A by
manipulating the heating jacket temperature while keeping the CSTR temperature below 450 K. The
dynamic system can be found in (Diangelakis et al., 2017). The design problem formulation is shown
in Equation 5 and the OCP in Equation 6.

min
V,mdev,mnom,CA,dev,CA,nom,YS

JSDC = CostTotal

s.t.
dCA
dτ

=
m

ρV
(CA0

− CA)− k0CAe−
EA
RT

dT

dτ
=
mCP (T0 − T ) + V∆Hrxnk0CAe

−EA
RT + UA(TH − T )

V ρCP
CA0 = CA0,nom + CA0,nom + CA0,dev

sin (t/freq)

m = mnom +mdev(1− YS,t) sin (t/freq)

freq = 100/(2π)

TH,t = πθ(CA,t, CA,t−1, Tt, V, CA0,t, C
SP
A ) ∀t ∈ 0, ..., nT − 1

errπθ =

∫ TF

0

CA − CSPA dτ

CSPA = 0

Objective function:
CostTotal = CostEquipment + CostOperational
CostEquipment = 10((V − 750)/π) + 1000 + 400YS,f

dCostOperational
dτ

= −m(CA0
− CA) + 4YS

Endpoint constraints:
errπ0 ≤ 100, CA0,dev

≤ CA0,nom , mdev ≤ mnom

Interior point constraints: ∀t ∈ {0, ..., nT }
YS,t − YS,f ≤ 0, YS,t ∈ {0, 1}, YS,f ∈ {0, 1}
Tt ≤ 450

(5)

max
πθ

JOCP = −
nT∑
t=0

(CA,t − CSPA )− 100

nT∑
t=0

max(0, Tt − 450)

s.t.
dCA
dτ

=
m

ρV
(CA0

− CA)− k0CAe−
EA
RT

dT

dτ
=
mCP (T0 − T ) + V∆Hrxnk0CAe

−EA
RT + UA(TH − T )

V ρCP
CA0 = CA0,nom + CA0,nom + CA0,dev

sin (t/freq)

m = mnom +mdev sin (t/freq)

freq = 100/(2π)

TH,t = πθ(CA,t, CA,t−1, Tt, V, CA0,t, C
SP
A ) ∀t ∈ 0, ..., nT − 1

CSPA = 0, Tt ≤ 450

(6)
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where CA and CA0 are the concentrations of A in the reactor and in the feed, respectively, m is the
mass flowrate into and out of the reactor, ρ is the density of the liquid, V is the volume of the reactor,
k0 is the pre-exponential factor, EA is the activation energy, R is the ideal gas constant, ∆Hrxn is
the heat of reaction, T is the temperature inside the reactor, TH is the heating utility temperature, CP
is the heat capacity, UA is the overall heat transfer coefficient multiplied by the heat transfer area,
and YS,t is a piece-wise constant binary variable which determines the utilization of the settling tank
while YS,f is a binary variable which denote the existence of the settling tank.

A PID controller was not implemented in this case study as it would need complex modifications
for it to work with constraints. Again, the approach were able to solve this otherwise intractable
problem for traditional approaches. The solution has final cost of 27,539 and the control performance
is presented in Figure 1. It shows that the settling tank was only needed for a brief amount of
time at the start of the process. At the start, the concentration of A in the CSTR is higher than the
feed concentration, making it hard to satisfy the temperature constraint at initial time, therefore the
settling tank was used. Overall, the controller is performing very well. It was able to minimize the
concentration of A with very good performance (very close to zero almost all of the time) and the
temperature constraint is satisfied at all times. This is also true for a wide range of design variables.

Figure 1: Case study results, LEFT: Tank, RIGHT: CSTR.

4 Conclusions

In this work we proposed the use of RL to address a long standing challenge for the process design
and control community; the simultaneous design and control of sustainable chemical processes. It
was shown that using RL it is possible to address the otherwise intractable nonlinear mixed integer
dynamic bi-level optimization problem. Through case studies, we show that the PG-based controller
was able to perform well in a wide range of design problems and design variables enabling the
optimization of the process. Policy gradient-based controllers can handle measurement noise and
stochastic systems naturally and the final form is an explicit function, which can be directly embedded
into optimization problems. For future work, we will add the handling of constraints with high
probability such as in (Petsagkourakis, Sandoval, Bradford, Galvanin, Zhang and del Rio-Chanona,
2020), and a further hyperparameter tuning scheme (e.g Snoek et al. (2012) Bayesian optimization
or other expensive black box optimization techniques). We aim to address also harder and larger
problems in the near future.
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Broader Impact

With the ever-increasing numbers in population and quality in healthcare, it is inevitable for the
demand for energy and consumer products to increase. Increased demand for energy, in turn,
increases the consumption of fossil fuels which raises the strictness in environmental regulations
due to the negative impacts associated with fossil fuels. Hence, it is important to design energy
and cost-efficient processes in the pursuit of sustainability. The performance of a chemical plant is
substantially affected by its design and its ability to maintain the optimal operating conditions under
operational uncertainty (Diangelakis et al., 2017). A design cannot be evaluated without the control
and vice versa. Hence, it is essential to formulate simultaneous process design and control approaches
to create efficient processes in the pursuit of sustainability. Compared to the traditional approaches,
the RL approach was able to solve bi-level optimization problems and show great control performance.
Furthermore, this method can be applied to both renewable and non-renewable processes and from a
methods point of view it could also be applied to other bi-level optimization problem.
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