
Abstract 
The different sets of regulations existing for differ-
ent agencies within the government make the task of 
creating AI enabled solutions in government diffi-
cult. Regulatory restrictions inhibit sharing of data 
across different agencies, which could be a signifi-
cant impediment to training AI models. We discuss 
the challenges that exist in environments where data 
cannot be freely shared and assess technologies 
which can be used to work around these challenges. 
We present results on building AI models using the 
concept of federated AI, which allows creation of 
models without moving the training data around.  

1 Introduction 
The use of AI to create data-driven applications holds the 
promise of revolutionizing how government business is con-
ducted. In this paper, we focus on the sub-field of AI which 
is based on machine learning.  
 
AI has been used to create applications which include exam-
ining images, analyzing sounds, converting speech to text, 
identifying fraudulent behavior, tracking people from im-
ages, detecting fraud and predicting the growth of cities. In 
its most common approach, an AI-based solution can be 
viewed as operating in two distinct steps of learning and in-
ference, although there are variations which would allow 
learning and inference to proceed in parallel.  
 
In the learning stage, training data is used to build an AI 
model. The AI model captures the patterns and relationships 
that exist in the training data. There are many alternative 
ways to capture these patterns, which range from the use of 
shallow models, e.g. decision trees, inference rules, clusters 
for classification to deep models such as neural networks and 
different variations of the neural networks, e.g. convolutional 
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neural networks, or recurrent neural networks. In an ab-
stracted manner, the model could be for finding anomalies, 
predict the future value of a function or classify the incoming 
data into two or more categories. During the inference stage, 
the trained AI model is used to examine new data to reach a 
conclusion, such as whether the input is anomalous, predict 
an output, or to determine a category.  
 
The wide-range of AI applications means that they can be 
meaningfully applied in government contexts. However, 
there are also several challenges inherent in government con-
texts, with many of them dealing with the regulations and 
prohibitions on the data that is maintained within different 
agencies. This is the problem that we consider in this paper 
and discuss the approaches that can be used to address these 
limitations.      
 
The rest of this paper is structured as follows: We discuss the 
challenges associated with limited availability of data in Sec-
tion 2.  In Section 3, we discuss the concept of federated AI, 
an approach that allows agencies to share models and model 
parameters instead of sharing data. We present the results of 
federated AI on some sample datasets in Section 4. Finally, 
we draw our conclusions and identify areas for future re-
search.   

2 Challenges of Data in Federated Agencies 
One of the major determinants of effectiveness of any AI 
based solution is the quality of training data that is available 
for the task of model building. Since the model is geared to-
wards capturing patterns and relationships in the data, it can 
only operate well if most patterns and relationships are pre-
sent in the training data. In general, the larger the amount of 
training data that is available, the better the quality of AI 
model that will be available to do the inference part of the 
solution. This aspect of machine learning is exhibited by the 
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learning curve characteristics of different algorithm [Cortes 
et al., 1994], [Perlich et al., 2003].  
 
In order to build any AI enabled solution, the availability of 
more data is usually better for creating a model with better 
accuracy, one that is more likely to capture more patterns. In 
order to create any model, the required training data may be 
available with different agencies. Unfortunately, obtaining 
the right training data for a specific problem in very difficult, 
and usually only part of the data required to address the prob-
lem may be available within a single agency. In order to cre-
ate the integrated model, one would need to be able to com-
bine and create the data that is available from various sources, 
and in many cases the relevant data may only be available 
from another agency.  

The general situation which we are trying to address can be 
seen in Figure 1. One of the agencies, referenced in this paper 
as Agency 1, is trying to build an AI model and it has access 
to some training data which is under its own control. It would 
however benefit from access to a larger set of training data 
that resides in other agencies (referenced as Agencies 2, 3, 4 
etc.). The training data for each agency is accessed via a data 
server which controls access to the data and may transform 
the data before providing it to the requesting parties. While it 
would be useful for the agencies to have free access to all 
available set of data, it is frequently hard to get access to in-
ter-agency data for a variety of reasons. These include: 
 
Large Data Size: The size of data collected by the different 
agencies can be very large. For example, agencies that collect 
network data may analyze and store terabytes of data per day. 
Even agencies that collect structured records about people 
and personnel may have data collected for hundreds of mil-
lions of individuals. The large data size can cause a challenge 
in moving data to a central location for the purpose of mining 
and building the appropriate data model. 
 
Limited Network: The networks that interconnect different 
agencies in the government tend to be low bandwidth, usually 
in comparison to the size of the data that can be stored within 
each of the agencies. If the data is being collected in environ-
ments with limited connectivity, e.g. in remote areas covered 

only by satellite networks, collection of data into a central 
location for training may not be viable.   
 
Regulations: There may be regulatory prohibitions on the 
type and amount of data that can be shared among different 
agencies. Some types of data in an agency may provide valu-
able information but may be restricted from sharing with 
other agencies for reasons of privacy, constitutional rights, 
etc.  
 
Inter-Agency Trust: There may be a lack of trust in how the 
data is handled or managed among different agencies. While 
different agencies in any government organization cooper-
ated with each other, the trust and cooperation may not be 
complete. As a result, some agencies may be hesitant to share 
data with the agency that is building the machine learning 
model.   
 
Data Quality: Different agencies may manage the data with 
different level of quality or fidelity, as far as the task of curat-
ing training data is concerned. While data may be available 
from many different agencies, the agencies may have col-
lected the data for different purposes, so the way in which the 
data is maintained and stored may be very different. The data 
may not be in the format required by the agency, or it may 
have a different labeling approach.  

3 Federated AI for Inter-Agency AI 
If we can move data from the different agencies to Agency 1 
which is creating the machine learning model, then Agency 1 
can inject policy-based mechanisms [Agrawal et. al. 2008] to 
deal with the differences in data format and quality. This 
would create a centralized policy-based mechanism for col-

lecting training data and create models on the aggregated 
trained data.  
 
On the other hand, if we cannot move data between agencies, 
an alternative is to create models independently at each of the 
agencies, and to move models between locations instead of 
moving data. The models can be moved by simply sharing 
their parameter values instead of trying to move the data 
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Figure 1. Situation with Inter Agency AI 
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between different sites. We refer to this latter approach as 
federated AI.  
 
A Centralized Policy based mechanism for creating the fed-
erated model would result in the overall architecture as shown 
in Figure 2. A data curator in Agency 1 interacts with the 
agencies to collect the training data available from them. 
Each of the other agencies can also use local policies to de-
cide what data can be delivered to the curator of Agency 1.  
This allows each agency to have control over how data within 
their control is sent. Agency 1 would use its curation policies 
would determine how the data obtained from each agency 
should be transformed to accept the information. Such trans-
formations could include relabeling, or filtering, rejecting 

any training data that appears to be erroneous, or applying 
some transformations on the data that is received. The net re-
sult of the policy based curation is the warehousing of all the 
collected data at one single location, which can subsequently 
be used to train the model for machine learning.  
 
In federated AI, the approach is turned the other way, and 
data is not moved. Instead of moving data, model parameters 
are moved so that each agency can help another agency create 
a training model that is suitable for its purposes.  The setup 
needed for federated AI is as shown in Figure 3. Each agency 
trains a private model, and exchanges model parameters with 
Agency 1. Eventually,  Agency 1 would end up creating a 
model that is trained over all the data maintained in all of the 
agencies.  
 
The choice between the two approaches depends on the trust 
relationship, compute capacity, network connectivity specifi-
cations, and level of cooperation among the different agen-
cies.  In the policy-based centralized AI training model, there 
needs to be sufficient trust between agencies to share that data 
(possibly with some transformations) to Agency 1. It also 
needs to have good network bandwidth to transfer the data to 
Agency 1, but requires little computation support on its own 
side. On the other hand, federated AI requires sufficient trust 
among the agencies to run model building on behalf of 
Agency 1, or to share pre-trained models with Agency 1. It 
can work with limited network connectivity but requires 

more computational capacity from each of the agencies. 
Thus, the choice between centralized AI and federated AI can 
be viewed as a trade-off between computation cycles and net-
work bandwidth.  
 
One can examine the performance of the centralized ap-
proach versus the federated approach as the relative effi-
ciency of network versus compute changes. Suppose it takes 
Kn units of time to transfer a given size of data across the net-
work to agency one, while it takes Ks units of time to train a 
machine learning model on the same size of data. The value 
N = Kn/Ks can be used as the definition of the relative perfor-
mance of the network compared to computational capacity. 
The other factors that impact the time taken to train a model 
would be the number of agencies involved (A), and the size 
of a machine learning model compared to the data that it is 
trained on, which we can call the model reduction ratio (Mr).  
 
With the above definitions, the ratio of the time it takes to 
train a model using federated AI compared to the time it takes 
using centralized policy-based learning when each agency 
has an equal amount of training data can be shown to be:   
 

(1+ Kn/Ks)/(1/A + MrKn/Ks). 
 
The gain in federated learning performance as a function of 
relative network/compute performance (N) is shown in Fig-
ure 4. The graph shows the ratio in the amount of time it takes 
to train an AI model using federated learning compared to the 
time it takes compared to the policy-based centralized ap-
proach, when each agency has identical computation capac-
ity. The different curves show the ratio for different number 
of agencies that are involved and assumes that data is split 
evenly across the different agencies. 

As apparent in Figure 4, federated AI would usually perform 
better compared to centralized approach, even for relatively 
low values of N, which indicates the performance of the net-
work is very high. As the network performance becomes 
worse, (N becomes high) with a high latency network, the 
benefits of federated AI become more pronounced. Central-
ized AI would have better performance only when Agency 1 
has special types of servers which make the computation 

 
Figure 3. Federated AI 
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Figure 4. Relative Performance of the two approaches 
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capacity relatively fast for the central learning while requir-
ing a very large time for training at the other agencies.  
 
In the asymptotic case, where the model size relative to the 
size of the data can be ignored, the performance gain of fed-
erated AI will be characterized by A(I+ Kn/Ks).  
 
Although federated AI would out-perform centralized AI in 
most cases, there may be scenarios where centralized AI 
would still be the preferred approach. The centralized AI ap-
proach requires less dependency on the other agencies from 
Agency 1’s perspective since they only need to provide ac-
cess to their data. Furthermore, policies can be made to deal 
with the nuances of different data formats or data quality 
across agencies.  
 
While Federated AI has a clear win over centralized AI as far 
as performance measured in the model training time is con-
cerned, it does require more computational capability support 
from the other agencies. As a result, different flavors of fed-
erated AI may need to be developed depending on the level 
of cooperation that may exist among the different agencies.  

4 Flavors of Federated AI   
   The flavors of federated AI reflect the variations on the ap-
proach that needs to be developed based on the truest rela-
tionship among different agencies. In defining each of the fla-
vors, we assume an agent-based approach for federated AI. 
The federation process works on having an “federation cli-
ent” that is executed by each of the agencies. This client can 
be downloaded and executed from a location hosted by 
agency 1. The overall approach is shown in Figure 5. The 
federation clients in each agency interact with a federation 
server in agency 1.  

Each agency  is willing to run the federation client to help out 
agency 1 in building its training model. Even as the agencies 
cooperate, they may be placing various kinds of constraints 
on what the federation client does, and when the federation 
client may run. Some of these constraints include:  
 
• Agency 1 can control the time of execution of federa-

tion client, and enable them to access the data at other 

agencies at periodic intervals. This would allow agency 
1 to execute all the federation clients at the same time 
interacting with the federation server, incrementally 
building the model that is required.  

• Agency 1 cannot control how the federation clients 
communicate with the federation server. Each federa-
tion client, however, can train a local model com-
pletely, and share that model with the federation server.   

• The other agencies are only willing to provide Agency 
1 with a fully trained model. Agency 1 federation client 
is limited to transmitting this pre-trained model to the 
federation server.  

 
Each of these constraints would result in different flavors of 
federated AI. In this section, we look at some of these flavors 
and see how the accuracy of models trained using the feder-
ated approach compares to that trained using the central ap-
proach.   
 

4.1 Flavor 1: Synchronized Online Federation  
 
In this flavor of federated learning, the federation client at 
different agencies can be scheduled to run at the same time as 
the federation server. The federation server decides on the 
type of model that is to be trained by each of the federation 
clients. Each federation client will use the same type of AI 
model with the same hyper-parameters for its training. Each 
federation client trains the model parameters on a small mini-
batch of local training data, sends the parameters to the fed-
eration server, which has the task of combining and averaging 
all of the parameters together. In the next training round, each 
agent takes the averaged parameters and trains its model with 
that as the average approach.  
 
This synchronized federation can work on machine learning 
models that use synchronized gradient descent [McMahan et. 
al. 2017] with an additive loss function, i.e. the measure of 
error from the learnt model against given data points. In ef-
fect, each agent computes the model parameters to best fit 
their data, and the loss from the different agents can be aver-
aged at the federation server to determine the right parame-
ters. This approach would work for the majority of neural net-
works.  
 
In order to train a model that captures the relationship among 
the different split data properly, the system needs to go 
through multiple rounds of synchronization. With increasing 
rounds of synchronization, the performance of the model ap-
proaches that of collecting all the data in a central location 
and then training the model.  
 
Figure 6 shows the accuracy of this synchronization approach 
on the MNIST data set [Lecun et. al. 1998] when it is split 
randomly into ten agencies. The agencies are each training a 
convolutional neural network with two convolutional layers 

 
Figure 5. Federation Client and Server 

Data 3

Agency 3

Network

Agency 1

Fusion ServerData Server

model

Federation 
Client

Federation 
Server

Data 2

Agency 2

Federation 
Client



using rectified linear unit activation followed by two fully 
connected layers, the first one using rectified linear unit acti-
vation and the second one using softmax to classify the digits. 
The accuracy of this neural network on centralized MNIST 
data is 98.8%. As the number of synchronization points 
among the different agents are increased, the accuracy of the 
federated AI approaches that of the centralized AI approach. 
This observation is consistent with the results shown in 
[McMahan et. al. 2017]  and [Wang et. al. 2018]. 

 

 4.2 Flavor 2: Unsynchronized Model Movement  
 
In this flavor of federated learning, the federation clients are 
not allowed to synchronize their model building process over 
every mini-batch. Instead, each agency can train the data over 
the local data set that it has access to. This situation may arise 
in environments where the other agency may not be willing 
to open its local systems to download and run a federation 
client, but is willing to take a model specification, and run it 
locally on data that is available locally.  
 
In this flavor of the federated learning, the federation server 
in agency 1 has to take the model that it has from its local 
data, and then send the models over to each agency for train-
ing further using the data set at the agency. In effect the model 
is moved across all of the agencies.  
 
Figure 7 shows the resulting accuracy of the model as it goes 
through the model movement across all the different data 
sets. The model migration approach works fairly well for this 
particular data set and model, and at the end of having trav-
ersed all of the local data instances, the model has the accu-
racy comparable to that of the centrally trained model.  
 
Note that the horizontal axis of Figure 7 reflects the number 
of peer agencies that the model has been moved to. In this 
flavor of federated AI, each model is trained through all the 
data stored at an agency together, as opposed to the concept 
of synchronization rounds in flavor 1 where each round uses 
data from each of the different agencies. The bottom axis, 
therefore, is different than the one shown in Figure 6. For the 

MNIST data set, each agency data reflects about 46 rounds of 
synchronization using the flavor 1 approach. Thus, the initial 

accuracy starts out comparable to the accuracy at round step 
50 of the flavor 1 model.  

4.3 Flavor 3: Limited Data Exchange Approach  
The previously described two flavors work well when the 
data across different agencies is randomly split. However, 

when the data is skewed, and different classes have different 
types of data, then two flavors of federated AI do not perform 
as well. 
 
Figure 8 shows the accuracy of the two flavors of federated 
AI when the data among different agencies is partitioned so 
that data for a specific class belongs only to one of the agen-
cies. In this particular case, we have taken the MNIST data 
set and split it among 10 agencies so that each agency only 
has one class of data. Neither of the two flavors for creating 
an AI model works well in this instance. The flavor 1 ap-
proach, which resulted in a very good partition with random 
split of data, ends up with some very poor results. While the 
system seems to be improving its accuracy relatively slowly 
with the increasing rounds of synchronization, the growth in 
accuracy is anemic compared to the case where the data was 
randomly split.  
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Figure 7. Accuracy of Federation AI Flavor 2 
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Figure 8. Problems with Partitioned Classes 
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The flavor 2 of federated learning performs even worse, with 
the accuracy being static regardless of the number of agencies 
from which the daa is being trained. An examination of the 
details of what is happening in the second flavor indicates the 
problem that arises in this approach. After each round of data 
training, the AI model is trained to predict all input data as 
belonging to the class for which it was trained most recently. 
With the test data comprising of equal set among the ten clas-
ses, the resulting model is able to only predict 10% of the 
classes. The problem is that the neural network training algo-
rithms are biased towards the latest set of data it is being 
trained, and splitting the data in a skewed manner confuses 
them to recognize the latest class preferentially.  
 
This effect can be mitigated if we are able to provide the ma-
chine learning model at each of the stages with a little bit of 
data from the other classes. The model is now able to account 
for existence of other types of classes, and does not get biased 
too heavily with the class it has been seeing in the latest rein-
carnation.  
 
The results from the training process with a limited amount 
of data exchange is shown in Figure 9.  The left hand side 
shows data exchange added to flavor 1 of federated learning, 
while the right hand side shows data exchange added to flavor 
2 of federated learning.  

 
 The data exchange in Figure 9 reflects an exchange of 128 
samples per class to each agent. This reflects a transfer of less 
than 2% of the data that is for each class (for MNIST, it is 
6,000 points per class). Even with a small amount of data ex-
changed, the accuracy of the model increases significantly, 
approaching the accuracy that was attained with the simpler 
previous flavors of the algorithm when the data was split ran-
domly. Comparing the results to Figure 8, the advantages of 
a limited data exchange are obvious.  
 
A natural question in this regard is the impact of the amount 
of data exchange and its impact on the accuracy of the result-
ing model. Figure 10 shows the data exchange approach 
added to flavor 1. The simulation runs for 50 rounds of ex-
changes, and compares the increase in the accuracy of the re-
sulting model.  From the shape of the results, even a small 

amount of data exchange (~1%) can result in significant im-
provement of accuracy in building the different models.  

  
The net resulting accuracy is sufficiently close to that of cen-
tralized training approach, and can be improved further if the 
number of rounds are increased beyond 50, extrapolating 
from the trend shown in the results of Figure 9.  

4.3 Other Flavors  
The previously described flavors have the focus on making 
models with good accuracy metrics. However, Government 
agencies may have other concerns, such as security of data, 
potential leakage of model parameters to other agencies, or 
maintaining provenance of models and training data.  
 
Each of the flavors described earlier in the section can be aug-
mented with cryptographical methods to answer those re-
quirements. The model building process can be restructured 
so that partial homomorphic encryption techniques will allow 
the model building in each of the other flavors to occur, with-
out necessarily sharing information content or model param-
eters with each other. At the cost of performance degradation, 
fully homomorphic schemes can also be used.  
 
Practical solutions may often require several AI models 
which are chained together to create a complete end to end 
solution. Those solutions would need additional flavors to 
support these chains. Similarly, provenance can be added as 
part of the information exchange among agencies.   
 
While we are not describing these other flavors in this paper, 
prototypes implementing those functions can be added rela-
tively easily to the three flavors described earlier.  

4 Related Work 
The challenges of creating machine learning models across 
several agencies is related to the problem of learning models 
across multiple coalition partners in a coalition environment. 
The challenges of distributed learning in coalition environ-
ments are described by [Verma and Julier 2017], and many 
of the issues carry over to the challenge of training models on 
data across agencies of the same government.  
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Figure 10. Data Exchange impact on Accuracy of Federation 

AI Flavor 3 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0% 2% 4% 6% 8%

A
cc

ur
ac

y 

Data Exchanged



 
The first flavor of federated AI can be viewed as an applica-
tion of the approach for handling decentralized data described 
by [McMahan et. al. 2017], although they did not consider 
the impact of partitioned classes in training data. The ap-
proach used in flavor 1 was analyzed by [Wang et. al. 2018] 
to optimize the intervals at which models are synchronized. 
An alternative approach for combining models trained on dis-
tributed data using boosting and ensemble methods [Rokach 
2010] was proposed by [Verma et. al. 2018] but its perfor-
mance was poor compared to the flavors proposed in this pa-
per.  
 
While this paper has focused on combining neural network 
models, there has been work on combining models of other 
types.  Approaches for combining decision trees were re-
viewed by [Strecht 2015]. Models that can be expressed using 
their Fourier transforms can be combined using approaches 
proposed by [Karagupta and Park 2004].  
 
Another approach to solve the problem of data across agen-
cies is to move data after anonymization to preserve privacy 
[Hua and Pei 2008]. Such transformations may augment the 
centralized policy-based mechanisms described earlier in this 
paper. 

5 Summary and Conclusions  
In this paper, we have discussed the challenges associated 

with the training of AI models where the training data set is 
distributed across multiple agencies, and data cannot be 
moved across organizations easily. We have examined three 
different flavors of federated AI, and discussed how a small 
amount of data exchange can significantly improve the per-
formance of federated AI.  

While the three flavors of federated AI provide a set of so-
lutions to some common issues preventing sharing of data, 
they are only the starting point of an approach which ad-
dresses the concerns of disparate training data spread across 
different agencies. While some of those approaches can be 
addressed using policy-based mechanisms, other challenges 
would require new flavors of federated AI.  

As an example of the challenges that still need to be ad-
dressed, in some cases the agency may find it more conven-
ient to run the federation server on a Government hosted 
cloud. If an agency is not comfortable sharing the model pa-
rameters to a cloud-based servers, techniques that do not re-
veal the model parameters to the federation servers would 
need to be developed.  
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