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Everybody Needs Somebody Sometimes:
Validation of Adaptive Recovery in Robotic Space

Operations
Steve McGuire1, P. Michael Furlong2, Terry Fong3, Christoffer Heckman4,

Daniel Szafir4, Simon J. Julier5, and Nisar Ahmed1

Abstract—This work assesses an adaptive approach to fault
recovery in autonomous robotic space operations, which uses in-
dicators of opportunity, such as physiological state measurements
and observations of past human assistant performance, to inform
future selections. We validated our reinforcement learning ap-
proach using data we collected from humans executing simulated
mission scenarios. We present a method of structuring human-
factors experiments that permits collection of relevant indicator
of opportunity and assigned assistance task performance data, as
well as evaluation of our adaptive approach, without requiring
large numbers of test subjects. Application of our reinforcement
learning algorithm to our experimental data shows that our adap-
tive assistant selection approach can achieve lower cumulative
regret compared to existing non-adaptive baseline approaches
when using real human data. Our work has applications beyond
space robotics to any application where autonomy failures may
occur that require external intervention.

Index Terms—Human-Centered Robotics, Space Robotics and
Automation, Learning and Adaptive Systems

I. INTRODUCTION

FUTURE space missions will feature autonomous robotic
and human crewmates. However, research in autonomous

systems has yet to produce a robot that never fails. Therefore,
in many planned space missions, robots must be able to request
assistance from other robots and humans. This work examines
the open problem of how robots choose an assistant to recover
from failures thereby maximizing the amount of time spent op-
erating autonomously. In our previous work [1], we investigated
how a robot may optimize its choice of assistance through the
use of indicators of opportunity (IOO). IOOs are predictors of
the performance of each potentially available assistant. IOOs
could, for instance, include physiological state measurements
(e.g. blood pressure, heart rate, galvanic skin response, O2
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levels, etc.) as well as contextual indicators (e.g. location,
current task assignment and workload, past performance on
assigned tasks). IOOs are created and constantly revised using
data which are already being collected for some other reason.
The use of IOOs for informing assistant selection is preferable
to the use of dedicated sensors in order to minimize impact
on mission design, cost, and execution.
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Fig. 1: Information flow in an idealized learning robot. The
planner decomposes goals into subtasks for the executive.

In [1], we validated the use of IOOs in an idealized
simulation of an autonomous robot working together with
human assistants in a space environments, using a context-
aware reinforcement-learning (RL)-based policy for adaptive
assistant selection. Using cumulative regret (the running sum
of differences between rewards earned by a policy’s choice of
assistant and the highest possible rewards that could have been
earned) as a measurement of performance, we demonstrated that
the IOOs can be exploited with “black box” models of human
performance to provide improved performance, as compared
to existing baseline assistant selection policies that do not
consider such contextual information.

In this paper, we extend our earlier work by applying and
evaluating our RL-based approach to a real human IOO and
performance data set for a range of failure recovery tasks that
are representative of future space robotics mission scenarios.
This data set was acquired through a set of human subject
experiments that simulate the operating conditions that humans
are expected to operate in, capturing several important features
for assessing the feasibility of an adaptive policy selection
approach for future mission designs.

Our paper has three major contributions. First, due to the
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expense and difficulty in sourcing human performance data, we
present a technique to synthesize IOO and task performance
training/testing data from a small number of samples. We
devised and executed an experiment to statistically validate
our synthesis technique, finding no evidence to discourage
the use of our method. Second, since we have no previously
validated data set to use for our assistant allocation problem,
we present our own design and validate using human subjects
that there are useful relationships between IOOs and human
performance to be learned . Finally, we test the proposition that
our technique can learn these relationships. We find that our
learning-based approach can exploit the embedded information
to yield improved performance over existing non-adaptive
assistant selection policies that have been proposed for failure
recovery in autonomous robotic space operations.

II. BACKGROUND AND PROBLEM STATEMENT

This work is motivated by a hypothetical Mars mission
scenario derived from existing Earth studies [2] and proposed
future manned exploration missions [3]. The crew has been
given a set of high-level goals which define the mission. Each
goal is comprised of a set of tasks that must be completed.
These are decomposed into a series of subtasks, atomic units
of work which cannot be subdivided further [4]. For example,
the subtasks for a mobile rover obtaining a sample from to an
area of interest might include: moving to the sample location,
drilling to obtain a sample, moving a sample container to an
onboard storage area, and then moving to the home habitat.
The inability to complete a subtask to specification is called
a failure. It is recognized by the task monitor, a part of the
onboard embedded agent. [5], [6], [7]. For example, Fig. 2
illustrates there was a failure during a “Move to location”
subtask.

In the event of failure, the assistant selector must chose
an appropriate assistant to address the failure and resume
autonomous operations according to the rules of a policy.
Assistants may be consulted for two reasons: task recovery
and task demonstration. In this paper we focus solely on
task recovery. A key constraint on this recovery process is to
recognize that there is a cost associated with using humans as
sources of aid, as they will have other primary responsibilities
besides monitoring robotic operations.

The current practice in space robotic operations is to dedicate
human operators to monitor and assist all the robots all the time
[8], [9]. These individuals are chosen through a combination
of expert opinion and design choice. One common approach is
to use a static policy. Given a static allocation table (where an
offline analysis has considered the cost and benefit of assigning
each task to each human [10]), an optimal assignment is carried
out. However, this static approach cannot meet the dynamic
demands of a real situation, in which an operator’s attention
becomes divided between multiple competing robots or external
tasks [11].

An alternative is to use dynamic assistant allocation. Rather
than use an assignment based on fixed costs and benefits,
these mechanisms constantly revise the costing and update the
allocation strategy in response to evolving human capabilities

Subtask Queue
Subtask Status

Move to location Completed
Drill sample Completed

Move to location Failed
Grasp container Queued

Available Helpers
Attributes Actors
Actor ID A B C
Location EVA Habitat Earth

Past Perf (1-10) 4 7 9
Stress Level

(1-10)
7 2 6

... ... ... ...
Est Performance Med. High Low

Fig. 2: Robot obtains assistance with ‘move to location’ subtask.
Robots can query a number of helpers with different attributes,
like experience level, cognitive/physical workload, location
constraints, and the cost for disrupting humans.

and constraints. As shown in Fig. 2, robots can choose from a
number of possible assistants whose quality is each a function
of dynamic features. Robots must learn to select the best
assistant given their current state.

A. Formal Assistance Allocation Problem Statement

Assume there exists a set A = {av}NA
v=1 of actors capable

of assisting an embedded agent during an autonomy failure.
The embedded agent au maintains a history from timestep
k = 1 to the present of past subtasks tk that have failed,
assistant allocation decisions, and resulting reward earned by
each decision.

At timestep k, au must assign a single actor aj from
set Ā = A \ {au} of size NĀ to recover from failed
subtask tk and maximize mission utility U , given only the
partially observed history from timesteps 1, ..., (k − 1) of past
assignment decisions and resulting rewards. That is, maximize
U =

∑∞
k=1 γkrk, γk ∈ {0, 1}NĀ , |γk| = 1 where γk is a

vector of indicator values denoting the selection decision for
each timestep k and rk is the reward vector earned by every
agent at timestep k, subject to the subject to the constraint
γk · rk = |rk|, meaning only the selected performance is
observed at each timestep k. The rules for composing γk
describe a policy. Several simplifications and restrictions are
present in our problem. No subtask may be assigned to more
than one actor, nor are embedded agents allowed to help one
another. Furthermore, subtask failure distributions are unknown,
and can’t be used in actor selection.

B. Related Work

Classical centralized [12], [13] and distributed [14] task
allocation schemes require coherent utility functions to model
the overall expected payoff of actor-task assignments; devel-
oping such utility functions requires comprehensive domain
knowledge that is unavailable in a space exploration setting
due to operational uncertainty. Importantly, most allocation
schemes assume that the underlying task execution process



IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2019 3

and associated utilities are well-modeled and time-invariant,
making them brittle when the underlying system is dynamic
or only partially understood [15].

To attempt to overcome this brittleness, some authors have
used partially observable Markov decision processes (POMDPs)
to learn offline a policy which can be used online to determine
an optimal actor assignment policy. POMDPs have also been
used to optimize spatio-temporal assignments of robots to tasks
[16] and other human-robot collaboration efforts [17]. However,
as above, POMDPs require accurate system models to evaluate
both actions and rewards. Optimal allocation policies are also
extremely difficult to find for POMDPs with high-dimensional
state spaces [18].

In contrast to model-based approaches, Reinforcement
learning (RL) can adaptively integrate feedback from action
choices to improve future choices. Parker, et al’s behavior-
based L-ALLIANCE [19] is an early example of an RL-
based task allocation system. However, L-ALLIANCE only
considered time to complete objectives, when in fact time is
only one of many factors that influence overall task and mission
performance. Nevertheless, RL algorithms allow contextual and
performance data from assigned actors to be leveraged over
time, without requiring accurate a priori knowledge of system
models, making RL-based techniques attractive for exploration
missions with highly uncertain models.

The deployment of autonomy techniques in actual missions
has been rather limited; one shining success story is the Auto-
mated Exploration for Gathering Increased Science (AEGIS)
system aboard NASA’s Curiosity Mars rover [20]. The AEGIS
system autonomously selects science targets to be analyzed
via laser spectrometer without requiring a round-trip to Earth;
a clear benefit of this system is increased science output due
solely to the use of autonomy. While the type of autonomy
implementing AEGIS is comparatively basic due to limited
onboard compute, the acceptance of autonomy in science
operations represents a major cultural shift and bodes well
for future deployment of learning techniques such as ours.

Our previous work used a hybrid linear contextual multi-
arm bandit [21], using the indicators of opportunity as context
features to inform assistant selections. The hybrid formulation
lets us consider observations that affect all actors, as well
as individual observations capturing unique human responses.
We validated the utility of contextual information in making
decisions by comparing a non-parametric multi-arm bandit
approach (KLempUCB, [22]) with a context-aware approach,
finding a marked performance improvement in terms of
cumulative regret. However, our previous work used a synthetic
human performance model that was not grounded in real-life
data; in this work, we demonstrate the effectiveness on actual
human subjects.

III. EXPERIMENTAL DESIGNS AND RESULTS

Accurately assessing our proposed algorithm requires data
from the behaviour of human assistants. We have collected a
dataset of human subject performance to fill a gap in available
datasets. As in our prior work, we measure performance as
cumulative regret. Regret is the difference in reward between

the optimal choice (unknown to the policy) and the policy’s
choice of assistant. Cumulative regret is the sum of the regret
at each time step. The units of the reward function, and hence
regret, depend on the system design. Our adaptive policy’s
performance is compared to the state-of-the-art static approach
of [10] through the crossover point, which is the number of
selection events required for the cumulative regret of the static
policy to exceed the cumulative regret of the adaptive policy.
This metric allows us to measure the performance penalty
incurred by the exploration of the learning algorithm

A. Synthesizing large datasets from a small n
One of the major challenges of this work was forming

assistant pools (sets of potential assistants) so regret could be
used as a metric. Assistant selection algorithms should be tested
against a number of different subjects to ensure generalizability
to other users. In our previously published work, we used
simulated actors. However, these do not accurately model the
behaviour of real humans. Practically, human testing is very
limited in the number of subjects that can be enrolled. Matching
a baseline of one hundred trials with three actors would
require three hundred subjects. To address a similar problem,
[21] samples possible actions uniformly online; offline, their
algorithm skips data samples until the desired action is taken.
Such an approach is impractical because the number of data
samples needed scales linearly in the number of available
actions to obtain a given set of desired observations. Other
researchers address the small n problem by using techniques
that are unavailable in our problem, such as the use of reflection
and rotation in the object recognition domain.

Instead, we use a technique from the field of resource
utilization [23] to select smaller subsets of fixed size from
a population in order of increasing overlap between subsets.
This technique balances subset membership uniformly so as to
ensure that our entire test population is well-represented and to
avoid ‘cherry-picking’ the actor pool. We rely on an assumption
that each actor’s performance is independent of inter-actor
effects. We implemented the minimal-overlapping algorithm
from Section 3.3 of [23], which exhaustively computes the
number of common members between the set of already
selected teams (actor subsets) and every potential next member,
and computes an index of overlap for candidates. The next
candidate member is chosen from the candidates with minimum
index. This minimal-overlapping algorithm was chosen for its
intuitiveness and simplicity. We want to show that artificially
increasing the number of trials does not negatively affect the
ability to assess algorithm performance by introducing biases.
We therefore carried out an experiment to ensure the validity
of our technique.

Hypothesis 1: The use of teams with overlapping members
impacts the performance of assistant selection algorithms. If we
reject the null hypothesis, then our technique for synthesizing
additional data results in a statistically significant change in the
distribution of crossover points; such a change would indicate
that our technique is not suitable for use. However, if we fail to
reject the null hypothesis, we can gather evidence to indicate
that our technique is safe for use even though we cannot prove
the null hypothesis.
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We conducted a 2×1 experiment to determine if using shared
teams affected the distribution of crossover points compared to
independent teams. The independent variable was the choice
of independent simulations for each actor in each team or an
enumeration of maximally disjoint simulations in which teams
were composed of shared simulations of actor performance.
Our dependent variable is the crossover point of our adaptive
policy relative to the static policy.

Two matched sets of simulations were conducted. In each
set, fully disjoint teams of actors were compared against
shared teams selected from a set of ten actors, producing
regret curves similar to our previously published work [1]. The
number of selection events needed before the multi-arm bandit
outperformed the informed static policy was then measured for
one hundred trials in each setup. This procedure was repeated
for teams of three and six actors.

a) Results: We used a Kruskal-Wallis nonparametric test
[24] to determine if the distributions of crossover points over
selection events between the two conditions was significant in
both the three-actor case and the six-actor case. In one hundred
trials, there was no difference between the distributions for
either the use of three actors (H(79) = 80.515, with p = 0.43)
or for the use of six actors (H(72) = 74.574, with p=0.39).
These densities are shown in Figs. 7 & 8 in the Supplementary
Materials. These tests were only run in the trials when crossover
occurred, omitting 14 trials in the 6-actor case which the multi-
arm bandit never underperformed the informed static policy.
Since we cannot reject the null hypothesis that the distributions
are identical, we fail to accept Hypothesis 1, concluding that
the distribution of crossover points are similar enough to permit
the use of the alternative test set composition of the maximally
disjoint subsets. Having reached this conclusion in simulation,
we may then apply the result to a study with real humans.
While this conclusion includes the possibility of committing a
Type II error (false negative), we have observed no evidence
to this effect based on visual inspection. A stronger hypothesis
test would have been preferable; however, the crossover points
do not appear to follow a well-known distribution.

One worthwhile observation is that the generation of the
one hundred most disjoint teams from space

(
10
3

)
required two

shared members (e.g. teams A,B,C and A,B,D were present)
and in the space

(
10
6

)
required four shared members (teams

A,B,C,D,E,F and A,B,C,D,G,H). Even though the teams share
more than half their members, the crossover point distributions
are still not statistically different.

B. Development of a reference human performance dataset
In previous work [1], we used idealized simulations to show

that indicators of opportunity can improve the performance
of an assistant selection algorithm. Our intent in developing
a human-sourced dataset is to capture the difficult-to-model
properties of human task performance. This reference dataset
lets us make a fair comparison between strategies in a
manner that mirrors the technique used in the proof-of-concept
simulations, except that we can now include effects such as
workload, attention, and fatigue.

In our experiment, humans assist virtual robots in a series
of tasks relevant to planetary exploration; each human subject

is scored on the basis of their performance for each task.
This dataset captures individuals’ performance responses to
both explicit manipulations (Fig. 3), including workload and
attention, and implicit manipulations, such as task difficulty.
Performance is measured by scoring results of each planetary
exploration-relevant tasks by our software. Several research
questions are proposed to explore the feasibility of using of
an adaptive allocation strategy with real humans and develop
heuristics for implementing a real system.

Question 1a: Are our experimental manipulations effective
in manipulating human task performance? We expect to see
a significant effect on human performance as a result of our
experimental controls.

Question 1b: What physiological responses, such as gal-
vanic skin response and heart rate variability, can be used
to predict human performance? This question explores the
effectiveness of directly inferring (in contrast to the indirect es-
timates of [25]) performance from two physiological measures
with established relationships to task performance: heart rate
variability and galvanic skin response. These measurements
are already being collected in current space operations and
thus are indicators of opportunity, adding no additional mission
design burden. Both of these measures have shown promise
for individuals on a given task, but are inconclusive when
generalized across a population and multiple tasks. Many
other data types are also available - we fully expect to find
richly interconnected dependencies between data and human
performance. This question explores whether these measures
are effective in predicting individualized performance on a
task-by-task basis.

Question 1c: How important are individual responses
when attempting to model human performance? This question
examines whether our experimental design captures sufficient
information to enable algorithms that consider individual
differences to outperform those that do not. This is, for
instance, motivated by Cacioppo [26], who offers a model
of psychophysiology partitioning observed physical traits that
inform cognitive state into sets that generalize across all humans
and those that are particular to specific humans.

Our experiment is structured as a mixed design; within-
subjects independent variables are workload and attention task
parameters, while between-subjects independent variables are
task type and task difficulty. A mixed-design experiment is
appropriate in our case because it can achieve large power
with a small numbers of subjects. The transfer learning effects
common to mixed-design experiments are expected: they are
important if we seek to capture the richness of human learning
and task performance.

Our between-subjects variables are necessary to present
the illusion to a selection policy that every selection trial
is conducted under the same conditions for every possible
actor; without this illusion, our dataset would not be usable for
policy development. Workload, attention, and task difficulty
are each structured as having three levels, while we include
three task types: navigation, sample handling, and grasping.
The dependent variable is productivity, computed as the ratio
of performance score and time required, while the controls
consist of two within factors: workload and attention, and
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two between factors: task type and task difficulty. Our design
is summarized in Fig. 3. To capture individual physiological
responses, heart rate variability and galvanic skin response data
were continuously measured over the course of the experimental
protocol using a Microsoft Band 2 wireless monitor.

a) Experimental Tasks: This experiment includes three
planetary exploration mission scenarios where a user recovers
a failed autonomous robot while attending to other primary
attention tasks. Each assistance task has a continuous quality
metric, rather than a binary “success/failure” outcome. Also,
each component task supports three difficulty levels. Each task
defines a quality score q as well as a resource cost c. Our
reward metric, productivity, is calculated as the ratio of the
earned score to the resources expended to earn that score.

In the Navigation assistance scenario, the user teleoperates a
robot across a terrain to a goal, shown in Fig. 4a. This scenario
is driven by a Gazebo physics simulation of a exploration
rover exploring an environment, sourced from Mars Express
data. The user is presented with an overhead view including
current position, past positions, and desired goal, as well as
a first-person view from a simulated on-board camera system.
The user’s performance (q) is quantified as the fraction of
the distance remaining to the goal to the Euclidean distance
between the starting position and desired goal position, while
cost (c) is the total time to execute.

In the Grasping scenario, the user aids the robot in grasping
differently shaped objects using a parallel gripper. This scenario
is a simple approximation of a grasping task, shown in Fig.
4b. Grasp quality q is determined by the alignment of the
parallel jaws to object facets. The cost, c, is the elapsed time
to complete the grasp. Subjects use keyboard arrow keys to
control end effector position and rotation; difficulty is varied
by changing object geometry and pose.

In the Sample Handling scenario, the user aids the robot in
depositing recovered solid sample material into the funnel of
an on-board scientific instrument in the presence of wind. The
goal is to transfer all material recovered by a drilling operation
into the analysis funnel. This scenario is driven by a first-order
approximation of particle motion in wind as a 2D Gaussian
distribution, shown in Fig. 4c. The user is presented with an
overhead view of the funnel, with an x-y marker in the plane
to denote the current center of mass of the scoop containing
sample material and a wind observation. The user teleoperates
the sample delivery scoop into position relative to the center
of the funnel. A simulation then determines the percentage
of material that was recovered by the funnel. Difficulty is
controlled by the wind parameters: velocity, gust behavior, and
observation rate. Quality q of the user’s task performance is
the percentage of recovered material, while the cost c is the
elapsed time used to position the scoop.

While we expected to observe changes in performance due
solely to the difficulty of the subtasks, additional independent
controls on user attention and workload directly manipulated
cognitive state via distractor tasks, impacting performance.
The assistant selection algorithm used these control settings
in making decisions. To manipulate attention, subjects were
presented with messages to be classified as high or low priority.
To manipulate workload, subjects performed a variation of the

NASA workload simulation tool Multi-Attribute Task Battery
II (MATB-II) [27], where a variable liquid tank level must be
kept within bounds by operating multiple pumps. Exponential
distributions with rates λ control the time between distractor
tasks. The conditions were manipulated via the parameters λ
of the distributions; subjects received a randomized ordering
of several fixed values of λ. The values of λ were fixed for a
constant number of subtasks. To establish a baseline for task
performance, we included an initial training period with no
distractor tasks.

b) Apparatus and Environment: A key challenge for this
experimental design was ensuring that subjects completed a
sufficient number of subtasks, so that our assistant selection
algorithm had enough data to learn from. Based on our prior
simulations [1], we found that the number of selection events
required to achieve parity with a state-of-the-art approach
scales linearly in both the size of the assistant population
and the number of types of subtask. Therefore, the human
data collection involved a small number of subtasks and used
small assistant populations, to validate performance of our
adaptive approach within the horizon imposed by the number
of selection events possible in a single testing session.

A list of 150 specific subtasks was generated by sampling
subtask types uniformly. The difficulty of each subtask was
sampled uniformly. This list of scenarios was then presented
identically to each subject. Workload and attention variations
were determined individually per subject. The list of subtasks
were broken into 30 blocks of 5 subtasks. For each block,
two parameters were sampled from Uniform(0, 0.1) : λa
and λw. Within each block, distributions Exponential(λa)
and Exponential(λw) were sampled to obtain time between
attention and workload distractor tasks respectively. The first
block was hard-coded to have no workload or attention tasks
to provide a training period. Fig. 3 summarizes our controls,
human-sourced data, and observed measures.

c) Subjects: A total of 17 subjects were recruited from the
University of Colorado community. Our subject pool included
both technical and non-technical users, all of whom prefer
right-handed mousing controls. After obtaining consent, users
were briefed on the experimental tasks and user interface,
fitted with their fitness tracker, and seated in a quiet office-like
environment in groups of up to four subjects. Each subject
was assigned an individual workload-attention profile and
then left to complete the task sequence at their own pace,
taking approximately three hours to complete. Once complete,
each subject provided feedback, was compensated, and then
dismissed. Our collection methods were approved by IRB under
protocol 17-0485.

d) Results: This experiment is structured as a hierarchical
linear model, where a linear mixed-effects parametric model
with random slopes is used to model productivity on a per-
subject and per-task basis. We used this model type to account
for the fact that our productivity data are grouped by task type
and task difficulty. These statistical analyses provide a ‘best
case’ ground truth of the predictive capability of our controls
and physiological measurements, and ensure that our dataset
encodes a relationship between observations and productivity
that can be learned.
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Experimental Controls
Subtask Type

Subtask Difficulty
Distractor Difficulty
Workload Difficulty

Subtask
Simulation

Human-Generated Data
Heart rate

GSR feature vector

Observed Measures
Subtask score
Time required

Fig. 3: Relations between experimental controls, indicators of opportunity, and measures.

(a) (b) (c)

Fig. 4: Experimental UI showing status information to the user in navigation (a), sample handling (b), and grasping (c) tasks.

Using the lme4 package in R [28], [29], we used a fully-
dependent model of productivity with workload, attention,
GSR, and HR terms, as well as an intercept term for
actor and a random slope term for task type grouped by
difficulty. Using Type II Wald chi-square tests to determine
what factors are significant, we identified that attention alone
(χ2(6) = 15.8703, p=0.014), and workload and attention
together (χ2(4) = 14.7087, p=0.005) are significant predictors
of productivity, giving us confidence that our experiment
manipulated performance and answering Question 1a in the
affirmative. Productivity is also significantly predicted by
heartrate alone (χ2(1) = 5.3067, p=0.021), allowing us to
offer heartrate as one candidate to help answer Question 1b.
We also determined that individually modelling actors is critical
to predicting productivity; comparing models with and without
the intercept term for actor identity, we found a significant
improvement, effect (χ2(1) = 110.24, p < 0.001), supporting
a conclusion that individual differences are important to help
answer Question 1c.

From our offline analysis of our experimental dataset, we
can confidently conclude that significant relationships exist
between our independent and certain of our dependent variables.
Based on our analysis, we should be able to confidently predict
performance given attention alone, workload and attention, or
heartrate. However, we have only justified this result in a batch
setting; our goal is to establish and exploit these relationships
in an online setting. We have also not considered the effects
of actor learning that may be present in our data.

IV. ASSESSMENT OF A REINFORCEMENT-LEARNING
ADAPTIVE POLICY USING HUMAN-SOURCED DATA

Using our pool of actor data from the experiment in
Section III-B, we now assess our adaptive policy against
more realistic data. Following Section III-A, we compare
three assistant allocation policies – random, linear multi-arm
bandit, and informed static – by their crossover point and

final cumulative regret. The random policy assigns subtasks
to actors with uniform probability over the set of all actors.
No state information is used to inform the selection. The
linear multi-arm bandit policy [21] estimates the potential
reward at each time t for each actor assignment a as a linear
combination of the current world (z) and actor (xa) states with
parameters β∗ and θ∗a, as E[rt,a | xt,a, zt] = zTt β

∗ + xT
t,aθ
∗
a.

Our experiment maps subtask difficulty to world state, and
attention, workload, GSR, and heart rate to actor state, using a
separate bandit for each subtask type. The estimates of β and
θa are then updated with that actor’s observed reward. This
policy was chosen for its simplicity and expressive power and
was validated in our prior work [1]. In the informed static
policy is determined from a post-hoc analysis of the ground
truth behaviour data. The informed static policy is a table
which accumulates counts for the highest-earning task/actor
pairing for each assignment. After processing all assignment
events, the actor with the maximum count for each task is
selected as the designated assistant. While this policy is not
physically realizable, it acts as a baseline high-performance
static policy, analogous to the static analysis proposed in [10].
This policy differs from the batch analysis in Section III-B, as
only actor performance outcomes are considered.

Hypothesis 2: An adaptive reinforcement learning policy
that considers contextual information can outperform policies
that do not consider such information, as measured by
cumulative regret. If accepted, we can conclude that our
adaptive policy is useful in real-world situations in addition to
the purely simulated environments of our previous work.

We conducted one hundred trials of each policy using
subteams ranging from three actors in size to six actors in size,
enumerated according to the minimally overlapping algorithm
discussed in Section III-A. This is a 3x1 between-subjects
design, where the ‘subject’ is the policy type.



IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2019 7

Actor Count F Statistic p η2

3 F(2, 297) = 8.59 p < 0.001 0.0547
4 F(2, 297) = 7.12 p = 0.001 0.0458
5 F(2, 297) = 6.56 p = 0.002 0.0423
6 F(2, 297) = 7.01 p = 0.001 0.0451

TABLE I: Hypothesis 3 ANOVA results, 150 selection events.
A. Results

Fig. 5 shows the mean cumulative regret at each selection
event for pools of three (a) and six (b) actors, zoomed in to
highlight the crossover point signalling the transition from
exploration to exploitation within the bandit policy. In each
case, we observe that by the final selection event the bandit
policy has, on average, achieved a lower cumulative regret than
either a random or an informed static policy for all teams sizes,
with ANOVA results reported in Table I. In each case, post-hoc
tests using Tukey’s HSD test confirmed that the bandit policy
achieved a lower cumulative regret than either the informed
static or random policies. The irregular distribution of the
crossover points emphasize the importance of considering a set
of trials when evaluating performance, rather than relying on
singular examples. The histogram of crossover points for each
condition is shown in Fig. 9 in the Supplementary Materials, as
well as the full cumulative regret plots for all four conditions
(Fig. 10 through Fig. 13).

In addition to observing the aggregate behavior over many
trials, we examine several individual runs to show that the
bandit is in fact learning. One such run is shown in Fig. 6,
where a single trial’s cumulative regret plot is shown. In this
instance, the bandit makes a better choice than either of the
two alternative policies. However, we caution that examining
individual runs is not necessarily indicative of algorithmic
performance, since discriminating between actual learning and
dumb luck requires repeated trials to ensure that the algorithm
makes superior choices over time.

B. Discussion

Our experiment in Section III-B manipulated subject per-
formance, with statistical significance. While other assistant
selection mechanisms use direct measurements of workload,
our algorithm can unobtrusively infer workload from online
observations of individuals. The statistical analyses show that
in real subjects our individualized model is an improvement on
the ideal static policy. Batch techniques such as the ideal static
policy fail to consider performance as a function of contextual
information, exhibiting similar performance to the random
policy; such aggregate policies could be useful to initialize
a learning system and reduce the number of needed training
events.

As an example of the practical effects of our reward function
definition, in Fig. 6 at the informed policy’s choice at event 54,
the informed policy incurred a regret of approximately 0.5 by
choosing an actor requiring nearly twice as much time as the
best choice of actor. This figure also highlights the importance
of folding mission priorities into reward function design; the
learning system will learn to maximize reward, potentially
exploiting a poor design and yielding suboptimal outcomes.

In Fig. 5, the improvement from the multi-arm bandit policy
is not as pronounced as in our prior simulated work. In
fact, regret curves across all policies are similar, indicating
that certain events had a wide variation in performance
across subjects. One possible explanation for this is a lack
of discriminatory power, since we used a feature vector in
which all possible data were provided to the multi-arm bandit
policy. Yet, our analyses show that not all data were useful in
predicting productivity. In future work, we will investigate
which contextual factors should be provided to selection
algorithms, potentially including mission-relevant data such as
location, bandwidth, available dexterity, and concurrent tasking.
While our study population was not drawn from the highly
educated and regimented population of astronauts, our use of a
more general population shows that our method can be applied
to a broad range of autonomy applications.

V. CONCLUSIONS

In this work, we presented an experimental design to gather
a dataset upon which policies that solve the assistant selection
problem can be tested without requiring large numbers of
test subjects. In particular, we are interested in policies that
exploit noninvasive indicators of opportunity to inform the
selection process. We also presented the results of running this
experiment and an initial analysis, finding that the use of such
indicators yields an improvement in the quality of decisions,
as measured by cumulative regret. We can therefore assess that
our adaptive reinforcement-learning based approach is useful
with real humans and warrants further study.

While our methods can still produce improvements over
policies that do not use contextual information to make
decisions under uncertainty, our data emphasize the need for
further investigation into the most informative observations
that yield the most predictive power with respect to estimating
performance. We are also interested in the role of the learning
process, exploring how an adaptive approach can be modified to
model the changes in a human actor’s performance as a result
of becoming more familiar with the limits of a robotic system.
Our work is applicable to any imperfect autonomous system
that requires human intervention; while this work has focused
on space robotics, we may readily apply our technique to other
fields such as robotic agriculture or self-driving transportation.
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large Markov decision processes,” 2010.

[19] L. E. Parker, “Task-oriented multi-robot learning in behavior-based
systems,” in Intelligent Robots and Systems’ 96, IROS 96, Proceedings
of the 1996 IEEE/RSJ International Conference on, vol. 3. IEEE, 1996,
pp. 1478–1487.

[20] R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma,
M. Burl, J. Frydenvang, S. Montaño, R. Wiens, et al., “Aegis autonomous
targeting for chemcam on mars science laboratory: Deployment and
results of initial science team use,” Science Robotics, vol. 2, no. 7, p.
eaan4582, 2017.

[21] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proceedings
of the 19th International Conference on World Wide Web. ACM, 2010,
pp. 661–670.
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SUPPLEMENTARY MATERIALS

We have included several plots in these materials that while not critical to our work, provide a more complete picture of the
data and analyses involved.

Histograms from Section III-A, Synthesizing from Small n
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Fig. 7: Distribution of crossover points for 3 actors
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Fig. 8: Distribution of crossover points for 6 actors
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Histograms from Section IV: Assessment of a reinforcement-learning adaptive policy using human-sourced data
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Fig. 9: Histograms of crossover points, showing the relative density of the number of selection events needed before a bandit
policy outperforms an informed static policy
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Cumulative Regret plots from Section IV: Assessment of a reinforcement-learning adaptive policy using human-sourced data
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Fig. 10: Plots of cumulative regret for 3 actors; ±5σ bounds are shown in dashed lines
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Fig. 11: Plots of cumulative regret for 4 actors; ±5σ bounds are shown in dashed lines
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Fig. 12: Plots of cumulative regret for 5 actors; ±5σ bounds are shown in dashed lines
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Fig. 13: Plots of cumulative regret for 6 actors; ±5σ bounds are shown in dashed lines
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Analysis of Deviance Table (Type II Wald χ2 tests)
Model: Productivity ∼ Workload ∗Attention ∗GSR ∗HR+

(1 + TaskType/TaskDifficulty) + (1|Actor)
Response: Productivity

χ2 Df Pr(> χ2)
Workload 4.9634 6 0.548510
Attention 15.8703 6 0.014468
GSR 0.0079 1 0.929395
HR 5.3067 1 0.021244
TaskType 1789.4987 2 < 2.2e-16
Workload:Attention 14.7087 4 0.005345
Workload:GSR 2.7055 2 0.258528
Attention:GSR 5.3802 2 0.067874
Workload:HR 2.3334 2 0.311388
Attention:HR 1.0852 2 0.581230
GSR:HR 0.2499 1 0.617142
TaskType:TaskDifficulty 1037.6611 6 < 2.2e-16
Workload:Attention:GSR 2.1026 4 0.716899
Workload:Attention:HR 4.6067 4 0.330079
Workload:GSR:HR 2.0478 2 0.359183
Attention:GSR:HR 3.2907 2 0.192945
Workload:Attention:GSR:HR 3.7095 4 0.446752

TABLE II: Type II Wald Test Results. Rows indicating observable signals of interest are bolded, while rows indicating
experimental controls are italicized. Heartrate (HR) alone is a significant predictors of performance, while neither galvanic skin
response (GSR) nor GSR with HR are significant predictors of performance. The prediction of the italicized control variables
indicates that our experimental controls were effective in manipulating performance.


