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Abstract 13 

The peak inelastic displacement of single-degree-of-freedom bilinear systems (𝑆𝑑𝑖) is an effective 14 

intensity measure linking ground-motion features to the inelastic response and subsequent 15 

structural/nonstructural damage of engineered systems. This study develops a region-specific 16 

ground-motion model for 𝑆𝑑𝑖 considering source, path, and site effects and explicitly accounting 17 

for the spatial correlation between intraevent residuals when the model parameters are estimated. 18 

The model is developed based on 2427 two-component horizontal ground-motion records from 85 19 

events in northern Italy with magnitudes ranging from 4.0 to 6.4 and source-to-site distances less 20 

than 200 km. An exponential stationary and isotropic model is considered to represent the spatial 21 

correlation properties of 𝑆𝑑𝑖 (after scrutinizing the appropriateness of the underlying assumptions 22 

for such a model). Comparisons are performed with existing models in the literature in terms of 23 

𝑆𝑑𝑖  estimates, as well as the (spatial correlation) effective range parameter. Two practical 24 

applications of the developed model are presented; one on estimating the spatial distribution of 25 

𝑆𝑑𝑖 (as an essential ingredient for seismic loss assessments); and one on the engineering validation 26 

of region-specific ground-motion simulations. Challenges regarding such validations are also 27 

discussed.  28 

Introduction  29 

The peak inelastic displacement of single-degree-of-freedom (SDoF) bilinear systems (𝑆𝑑𝑖), 30 

also referred to as inelastic displacement spectral ordinate, is an effective intensity measure (IM) 31 
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relating ground-motion features to the inelastic response and subsequent structural/nonstructural 32 

damage of engineered systems (e.g., Stafford et al., 2016). 𝑆𝑑𝑖 can be effectively used (in addition 33 

to elastic spectral ordinates) in earthquake-resistant performance-based design (e.g., FEMA 356, 34 

2000; Borzi et al., 2001) and seismic risk assessment (e.g., Raghunandan et al., 2015). In fact, 35 

compared to probabilistic seismic demand models using the elastic pseudospectral acceleration at 36 

the fundamental period, 𝑆𝑑𝑖 is a more efficient and sufficient ground-motion IM and can reduce 37 

the potential bias in the amplitude-scaling of ground motions (e.g., Tothong and Luco, 2007), thus 38 

resulting in improved seismic-demand predictions and subsequent damage/loss estimates for 39 

multi-degree-of-freedom structures (e.g., O’Reilly et al., 2020). Empirical ground-motion models 40 

(GMMs) for 𝑆𝑑𝑖 can provide a direct estimation of the inelastic response of simplified structural 41 

systems (e.g., single-degree-of-freedom bilinear systems) based on source, path and site effects 42 

(De Luca et al., 2014b, 2014a; Heresi et al., 2018; Akkar and Sandıkkaya, 2019). This is not 43 

computationally intensive compared to the rigorous counterpart process (i.e., conducting site-44 

specific seismic hazard analysis based on elastic spectral ordinates; selecting ground-motion time 45 

series to represent the hazard; and performing response history analysis on a detailed nonlinear 46 

model of the considered system). It is noted that utilizing a single empirical model to circumvent 47 

the more rigorous process described above will come with some larger uncertainties in the obtained 48 

estimates (that may also be present in the rigorous approach to a certain extent). Moreover, having 49 

a GMM for inelastic-response proxies which also incorporates their spatial correlation properties 50 

– as proposed in this study – can notably facilitate the performance-based assessment of engineered 51 
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systems, both for probabilistic seismic hazard analysis as well as scenario-based generation of 52 

ground-motion fields (including post-event ShakeMaps).  53 

Several GMMs have been developed for 𝑆𝑑𝑖 based on rupture magnitude, focal mechanism, 54 

source-to-site distance, and near-surface soil property (to account for source, path, and site effects, 55 

respectively) and structural properties (e.g., elastic period, yield strength coefficient, strength-56 

reduction factor, and ductility). Tothong and Cornell (2006) and Stafford et al. (2016) proposed 57 

empirical GMMs for the inelastic-to-elastic displacement ratios based on the NGA-West (Next 58 

Generation of Ground-motion Attenuation) database (Chiou et al., 2008). These models require 59 

another GMM (e.g., for elastic spectral ordinates) to estimate the median 𝑆𝑑𝑖 and its variability. 60 

De Luca et al. (2014a, 2014b), Akkar and Sandıkkaya (2019), and Heresi et al. (2018) have directly 61 

built GMMs for 𝑆𝑑𝑖 based on Italian, Pan-European and global datasets, respectively. Heresi et 62 

al. (2018) also suggested that utilizing a single GMM (as opposed to a combination of GMMs for 63 

the inelastic-to-elastic ratio and elastic spectral ordinates) results in 𝑆𝑑𝑖 estimates characterized 64 

by lower uncertainty. More in general, this approach simplifies the two-stage process that requires 65 

computing not only the median and standard deviation of the peak elastic displacement and 66 

inelastic displacement ratio independently, but also the correlation coefficients between these two 67 

random variables. 68 

Quantifying the spatial correlation properties of 𝑆𝑑𝑖  is also needed. Various studies (e.g., 69 

Weatherill et al., 2015) have shown that the spatial correlation in ground-motion IMs has important 70 

implications on seismic hazard and risk estimates (e.g., earthquake-induced losses) of spatially 71 
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distributed engineering systems, such as portfolios of buildings, transportation networks, and other 72 

lifelines. The spatial correlation properties of elastic spectral ordinates have been widely 73 

investigated (e.g., Goda and Hong, 2008; Jayaram and Baker, 2009; Esposito and Iervolino, 2012; 74 

Sgobba et al., 2019, among many others). In this case, it is commonly assumed that the (intraevent) 75 

ground-motion residuals follow a Gaussian distribution with zero mean, and their spatial field is a 76 

second-order stationary process (i.e., independent of the actual location of the considered sites) 77 

and isotropic (i.e., not varying in magnitude according to the considered direction). In contrast to 78 

the elastic response, the spatial correlation properties of the inelastic spectral displacement have 79 

not been addressed in the literature, and the validity of isotropy and stationarity assumptions has 80 

not been examined.  81 

This study aims to fill the abovementioned gaps by developing a region-specific GMM for 82 

𝑆𝑑𝑖 in northern Italy, explicitly accounting for the spatial correlation between intraevent residuals 83 

when the model parameters are estimated. Applications of the developed GMM for scenario-based 84 

seismic hazard assessment and the engineering validation of simulated ground-motions are 85 

presented. Challenges regarding such validations are also discussed. 86 

Case-Study Region and Strong-Motion Database 87 

The ground-motion dataset used by Lanzano et al. (2016) to develop an elastic spectral 88 

ordinate GMM for northern Italy (hereafter referred to as NI15) is adopted in this study. The strong-89 

motion recordings used in this study are obtained from the Engineering Strong-Motion database 90 
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(see Data and Resources). The considered region includes one of the largest alluvial basins in 91 

Europe (i.e., the Po Plain area), characterized by moderate seismic hazard (e.g., Stucchi et al., 2011) 92 

but associated with a high level of exposure due to the large concentration of industries and critical 93 

infrastructures. This has also promoted the development of various physics-based ground-motion 94 

simulation methods/applications for the region (e.g., Molinari et al., 2015; Paolucci et al., 2015; 95 

Zuccolo et al., 2020, among others), especially following the 2012 Emilia seismic sequence in 96 

northern Italy (e.g., Luzi et al., 2013). 97 

Most of the existing GMMs available in the literature (for a variety of IMs) have been derived 98 

using recorded data from multiple stations/seismic sources and compiled in global flat files. This 99 

has enabled ground-motion modelers to increase the complexity of their models with the aim of 100 

reducing epistemic uncertainties (e.g., Gregor et al., 2014; Douglas and Edwards, 2016). However, 101 

applying those complex models in practical seismic hazard assessments for specific regions is 102 

often a challenging task because of the required input data on the source, path, and site parameters. 103 

In addition, ground motions recorded within or at the edge of alluvial basins – as for the case-study 104 

region considered here – show very peculiar features (due to the specific propagation effects and 105 

local site response), and even more complex GMMs may poorly capture those features. For the 106 

specific case of northern Italy, Lanzano et al. (2016) demonstrated that region-specific GMMs can 107 

outperform complex models developed for larger geographic areas (for example, using global, 108 

pan-European, or national datasets) and can lead to a reduction in the hazard levels for several IMs 109 

with respect to the values obtained by considering an Italian-wide GMM (Bindi et al., 2011). 110 
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In this study, a purging process was performed on the initial dataset of Lanzano et al. (2016) 111 

for the purpose of spatial correlation modeling, including the removal of co-located stations and 112 

the removal of events with less than two records classified as free-field motions. The final dataset 113 

consists of 2427 two-component pairs of horizontal ground motions recorded at 290 stations in 114 

northern Italy during 85 events with a moment magnitude of 4.0 ≤ 𝑀𝑊 ≤ 6.4, focal depths ≤ 30 115 

km, and source-to-site distances (measured by the closest distance to the surface projection of the 116 

rupture plane, known as the Joyner-Boore distance, 𝑅𝐽𝐵 ) ≤ 200  km. The geographic 117 

distributions of the events and recording stations grouped based on their site classes, according to 118 

Eurocode 8 (CEN, 2004), are shown in Figure 1. More details on the considered selection criteria 119 

(e.g., the spatial window of the considered events, types of recording stations, and ground-motion 120 

processing procedures) can be found in Lanzano et al. (2016). 121 

Following the NI15 approach, stations belonging to site class C (i.e., with a time-averaged 122 

shear-wave velocity at the upper 30 m, 𝑉𝑆30, between 180 and 360 m/s) located within the alluvial 123 

basins (i.e., in the Po Plain basin or smaller basins in the Apennines) are identified as a special site 124 

class C1, with the aim of partially accounting for the presence of surface waves generated due to 125 

the basin-edge effect. Lanzano et al. (2016) suggested that the ground-motion attenuation in 126 

northern Italy depends on the geological domain and source-to-site distance range. Thus, in 127 

addition to a hinge distance, an indicator function is considered in NI15 to differentiate the Po 128 

Plain basin and the Eastern Alps regions in the north-east (denoted as PEA in the adopted 129 

functional form here) from the Northern Apennines region in the south-west (denoted as NA). The 130 
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dashed line presented in Figure 1 delineates these two regions. The magnitude-distance scatter plot, 131 

and the corresponding histograms are shown in Figure 2. As shown, the considered dataset is 132 

dominated by small-to-moderate 𝑀𝑊  events (i.e., 80% of the event have 𝑀𝑊 ≤ 5.0 which 133 

correspond to 70% of the records); the median source-to-site distance 𝑅𝐽𝐵 is around 60 km, and 134 

37 % of the records belong to class C1. As shown in Figure 2 (d,e), the PEA and NA datasets are 135 

dominated by recordings from site class C1 (i.e., sites of class C within the basin) and site class B, 136 

respectively. As the 1976–1977 Friuli and 2012 Emilia sequences (i.e., the two main seismic 137 

sequences in the considered dataset, taking up over 60% of the recordings) occurred within the 138 

PEA region, the PEA dataset includes more recordings compared to the NA dataset (especially for 139 

𝑅𝐽𝐵 ≤ 20 km). It is noted that 𝑀𝑊 6.4 in the PEA region and 𝑀𝑊 6.1 in the NA region are 140 

considered as the applicable upper 𝑀𝑊 for the developed model. 141 

[Figure 1 about here.] 142 

[Figure 2 about here.] 143 

Peak Inelastic Displacement of Single-Degree-of-Freedom Bilinear Systems 144 

A set of inelastic SDoF oscillators with varying dynamic characteristics are modeled, as 145 

follows: 146 

• Elastic vibration period, 𝑇𝑒, ranging between 0.04 and 4 s (36 periods in total); 147 

• Strength reduction factor, 𝑅 = 2, 4, and 6, defined as the ratio of ground-motion elastic 148 

demand to the SDoF system’s yield strength (𝐹𝑦), as shown in Figure 3. 𝑅 is varied in 149 
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order to model the elastic/inelastic structural behavior from elastic (𝑅 = 1)  SDoF (to 150 

investigate also the elastic GMM), to mildly inelastic (𝑅 = 2) , and severely inelastic 151 

structures (𝑅 = 6). 152 

• Hysteretic behavior, a non-degrading elastoplastic model with a positive strain-hardening 153 

as shown in Figure 3 (with elastic stiffness 𝑘 and post-elastic stiffness ratio 𝛼𝑠 = 3%), 154 

representing non-degrading/non-evolutionary SDoF systems.  155 

• A viscous damping coefficient (𝜁) of 5%, kept constant throughout the response history 156 

analyses. 157 

[Figure 3 about here.] 158 

This simple hysteretic model is chosen as it is conventionally used for assessing the inelastic 159 

response of engineered systems for design and assessment purposes (e.g., Priestley, 1997; O’Reilly 160 

et al., 2020). Nonlinear dynamic analysis of the considered SDoF oscillators is performed using 161 

OpenSees (Mazzoni et al., 2006) by separately subjecting each oscillator to the North-South and 162 

East-West components of the records. The geometric mean of the two horizontal components are 163 

used in this study to establish the GMM, which also facilitates comparisons with the existing 164 

GMMs for 𝑆𝑑𝑖. The constant-𝑅 approach is adopted in this study to ensure that the considered 165 

SDoFs will reach consistent levels of nonlinearity (e.g., Galasso et al., 2012). More precisely, for 166 

each record, 𝐹𝑦 is proportional to the elastic spectral acceleration for that record (at the system’s 167 

elastic period 𝑇𝑒) divided by the desired 𝑅 value. 168 
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Methodology 169 

GMM functional form 170 

The functional form of NI15 is considered in this study, as presented in Equation (1): 171 

𝑦𝑖𝑗 = 𝑎 + 𝐹𝑀(𝑀𝑊) + 𝐹𝐷(𝑅, 𝑀𝑊) + 𝐹𝑠𝑜𝑓 + 𝐹𝑠 + 𝐹𝐵𝑎𝑠𝑖𝑛 + 𝜂𝑖 + 𝜀𝑖𝑗  𝑖 = 1, ⋯ , 𝑁, 𝑗 = 1, ⋯ , 𝑛𝑖   (1) 172 

where  173 

• 𝑦𝑖𝑗 = log
10

S𝑑𝑖,𝑖𝑗 is the base-10 logarithm of 𝑆𝑑𝑖 (in cm) at station 𝑗 of event 𝑖;  174 

• 𝑎 is a constant coefficient to be estimated (i.e., the offset of the model);  175 

• 𝐹𝑀(𝑀𝑊), 𝐹𝐷(𝑅, 𝑀𝑊), 𝐹𝑠𝑜𝑓, 𝐹𝑠, 𝐹𝐵𝑎𝑠𝑖𝑛 are the magnitude scaling, the distance function, 176 

the style-of-faulting, the site amplification, and the basin-effects correction, respectively; 177 

• 𝛈𝑖 = 𝜂𝑖𝟏𝑛𝑖
 is the interevent error vector for event 𝑖 ∈ {1, … , 𝑁}. The (𝜂𝑖)𝑖=1,…,𝑁 values 178 

are independent and identically distributed interevent errors with 𝔼(𝜂𝑖) = 0  and 179 

var(𝜂𝑖) = 𝜏2 for all 𝑖 ∈ {1, … , 𝑁} where 𝟏𝑛𝑖
 is an 𝑛𝑖 × 1 vector of ones;  180 

• (𝛆𝑖)𝑖=1,…,𝑁 are independent intraevent error vectors of size 𝑛𝑖 × 1 with 𝔼(𝛆𝑖) = 𝟎 and 181 

cov(𝛆𝑖) = 𝜙2𝛀𝑖(𝛚)  , where 𝛀𝑖(𝛚)  is the spatial correlation matrix corresponding to 182 

event 𝑖, and 𝛚 is a vector of unknown parameters;  183 

• It is noted that (𝜂𝑖)𝑖=1,…,𝑁  and (𝛆𝑖)𝑖=1,…,𝑁  are assumed to be mutually independent; 184 

hence, the total standard deviation is calculated as 𝜎 = √𝜏2 + 𝜙2  from inter- (𝜏 ) and 185 

intraevent (𝜙) standard deviations;  186 

• 𝑁 is the total number of events;  187 
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• 𝑛𝑖 is the number of recording stations for event 𝑖.  188 

The magnitude function is: 189 

 𝐹𝑀(𝑀𝑊) = 𝑏1(𝑀𝑊, 𝑖 − 𝑀𝑟) + 𝑏2(𝑀𝑊, 𝑖 − 𝑀𝑟)
2
,  (2) 190 

where 𝑀𝑊, 𝑖 is the moment magnitude of event 𝑖; 𝑀𝑟 is the reference magnitude fixed to 5.0 191 

(following Lanzano et al., 2016); 𝑏1  and 𝑏2  are unknown model parameters. The magnitude 192 

saturation has been not considered, because there is no evidence from the data. 193 

The distance function is: 194 

 𝐹𝐷(𝑅, 𝑀𝑊) = [𝑐1𝑘 + 𝑐2𝑘(𝑀𝑊, 𝑖 − 𝑀𝑟)]log
10

(
𝑅(𝑅𝐽𝐵,𝑖𝑗)

𝑅ℎ
)   𝑘 = 1, ⋯ ,4 (3) 195 

where 𝑅(𝑅𝐽𝐵,𝑖𝑗) = √𝑅𝐽𝐵, 𝑖𝑗
2 + 𝑐3

2 with 𝑅𝐽𝐵, 𝑖𝑗 being the Joyner-Boore distance (in kilometers) at 196 

station 𝑗  in event 𝑖 ; 𝑐3  is the fictitious depth to be estimated; 𝑐1,2  are unknown attenuation 197 

coefficients; 𝑅ℎ is the hinge distance fixed to 70 km (following Lanzano et al., 2016), accounting 198 

for the changes in the attenuation rate; the index k is introduced to account for the dependence of 199 

attenuation on the geological domain (i.e., PEA and NA) and distance range, as follows: 200 

 𝑘 = {

1, site located on PEA and 𝑅 ≤ 𝑅ℎ 
2, site located on PEA and 𝑅 > 𝑅ℎ

3, site located on NA and 𝑅 ≤ 𝑅ℎ

4, site located on NA and 𝑅 > 𝑅ℎ

. (4) 201 

The same indexing is also considered in Lanzano et al. (2016).  202 

The style-of-faulting function is: 203 

 𝐹𝑠𝑜𝑓 = 𝑓1𝐹𝑁,𝑖 + 𝑓2𝐹𝑇,𝑖 (5) 204 

where 𝑓1  and 𝑓2  are unknown model parameters; 𝐹𝑁,𝑖  and 𝐹𝑇,𝑖  are dummy variables 205 

representing the style of faulting for event 𝑖, as: 206 
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 (𝐹𝑁,𝑖, 𝐹𝑇,𝑖) = {

(0,0) 𝑈𝑛𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚
(1,0) 𝑁𝑜𝑟𝑚𝑎𝑙 𝑓𝑎𝑢𝑙𝑡
(0,1) 𝑇ℎ𝑟𝑢𝑠𝑡 𝑓𝑎𝑢𝑙𝑡

 (6) 207 

The site amplification is given by  208 

 𝐹𝑠 = 𝑠1𝑆𝐵,𝑗 + 𝑠2𝑆𝐶,𝑗 (7) 209 

where 𝑠1  and 𝑠2  are unknown model parameters; 𝑆𝐵, 𝑗  and 𝑆𝐶, 𝑗  are dummy variables 210 

representing the site class according to Eurocode 8 (CEN, 2004) at station 𝑗 as 211 

 (𝑆𝐵, 𝑗, 𝑆𝐶, 𝑗) = {

(0,0) 𝑠𝑖𝑡𝑒 𝑐𝑙𝑎𝑠𝑠 𝐴
(1,0) 𝑠𝑖𝑡𝑒 𝑐𝑙𝑎𝑠𝑠 𝐵
(0,1) 𝑠𝑖𝑡𝑒 𝑐𝑙𝑎𝑠𝑠 𝐶

 (8) 212 

Note that site class C1 takes effect in the 𝐼(𝐵𝑎𝑠𝑖𝑛) parameter for basin effects. 213 

The basin-effects correction is defined as, 214 

 𝐹𝐵𝑎𝑠𝑖𝑛 = 𝛿Basin𝐼𝑗(𝐵𝑎𝑠𝑖𝑛) (9) 215 

where 𝐼(⋅) is an indicator function that equals to one if the condition is met (i.e., whether the 216 

station 𝑗 is in a basin) and zero otherwise; 𝛿Basin is a model parameter to be estimated. 217 

The approach used for regression, including the estimation of the spatial correlation 218 

component, is based on the Scoring method developed by Ming et al. (2019) and adopted 219 

previously by Huang and Galasso (2019) to establish a GMM for peak elastic ground-motion IMs 220 

in Italy, and by Huang et al. (2020) to establish a GMM for integral ground-motion IMs in Italy. 221 

The model parameters, including its coefficients, inter- and intraevent standard deviations, and the 222 

range parameter of the spatial correlation model, are obtained in a one-stage maximum likelihood 223 

estimation process. Further details on the adopted method can be found in Ming et al., (2019). 224 

Spatial correlation model 225 



13 

Among various options available in the literature (e.g., Rasmussen and Williams, 2006), 226 

stationary and isotropic models have been commonly used for representing the spatial correlation 227 

properties of earthquake-induced ground motions (e.g., Jayaram and Baker, 2009; Esposito and 228 

Iervolino, 2012; Heresi and Miranda, 2019; Huang and Galasso, 2019; Huang et al., 2020). Before 229 

choosing an appropriate spatial correlation model for this study, a preliminary GMM without 230 

spatial correlation (i.e., the median functional form in Equation 1 with 𝛀𝑖(𝛚) being the identity 231 

matrix) is fitted to examine the assumptions of normality, stationarity, and isotropy for 𝑆𝑑𝑖. The 232 

normality assumption is assessed by the quantile-quantile (QQ) plots of the standardized intraevent 233 

𝑆𝑑𝑖 residuals (i.e., the residuals in log10 unit divided by the estimated standard deviation from the 234 

developed model without spatial correlation). The results, not shown here for brevity but available 235 

in Figure S1 in the electronic supplement to this article, suggest the assumption of normality is 236 

appropriate for the 𝑆𝑑𝑖 residuals. The stationarity and isotropy assumptions are tested based on 237 

the Bowman and Crujeiras (2013) approach for each and every event using the sm package in the 238 

R software environment. The test of stationarity compares the smoothed semivariogram (i.e., an 239 

empirical measurement representing the (semi)variance of the difference between two values of a 240 

spatially distributed random variable at a given pair of locations) constructed based on location 241 

and separation distance bins with its counterpart based only on the separation distance (Bowman 242 

and Crujeiras, 2013). In a similar fashion, the test of isotropy compares the smoothed 243 

semivariograms over the separation distance and direction of separation vector between two 244 

stations with its counterpart smoothed over the separation distance only (Bowman and Crujeiras, 245 
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2013). The degree of freedom used for smoothing the empirical semivariograms is set to 20 and 246 

12 for the tests of stationarity and isotropy, respectively, as recommended by Bowman and 247 

Crujeiras (2013). The 𝑝-values of the statistical test of stationarity and isotropy are summarized 248 

in Figure 4, which shows that the majority of events across the 𝑇𝑒 and 𝑅 values considered in 249 

this study have 𝑝-values greater than 0.05, indicating that 𝑆𝑑𝑖 generally satisfies the stationarity 250 

and isotropy assumptions assuming a 5% significance level. 251 

[Figure 4 about here.] 252 

The test results for the mainshock of Emilia sequence (the 𝑀𝑊 6.1 2012 May 20 earthquake 253 

with the event code IT-2012-0008) are presented in Figure S2 to Figure S4 in the electronic 254 

supplement to this article (as an example among the considered events). As shown in those figures, 255 

although the smoothed semivariograms show non-stationarity or anisotropy in some cases (as the 256 

semivariogram changes over the considered location and direction), the evidence is not statistically 257 

significant (as presented in the figure insets by 𝑝 -values considerably larger than 0.05). 258 

Additionally, the isotropy assumption is assessed by the directional semivariograms computed at 259 

the orthogonal direction pairs, namely, the fault-normal (FN) and fault-parallel (FP) directions and 260 

the 45◦ and 135◦ directions1. The directional semivariograms are computed at a distance bin of 6 261 

km, and each bin contains at least ten pairs of stations. The directional semivariograms (as shown 262 

in Figure S5 in the electronic supplement) do not indicate systematic differences across the four 263 

 
1 The considered dataset is dominated by events with FN and FP directions close to the 0◦ and 90◦. 
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considered directions. Based on the general trends in the obtained results, the assumptions of 264 

stationarity and isotropy for 𝑆𝑑𝑖 intraevent residuals are retained in this study (although a small 265 

number of events showed non-stationarity and/or anisotropy).  266 

Among the available stationary and isotropic models, such as the exponential, squared 267 

exponential, and Matérn models (Rasmussen and Williams, 2006), the exponential model 268 

presented in Equation 10 has been widely used in the literature because of its appropriate fit to the 269 

ground-motion spatial correlation properties (Jayaram and Baker, 2009; Huang and Galasso, 2019; 270 

Sgobba et al., 2019; Huang et al., 2020; Kuehn and Abrahamson, 2020):  271 

 𝛀𝑖,𝑗𝑗′(𝛚) = exp(−
𝑑

ℎ
) (10) 272 

where 𝛀𝑖,𝑗𝑗′(𝛚) is the 𝑗𝑗′-th element of the correlation matrix 𝛀𝑖(𝛚) as a function of unknown 273 

parameter 𝛚; ℎ is the range parameter in km indicating the distance at which the correlation is 274 

approximately 0.37 (Zimmerman and Stein, 2010); 𝑑 is the separation distance in km between 275 

stations 𝑗 and 𝑗′. The effective range parameter corresponding to 0.05 correlation is computed as 276 

ℎ̃ = 3ℎ (Zimmerman and Stein, 2010). Appropriateness of the exponential correlation model is 277 

measured based on the Bayesian Information Criteria (BIC) (Schwarz, 1978). The BIC values of 278 

the GMM without consideration of spatial correlation in the model estimation, and with 279 

exponential, squared exponential, and Matérn correlation models are presented in Table 1. As 280 

shown, the exponential model has the lowest BIC values (compared to the model without spatial 281 

correlation as well as the other correlation models), which indicates that it provides an appropriate 282 

fit to the data. 283 
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[Table 1 about here.] 284 

The Developed GMM and Comparisons with Existing Models 285 

The coefficients, standard deviations (total standard deviation 𝜎, interevent standard 𝜏, and 286 

intraevent standard deviation 𝜙) and the range parameter h of the developed GMM are presented 287 

in Table S1 to Table S4 in the electronic supplement to this article. 288 

The median 𝑆𝑑𝑖  spectra and the corresponding 84th and 16th percentiles for a 𝑀𝑊 = 6.0 289 

thrust event at 𝑅𝐽𝐵 = 60 km (the median distance in the considered dataset) and site classes B 290 

and C1 are presented in Figure 5. As shown, the median 𝑆𝑑𝑖 spectra increase as 𝑅 increases for 291 

𝑇𝑒 < 1.0 s, while the 𝑆𝑑𝑖  spectra for 𝑇𝑒 ≥ 1.0 s is similar across different 𝑅  levels. This is 292 

generally expected as the nonlinear behavior of long-period structures broadly follows the 293 

empirical equal-displacement rule, while short-period structures generally follow the empirical 294 

equal-energy rule (e.g., Chopra, 2007). 295 

[Figure 5 about here.] 296 

Figure 6 presents the median 𝑆𝑑𝑖 predictions and the 16th to 84th percentile ranges for 𝑀𝑊4.5 297 

and 𝑀𝑊 6.0 thrust events at site class C1 for two representative 𝑇𝑒  and 𝑅  values in the PEA 298 

region. As shown, the median 𝑆𝑑𝑖 from the developed GMM is close to that from De Luca et al. 299 

(2014a, 2014b) (denoted as D14, hereafter) for 𝑅𝑗𝑏 ≥ 30 km; however, they deviate more for 300 

smaller 𝑅𝑗𝑏 values. The Akkar and Sandıkkaya (2019) model (denoted as AS19) deviates from 301 

the developed GMM at 𝑅𝑗𝑏 ≥5 km for small 𝑀𝑊 events and has a different distance attenuation 302 
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for large 𝑀𝑊  events. The residual analysis of 𝑆𝑑𝑖  for several representative 𝑇𝑒  and 𝑅 303 

(presented in Figure S6 and Figure S7 in the electronic supplement) do not show any notable bias 304 

in the proposed GMM with respect to 𝑅𝑗𝑏, 𝑀𝑤, focal mechanism, and site class.  305 

[Figure 6 about here.] 306 

The period-dependent total (𝜎) and intraevent (𝜙) standard deviations from the model are 307 

presented in Figure 7 for 𝑅 = 1~6 . As shown, the standard deviations generally reduce as 𝑅 308 

increase. This can be attributed to the fact that for a highly nonlinear structure, as the secant 309 

stiffness of the system decreases (i.e., the effective period increases), the structure is more affected 310 

by the long-period ground-motion content, which tends to have lower heterogeneity. The 𝜎 values 311 

from this study are generally smaller than the Italian D14 model and similar to those from the Pan-312 

European AS19 model. The 𝜙 values from this study are close to those from AS19 and larger 313 

than that from the D14 model. The 𝜎 for the elastic spectral displacement from this study (i.e., 314 

the 𝑅 = 1 case) is generally similar to that from NI15 at long periods, but higher at short periods 315 

due to the consideration of spatial correlation in the developed model, which results in an increase 316 

in the estimated 𝜙 (as discussed in Jayaram and Baker, 2010; Huang and Galasso, 2019; Ming et 317 

al., 2019). 318 

[Figure 7 about here.] 319 

In terms of spatial correlation properties, Figure 8 shows the effective range parameters ℎ̃ as 320 

a function of 𝑇𝑒 for three inelasticity values. The ℎ̃ values from other models for elastic spectral 321 

ordinates are also presented for comparison, namely, Huang and Galasso (2019), Sgobba et al. 322 
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(2019), and Schiappapietra and Douglas (2020) (denoted as SLP19, HG19, and SD20, 323 

respectively). It is noted that, to the best of the authors’ knowledge, the spatial correlation 324 

properties for inelastic responses have not been addressed in the literature. Figure 8 shows that the 325 

ℎ̃  values are larger for long periods due to the lower spatial variation of long-period ground-326 

motion characteristics. The results also show that the ℎ̃ values for the inelastic systems (i.e., 𝑅 >327 

1) are generally similar across different 𝑅 values. The ℎ̃ values for the elastic ordinates from 328 

this study (i.e., 𝑅 = 1  case) are higher at short periods than those of SLP19 (developed 329 

specifically for the Po Plain region) and vice versa at long periods. Both this study and SLP19 330 

result in larger ℎ̃ values when compared to the HG19 and SD20 models (developed based on the 331 

data from the entire Italian territory, and central Italy, respectively). Considering that both the 332 

SLP19 model and this study use the NI15 functional form, the observed differences may come 333 

from the regional and event-specific variations in the ground-motion spatial properties (Jayaram 334 

and Baker, 2009; Huang et al., 2020; Schiappapietra and Douglas, 2020). It is noted that the 335 

national and central Italian databases are dominated by events from normal faults, whereas the 336 

northern Italy database is dominated by events from reverse faults. Also, the spatial correlation 337 

modeling approach (i.e., the empirical semivariogram approach of SLP19 versus the one-stage 338 

scoring estimation approach of Ming et al. (2019) utilized here) may contribute to these differences. 339 

Finally, the SLP19 model uses the non-ergodic approach to model ground-motion variability, 340 

whereas this study uses the more conventional inter- and intra-event residual decomposition. 341 

[Figure 8 about here.] 342 
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Applications 343 

The developed GMM can be utilized to generate 𝑆𝑑𝑖 estimates for the purpose of seismic 344 

design and loss assessments, as discussed above. Figure 9 presents an example of such applications 345 

for a 𝑀𝑊 6.0 thrust event in the Po Plain region. For both plots in Figure 9, a realization of 𝑆𝑑𝑖 346 

is generated for a system with 𝑇𝑒 = 2.0𝑠 and 𝑅 = 2 by considering the median and standard 347 

deviation for the event. However, Figure 9a also considers the spatial correlation properties of 𝑆𝑑𝑖 348 

based on the developed model. As shown, Figure 9a presents a reasonable spatial realization of 349 

𝑆𝑑𝑖  as opposed to a totally random characteristics in Figure 9b, which may have important 350 

implications in assessing seismic damage and resulting losses for spatially distributed engineered 351 

systems. For long-period Sdi, the corresponding range parameters ℎ  (and effective range 352 

parameter ℎ̃ ) characterizing the spatial correlation are similar across different 𝑅  levels as 353 

illustrated in Figure 8 and Table S1-S4 in the electronic supplement to this article. Thus, the 354 

scenarios for other 𝑅 levels are not shown here for brevity. 355 

 [Figure 9 about here.] 356 

 The developed model can also be used for the engineering validation of ground motions 357 

simulated in the region of interest for this study. In fact, recent advances in high-performance 358 

computing and understanding of complex seismic source features, as well as path and site effects, 359 

have led to increasing research efforts and development in physics-based ground-motion 360 

simulations. Today, physics-based simulated (or “synthetic”) ground motions represent a valuable 361 

supplement to recorded ground motions for several practical applications (e.g., scenario-based and 362 
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probabilistic seismic hazard analysis, performance-based earthquake engineering). Among 363 

engineers and risk modelers, the general concern is that simulated ground motions may not be 364 

equivalently valid when compared with real records in estimating seismic demands, damage, and 365 

loss to engineered systems. A significant amount of research has been conducted in recent years to 366 

validate ground-motion simulation methods for engineering applications (e.g., Galasso et al., 2012, 367 

2013; Burks and Baker, 2014; Bradley et al., 2017, among many others). Various researchers (e.g., 368 

Star et al., 2011; Dreger et al., 2015) have also performed statistical comparisons of ground 369 

motions from hybrid ground-motion simulations to GMMs for various IMs (e.g., Star et al., 2011; 370 

Afshari and Stewart, 2016; Lee et al., 2019). 371 

To demonstrate an application of the GMM developed in this study for 𝑆𝑑𝑖, a physics-based 372 

ground-motion simulation of the 𝑀𝑊 6.0 (29 May 2012) Emilia-Romagna earthquake, Italy, is 373 

considered for illustrative purposes (Paolucci et al., 2015). The 𝑆𝑑𝑖  field from the simulated 374 

ground motions for a system with 𝑇𝑒 = 2.0𝑠  and 𝑅 = 2  is shown in Figure 10. The low-375 

frequency ground motions of this simulation are generated based on the spectral element method 376 

using the SPEED package (Mazzieri et al., 2013). The resulting simulations are then combined 377 

with high-frequency ground motions by correlating the high-frequency content to the simulated 378 

low-frequency ground motions. This is done using the artificial neural networks approach of 379 

Paolucci et al. (2018). Then, the broadband ground motions are obtained by merging the high- and 380 

low-frequency contents at the frequency of 1.5Hz. It is noted that the low-frequency ground 381 

motions (applicable for frequencies up to about 1.5Hz) have been previously validated in terms of 382 
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elastic engineering demands against recordings and empirical GMMs (Paolucci et al., 2015), and 383 

a generally good agreement has been found between the simulated and recorded motion in both 384 

time and frequency domains, especially for the horizontal North-South and the vertical component.  385 

It is worth pointing out that the intent here is to discuss the application of the developed GMM 386 

for ground-motion simulation validation purposes rather than providing a definitive judgment on 387 

this specific simulation method(s)/simulated ground motions.  388 

[Figure 10 about here.] 389 

Specifically, the ratio of 𝑆𝑑𝑖 from the simulation over the median 𝑆𝑑𝑖 from the considered 390 

GMM is calculated using Eq. (5): 391 

 ratio = log10 (
𝑆𝑑𝑖,𝑆𝑖𝑚

𝑆𝑑𝑖,𝐺𝑀𝑀
).  (5) 392 

Figure 11 presents this ratio for 21 stations (e.g., T0813 and MRN stations, among others, as 393 

in Figure 10) of the considered simulation. As shown, the 𝑆𝑑𝑖  values from the simulation are 394 

generally smaller than the median 𝑆𝑑𝑖 values from the proposed GMM (as also shown in Figure 395 

10). In the absence of recorded ground motions, one cannot discern whether the simulation results 396 

are not an appropriate representation of the reality, or the utilized GMM is not well-constrained 397 

for the region and the event of interest (in terms of the rupture and velocity structure 398 

characteristics). To further investigate the difference between the considered simulations and the 399 

proposed GMM, comparisons should be made with the existing observed ground motions. Figure 400 

11 shows such a comparison based on the ratio calculated using Eq. (6) for the simulation and 401 

developed GMM with respect to the recorded ground motions: 402 
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 ratio =  log10 (
𝑆𝑑𝑖,𝑆𝑖𝑚 or 𝑆𝑑𝑖,𝐺𝑀𝑀

𝑆𝑑𝑖,𝑅𝑒𝑐
).  (6) 403 

As shown in Figure 11, the 𝑆𝑑𝑖 values from the simulations are unbiased (close to the ratio 404 

of zero in MRN and T0813 stations, for example) in the vicinity of the rupture plane (𝑅𝐽𝐵 ≤ 8 405 

km), especially for long periods; however, they are generally underestimating the recorded motions 406 

at larger distances. The 𝑆𝑑𝑖 values from the developed GMM is generally similar to that from the 407 

records in stations with 𝑅𝐽𝐵 ≤ 20 as the zero-ratio line is generally within the 16th-84th percentile 408 

ratios of the developed GMM. This is broadly expected as the records from this event are within 409 

the dataset used to develop the GMM. However, this event is at the tail of the 𝑀𝑤 distribution 410 

considered in the study (see Figure 2). The empirical GMM overestimates the 𝑆𝑑𝑖 in comparison 411 

to the records for 𝑅𝐽𝐵 > 20 km.  412 

[Figure 11 about here.] 413 

These comparisons clearly show some limitations of conducting validation based on empirical 414 

GMMs. However, this approach for comparison/validation could be the only possible approach to 415 

use when simulations are done for future events or for regions with little or no strong-motion 416 

recordings. It is noted that such validations for future events should be conducted using GMMs 417 

that are well-constrained for the event and the region of interest (because the GMM themselves 418 

might not represent the region-specific ground-motion properties for a potential future event). 419 

Conclusions 420 

This study developed a region-specific ground-motion model including its spatial correlation 421 
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properties for inelastic spectral displacement (𝑆𝑑𝑖) in northern Italy. This model provides a direct 422 

estimation of 𝑆𝑑𝑖 based on the source, path, and site parameters and can be utilized in the seismic 423 

performance-based assessment of engineered systems, both for probabilistic seismic hazard 424 

analysis as well as scenario-based generation of ground-motion fields (including post-event 425 

ShakeMaps). An exponential function was utilized for the purpose of spatial correlation modeling 426 

based on statistical tests on the validity of isotropy and stationarity assumptions. Comparisons with 427 

the recent Italian and European models were performed, and the differences in terms of the model 428 

standard deviations, distance attenuation, and effective range parameter were discussed. The 429 

results indicated that the effective range parameter is similar across the various inelasticity levels, 430 

and close to that from the elastic spectral ordinates for long periods. Application of the developed 431 

model for validating simulated ground motions highlighted that the empirical GMMs utilized as 432 

the benchmark model in validation should be well-constrained for the event and region of interest, 433 

as well as for the source-to-site distance and ground-motion content (i.e., vibration period) of 434 

interest.  435 

Data and Resources 436 

The strong-motion recordings used in this study are available from the Engineering Strong-Motion 437 

database http://esm.mi.ingv.it (last accessed July 2020). The nonparametric tests of stationarity and 438 

isotropy are implemented by sm package in R environment. The one-stage estimation algorithm is 439 

available at https://github.com/mingdeyu/GMPE-estimation (last accessed July 2020). An 440 

http://esm.mi.ingv.it/
https://github.com/mingdeyu/GMPE-estimation
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electronic supplement is prepared for this article, which includes the model parameters of the 441 

developed GMM with spatial correlation for elastic (R=1) and three inelasticity levels (R=2, 4, 442 

and 6), the supplementary test results of the assumptions of normality, stationarity and isotropy, 443 

and the residual analysis.  444 
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Tables 617 

Table 1 BIC values of the candidate spatial correlation models 618 

Spatial 

correlation model 

𝑹 = 𝟐 𝑹 = 𝟒 

𝑻𝒆 = 𝟎. 𝟓𝒔 𝑻𝒆 = 𝟏. 𝟎𝒔 𝑻𝒆 = 𝟐. 𝟎𝒔 𝑻𝒆 = 𝟎. 𝟓𝒔 𝑻𝒆 = 𝟏. 𝟎𝒔 𝑻𝒆 = 𝟐. 𝟎𝒔 

None 874 855 929 835 820 921 

Exponential 663 323 245 552 389 280 

Squared exponential 882 862 937 843 824 928 

Matérn 882 862 916 829 828 908 

619 
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Figure 1 Geographic distributions of the considered events (a) grouped based on their 𝑀𝑊 and 659 

focal mechanism; and stations (b) grouped by their site classes. The dashed line delineates the Po 660 

Plain basin and Eastern Alps regions (denoted as PEA) from the Northern Apennines region 661 

(denoted as NA). 662 
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Figure 2 (a, b) 𝑅𝐽𝐵 histograms of PEA and NA datasets, respectively; (c) site classification 664 

histogram; (d, e) 𝑀𝑊-𝑅𝐽𝐵 scatter plots of PEA and NA datasets, respectively; and (f) 𝑀𝑊 665 

histogram of the considered records. The percentage is calculated with respect to the total size of 666 

the dataset. 667 
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Figure 3 Hysteretic model considered for the inelastic SDoF oscillators 669 
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Figure 4 𝑝-values of the (a) stationarity; and (b) isotropy hypothesis tests. Values larger than 672 

0.05 (denoted by the dashed line) indicate the appropriateness of stationarity and isotropy 673 

assumptions.  674 
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Figure 5 𝑆𝑑𝑖 spectra for a 𝑀𝑊 = 6.0 thrust event at 𝑅𝐽𝐵 = 60 km and for site class (a,b) B 676 

and (c,d) C1 in the (a,c) Po Plain and Eastern Alps (PEA) and (b,d) Northern Apennines (NA) 677 

regions.  678 



41 

 679 
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compared with the median estimates from De Luca et al. (2014a, 2014b) (D14) and Akkar and 681 

Sandıkkaya (2019) (AS19) models. The shaded band depicts the 84th-16th percentile of the 682 

developed model.  683 
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Figure 7 (a) Total and (b) intra-event standard deviations of 𝑆𝑑𝑖 at four inelasticity levels 685 

compared with the Lanzano et al. (2016) (NI15), De Luca et al. (2014a, 2014b) (D14), and 686 

Akkar and Sandıkkaya (2019) (AS19) models. 687 
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Figure 8 The effective range parameter of 𝑆𝑑𝑖 for R=1-6 compared with the Sgobba et al. 690 

(2019) (SLP19), Huang and Galasso (2019) (HG19), and Schiappapietra and Douglas (2020) 691 

(SD20) models for the elastic spectral ordinates. 692 
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Figure 9 A realization of 𝑆𝑑𝑖 for 𝑇𝑒 = 2.0𝑠 and 𝑅 = 2 system subject to a 𝑀𝑊6.0 event 694 

illustrated by the star using the developed: (a) with and (b) without spatial correlation 695 

consideration. 696 

 697 

Figure 10 𝑆𝑑𝑖 for a 𝑇𝑒 = 2.0𝑠 𝑅 = 2 system subjected to the simulated ground motions of 698 

the 𝑀𝑊6.0 Emilia-Romagna earthquake (Paolucci et al., 2015). The epicenter and stations 699 

which recorded the event are shown by a star  and triangles ∆, respectively. The square denotes 700 

the ruptured fault plane projected on the ground surface. 701 
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Figure 11 The ratio of 𝑆𝑑𝑖 from the simulation and developed GMM with respect to each other 703 

and the 𝑆𝑑𝑖 from recorded ground-motions for 𝑇𝑒=0.5 and 2.0 s and 𝑅= 2.0 and 4. 704 


