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Abstract  1 

Background: The Barrow Neurological Institute (BNI) score, measuring maximal thickness of 2 

aneurysmal subarachnoid hemorrhage (aSAH), has previously shown to predict symptomatic 3 

cerebral vasospasms (CVS), delayed cerebral ischemia (DCI) and functional outcome. 4 

Objective: We aim to validate the BNI score for prediction of above-mentioned variables and 5 

cerebral infarct and evaluate its improvement by integrating further variables which are 6 

available within the first 24 hours after hemorrhage.  7 

Patients and Methods: We included patients from a single center. The BNI score for prediction 8 

of CVS, DCI, infarct and functional outcome was validated in our cohort using measurements 9 

of calibration and discrimination (area under the receiver operating characteristic curve 10 

[AUC]). We improved it by adding additional variables, creating a novel risk score (measured 11 

by dichotomized Glasgow Outcome Scale) and validated it in a small independent cohort. 12 

Results: Of 646 patients, 41.5% developed symptomatic CVS, 22.9% DCI, 23.5% cerebral 13 

infarct, and 29% had an unfavorable outcome. The BNI score was associated with all outcome 14 

measurements. We improved functional outcome prediction accuracy by including age, BNI 15 

score, WFNS, rebleeding, clipping, and hydrocephalus (AUC 0.84, 95%CI 0.8-0.87). Based on 16 

this model we created a risk score (HATCH - Hemorrhage, Age, Treatment, Clinical State, 17 

Hydrocephalus), ranging 0-13 points. We validated it in a small independent cohort. The 18 

validated score demonstrated very good discriminative ability (AUC 0.84 [95%CI 0.72-0.96]). 19 

Conclusion: We developed the HATCH-score, which is a moderate predictor of DCI, but 20 

excellent predictor of functional outcome at 1 year after aSAH. 21 
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INTRODUCTION  30 

Subarachnoid hemorrhage is a rare form of stroke comprising 5% of all strokes with an annual 31 

incidence of 9/100,0001. In 85% the underlying cause is a ruptured intracranial aneurysm 32 

causing aneurysmal subarachnoid hemorrhage (aSAH)2. It has a 6-month case fatality of up to 33 

60%, however more recent studies show a decreasing trend of 0.9% per year over the last 34 

decades2-4. Overall outcome is notably influenced by aSAH related complications such as 35 

recurrent hemorrhage, hydrocephalus (HCP), cerebral vasospasm (CVS), and delayed cerebral 36 

ischemia (DCI)1. Despite significant advances in acute care and surgical and endovascular 37 

treatment over the last 30 years, outcome after aSAH still remains poor2,5. Approximately 30% 38 

of patients develop DCI within 3-12 days after the initial hemorrhage which remains one of the 39 

leading causes for poor outcome6-8. Studies showed that the amount of blood on initial CT scan 40 

is associated with the development of CVS and DCI1,2,9. Cerebral infarct might be an even better 41 

outcome predictor than DCI10,11. Several prediction models are available to identify patients 42 

who are at risk for CVS and DCI12-17. A simple prediction tool is the Barrow Neurological 43 

Institute (BNI) score18. It assesses the point of maximal thickness of subarachnoid blood 44 

particularly across the cistern or fissure allocating patients into five groups18. It demonstrates a 45 

proportional increase in CVS risk and has proven to be superior to the more widely used Fisher 46 

scale in predicting symptomatic CVS9,18. Moreover, the BNI score is also a promising tool in 47 

predicting DCI and functional outcome after aSAH. A previous study has additionally 48 

demonstrated that outcome prediction by the BNI score can further be improved by adding 49 

WFNS score and age16. This might allow early identification of patients at risk for DCI and 50 

therefore help in selecting patients who might profit from more intensive monitoring or 51 

prophylactic treatment of DCI. Improved functional outcome prediction models will guide 52 

physicians towards more individualized decision making. 53 

In this study we aim to externally validate the original BNI score for CVS, DCI and functional 54 

outcome prediction, followed by validation of the extended BNI score as published by Neidert 55 

et al. 16,18. We additionally evaluate the BNI score in predicting cerebral infarct. Finally, we 56 

will investigate the improvement of functional outcome prediction by adding relevant 57 

parameters available on admission to the BNI score to ultimately create a novel risk score. We 58 

will then externally validate it in a separate collected cohort.  59 

 60 

PATIENTS AND METHODS 61 

Study population 62 
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We used the prospectively collected aSAH database of the Neurosurgical Department of the 63 

University Hospital Zurich, Switzerland, collected between January 2005 and December 2016. 64 

The database consisted of 721 patients. Demographic, radiological and clinical outcome data 65 

were collected using standardized forms and entered into the database of the Department of 66 

Neurosurgery. Patients without available CT on admission and those who died before day 4 67 

were excluded from the analysis. For outcome prediction we only included patients with 68 

available GOS on follow-up. Follow-up GOS was assessed in our outpatient clinic. All patients 69 

were treated by the standard of care of our department, a highly specialized and tertiary referral 70 

center for patients with cerebrovascular diseases, which follows international guidelines at the 71 

given time1,19,20. Our institution does have protocols in place for the escalation of treatment and 72 

uses a 3-bolt system routinely in all patients with aSAH requiring sedation and intubation21. 73 

The cohort for validation of the created risk score is an independent, prospectively collected 74 

cohort of 51 consecutive patients treated in the same unit between 01/2017 and 05/2018 with 75 

available functional outcome at 1 year.  76 

Definition of variables  77 

Hypertension, hypercholesterolemia, and diabetes mellitus were all diagnosed if medical 78 

records or patients reported these diagnoses or if advice, lifestyle changes or drug treatment had 79 

been previously been provided. We measured clinical severity on admission using two grading 80 

systems: WFNS and Hunt and Hess22,23. Hyperglycemia on admission is defined as blood 81 

glucose reaching values >8mmol/l. 82 

We defined CVS as radiologically confirmed intracranial arterial narrowing (vasoconstriction) 83 

on digital subtraction angiography, CT angiography and/or MR angiography24. We defined DCI 84 

as a delayed decrease of the Glasgow Coma Scale (GCS) of at least 2 points and/or new focal 85 

neurological deficit without other underlying cause25. Delayed cerebral infarct is defined as 86 

radiologically proven new infarcts, not occurring within 48 hours of a surgical intervention, 87 

including aneurysm coiling or clipping15. Rebleeding is defined as a recurrent bleed from the 88 

aneurysm. Hydrocephalus is defined as an enlargement of the ventricular system requiring 89 

intervention26. We used the Glasgow Outcome Score (GOS) at 1 year to assess functional 90 

outcome. We dichotomized the GOS into unfavorable (1-3) and favorable (4-5) outcome, 91 

respectively27-32. 92 

CT grading 93 

An independent neuroradiologist rated all CT scans on admission to determine the maximal 94 

thickness of subarachnoid blood (diameter of blood) particularly across the cistern or fissure 95 

allocating patients to Fisher and BNI score, as well later CT scans in order to detect delayed 96 
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cerebral infarcts according to standard protocols9,18. Scans were reviewed by a consultant 97 

neuroradiologist. Both were blinded to the patient’s clinical state.  98 

Statistical Analysis 99 

Statistical analysis 100 

Categorical variables are presented as count and percentage, continuous variables as mean with 101 

standard deviation (SD). We compared groups using the Chi-square or Fisher’s exact test for 102 

our binary outcome variables. 103 

For the multivariate models for CVS and DCI we adjusted for the pre-specified variables age, 104 

sex, hypertension, smoker and BNI score based on previous studies, which are readily available 105 

on admission. For infarct we additionally pre-specified WFNS and DCI.  106 

Validation and performance in our cohort: 107 

We validated the BNI score for CVS prediction as originally presented18. We then evaluated 108 

the performance of the BNI score for DCI, infarct and functional outcome prediction in our 109 

cohort (without restricting to just Fisher 3 patients, as previously published)16. We calculated 110 

odds ratios (OR) for each grade of BNI score relative to the highest grade. As a final step, we 111 

additionally validated the prediction of the extended BNI score of DCI and unfavorable 112 

functional outcome as per Neidert et al16. 113 

Extension and risk score creation for functional outcome: 114 

To develop a new score to predict unfavorable functional outcome, defined as GOS 1-3, we 115 

fitted a multivariate regression model based on variables that were statistically significant at 116 

the 5% level in univariate analyses, as well as with the pre-specified variables age 117 

(dichotomized into younger or older than 60 years), sex, smoker, hypertension and BNI based 118 

on previous studies. We quantified discrimination by the area under the receiver-operating 119 

characteristic curve (AUC)33: an AUC of 0.5 indicates no, of >0.7 acceptable, of >0.8 good, of 120 

>0.9 excellent, and of 1 perfect discriminative abilities.  121 

Validation: 122 

The derived model was validated internally using bootstrap validation (with 200 bootstrap 123 

samples) and measures of predictive performance assessing calibration (calibration slope) and 124 

discrimination (measured by the AUC) were calculated34. Briefly, the calibration slope is a 125 

regression-based method to assess the agreement between observed and predicted values, with 126 

a calibration slope of 1 suggesting good calibration. We then validated the risk score in an 127 

independent cohort collected at a different time period at the same institution. To measure the 128 

performance of the new developed score, we used the Hosmer-Lemeshow test for calibration 129 

and AUC for discrimination34.  130 
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Statistical analysis was performed using STATA 15 (StataCorp. 2011. Stata Statistical 131 

Software: Release 15. College Station, TX: StataCorp LP). 132 

Ethical approval  133 

The study was approved by the local ethics committee of Zurich, Switzerland. As this dataset 134 

was part of a registry approved by the local ethics committee no patient consent form was 135 

required.  136 

 137 

RESULTS 138 

Of 721 patients, 646 had all variables available except for treatment (clipping and coiling), as 139 

5 patients were neither clipped nor coiled, and unfavorable outcome. Of 646 included patients, 140 

functional outcome on follow-up was available for 504 (78%) patients; 142 patients were 141 

therefore not included into the functional outcome analysis (Supplemental Figure 1). See Table 142 

1 for baseline characteristics: mean age was 55.4 years (SD 13, range 14-88) and 432 (66.9%) 143 

were female. Overall, 268 patients developed CVS (41.5%), 148 patients developed DCI 144 

(22.9%), 152 (23.5%) delayed cerebral infarction and 146 (29.0%) had an unfavorable outcome 145 

at 1 year. The results of univariable analyses for each outcome can be seen in supplementary 146 

Tables 1-4.  147 

Outcome prediction by the original BNI score 148 

Prediction of CVS  149 

Compared to the original BNI paper by Wilson et al. we had a higher rate of high BNI scores 150 

indicating a higher rate of severe bleeds (Table 1)18. Overall, the BNI score was associated with 151 

CVS (p=0.003). With BNI 5 as a reference group, all other BNI scores had a lower likelihood 152 

in developing symptomatic CVS (Table 2). The AUC was 0.58 (95% CI 0.54-0.62), indicating 153 

poor discriminative ability in predicting CVS (Figure 1).  154 

The multivariable model to predict CVS was fitted with the predefined variables age, sex, 155 

hypertension, BNI score, and smoker (Supplementary Table 5). It had an overall p-value of 156 

<0.001 and showed low discriminative ability measured by an AUC of 0.64 (95% CI 0.60-0.69, 157 

Figure 2A).  158 

Prediction of DCI  159 

Like for CVS, DCI had higher a higher rate of BNI score 4 and 5, whereas again patients without 160 

DCI had a higher rate of BNI score 1-3 (overall p-value=0.04, Table 2). The BNI score was 161 

associated with DCI in the univariable analysis (overall p-value=0.04, Table 2 and 162 

Supplementary Table 2). The multivariate model to predict DCI was again fitted with the 163 

predefined variables age, sex, hypertension, BNI score, and smoker and had an overall p-value 164 
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of 0.004 (Supplementary Table 6). The model showed low discriminative ability measured by 165 

an AUC of 0.63 (95% CI 0.58-0.68, Figure 2B).  166 

Prediction of infarction  167 

Patients who developed cerebral infarcts had a higher rate of BNI score 4 and 5, whereas 168 

patients without cerebral infarcts a higher rate of BNI score 2 and 3 (overall p-value=0.03, 169 

Table 2). The multivariate model for infarction prediction was adjusted with the predefined 170 

variables. The model fit did not significantly change when removing sex and smoker and 171 

therefore these variables were not included in the final model (Supplementary Table 7). This 172 

final model had an overall p-value of <0.001 and a strong discriminative ability with an AUC 173 

of 0.84 (95% CI 0.81-0.88, Figure 2C).  174 

Prediction of unfavorable outcome measured by the GOS at 1 year 175 

The BNI score is significantly associated with functional outcome after aSAH (overall p-176 

value<0.001, Table 2. For the multivariate regression we only included variables which were 177 

available within the first 24 hours. We adjusted the model with WNFS, clipping, hydrocephalus 178 

and rebleeding in addition to the predefined variables. The model demonstrated good 179 

discriminative ability with an AUC of 0.84 (95% CI 0.81-0.88).  180 

Validation of BNI score for DCI and functional outcome sub-stratifying by Fisher 3 181 

according to Neidert et al.16 182 

The vast majority of patients (96.1%) had a Fisher score of 3. When evaluating DCI prediction 183 

sub-stratified by Fisher 3 (patients with a Fisher score of 3), there was a trend of decreasing 184 

likelihood of DCI with decreasing BNI score (Table 3). The AUC was 0.57, (95% CI 0.52-185 

0.62) indicating poor discriminative abilities (Figure 3A). Supplemental Figure 2 demonstrates 186 

the GOS distribution by BNI score.  187 

When evaluating unfavorable outcome sub-stratified by Fisher 3, the BNI score was associated 188 

with unfavorable outcome (overall p-value <0.001). This association was linear with declining 189 

BNI score (Table 3). The AUC for the sub-stratified BNI score association analysis was 0.64 190 

(95%CI 0.59-0.7, Figure 3B). Next, we validated the score proposed by Neidert et al. by adding 191 

WFNS and age to BNI score. This led to a slight improvement in the discriminative abilities of 192 

predicting unfavorable outcome by increasing the AUC 0.79 (95% CI 0.74-0.83, Figure 3C). 193 

Creation of risk score for functional outcome prediction and independent validation  194 

As ultimately the prediction of the three other outcome variables results in the prediction of 195 

functional outcome and due to the promising results above, we created a point-based risk score 196 

for GOS prediction at 1 year due to the importance of predicting functional outcome. Since sex, 197 

smoker and hypertension did not significantly predict unfavorable outcome and their exclusion 198 
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did not significantly change the model (data not shown) or its discriminative ability (AUC 0.84 199 

(95% CI 0.8-0.88, Figure 4). Thus, the final model contained following variables: age, BNI 200 

score, WFNS, clipping, hydrocephalus, and rebleeding (Table 4) 201 

From this we created a point-based risk score for GOS prediction at 1 year, the HATCH score, 202 

which stands for: Hemorrhage (BNI score and rebleeding), Age (≤60 versus >60 years of age), 203 

Treatment (coiling versus clipping), clinical state measured by the WNFS and Hydrocephalus. 204 

We assigned points to each of the six independent predictors based on the strength of 205 

association (regression coefficients) with the outcome. A higher score is associated with an 206 

increased risk of unfavorable outcome with the maximum score of 13 points yielding a risk of 207 

98.3% (Table 5). See supplemental Figure 3 demonstrating HATCH vs risk of unfavorable 208 

outcome.  209 

In a final step we validated the risk score in a separate cohort of 51 patients from the same 210 

department. Due to the small size of the validation cohort we combined the score into four 211 

categories: 0-4, 5-6, 7-8 and 9-12. The discriminative ability for unfavourable outcome 212 

prediction at 1 year, measured by the AUC, was 0.84 (95% CI 0.72-0.96, Figure 5) indicating 213 

good discriminative ability. Calibration, as assessed by the Hosmer-Lemeshow test, however, 214 

was poor (p=<0.001). In particular, there was poor agreement between the observed and 215 

expected event rates for groups 5-6, although performance in the other groups was acceptable.  216 

 217 

DISCUSSION 218 

We successfully validated the original BNI score for the prediction of CVS, DCI, cerebral 219 

infarct and unfavorable outcome as well as the BNI score sub-substratified by Fisher 3 score, 220 

as proposed by Neidert et al. and their extended BNI score. We then created a new risk score, 221 

the HATCH score, for unfavorable outcome prediction based on variables present within 24 222 

hours of admission – BNI score and rebleeding, age, treatment, clinical state and hydrocephalus 223 

- and validated it in a separate cohort showing good discriminative ability with an AUC of 0.84.  224 

Our study has several strengths. The included sample size is relatively large and comes from a 225 

prospectively collected database in a tertiary referral center. The definition of variables has 226 

been made according to previous guidelines and consensus25. The HATCH score only uses 227 

variables which are available within 24 hours of admission making it applicable in the very 228 

early stages of this disease. It also offers the opportunity of a further extension of the score 229 

during the course of the disease. 230 

Our study also has limitations: despite the cohort being collection prospectively, the analysis 231 

was conducted retrospectively. A prospective approach is preferred as a focus on the outcome 232 
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variables of interest can particularly reduce missingness. Multiple imputation would be a great 233 

tool to overcome this problem, however, it is not a generally advised method for imputation of 234 

outcome variables. Also, a direct comparison to the previously published validation by Neidert 235 

et al., including their extended score, is limited: they used the modified Ranking Scale (mRS) 236 

as opposed to the GOS for functional outcome measurement. Additionally, 22% were lost to 237 

follow-up and therefore had no functional outcome available. Another important limitation is 238 

that although discriminative ability of the HATCH score was good in the independent validation 239 

cohort, calibration was poor, most likely due to the small sample size. The validation cohort of 240 

51 individuals can only be considered exploratory due to the small number of patients. Finally, 241 

the recruitment period of 11 years could lead to bias due to potentially improved outcome over 242 

time. We did investigate the differences of mortality as well as unfavorable outcome over the 243 

years and they did not differ significantly (data not shown).  244 

Our findings are consistent with previous findings10,16,35. The BNI score significantly and 245 

successfully predicts CVS, DCI, cerebral infarct and functional outcome18,25. Based on a 246 

previous study demonstrating the potential of BNI score being included in a simple risk score 247 

we created the HATCH score16. Compared to the extended BNI score by Neidert et al., 248 

however, we created a risk score including all Fisher grades. Key feature of the HATCH score 249 

is the focus on only variables present within 24 hours of admission. The HATCH score 250 

demonstrates good discriminative ability (AUC of 0.84), accurately discriminating patients into 251 

high or low risk for unfavorable functional outcome. Despite the small size of the independent 252 

validation cohort, the score demonstrated good discriminative ability measured by an AUC of 253 

0.84.  254 

Despite a large enough sample size to achieve adequate power, the BNI score was only a 255 

moderate predictor of DCI. However, it is indeed a strong and statistically significant predictor 256 

of functional outcome. Further factors such as age, WFNS, rebleeding, clipping, and 257 

hydrocephalus easily improve its predictive ability. In our cohort, patients who were clipped 258 

had a lower chance of good outcome. Although we cannot conclusively explain this finding, 259 

this might be either due to the invasiveness of the surgery or a potentially higher-grade 260 

hemorrhage. Many scoring systems already exist with the aim of predicting different 261 

complications as well as functional outcome after aSAH5,9,16-18,36-42. The advantage of the 262 

HATCH score lies in its composition by radiological as well as clinical and interventional 263 

variables which are available right on admission or within 24h. Compared to other scoring 264 

systems this enables clinicians to predict functional outcome very early during the course of the 265 

disease which is especially important in guiding families and carers in decision making 266 
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processes. Most importantly, all of the included variables will be available in respective centers 267 

and do not need any deviation from the standard of care. It is further strengthened by the fact 268 

that it was successfully externally validated and also externally validated the BNI and extended 269 

BNI score. This indicates that the HATCH score can be generalized. The extended BNI score 270 

described by Neidert et al. demonstrates an improvement in predicting functional outcome and 271 

a good discriminative ability also in our cohort. However, this could be influenced by the fact 272 

that some of our patients overlapped with the cohort used by Neidert et al.43. Although only 273 

some patients overlap, these two cohorts are not two fully independent cohorts.  274 

A previous study noted that clinical parameters are better in predicting outcome and 275 

radiological parameters do not improve their prediction abilities10. In our cohort, the BNI score 276 

was equally effective in predicting CVS and DCI, but the WFNS was better in predicting 277 

cerebral infarct and functional outcome substantiating these previous findings.  278 

 279 

CONCLUSION 280 

The newly created and easy-applicable HATCH score is a moderate predictor of DCI, but 281 

excellent predictor of functional outcome at 1 year after aSAH and demonstrating good 282 

discriminative abilities. Due to only a small sample size in the independent validation cohort, 283 

this score requires validation in a larger independent cohort to confirm our results.   284 
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Figure 1) AUC for prediction of CVS by Fisher grade according to Wilson et al.,   430 

Figure 2A) AUC for prediction of CVS by age, sex BNI score, and hypertension, 2B) AUC for 431 

prediction of DCI by age, sex BNI score, and hypertension, 2C) AUC for prediction of 432 

infarction by age, BNI score, WNFS, DCI and hypertension 433 

Figure 3A) AUC for prediction of DCI by BNI score sub-stratified by Fisher grade 3 according 434 

to Neidert et al,3B) AUC for prediction of unfavorable outcome by BNI score sub-stratified by 435 

Fisher grade 3, 3C) AUC for prediction of unfavorable outcome by BNI score, WFNS score 436 

and dichotomize age (below and above 60 years) sub-stratified by Fisher grade 3. 437 

Figure 4) AUC for prediction of unfavorable outcome by BNI score, rebleeding, age, clipping, 438 

WNFS, and hydrocephalus 439 

Figure 5) AUC for prediction of unfavorable outcome using the HATCH score in the validation 440 

dataset 441 
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outcome DCI, 3) Univariable analysis for outcome cerebral infarction, 4) Univariable analysis 448 

for outcome unfavorable outcome, 5) Multivariable model for creation of a risk score for 449 

prediction of CVS, 6) Multivariable model for creation of a risk score for prediction of DCI, 7) 450 
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