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Abstract 9 

Building fire risk prediction is crucial for allocation of building inspection 10 

resources and prevention of fire incidents. Existing research of building fire 11 

prediction makes use of data relating to local demography, crime, building use and 12 

physical building characteristics, yet few studies have analysed the relative 13 

importance of predictive features. Furthermore, image features relating to 14 

buildings, such as aerial imagery and digital surface models (DSM), have not been 15 

explored. This research presents a multi-modal hybrid neural network for the 16 

prediction of fire risk at the building level using the London Fire Brigade dataset. 17 

The inclusion of traditional and novel image features is assessed using Shapley 18 

values and an ablation study. The ablation study found that while building use is 19 

the most effective contributor of classification performance, demographic features, 20 

apart from social class, are detrimental. Moreover, while the DSM did not lead to 21 

any significant improvement in classification performance, the inclusion of the 22 

aerial imagery feature lead to a 4% increase in median validation ROC AUC. The 23 

final model presented achieved an ROC AUC of 0.8195 on the test set. 24 

1. Introduction 25 

Fire related incidents impact human communities across the globe, posing a threat to 26 

human life, damaging property, and hindering productivity in their wake. Recent 27 

advances in fire safety have aided a decrease in the total number of fires in the United 28 



Kingdom from 473,000 in 2003/04 to 162,000 in 2016/17 (Bryant and Preston, 2017). 29 

While more effective fire safety and incident response systems have brought total 30 

casualties down, the costs associated with property loss due to fire have remained high 31 

since 1990 in the United States, residing at a value of $13.2 billion as of 2014 (Zhuang et 32 

al., 2017). Due to such cost associated with fire, municipal fire brigades, such as The City 33 

of Pittburgh’s Bureau of Fire (Madaio et al., 2018) conduct inspections on properties to 34 

assess properties deemed to have a high risk of fire. Owing to the high number of potential 35 

properties it is not possible to carry out inspections on all buildings on a regular basis 36 

(Pringle and Welsh, 2015). Approaches to inspection allocation, employed throughout 37 

the world, rely on the analysis of the relationship between building fire incidents and 38 

potential determinant variables, ranging from physical building characteristics to 39 

sociodemographic factors, to focus efforts where they are needed. For this reason, 40 

numerous studies have focussed on finding effective means by which properties at high 41 

risk of fire can be more readily identified (Dang et al., 2019; Walia et al., 2018). By 42 

adopting such methods, fire brigade services can reduce their operational costs and more 43 

fires may be prevented. Although several studies have employed data regarding fire 44 

inspection, demography, and commercial information to classify non-residential building 45 

fire risk, the use of aerial imagery and digital surface models (DSMs) was rarely explored. 46 

Furthermore, while the datasets used are effective in their task, little research has 47 

investigated these variables as individual contributors to classification performance.  48 

Risk prediction models have been implemented extensively in a range of subject areas, 49 

such as medicine (Preuschoff, Quartz and Bossaerts, 2008) and economics (Kuester et 50 

al., 2006). Although academic work has been dedicated to the task of predicting non-51 

residential building fire risk, there has been a relative lack of studies that explore feature 52 

impact on classification performance and none have explored the use of aerial imagery 53 



and DSMs as features. In the context of machine learning ML, the term feature denotes a 54 

variable that is used to predict an output.  55 

To focus fire risk inspection efforts to areas within a city where risk of fire a greater, some 56 

studies have grouped areas of higher building fire incidence together and treated them as 57 

a whole. In a randomized control trial with Surrey Fire Services, British Columbia, Claire 58 

et al. (2012) indicated zones of high residential building fire risk within the study area for 59 

a smoke alarm installation initiative. They then mapped residential structure fires as point 60 

features before a series of ellipses were drawn to capture points within zones containing 61 

high concentrations. A drawback of such an approach is the subjective nature of the 62 

methods. In contrast, DaCosta et al., (2015) joined American Housing Survey and 63 

American Community Survey datasets then used a Random Forest to model residential 64 

fire risk at census block level. Such a method, whereby regional open data is aggregated 65 

will also be adopted in this study. Increasingly, studies concerned with prediction of fire 66 

risk are looking to a more granular approach where individual building fire risk is 67 

considered. Garis and Clare (2014) developed a commercial building fire risk framework 68 

based on physical building characteristics in conjunction with history of fire regulation 69 

compliance. Although this system is heavily based on specifics of local fire safety 70 

regulation, their method builds a systematic approach to fire safety inspection resource 71 

allocation. To prioritise fire inspection to higher risk commercial properties, Madaio et 72 

al., (2015) joined historical fire incident and inspection records at the building-level with 73 

U.S. census data, such as age, ethnic population, and income, at a more regional level. 74 

They also used crime incident records and Google Place API data to get up to date 75 

business information. The area under curve (AUC) for true positive rate against false 76 

positive rate obtained from random forest and SVM models was 0.813 and 0.805, 77 

respectively, suggesting that both algorithms used produce a good separation of the 78 



classes. Although this research refers to data sources used, the features themselves are 79 

not described in detail. The current study draws some parallels from Madaio et al., (2015) 80 

in that Google Places API and demographic data will be used to gather information to aid 81 

fire risk predictions at the building scale. 82 

Madaio et al., (2015) briefly touch on feature importance in their modelling. They find 83 

that for the random forest model, features relating to building size and its physical 84 

characteristics have the greatest impact on their output. In contrast, they then construct a 85 

logistic regression model and analyse feature coefficients which suggest that the Google 86 

Places feature has the greatest importance. Dang et al. (2019) used data provided by 87 

Humberside Fire and Rescue Service regarding property inspections and fire severity in 88 

conjunction with publicly available open data on food hygiene and Google Places ratings, 89 

among others, to build a commercial fire risk model. They experiment with several 90 

different learning algorithms. 91 

While the multi-layer perceptron model they implemented attained an area under curve 92 

(AUC) score of 0.78, an AUC score of 0.89 for an XGBoost model was also achieved. 93 

Although this study represents the highest performing classification of commercial 94 

building fires in the literature, it does not give much consideration to analysis of features 95 

as individual contributors to classification performance. 96 

Whilst there is some crossover in mutually used features in Madaio et al., (2015) and 97 

Dang et al., (2019), there is little rationale given for features used and attempts made to 98 

analyse the classification performance contributions of individual features are 99 

inconsistent within studies. In contrast to using a feature set that includes demographic 100 

variables, Hong and Jeong (2018) conducted a study whereby 16 features relating to 101 

physical building characteristics and fire history were used to make fire predictions of 102 

fire risk. Data was used to train support vector machine SVM, Naıve Bayes, Decision tree 103 



and artificial neutral networks ANN models. The SVM had highest test set accuracy 104 

overall at 63.54%. While many features used by Hong and Jeong (2018) relating to 105 

physical building characteristics were not available for this study, it is hypothesised that 106 

the use of aerial imagery and DSMs may supplement physical features that they used. 107 

Although this study is only concerned with predicting fire risk for buildings, by using 108 

features based on aerial imagery, similarities are shared with studies in wildfire prediction 109 

and land use classification (Collins et al., 2020; Oliveira and Zêzere 2020), building 110 

assessment (Monfort et al., 2019), potential of rooftop solar energy (Schunder et al., 111 

2020). Mitri et al., (2015) used pixel segmentation and subsequent object classification 112 

to determine presence of different wildfire fuels (e. g. grass, shrub, etc.) to discover areas 113 

susceptible to combustion.  114 

In ML a hybrid model is a combination of two or more existing algorithms to produce a 115 

single output that can make use of different forms of data related to the same task. Such 116 

architectures have been implemented using CNN models for multiple image features 117 

(Wang et al., 2018) and ANN models for features of varying structure (Audebert et al., 118 

2019). This method has advantages over running models separately as the error can be 119 

calculated over the entire network. Audebert et al., (2019) trained a hybrid model for 120 

classification of documents from image and textural input which attained a higher 121 

performance than the two separate models. A hybrid model will be implemented in this 122 

study to make use of multiple features of varying formats for each training example. 123 

Convolutional neural networks (CNN) for risk-based classification of image data have 124 

been used more widely in the field of medical research than any other subject. Wang et 125 

al., (2018) uses three image features of lung scans to predict the malignancy risk of 126 

pulmonary nodules through use of a CNN. In their methodology they compare a hybrid 127 

CNN (whereby three image inputs per training example are inputted to a multi-branch 128 



CNN) with a multi-channel fusion CNN (where three image inputs are layered on of one 129 

another to produce a single tensor then propagated through a single-branch CNN). They 130 

achieve multi-channel and fusion channel AUC or 0.93 and 0.97, respectively. Although 131 

Wang et al., (2018) achieve a greater AUC on the fusion-channel model, the multi-branch 132 

CNN approach makes more sense for this study as the inputs require merging with 133 

additional dimensionally dissimilar tabular data before a final classification. 134 

Urban street view imagery has been successfully implemented in several studies to extract 135 

useful information about the built environment. Liu et al. (2017) used street view imagery 136 

to classify construction and maintenance quality of buildings in Beijing. The model they 137 

produced achieved an F1 score of 61.8%, suggesting that computer vision can be 138 

implemented to classify quality of buildings to some extent. Similarly, Law et al., (2018) 139 

produced a CNN model that classified street view imagery by aesthetic street frontage 140 

quality. Furthermore, Law et al., (2018) used aerial imagery in conjunction with street 141 

view imagery to estimate house prices. This research relates to these studies in that an 142 

attempt will be made to gain information regarding the built environment through 143 

computer vision. 144 

Numerous studies have investigated classifying roof types of buildings. In a study 145 

concerned with building detection and roof type classification from aerial imagery 146 

Alidoost and Arefi (2018) used labelled instances of roof types to achieve a classification 147 

accuracy of 92% with a CNN model. Such research suggests that ML algorithms have the 148 

potential to classify areal characteristics of buildings. 149 

Our study will address this gap in the literature by exploring the use of aerial imagery and 150 

DSMs, and assess the relative importance of these in addition to traditional variables for 151 

non-residential building fire risk classification using CNN. Moreover, we assess the 152 

ability of traditionally used features in building fire risk prediction. We do this using a 153 



feature attribution method, named Shapley values, to understand the importance of 154 

feature values towards the prediction; and conduct a feature ablation study to assess the 155 

impact of each individual feature. 156 

2. Material and methods 157 

2.1 Data 158 

The following section details the procedure taken and rationale behind the 159 

implementation in the data pre-processing and methodological stages of the study. Scripts 160 

used in this research can be found in a Github repository and accessed via the URL in 161 

supplemental materials. The tabular data included in the predictive modelling of non-162 

residential building fire risk was chosen due to them being included in previous studies. 163 

This allows better comparison of the results of this work with other models constructed 164 

in the literature. While some data sets like those used previously have been implemented 165 

here, data availability has been a constraining factor. Many variables used in this study 166 

have been attributed to buildings via spatial joins, summarised in Figure 1. An assumption 167 

of this method is that data collected for a building is representative of that building, the 168 

people who use it and the processes that occur within or around it. Furthermore, it is 169 

assumed that data of a more regional resolution that is attributed to individual buildings 170 

is also representative of the social characteristics at a local level. 171 

Due to the investigation of the inclusion of imagery and surface models in prediction 172 

being a central aim of this study, the approach chosen has been influenced by methods 173 

where image data may be an input to the model. An ANN was chosen as the algorithm to 174 

be used as they have been successfully implemented in recent years in the field of image 175 

classification and can accept multiple data types as inputs to the model (e.g. tabular data 176 

and imagery) (Geiß et al., 2020; Kim et al., 2020a, 2020b).  177 



 178 

Figure 1: Diagram illustrating how data from varying levels of spatial attribution have 179 

been merged to represent individual buildings, LSOA = Lower super output area  180 

2.1.1 London Fire Brigade Incident Data 181 

The London Fire Brigade (LFB) provide information regarding all fire incidents reported 182 

from 2009 to present (London Fire Brigade, 2011). This was used in order to find 183 

locations of fire incidents. The accuracy to which the incident location is recorded varies 184 

within the dataset. This is recorded with an address qualifier variable that states, for 185 

example, whether the incident location is correct or accurate to the street on which it 186 

occurred. When the proportion of building category fires in the dataset is compared to the 187 

proportion of building category fires recorded at the correct incident location (figure 1) it 188 

can be seen that there is a bias towards collecting the correct location information for non-189 

residential fires. Although only non-residential building fires are the subject of this study, 190 

this bias suggests that there are some inconsistencies within the ways that the data is 191 

collected. While this is only apparent in a contrast between how residential and non-192 

residential buildings are handled, it is not clear whether there exists a bias within the way 193 

that non-residential building fire locations are recorded.  194 



 195 

Figure 2: Proportions of property types for (a) all fire incidents in dataset and (b) fire incidents 196 

with correct location 197 

 198 

Figure 3: Study area used in this investigation, Greater London 199 

The geographic study area is based on the spatial extent of the LFB dataset. This covers 200 

the area of Greater London and is presented in figure 3. 201 

 202 

This study is concerned with fires whose severity may have been impacted by building 203 

design. For this reason, all fires in the dataset were filtered for those that were primary 204 

fires. Primary fires are generally more serious and caused more damage than other 205 

categories of fire (Home Office, 2020). The address qualifier variable, stating to what 206 



degree of accuracy the incident location is recorded was used to filter incidents for those 207 

that are recorded at an accuracy of being in the correct building or greater. The location 208 

of the incidents were recorded in British National Grid, which was used to convert the 209 

tabular data into point features. 210 

2.1.2 Ordnance Survey MasterMap 211 

Ordnance Survey MasterMap (MM) is a database of shapefiles recording every fixed 212 

feature larger than a few metres in Great Britain (Ordnance Survey, 2020). This data was 213 

used to obtain the shapes of buildings used for clipping aerial imagery and DSMs. This 214 

data was accessed and downloaded from Digimap (Edina, 2019). Multiple versions of 215 

MM were been downloaded to match the annual extents of the aerial imagery. 216 

MasterMap shapefiles covering the area of Greater London were collected for all years 217 

available within the timespan of the London Fire Brigade (LFB) dataset. After being 218 

filtered for buildings, LFB incident points were grouped annually, and a spatial join was 219 

performed between the LFB points and the version of MM building polygons closest to 220 

the time of the LFB incidents. All points that did not fall within a building shapefile were 221 

eliminated from the data set. 222 

2.1.3 Aerial Imagery and Digital Surface Model 223 

The vertical aerial imagery used in this study was obtained using EDINA Aerial Digimap 224 

Service (Edina, 2019) and collected by Getmapping (Getmapping, 2019). Although 225 

satellite imagery may have been available for use in this study, the flight captured imagery 226 

had a resolution of 25cm ground sample distance (GSD), greater than any other open 227 

aerial imagery data available at the time this research was conducted. 228 



 229 

Figure 4: Annual spatial coverage of aerial imagery used in the study (10km tile grid) 230 

 231 

Aerial imagery used was collected between 2012-2018, however different extents of the 232 

study area were collected each year (figure 4), with each point on the ground being 233 

revisited every 3-4 years. Georeferencing had already been performed on the imagery and 234 

this was provided in the form of JGW files. The imagery was not orthorectified so some 235 

building lean exists in the data. The digital surface models were accessed from EDINA 236 

DigiMap (Edina, 2019) and consist of a LiDAR composite digital surface model. The 237 

data was collected by the Environment Agency from 2006 onwards and is available under 238 



the Open Government Licence for public sector information (Environment Agency, 239 

2020). The dataset has a vertical accuracy of ±15cm RMSE and a spatial accuracy of 240 

±40cm RMSE (Environment Agency, 2020). As the resolution of the dataset is 1m, 241 

greater than the mean spatial error, the spatial error has negligible impact in this 242 

application. 243 

Imagery metadata was used to determine the date that each image was taken. Because the 244 

appearance of, or even the buildings themselves, can change over time it was decided that 245 

only imagery that was taken within a year prior to a fire incident would be used. The 246 

recorded incident date was used to find relevant imagery. In contrast, the DSM was much 247 

more mixed in terms of when it was collected and processed, for instance some individual 248 

tiles have data collection spanning several years so it is difficult to determine the exact 249 

time in which the DSM for a building was collected. While building structures do change 250 

over time, they are not as variable as the appearance of buildings and so the time of DSM 251 

was not considered in this study. 252 

 253 



 254 

Figure 5: Diagram showing how data regarding building shape is used to calculate a scale and 255 

shape complexity variant buffer distance with equation (1), Pink=MRA shortest dimension, 256 

Green=Shape area, Blue=MRA, Red=Buffer distance.  257 

 258 

Building footprint*0.25*300(39900/129900) =23 259 

 260 

The area surrounding a building may also have an impact on its fire risk, so a buffer was 261 

made around the building before clipping the imagery. A building size dependent buffer 262 

amount was chosen due to variation in building size within the dataset. When using a 263 

buffer size proportionate to the area of the building or the bounding box of the shape, 264 

complex or narrow and branching building shapes became dominated by the buffered 265 

area (Figure 5). A method was required for the final images to be representative of the 266 

building, whilst also considering the surrounding features.  267 

The following rule was applied. 268 



BD = 0:25 *S (A/MRA) (1) 269 

Where BD is the buffer distance, A is the area of the shape, MRA is the area of the 270 

minimum bounding rectangle of the shape, and S is the shortest dimension of the 271 

minimum bounding rectangle. This method is summarised in figure 6.  272 

When the building is a rectangle this results in a buffer size of a quarter of its shortest 273 

dimension, however, with more complex building shapes with more open space within 274 

their bounding boxes, the size of the buffer becomes moderated by the ratio between the 275 

area and the minimum bounding rectangle area. 276 

 277 

  278 

(a) Aerial imagery, left panel (b) Digital surface model, right panel 279 

Figure 6: Example of aerial imagery and DSM data after clipping (Getmapping, 2019; 280 

Environment Agency, 2020). 281 

 282 

The building shapes were then buffered with a buffer size from the equation (4.1) and this 283 

was used to clip the aerial imagery and DSM to image files (figure 6). The minimum 284 

height of the DSM for each building was then subtracted from each file so that the DSM 285 

was relative to the ground level in each instance. The aerial imagery was greyscale 286 

sampled to produce a 2D feature. The regions of the aerial images and DSM that fell 287 

outside of the buffer were given a pixel value of 0. 288 



2.1.4 Google Places 289 

The Google Places API is a tool implemented in this study to obtain information regarding 290 

businesses and services that occupy a building (Google, 2020). In addition to finding 291 

information about the buildings in which incidents occurred, Google Places was also used 292 

to find commercial data for spatially random buildings where fires did not occur. Using 293 

the service involves sending a request with a query to the Places server before receiving 294 

a response of 20 results per request. Requests can be made by place name, address, or by 295 

location and can be filtered by type of place. 296 

To get the business information about the buildings in the fire incidents dataset, a request 297 

was made for each MM building centroid linked to a fire incident. A radius option, 298 

whereby places returned whose location falls within were prioritised in the request, was 299 

set at 100m. Returned places results were searched for businesses whose location was 300 

within the building shapes. The building, incident and place data were then joined. The 301 

Places API was also used to find commercial buildings to be used for the 302 

negative fire incident dataset (i.e. those where a fire did not occur). To attempt to have 303 

the negative classes to have a similar spatial distribution to the positive class, the 304 

frequency of fire incidents in each 10km tile was calculated. These were then used as the 305 

basis for the quantity of negative classes to find in each 10km tile. For each tile, a series 306 

of random points was generated and used to make Places API requests. The results were 307 

then searched for places whose location fell within buildings where no fire incident was 308 

recorded. This served as the foundation for the negative fire examples for which aerial 309 

imagery and DSM was also clipped. Due to 95 categories of business being represented 310 

in the data, attempts had to be made to reduce the sparsity in the data to improve 311 

performance. These Places data were aggregated into 14 broad categories: amusement, 312 

car, drink, emergency, food, contractor, leisure, medical, office, public building, retail, 313 

service, transport, and storage. A summary of all type categories before and after 314 



reduction can be found in Table A.2 Supplemental materials (appendix A). The places 315 

type data was then converted into one-hot-vector variables for categorical data to be 316 

represented in the model. 317 

2.1.5 Demographic and Crime Data 318 

Demographic features were used in this study due to their inclusion in previous building 319 

fire prediction research (Madaio et al., 2016; Walia et al., 2018). Demographic data was 320 

collected and released by the ONS and accessed from EDINA DigiMap as data attributed 321 

to output area shapefiles (Office for National Statistics, 2016; Edina, 2019). The census 322 

data used was released in 2011 and is the most recent census data available (Office for 323 

National Statistics, 2011). Data relating to age, employment, education, social class, 324 

residency, tenancy, and ethnicity was collected for the study in order to evaluate their 325 

contribution to classification performance. Crime data was included in this study due to 326 

its usage in prior research (Madaio et al., 2016; Walia et al., 2018). Crime data was 327 

collected by the Metropolitan Police service and accessed from the London data store 328 

(London Data Store, 2019). Crime records represent numbers of crime incidents at the 329 

lower super output level (Office for National Statistics, 2016). Crime rates for 2016 were 330 

used as this interval represents the period in the middle of the incidents used. Population 331 

data was also collected and used to derive crime rates from the crime totals. 332 

The demographic data came in the form of output area shapefiles of ONS output areas 333 

attributed with demographic variables. The attribute tables were filtered for series that 334 

were relevant to the application before spatial joins were performed to attribute building 335 

shapefiles with the desired variables. Crime total data was acquired in the form of tables 336 

of crime rate data organised by lower super output area (LSOA). LSOA crime values 337 

were divided by LSOA population totals to produce crime rates. A shapefile of London 338 

LSOAs was downloaded, and crime data was joined to produce geographic extents of 339 



crime rate values. This was then spatially joined to the MM buildings to pass on the 340 

desired attributes. 341 

 342 

 Figure 7: Spatial distribution of datasets for positive and negative classes  343 

2.1.6 Final Data 344 

After elimination of data entries that were missing features, a total of 6690 examples 345 

remained in the final dataset. Within the final data were 2087 positive examples and 4603 346 

negative examples of building fire, giving a ratio of 0.312: 0.688 to be used for class 347 



weighting. The spatial distributions of the classes can be found in Figure 7. All data series 348 

apart from the aerial imagery and DSM were put into the same data table and normalised 349 

in preparation to be inputted to the model. The image and DSM files were put into their 350 

own directory. The image data was also normalised before being used in modelling. A 351 

training-validation-test split of 80:10:10 was used. 352 

2.2 Modelling 353 

The PyTorch package was chosen as the framework for using ANN in this study due to 354 

general usability, ease at which it can be implemented, GPU Capability and its wide range 355 

of features (PyTorch, 2019). 356 

2.2.1 Architecture 357 

An initial architecture compatible with the input data types had to be chosen upon which 358 

hyperparameters could be tested. Two CNNs (Figure 8, a,b) would each take an image 359 

input then a standard ANN would take the tabular data and run it through a series of fully 360 

connected layers before being concatenated to the outputs of the convolutional layers 361 

(Figure 8c). This would then go through a final fully connected layer before classification. 362 

The path of each data input through the model will be referred to as a branch (e.g. the 363 

image branch). This architecture is illustrated in Figure 8 and 9. The benefit of having a 364 

hybrid model is that the algorithm can make a classification based on multiple sources of 365 

data that are of different types (Audebert et al., 2019). This allows the model to optimise 366 

itself across the different data sources. 367 

 368 

 369 



 370 

Figure 8: Diagrams summarising model architecture: The output of CNN image branches (a) and 371 

(b) are concatenated to the output of a fully connected layer of the vector branch before a final 372 

fully-connected layer (c), produced using NN-SVG (LeNail, 2019) rather than make separate 373 

models that each make an individual classification. 374 

 375 

Figure 9: A schematic diagram of the model architecture chosen after hyperparameter testing. 376 

CNN=Convolutional neural network, MLP=Multi-layer perceptron, fc=Fully connected layer (a) 377 

Image CNN architecture and dimension, (b) DSM CNN architecture and dimension, (c) 378 

Concatenation 379 

 380 

 381 



Preliminary testing of the CNN branches as individual models found that by having a 382 

11x11 convolution kernel size in the first CNN layer led to an 13% reduction in average 383 

validation error when conducted over 10 sets of training. This was used as it may be that 384 

the larger kernel is able to recognise larger objects within the images. The other 385 

convolution kernel sizes were kept at 5x5. The increased size of the first convolution 386 

kernel is also seen in the architecture of AlexNet (Krizhevsky et al., 2012). 387 

2.2.2 Loss Function 388 

The classes of the dataset being used in this study are unbalanced and so a loss function 389 

that takes this into account is used so that each class is treated equally. The binary cross-390 

entropy loss function is used as, along with the model prediction and target, this function 391 

also takes in a weighting of each example (Phan et al., 2006). The values 0.688 and 0.312 392 

were used for the positive and negative classes, respectively. These are proportionate to 393 

the class imbalance so that the model will not just attempt to optimise with respect to the 394 

majority class.  395 

2.2.3 Training Evaluation 396 

Model training is achieved by inputting a dataset to the model and mapping this input to 397 

a desired target output. The error between the target output and prediction will usually 398 

improve with number of epochs taken however it is not a good indicator of model 399 

performance as the model has seen the training data before and may eventually learn the 400 

subtleties of the training data perfectly, thus overfitting the data. By testing performance 401 

against an unseen validation data set, the model’s ability to generalise can be investigated. 402 

This gives a better indication as to whether there is a correlation in the data used to make 403 

predictions and the actual target the model is attempting to predict. Loss was tested 404 



against the validation data on every 32nd batch during training. This was done over 128 405 

data samples, close to the maximum number that could be accommodated on the GPU. 406 

All pre-processing stages were conducted on a Dell XPS 9550 laptop with an intel i7 407 

processor. A computer running a Nvidia Titan RTX was connected to via SSH for running 408 

parallel processing in the methods used to train the ANNs. 409 

Pre-processing was carried out on a Windows 10 operating system with Python 3.7 using 410 

PyCharm 2019.2 as the IDE, while Jupyter Lab was used for SSH. Python packages used 411 

in the study are summarised in Table A.1 in Supplemental materials, appendix A while 412 

scripts used can be found in appendix B.1. 413 

2.2.4 Hyperparameter Optimisation 414 

Overall, 162 combinations of hyperparameters were tested. The hyperparameters tested 415 

are summarised in Table 1. Due to the complexity of the architecture of the model used, 416 

simplifications have been made to the range of potential hyperparameters that could be 417 

tested. In each branch a starting number of nodes was specified for the first hidden layer 418 

then this value was halved with each succeeding hidden layer. Furthermore, the 419 

hyperparameters associated with the CNNs were both altered in unison to further reduce 420 

the number of required hyperparameter permutations. The rectified linear unit function 421 

was used for activation of layers as it offers better performance and generalization when 422 

compared to some counterparts (Chigozie et al., 2018). A sigmoid function was used for 423 

the output to produce a probability value.  424 

Table 1.  425 

A learning rate scheduler was implemented whereby an initial rate of 0.005 was halved whenever 426 

validation loss did not improve for 7 consecutive epochs. An early dropout was also implemented 427 

where if the model did not improve for 20 epochs training would cease. If validation loss was 428 

lower than any previous end-epoch value, the model weights were saved, potentially overwriting 429 



a previous epoch’s weights. This allowed the highest performing weights to always be preserved. 430 

As training was run on a GPU to speed up processing, the batch size was constrained to a 431 

maximum of 128 so that there was sufficient memory available to hold all data and weights at 432 

any time. 433 

Hyperparameter Description 
Values 
tested 

Vector start 
nodes The number of nodes in the first hidden layer 

64, 128, 
256 

 of the vector branch  

CNN start nodes 
The number of nodes in the first hidden 
convolutional 

64, 128, 
256 

 layers of the image branches  

Vector layers The number of hidden layers the vector data 1, 2, 3 

 propagates through before concatenation  

CNN layers The number of convolutional layers the image 1, 2, 3 

 data propagates through before concatenation 

Batch size The number of training examples to be used 64, 128 

 in backpropagation in each epoch  

 434 

2.2.5 Shapley Values 435 

In order to calculate Shapley values, the SHapley Additive exPlanations (SHAP) package 436 

(Lundberg and Lee, 2017) is implemented where, for each example put through the 437 

model, feature values are altered to observe the impact they have on the model output. It 438 

is assumed that by giving a feature a low value the absence of a feature is simulated. 439 

2.2.6 Ablation 440 

Individual features and feature groups were aggregated within the tabular data, 441 

summarised in Table A.2 in supplemental materials, and were ablated by excluding the 442 

features from training. With the aerial image and DSM CNN branches, each CNN branch 443 

architecture had to be excluded along with the feature. For each feature ablated the model 444 

was trained 10 times and median validation ROC AUC was used to compare the 445 



performance of the models. The highest performing model from this analysis would then 446 

be used as the final model. 447 

2.3 Cost-Benefit Analysis 448 

Building fire incidents have the potential to inflict high cost of repair and even fatalities 449 

when they occur. For this reason, there is motivation in taking preventative measures 450 

towards reducing fire risk, such as inspections carried out to ensure that the building 451 

complies with fire regulation. The cost of an inspection in conjunction with the potential 452 

cost of a fire incident may be combined in order to assess the costs and benefits of 453 

mitigation measures, where the resources required to carry out the inspection are thought 454 

of as the cost value then the cost of fire that may be avoided will be the benefit value. The 455 

cost-benefit ratio can then be used as the acceptable FN/FP ratio in classification, defined 456 

below (Sheng and Ling, 2006). 457 

Cost/ benefit= FN/FP  (4.2) 458 

 A cost-benefit analysis will be implemented in this study to suggest an optimal 459 

classification threshold of the final model in a fire brigade’s operational scenario. While 460 

the LFB does not publish the cost of a building inspection, a value of £1875 was averaged 461 

over three commercial quotes for the building fire safety inspection of a 230m2 property, 462 

the median size in the dataset used. The average area of fire damage of a non-residential 463 

building in the UK was 28.3m2 in 2018/2019 (Home Office, 2018), while the average 464 

cost of fire damage for non-residential buildings is £1405/m2 (Salter et al., 2013). This 465 

gives an average fire damage cost of £39,761. Thus, the desired FN/FP can be calculated. 466 

1875/39761 = 0.047 (4.3) 467 

The threshold at which the FN/FP is closest to 0.047 will be used to demonstrate the 468 

performance of the final classifier in an operational setting. 469 



3. Results 470 

3.1 Hyperparameter Optimisation 471 

Experimentation of model hyperparameters was conducted to find the best parameters 472 

for a model. As training was conducted on an unbalanced dataset the validation loss was 473 

used to measure model performance during training. The hyperparameters of the model 474 

used are presented in Table 2, while changes in error associated with varying 475 

hyperparameters are graphed in (Figure 1 supplemental materials).  476 

Table 2: The hyperparameter combination used for the hybrid model in this study 477 

Hyperparameter Value chosen 

Vector start nodes 256 

CNN start nodes 128 

Vector layers 1 

CNNlayers 3 

Batch size 128 

 478 

The lowest validation loss achieved in hyperparameter testing was 0.225. The 479 

hyperparameter combination of this model is summarised in Table 2 while the losses and 480 

accuracy values are shown in Figure 10. The weights of the chosen model were saved 481 

after training over 47 epochs, shown by the green vertical line in Figure 10, before training 482 

was dropped out after 67 epochs. 483 



 484 

Figure 10. Graph showing changes in loss and accuracy over train and validation sets throughout 485 

training 486 

It can be seen from Figure 10 that, overall, train accuracy increases and train loss 487 

decreases throughout training of the model, suggesting that there is a correlation between 488 

the training data and the target that the model is capable of learning. Furthermore, a 489 

similar pattern in the validation accuracy and loss suggests that the learned mapping is 490 

consistent across the dataset and train performance are not entirely due to overfitting. This 491 

model achieved a validation ROC AUC of 0.778. 492 

3.2 Shapley values 493 

Shapley values were calculated over the entire training set for all features from the tabular 494 

data using the SHAP package. In general, most features show some contribution to the 495 

output value. The summary plot in Figure 11 show the SHAP values. Each row on the 496 

plot represents a feature of the dataset and each training example is represented by a dot. 497 



The colour of the dot represents the value of the feature while the SHAP value is shown 498 

by the dots position on the x-axis. The area feature is shown on its own separately on 499 

Figure 12 using a different scale while all other features are shown on Figure 11. 500 

 501 

Figure 11. SHAP summary plot for all tabular features excluding building area 502 

 503 

Figure 12. SHAP summary plot the building area feature 504 

For the area feature, in very few examples, a high feature value heavily influences the 505 

target output. Compared to other features, the area feature has a vastly higher mean SHAP 506 

value at 5.7, 32 times greater than the second highest mean SHAP value, for violent crime 507 

at 0.018.  508 

3.3 Ablation 509 

In the feature ablation portion of this study features were excluded from the dataset, 510 

models were trained using the new feature set, and performance was evaluated to gauge 511 



the impact of the individual features on the classification performance of the model. Each 512 

model was trained 10 times to get a reliable estimate of performance. Figure 13 shows a 513 

boxplot of all ablation AUC results for each group removed. A lower position on the y 514 

axis represents a deterioration in classification performance when that feature was 515 

removed. The median statistic is chosen for comparison as several groups exhibit a 516 

skewed distribution of AUC values. 517 

In Figure 13, while models trained excluding some feature groups, such as age, show a 518 

narrow range of AUC scores, for other features, such as social class, there is a wide range. 519 

Comparisons between median AUC is more easily made by observing differences 520 

between the ‘all’ feature model median AUC (greed dashed line on Figure 13) and the 521 

group removal medians (blue lines within boxes). By removing either the age, crime, 522 

ethnicity, month, qualification or residential features, the median AUC increases. 523 

Conversely, it is seen that the removal of either area, demographics as a whole, the image 524 

branch, places or social class lead to a decrease in the median AUC. When the DSM 525 

branch is removed there is little change in median AUC. 526 

 527 

Figure 13. Box plot of AUC for models trained on datasets with features removed. The 528 



x-axis shows the feature removed, except for ‘all’ which is the model trained with the original set 529 

of features. 530 

3.4 Final Model 531 

The highest AUC from the ablation study on the validation set was 0.8128 and was 532 

achieved by a model where the ethnicity feature was removed. The final model ROC for 533 

validation and test set of this model is presented in Figure 14. The threshold of highest 534 

classification performance, observed to be 0.654, was found by taking the threshold at 535 

which the sum of sensitivity and specificity (1-FPR+TPR) was at its maximum. A map 536 

of confusion matrix components at this threshold is presented in Figure 15. The threshold 537 

at which FN=FP = 0:047, the cost-benefit ratio, was 0.093. Tables 3 and 4 show the 538 

confusion matrices for highest class separation and cost-benefit thresholds, respectively. 539 

The lowest validation loss weights for this mode were saved after 83 epochs at 0.2113 540 

validation loss before model training was dropped out after 103 epochs. Figure 15 541 

summarises the accuracy and loss over the training and validation data sets throughout 542 

training. Diagrams summarising the CNN branches and network architecture are shown 543 

in Figure 9. 544 



 545 

Figure 14. ROC curve for final model validation and test classification performance showing 546 
positions of optimum and cost-benefit thresholds 547 
 548 
Table. 3 Test set confusion matrix for the threshold of max class separation 549 
 550 

  predicted 

  positive negative 

ac
tu

al
 

positive 129 59 

negative 106 375 
 551 
Table. 4 Test set confusion matrix for the cost-benefit threshold 552 

  predicted 
  positive negative 

ac
tu

al
 

positive 194 14 

negative 285 176 
 553 
 554 



 555 
Figure 15. Training summary for the final model 556 
 557 

 558 
Figure 16. Spatial distribution of test set confusion matrix classification performance 559 
terms for a threshold of 0.654. TP represent the number of true positives in the dataset, 560 
TN represent the number of true negative in the dataset, FP represent the number of false 561 
positives in the dataset, FN represent the number of false negatives in the dataset 562 



4. Discussion 563 

4.1 Shapley Values 564 

The results from the Shapley value investigation represent the impact of feature values 565 

on a model output.  566 

4.1.1 Building Area  567 

The building area feature had a higher impact on model output than any other feature 568 

from the tabular data. Similar results have been found by Madaio et al., (2016) who point 569 

out that many of the most important features from their modelling are related to building 570 

size for their Random Forest model. While one would expect larger buildings to be 571 

generally more susceptible to fire risk as they have potential for more activity to take 572 

place within them, it is difficult to conclusively say that this is the reason for the observed 573 

correlation. The subject is complicated further by the fact that incident location is not 574 

accurate for all building incidents in the LFB data. It may be that there is a greater driving 575 

force behind the accurate collection of data relating to larger buildings within which 576 

incidents with more casualties or a greater cost of damage may occur. This would lead to 577 

larger buildings being over-represented within the positive fire incident class and give a 578 

skewed representation of reality. 579 

4.1.2 Places 580 

Generally, the places features had a large impact on model outputs. This is a significant 581 

finding as it solidifies the idea that the types of activities that occur within a non-582 

residential building have an impact on the buildings fire risk. This agrees with the 583 

regression coefficients described by Madaio, et al. (2016). A higher building fire risk 584 

from food establishments may be explained by the cooking activities that are carried out 585 

in these establishments as cooking equipment have been shown to be one of the major 586 



sources of building fire ignition (Shai, 2006). This is also supported by Manes and Rush 587 

(2018), who found that fire incident rate for food premises in the UK were 1.8 times 588 

higher than any other category. It is interesting to note that while the SHAP values for the 589 

presence of food vendors were positive, they were negative for the presence drinking 590 

(alcohol) establishments. These results suggest that useful fire risk predictors can be made 591 

through a distinction between these categories. 592 

The presence of medical services within a building also leads to a higher SHAP value. 593 

This pattern is seen in the results of Manes and Rush (2018) whose statistical analysis of 594 

building fires in the UK from 2014-15 find that fires in hospitals occurred in 2% of all 595 

buildings of that category within the sample, the second highest incidence rate of the 596 

categories they observe. High SHAP values have been found to be associated with the 597 

presence of offices in buildings in this study. This contrasts with results of Manes and 598 

Rush (2018) who find that offices have a 0.3% incidence rate, second lowest to dwellings. 599 

4.1.3 Age 600 

For all age group features, generally higher feature values are associated with a decrease 601 

in the model output. This seems at face value rather counter-intuitive as these features are 602 

proportions, and it was expected that higher fire risk would be associated with higher 603 

proportions of some age group. There does appear to be some minor trends, however. 604 

For the age group 0-16, representing children, the extremes of this feature were associated 605 

with a higher magnitude impact on the model output than the other age features. In 606 

particular, the absence of children in the population is associated with the highest model 607 

output of age features. 608 



4.1.4 Unemployment, Qualification and Social Class, Ethnicity and Crime 609 

The SHAP values for unemployment show a narrow spread suggesting that there is little 610 

impact of employment rates on model output and virtually no contribution to fire risk. 611 

This finding is concordant with the results found by Špatenková and Stein (2010), where 612 

no link was found between unemployment and fire incidence. A higher proportion of 613 

single occupants in the population of an area lead to an increase in SHAP value. A similar 614 

finding is also seen in population density.  615 

Of the qualification features, level 4 qualification had the potential to have the greatest 616 

impact on SHAP values. Higher proportions of level 1, 2, 3 and 4 qualified populations 617 

led to a negative model impact, while higher proportions of population with no 618 

qualification lead to a slight positive impact on model output. These results may suggest 619 

that education levels in the population have an impact on non-residential fire incidence. 620 

Higher social class feature values all have a positive impact on model output. The largest 621 

impact on model output is seen from the A/B social grade which reaches up to around 0.3 622 

and as low as -0.2 SHAP value. Grades C1 and D/E feature values have a moderate impact 623 

on model output, while C2 has little impact.  624 

All ethnic population features have a very low impact on model output when compared 625 

to other features analysed. This suggests that they are not a good predictor of non-626 

residential building fire and may cast doubt onto their use in previous studies (Madaio et 627 

al., 2016), however the impact is likely to vary for different cities.  628 

While high burglary crime values were associated with an increase in model output, the 629 

opposite was the case for violent crime where a few high feature value outliers lead to 630 

SHAP values around 0.6. This suggests both features may be effective contributors to 631 

model performance. 632 



4.2 Ablation Study 633 

4.2.1 Places 634 

It was found that the places data was the largest contributor to the classification 635 

performance of the dataset. The median AUC decreased by 8% when the places features 636 

were removed, higher than any other feature group removal. This finding also reflects the 637 

result of the Places SHAP values. This suggests that, in this model, building use is the 638 

most crucial factor to consider when classifying non-residential fire risk and outweighs 639 

the importance of social factors. This also highlights a major difference in analysis of 640 

building fire risk factors between residential and non-residential properties.  641 

4.2.2 Building Area 642 

The second highest feature removal decrease in median AUC was from the area feature, 643 

with a 5% decrease in median AUC. While the area features removal tended to improve 644 

the model, it is worth noting that the second highest performing model from the ablation 645 

study had this feature removed at over 0.81 AUC. While it tends to improve the model 646 

there is a possibility that removing the area feature can improve classification 647 

performance. It may be the case that, while the area feature does provide a useful indicator 648 

of potential fire risk, the model has the potential to rely on it heavily as an individual 649 

feature. When this is related to the SHAP value results, where the area features impact on 650 

model output had the potential to be over 30 times greater than any other feature, it can 651 

be seen how the area feature could overshadow the values of other features when making 652 

a prediction.  653 

4.2.3 Demographic Features 654 

When all demographic features were removed the median AUC decreased by 3% 655 

suggesting that social factors contribute somewhat to classification performance and are 656 



useful indicators of non-residential fire risk. When the sub-groups are analysed, however, 657 

the removal of only the social classes group leads to a decrease in median AUC. Other 658 

demographic variables, when treated as their own feature groups, do not provide any 659 

increase in classification performance.  660 

4.2.4 Aerial Imagery and DSM 661 

Ablation was also performed on the aerial imagery and DSM CNN branches. It must be 662 

noted that while the other ablation results represent the removal of tabular features from 663 

the vector branch of the model, the imagery and DSM ablation results are collected by 664 

removing the entire CNN branch of that feature. While the architecture of the model 665 

changes slightly with the tabular feature ablation in that the dimension of the inputs 666 

change, the architecture is changed more profoundly by removing an entire CNN branch. 667 

When the imagery branch was removed there was a decrease in median AUC 6.3. Final 668 

Model Performance 47 by 4%, the third highest decrease seen in the ablation study. This 669 

suggests that the aerial imagery component of the model is an effective contributor to 670 

classification performance. Conversely, the median AUC increased by 0.002% when the 671 

DSM channel was removed, suggesting that it contributed little improvement to 672 

classification performance and was not as useful as the imagery branch. There are some 673 

fire risk factors of non-residential buildings that can be deciphered visually. These results 674 

do not suggest a mechanism for what characteristics of a building image the model uses 675 

to come to more accurate classifications. For instance, it may be that like Liu et al. (2017), 676 

the model is able to visually assess the construction and maintenance quality. 677 

4.3 Final Model Performance 678 

It was found that the removal of the ethnicity feature yielded the highest classification 679 



performance with a validation set AUC of 0.8128 and a test set AUC of 0.8195. An 680 

optimum threshold was found to be at 0.654 where a TPR of 0.768 and FPR of 0.264 was 681 

achieved (Figure 14). The final TPR vastly exceeding the FPR suggests that this classifier 682 

has good potential to focus inspection efforts to buildings of high risk. 683 

4.4 Classification Spatial Distribution 684 

Figure 16 shows the spatial distribution of confusion matrix terms from a classification 685 

at optimum class separation. Generally, the spatial distribution of the test set is like that 686 

of the entire dataset (figure 6), with a higher concentration of examples in central London. 687 

Although true positives are found in most regions of the study area, there is some 688 

clustering of these values around central London.  689 

4.5 Cost-Benefit Analysis 690 

This study has demonstrated how the classification threshold may be moved to meet a 691 

cost-benefit efficiency level for building inspections. It can be seen in Figure 14 and Table 692 

3, that the cost-benefit threshold on the final model manages to correctly classify 93.2% 693 

of instances of building fire in the test set, an increase of 36% when compared to the 694 

optimal threshold. This does come at a cost, however, as the threshold would then 695 

incorrectly classify 65.7% of negative examples as being instances of building fire, an 696 

increase of 180% when compared to the optimal threshold. When the sum of sensitivity 697 

and specificity (1-FPR+TPR) for the two thresholds are compared it can be seen that the 698 

optimal threshold, at 1.466, is 12% higher than the cost benefit threshold, at 1.314. This 699 

suggests that, although such an approach enables certain operational requirements to be 700 

met, it is by no means the best performing classifier overall. 701 

For instance, municipal fire departments may implement systems whereby, instead of an 702 

average area of building, the inspection cost value could be calculated using the building 703 



area of individual cases. Furthermore, the unit area cost of non-residential buildings varies 704 

between occupancy types so an occupancy dependent benefit value may be implemented 705 

(Salter et al., 2013). 706 

5. Conclusion 707 

This study has presented a non-residential building fire risk prediction methodology 708 

based on a hybrid CNN-MLP approach and assessed the effectiveness of some features 709 

commonly used in the literature along with novel image features that were previously 710 

unexplored. Three key conclusions have been made through this investigation: i) while 711 

classification performance may be improved by including an aerial imagery feature of the 712 

building to the model via a CNN branch, the inclusion of 1m GSD DSM data to the model 713 

showed no improvement, ii) data relating to building use had the greatest impact on 714 

classification performance, while demographic data, apart from that regarding social 715 

class, did not lend benefit to the model. Such a finding is significant as some existing 716 

studies have used a suite of demographic features, iii) spatial analysis of final model 717 

classifications suggest that models built over large regions may lead to areas of poor 718 

model performance. 719 

As future perspectives, whilst the findings of this study answer some questions about use 720 

of specific features in building fire risk models, it raises many more about the future of 721 

building fire risk classification. As aerial imagery has been found to benefit building fire 722 

risk classification, future work should be concerned with investigating other novel 723 

features that hold contextual building information.  724 

While the 1m DSM feature was not beneficial to the classification in this study, there is 725 

insufficient evidence to suggest that building geometry is completely irrelevant. Future 726 

work should experiment with DSMs at higher resolution to assess any classification 727 

potential before it is ruled out entirely. A more rigorous ablation study, potentially 728 



assessing a wider range of features, in all combinations would yield more conclusive 729 

evidence regarding which features are relevant. Furthermore, a comparison of 730 

classification models built with the same features for different locations should be 731 

explored. Future work should investigate whether temporal evolution of features can aid 732 

classification.  733 
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