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Time-domain diffuse optical tomography (TD-DOT) uses near infrared pulsed lasers as light sources and
measure time-varying exitance on the boundary of the target. These are used to estimate optical prop-
erties of the imaged target. Several integral transform based moments of the time-resolved data have
been utilised in TD-DOT, the most common being the mean time of flight and variance. Recently, it has
been shown that Fourier transforming the time-domain data to frequency domain enables utilisation of
this data at one or several frequencies, producing equally as good estimates as the whole time-domain
data. In this work, we present a systematic comparison of the usage of the temporal moments and Fourier
transformed data in TD-DOT. Both absolute and difference imaging are evaluated using numerical simu-
lations. The simulations show that utilising temporal moments and Fourier transformed data in TD-DOT
provides good quality reconstructions with a good estimation accuracy. These estimates are improved if
more than one data type are used. Furthermore, the simulations show that the frequency domain compu-
tations enable computationally cheaper and straightforward implementation of the inverse solver when
compared to the temporal moments. © 2021 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Diffuse optical tomography is a technique for imaging spatially
varying optical properties, typically the absorption and scat-
tering parameters or quantities computed from these such as
oxygen saturation, in biological tissues [1–3]. The distribution of
these optical parameters provide tissue biochemical and struc-
tural information with applications for example in imaging
breast cancer, monitoring treatments, brain imaging and small
animal studies, see e.g. [3–6] and the references therein.

Time-domain diffuse optical tomography (TD-DOT) uses
pulsed lasers for illuminating the tissues. The time-varying
exitance, i.e. temporal point spread function (TPSF), is measured
at detectors on the boundary of the target domain. The benefits
of TD-DOT system include capability to image also through
large thicknesses of tissue and the large information content
of the measured TPSF [2, 7]. Several TD-DOT systems have
been developed and applied e.g. in imaging tissue-mimicking
phantoms [8, 9], in brain studies [10–13], and in breast imaging
[14, 15].

Various image reconstruction approaches have been pro-
posed to estimate the spatially varying optical parameters us-

ing TD-DOT. These include using the whole time-resolved
data [16, 17], using integral transform temporal moments of
the time-resolved data [18–22], Fourier transform based ap-
proaches [23, 24], and utilising different time-windows of the
time-resolved data [25, 26]. A short summary of data types
utilised in some of the previous TD-DOT studies is given in
Table 1.

Using the whole time-resolved data was shown to be the
most accurate method in estimating the optical parameters in an
earlier study [16]. However, using the whole time-resolved data
required around 1100 % higher computation time compared to
using temporal moments [16]. Temporal moments considered
in TD-DOT are, for example, the first temporal moments (or
Mellin transforms) [20, 22, 35], Laplace transform [1, 36] and the
Mellin-Laplace transform [1, 21]. Use of temporal moments has
led to reduction of computation time and memory requirements
due to compression of the time-resolved data [20].

Use of other temporal moments have also been proposed,
such as an integral of the time-resolved data over a temporal
period (time-gating), the peak intensity of the data and a loga-
rithmic slope of the temporal decay [21]. Ref. [34] studied the
use of different shapes of windows for time-gating in TD-DOT.
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Table 1. Data types used in TD-DOT, reconstructed parameters and applications in chronological order. The symbols used are:
E: time integrated intensity, <t>: first temporal moment (mean time of flight), c2: second central moment (variance), c3: third
central moment, LT: Laplace transform. µa: absorption coefficient, and µ′s: reduced scattering coefficient.

Ref. Moment Reconstructed parameters Application

[8] E Difference µa Cylindrical phantom

[27] <t>, c2, LT Difference and absolute µa, µ′s Cylindrical phantom

[10] <t>, c2, LT Absolute µa, µ′s Cylindrical phantom

[28] <t> Difference and absolute µa, µ′s Human forearm movement

[29] <t> Difference µa, µ′s Infant brain haemorrage

[16] Whole data, E, <t>, c2, c3. Absolute µa, µ′s Simulations

[23] Fourier transform Difference µa, µ′s Infant brain cortical response

[30] Fourier transform Absolute µa, µ′s Cylindrical phantom

[31] <t> Difference µa, µ′s Infant brain oxygenation

[32] Whole data Difference µa Liquid phantom tank

[22] <t> Absolute µa Cylindrical phantom

[26] Mellin-Laplace transform Absolute µa, µ′s Simulations

[17] Whole data Difference µa, µ′s Simulations

[33] Mellin-Laplace transform Difference µa Cuboid phantom

[15] E Absolute µa Breast cancer phantom

[34] Temporal windows Absolute µa Simulations

These data types partially use the full temporal information mea-
sured and a few other studies have reported their sensitivity to
depth and resolution [11, 37, 38]. To our knowledge they have
not been studied in detail and compared to the other moments
for the TD-DOT reconstruction problem.

A comparison of the estimation accuracy obtained using dif-
ferent temporal moments, using one in silico target, was pre-
sented in [21]. It was shown that using only one moment was
inadequate to reconstruct both absorption and scattering pa-
rameters simultaneously. It was suggested that this was due to
non-uniqueness of the reconstruction problem, similarly as in
using intensity data alone [39]. Using a combination of moments
was shown to improve results. However, a systematic study of
the number of the temporal moments required for a reasonable
quality reconstruction has not been carried out. Ref [21] demon-
strated that the choice of the optimal moment depends on the
distribution of target optical properties, which is only partially
known in real applications.

Time-domain and frequency-domain DOT have a natural rela-
tionship through a Fourier transform [1]. Approaches where TD-
DOT data have been transformed to frequency domain haven
been utilised in DOT e.g. in [23, 24, 30, 40]. Fourier transformed
time-resolved data at one frequency has been utilised e.g. in
phantom studies [30, 40] and reconstructing optical parameter
changes due to brain activation [23]. In a recent work, we nu-
merically studied utilisation of multiple Fourier frequencies in
TD-DOT [24]. The results showed that utilising the Fourier se-
ries at multiple frequencies resulted in better optical parameter
estimates than using only one frequency, and that the accuracy
of these estimates was comparable to using the whole time-
resolved data. Furthermore, utilising the frequency domain data

required significantly less computational time and resources
than the reconstructions from the whole time-resolved data.

Although different data types for TD-DOT have been pro-
posed and studied, their performance in the inverse problem
of DOT has not been systematically studied. Neither, there has
not been a thorough comparison of the number of data types
needed to obtain reasonable good estimates for absorption and
scattering.

In this paper, we compare different data types utilised in TD-
DOT by studying the inverse problem of DOT. The data types
compared are the most often used temporal moments, i.e. first
temporal moment and and second central moment and their
combination, and utilising one or several frequencies of Fourier
transformed data. The inverse problem for estimating absorp-
tion and scattering parameters are formulated for different data
types. Both difference and absolute imaging are studied.

The rest of the paper is organized as follows. Modelling
light transport in TD-DOT and computing different temporal
moments and frequency domain data are reviewed in Sec. 2.
Then, the inverse problem of TD-DOT utilising these data types
is described in Sec. 3. The numerical simulations are described
in Sec. 4 and the results are presented in Sec. 5, followed by
discussion and conculsions in Sec. 6.

2. MODEL FOR LIGHT PROPAGATION

A. Time-domain diffuse optical tomography
In a typical TD-DOT measurement setup, near-infrared light is
introduced into an object from its boundary. Let Ω ⊂ Rd, (d =
2 or 3) denote the domain with boundary ∂Ω where d is the
(spatial) dimension of the domain. In a diffuse medium like
biological tissue, the commonly used light transport model for
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TD-DOT is the diffusion approximation (DA) to the radiative
transfer equation [1, 41]

(
−∇ · 1

d(µa(r) + µ′s(r))
∇+ µa(r) +

1
c

∂

∂t

)
Φ(r, t) = 0, r ∈ Ω

Φ(r, t) +
1

2γd

1
d(µa(r) + µ′s(r))

α
∂Φ(r, t)

∂n̂
=


Q(r,t)

γd
, r ∈ s

0, r ∈ ∂Ω \ s
(1)

where Φ(r, t) is the photon fluence at a point r and time in-
stance t, µa(r) is the absorption coefficient, and µ′s(r) is the
(reduced) scattering coefficient. Further, c is the speed of light
in the medium, Q(r, t) is the pulsed (temporal) light source at
boundary locations s ⊂ ∂Ω. The parameter γd is a dimension
dependent constant that takes values γ2 = 1/π and γ3 = 1/4, α
is a parameter governing the internal reflection at the boundary
∂Ω, and n̂ is an outward normal to the boundary.

A typical TD-DOT measurement setup collects a time-varying
boundary exitance Γ(t, r), t = 1, . . . , T at detector positions r
where T is the temporal range of the output signal. The exitance
can be solved from fluence as

Γ(r, t) = − 1
d(µa(r) + µ′s(r))

∂Φ(r, t)
∂n̂

=
2γd

α
Φ(r, t). (2)

In this work, the numerical approximation of the model (1) is
based on a finite element method (FEM), following the frame-
work derived in [19, 42]. In the FE-approximation, the domain
Ω is divided into Ne non-overlapping elements joined at Nn
vertex nodes. The photon fluence at a time instance t, in a finite
dimensional basis is approximated as

Φ(r, t) ≈ Φh(r, t) =
Nn

∑
k=1

φk(t)ψk(r) ∈ Ωh (3)

where Ωh is a finite dimensional subspace spanned by basis
functions ψk(r), k = 1 . . . Nn, and φk(t), k = 1 . . . Nn is the pho-
ton fluence at the nodes of the FE-discretisation. We write finite
dimensional approximations for µa(r) and µ′s(r)

µa(r) ≈ µh
a (r) =

Nn

∑
l=1

µa,lψl(r) (4)

µ′s(r) ≈ µ′hs (r) =
Nn

∑
l=1

µs,lψl(r) (5)

where µa,l , µs,l denote the absorption and scattering at the nodes
of the FE-discretisation.

The FE-approximation of the time-domain diffusion equation
(1) is

KΦ(t) + M
1
c

∂Φ(t)
∂t

= Q(t) (6)

where fluence Φ(t) = [φ1(t), . . . , φNn (t)]
T, and matrices K and

M and vector Q are

Kmk =
∫

Ω

Nn

∑
l=1

1
d(µa,l + µs,l)

ψl(r)∇ψm(r) · ∇ψk(r)dr

+
∫

Ω

Nn

∑
l=1

µa,lψl(r)ψm(r)ψk(r)dr

+
2γd

α

∫
∂Ω

ψm(r)ψk(r)dr (7)

Mmk =
∫

Ω
ψm(r)ψk(r)dr (8)

Qm =
∫

∂Ω
Q(r, t)ψm(r)dr (9)

where m and k are the nodal indices [19, 24]. In this work, we
use a finite-difference method to integrate Eq. (6) for a sequence
of time steps ti = i∆t (i = 1, 2, . . .)[

θK +
1

∆t
M
]
Φ(ti+1) +

[
(1− θ)K− 1

∆t
M
]
Φ(ti)

= θQ(ti+1) + (1− θ)Q(ti),
(10)

where parameter θ controls the coupling of the adjacent time
steps. Here, we set θ = 0.5, which corresponds to the Crank-
Nicholson scheme [42].

B. Temporal moments of TD-DOT
While it is possible to use the full time-resolved data Γ(r, t)
sampled at discrete time steps, various integral-transform based
data types has been considered earlier [18, 19, 21, 42]. These
include n-th temporal moment

<tn> (r) =
1

E(r)

∫ ∞

0
tnΓ(r, t)dt (11)

and n-th central moment

cn(r) =
1

E(r)

∫ ∞

0
(t−<t>(r))nΓ(r, t)dt (12)

where
E(r) =

∫ ∞

0
Γ(r, t)dt (13)

is the time-integrated intensity used to normalise the moments.
This list could be further extended. A list of the different tem-
poral moments used in earlier TD-DOT studies is presented in
Table 1. In this work, we consider the use of the first tempo-
ral moment (mean time of flight) <t>(r), the second central
moment (variance) c2(r) and a combination of both of these
moments (<t>(r), c2(r)), since these are the most widely used
moments in previous TD-DOT studies.

The FE-approximation of the mean time of flight and variance
of boundary data are given by

<t> =
m1
m0

(14)

c2 =
m2
m0
−
(

m1
m0

)2
(15)

where <t> = [<t>1, . . . ,<t>Nm ]
T, c2 = [c2,1, . . . , c2,Nm ]

T, and
Nm is the number of measurements. Further,

m0 =M(K−1Q) (16)

m1 =M(K−1(M(K−1Q))) (17)

m2 =M(2K−1(M(K−1(M(K−1Q))))) (18)

as derived in [20]. Here, K and M are the FE-matrices in Eqs.
(7) and (8),M is a discretised boundary projection operator in
Eq. (2) that maps the FE-solution into measurable data at sensor
locations, and Q is the FE-matrix for the time integrated source
Q ≡

∫ ∞
0 Q(t)dt.

C. Truncated Fourier-series approximation
Truncated Fourier-series approximation of a function f (t) can
be expressed as

f (t) =
Nω

∑
k=−Nω

f (ωk) exp (iωkt) (19)
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where i is the imaginary unit, Nω is the number of Fourier fre-
quencies ωk = 2πk/T and f (ωk) are Fourier coefficients com-
puted with operator L(·) as

f (ωk) = L( f (t)) =
1
T

∫ Tb

Ta

f (t) exp
(
− iωkt

)
dt, (20)

where Ta and Tb define the interval [Ta, Tb] where f (t) is approx-
imated and T = Tb − Ta.

The truncated Fourier-series approximation of the DA can be
derived similarly as the truncated Fourier-series approximation
of the radiative transfer equation in [43]. The incident light
Q(r, t) in Eq. (1) is presumed to be real valued and separable into
spatial and temporal parts as Q(r, t) = Q(r)Q(t). The temporal
shape Q(t) is approximated as a truncated Fourier-series with
Fourier coefficients Q(ωk). Applying Fourier operator (20) on
the time-domain DA (1) with the above assumptions, results in
the frequency domain DA

(
−∇ · 1

d(µa(r) + µ′s(r))
∇+ µa +

iωk
c

)
Φ(r, ωk) = 0, r ∈ Ω

Φ(r, ωk) +
1

2γd

1
d(µa(r) + µ′s(r))

α
∂Φ(r, ωk)

∂n̂
=


Q(r)Q(ωk)

γd
, r ∈ s

0, r ∈ ∂Ω \ s
(21)

Further, the frequency domain exitance can be solved from the
fluence as

Γ(r, ωk) = −
1

d(µa(r) + µ′s(r))
∂Φ(r, ωk)

∂n̂
=

2γd
α

Φ(r, ωk). (22)

Solving equation (21) for multiple frequencies allows estima-
tion of the time-domain solution of the photon fluence by using
the truncated Fourier-series approximation as [24]

Φ(r, t) =
Nω

∑
k=−Nω

Φ(r, ωk) exp
(
iωkt

)
, (23)

where Φ(r, ω−k) = Φ(r, ωk)
∗. Thus, the frequency domain DA

needs to be solved for Nω + 1 frequency components ωk with
k = 0, . . . , Nω . The truncated Fourier series approximation (19)
operates by taking into account the Nω + 1 smallest frequencies
of the incident light. This approach is proper when the frequency
spectrum has the most of the energy at low frequencies.

Utilising the relation between the time-domain and
frequency-domain light transport models, it is possible to con-
vert the measured time-resolved data to frequency-domain, and
to use that data at one or several frequencies [24]. In that case,
light transport can be modelled directly in frequency-domain
using (21)–(22). The FE-approximation of the frequency-domain
DA (21) is given by

KΦ(ωk) + M
iωk

c
Φ(ωk) = Q(ωk) (24)

where fluence Φ(ωk) = [φ1(ωk), . . . , φNn (ωk)]
T, and matrices

K, M and vector Q are as in (7)–(9). Furthermore, the discre-
tised boundary exitance (22) can be solved using the boundary
projection operatorM as

Γ(ωk) =MΦ(ωk). (25)

It should be noted that, for light sources with a finite tem-
poral length, the measurable output Γ(t) can be expressed as a

convolution (∗) of the exitance due to a delta function source
Γδ(r, t) and the source Q(t)

Γ(t) = Γδ(t) ∗Q(t). (26)

This implies that taking a Fourier transform results in a point-
wise product (·) of their Fourier transforms (by convolution
theorem) as

L(Γ(t)) = L(Γδ(t)) · L(Q(t)). (27)
This needs to be taken into account by deconvolution of the
source when data is transferred to frequency domain and oper-
ated there. In the case of the temporal moments, the effect of the
finite temporal length of the light source is taken into account
when the moments are scaled with the time-integrated intensity
in Eq. (13).

3. INVERSE PROBLEM

A discrete observation model for time-domain DOT in the pres-
ence of additive noise is

yt = At(µa, µ′s) + et (28)

where yt = [yt,1, . . . , yt,Nm ]
T ∈ RT Nm is a vector of measured

exitances yt,rm ∈ RT at detector positions rm and time in-
stances t = 1, ..., T . Further, µa = [µa,1, . . . , µa,Nn ] ∈ RNn and
µ′s = [µs,1, . . . , µs,Nn ] ∈ RNn are discretised absorption and scat-
tering coefficients, At : R2Nn 7→ RT Nm is the discretised for-
ward operator corresponding to the time-domain DA (1)-(2),
and et ∈ RT Nm denotes the noise.

Furthermore, we write an observation model for the mean
time of light and second central moment as

y<t> = A<t>(µa, µ′s) + e<t> (29)

yc2 = Ac2 (µa, µ′s) + ec2 (30)

where y<t> = [y<t>,1, . . . , y<t>,Nm ]
T ∈ RNm and yc2 =

[yc2,1, . . . , yc2,Nm ]
T ∈ RNm are vectors of temporal moments

of the measured time-resolved data, A<t> : R2Nn 7→ RNm

and Ac2 : R2Nn 7→ RNm are the discretised forward operators
corresponding to the models (11)–(13), and e<t> ∈ RNm and
ec2 ∈ RNm denote the noise.

In frequency domain, the typical data types considered are
the logarithm of amplitude and phase delay

yFT =

Re

Im

 log yωk (31)

where yFT = [Re log yωk ,1, . . . , Re log yωk ,Nm , Im log yωk ,1, . . . ,
Im log yωk ,Nm ]

T ∈ R2Nm of frequency domain data yωk at one
or several frequencies ωk.

In the frequency-domain DOT systems, the frequency do-
main data at one modulation frequency is measured directly. In
the time-resolved systems, the frequency-domain data at one or
multiple Fourier frequencies is obtained through Fourier trans-
form and deconvolution of the source pulse

yωk =
L(y(t))
L(Q(t))

=
L(y(t))

Qωk

(32)

where Qωk is the Fourier transform of the source pulse as in Eq.
(27) [24]. The observation model for the logarithm of amplitude
and phase delay are

yFT =

Re

Im

 log Aωk (µa, µ′s) + eFT (33)
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where Aωk : R2Nn 7→ CNm is the discretised forward operator
corresponding to the frequency domain DA (21)–(22) and eFT ∈
R2Nm denotes the noise.

A. Bayesian approach to the inverse problem
In the Bayesian approach to inverse problems, all the parameters
are considered random variables and the uncertainties of their
values are encoded into probability density models [44]. Let us
consider the observation model of the TD-DOT (28). The solu-
tion of the inverse problem is the posterior probability density
which is obtained through Bayes’ theorem and can be written as

π(µa, µ′s|yt) ∝ π(yt|µa, µ′s)π(µa, µ′s) (34)

where π(yt|µa, µ′s) is the likelihood density and π(µa, µ′s) is the
prior density.

Since we aim at computationally efficient solutions, we com-
pute point estimate(s) from the posterior density, the most typ-
ical choice being the maximum a posteriori (MAP) estimate. As-
suming that the unknowns µa and µ′s and noise et are mutually
independent and Gaussian distributed, i.e

µa ∼ N (ηµa , Γµa ), µ′s ∼ N (ηµ′s , Γµ′s ), et ∼ N (ηet , Γet )

where ηµa , ηµ′s and ηet are the means, and Γµa , Γµ′s and Γet are the
covariance matrices, the MAP estimate is obtained as

(µ̂a, µ̂′s) = arg min
µa,µ′s

{
1
2

∥∥Let (yt − At(µa, µ′s)− ηet )
∥∥2

+
1
2

∥∥Lµa (µa − ηµa )
∥∥2

+
1
2

∥∥∥Lµ′s (µ
′
s − ηµ′s )

∥∥∥2
} (35)

where LT
µa

Lµa = Γ−1
µa

, LT
µ′s

Lµ′s = Γ−1
µ′s

and LT
et

Let = Γ−1
et

are matrix
square roots such as the Cholesky decomposition.

In this work the prior model for the unknown parameters
was chosen to be based on Ornstein-Uhlenbeck process which be-
longs to the Matérn class of covariance functions [45]. Ornstein-
Uhlenbeck prior is a Gaussian distribution with the covariance
matrix Γ defined as

Γx,mk = σ2
x exp

(
− ‖rm − rk‖

`

)
(36)

where x denotes the unknown parameters (absorption and scat-
tering), σx is the standard deviation, rm and rk are the coordi-
nates of the discretisation points (in this work the locations of
the FE-discretisation nodes m and k), and ` is the characteris-
tic length scale which controls the spatial range of correlation.
It supports correlation between neighborhood discretization
points, promoting distributions that can be locally close to ho-
mogeneous.

The MAP estimates for the temporal moments and frequency
domain data can be derived similarly as for the time-domain
data using observation models (29), (30) and (33). They are
obtained as

(µ̂a, µ̂′s) = arg min
µa,µ′s

{
1
2

∥∥Le∗ (y∗ − A∗(µa, µ′s)− ηe∗ )
∥∥2

+
1
2

∥∥Lµa (µa − ηµa )
∥∥2

+
1
2

∥∥∥Lµ′s (µ
′
s − ηµ′s )

∥∥∥2
} (37)

where y∗ denotes the different temporal moments or the fre-
quency domain data (y<t>, yc2 , yFT or their combinations),
and A∗ denotes the corresponding discretised forward oper-
ators (A<t>, Ac2 and (Re ; Im) log Aωk ). Further, ηe∗ and Le∗ are

means and Cholesky decompositions of the Gaussian distributed
noise e∗ ∼ N (ηe∗ , Γe∗ ).

In this work, the minimisation problem (37) using different
data types and their combinations is solved using the Gauss-
Newton method utilising a line-search algorithm with a posi-
tivity constrain for determining the step length. Calculation of
the Jacobians of the different data types for the Gauss-Newton
algorithm is described in Appendix A.

B. Difference imaging
Consider data y∗,1 and y∗,2 of two DOT measurements obtained
from a target with optical parameters (µa,1, µ′s,1) and (µa,2, µ′s,2),
respectively. The aim in difference imaging is to reconstruct the
change in the optical parameters (δµa, δµ′s) = (µa,2 − µa,1, µ′s,2 −
µ′s,1) based on the difference of the measurements as

y∗,2 − y∗,1 = J∗(µa,1, µ′s,1)(δµa, δµ′s) + δe∗ (38)

where the Jacobian J∗(µa,1, µ′s,1) is the discrete representation
of the Fréchet derivative of the nonlinear mapping A∗(µa, µ′s).
Considering Gaussian distributed optical parameters and noise

δµa ∼ N (0, Γδµa ), δµ′s ∼ N (0, Γδµ′s
), δe∗ ∼ N (0, Γe∗,1 +Γe∗,2 ),

the MAP estimate for difference imaging using the linear ap-
proximation (38) is

(δµ̂a, δµ̂′s) =
(

J∗(µa,1, µ′s,1)
TΓ−1

δe∗ J∗(µa,1, µ′s,1) + Γ−1
µa

+ Γ−1
µ′s

)−1

·
(

J∗(µa,1, µ′s,1)
TΓ−1

δe∗ (y∗,2 − y∗,1)
)

.

(39)

4. SIMULATIONS

Simulations were carried out in a Fujitsu Celcius W550 desktop
workstation, with Intel®Xeon(R) W-2125 CPU @ 4.00GHz×8,
using MATLAB (R2017b, Mathworks, Natick, MA). The Toast++
software [46] was utilised in the FE-solution of the diffusion
equation.

In the numerical studies, the domain Ω ⊂ R2 was a circle
with a radius of 25mm. The setup consisted of 16 sources and
16 detectors. The source and detector optodes were modelled
as Gaussian surface patches with 2 mm width, located at equi-
spaced angular intervals on the boundary ∂Ω.

A. Single perturbation study
To visualize the reconstruction problem utilising the different
data types, we studied residuals, i.e. differences between sim-
ulated data sets, in a case of a single perturbation inclusion
embedded in the 2D simulation domain. The residual R was
defined as

R = ‖yi(µ̄a, µ̄′s)− yi(µa,0, µ′s,0)‖ (40)

where yi denotes different temporal moments or frequency
domain data (y<t>, yc2 , yFT). Parameters of the ’reference’
data had background optical parameters µa,0 = 0.01 mm−1,
µ′s,0 = 1 mm−1, and one circular inclusion with parameters
µa,0 = 0.02 mm−1, µ′s,0 = 2 mm−1. Further, multiple data sets
were simulated by varying parameters µ̄a and µ̄′s such that the
background parameters were the same as for the ’reference’ data
i.e. µa = 0.01 mm−1 and µ′s = 1 mm−1, and the inclusion pre-
sented multiple absorption and scattering values in the range
µa ∈ [0.005 0.02]mm−1 and µ′s ∈ [0.5 2]mm−1.
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Fig. 1. Contour plots of residuals R, Eq. (40), for different data types due to a perturbation in the absorption µa(mm−1) and scatter-
ing µ′s(mm−1) parameters. The studied data types were the mean time of flight <t>, variance c2, their combination (<t>, c2), and
Fourier transformed data at one FTNω=1 and five FTNω=5 frequencies.

Contour plots of the residuals are showed in Fig. 1. Similar
plots of y<t>, yc2 and some other data types have also been stud-
ied earlier in Ref. [21]. As it can be seen, all data types show an
elongated ‘valley’ of low data error. Note that the orientation
and steepness of the valley differs for different data types, which
affects the relative sensitivity to changes in absorption and scat-
tering. The residual of <t> is almost equivalent for µa and µ′s.
However, the residuals of c2 and (<t>, c2) are more sensitive to
variations in µa. Frequency domain data with five frequencies
shows the most clearly defined minimum, indicating that it may
provide the best means to separate µa and µ′s.

B. Data generation
We studied four different target distributions. These are shown
on the first row of Fig. 2. These parameters were used to simulate
the data sets that were used both in absolute imaging and in
difference imaging studies. For difference imaging, the reference
data was simulated using homogeneous optical properties µa =
0.01 mm−1 and µ′s = 1 mm−1 that correspond to the background
optical parameters of the first two numerical phantoms. The
difference distributions are shown on the first row of Fig. 4.

For all targets, the time-resolved data was simulated using
FE-approximation of the DA (1) in a mesh with 1369 nodes and
2622 triangular elements. The temporal discretisation was 1 ps,
the source pulses had 10 ps duration, and the temporal range
was specified as 10000 ps. The total number of the simulated
time-resolved measurements was 12800000 (256 combination of
sources and detectors, 50000 time steps). The temporal moments
and Fourier transformed data were computed from these time-
resolved measurements. Random measurement noise e, that
was drawn from a zero-mean Gaussian distribution

π(e) = N (0, Γe), Γe = diag(σ2
e,1, . . . , σ2

e,Nm
)

where the standard deviations σe,1, . . . , σe,Nm were specified as
1% of the simulated noise free transformed data, was added to
the transformed data.

To study the solution of the inverse problem with differ-
ent data types systematically, we generated a set of randomly
simulated targets. For this, 100 samples of optical parameter
distributions were drawn from the Ornstain-Uhlenback prior
model where the mean of the prior was set as ηµa = 0.01 mm−1

and ηµ′s = 1 mm−1, the standard deviation was set as σµa =

0.001/3 mm−1 and σµ′s = 1/3 mm−1, and the characteristic
length was ` = 8 mm. Examples of targets drawn from the
prior are shown on the first row, last two columns of Figs. 2 and

4. These simulated optical parameter distributions were used
to simulate samples of time-resolved data, and further generate
samples of different data types.

C. Image reconstruction

In the computation of the MAP estimates for absolute imaging
(37) and difference imaging (39), using the temporal moments
and the Fourier transformed data, a FE-mesh with 1123 nodes
and 2142 elements was used.

The measurement noise mean and covariance were as-
sumed known for each data type. The parameters of Ornstein-
Uhlenbeck prior were chosen such that, for absolute imaging,
the prior means (ηµa , ηµ′s ) were set as the background optical
parameters and the standard deviations (σµa , σµ′s ) were set such
that maximum target values corresponded to three standard de-
viations from the background. For difference imaging, the prior
means (ηδµa , ηδµ′s

) were set to zero and the standard deviations
(δσµa , δσµ′s ) were set such that maximum target values corre-
sponded to five standard deviations from the background. The
characteristic length scale was set as ` = 8 mm, corresponding
approximately to the size of the inhomogeneities in the targets
used.

In absolute imaging, the initial value for the Gauss-Newton
algorithm was chosen to be the mean of the prior. The iteration
was considered converged, when the change in the minimised
functional was smaller than 10−12 in two consecutive iterations.

The accuracy of the estimates were evaluated by computing
relative errors

Eµa = 100% · ‖µ̂a − µa
target‖

‖µa
target‖ (41)

Eµ′s = 100% · ‖µ̂
′
s − µ′s

target‖
‖µ′starget‖

(42)

Eδµa = 100% · ‖δµ̂a − δµa
target‖

‖δµa
target‖ (43)

Eδµ′s
= 100% · ‖δµ̂′s − δµ′s

target‖
‖δµ′s

target‖
(44)

where µa
target, µ′s

target, δµa
target and δµ′s

target are the simulated
target distributions for absorption and scattering, and µ̂a, µ̂′s,
δµ̂a and δµ̂′s are the estimated parameters interpolated to the
simulation grid.
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Fig. 2. Absorption µa(mm−1) and scattering µ′s(mm−1) distributions. First row: target distribution. From second to sixth rows:
estimated parameters obtained using data types mean time of flight <t>, variance c2, their combination (<t>, c2), and Fourier
transformed data at one FTNω=1 and five FTNω=5 frequencies.

Table 2. Relative errors Eµa (%) and Eµ′s (%) of the absorption
and scattering estimates shown in Fig. 2. The utilised data
types were the mean time of flight <t>, variance c2, their
combination (<t>, c2), and Fourier transformed data at one
FTNω=1 and five FTNω=5 frequencies.

Target 1 Target 2 Target 3 Target 4

Type Eµa Eµ′s Eµa Eµ′s Eµa Eµ′s Eµa Eµ′s

<t> 16 13 29 20 23 17 18 12

c2 15 14 24 17 22 18 17 13

<t>, c2 14 12 19 15 20 16 16 11

FTNω=1 15 12 22 18 21 16 17 12

FTNω=5 14 11 20 17 19 15 16 11

5. RESULTS

A. Absolute imaging

Obtained MAP estimates for the four simulation targets utilising
temporal moments and Fourier transformed data, are shown in
Fig. 2. The corresponding relative errors of the estimates are
listed in Table 2.

As it can be seen, the estimates obtained using a single tem-
poral moment as data show spatial blurring and lower contrast
when compared to the target optical properties. This is espe-
cially evident for the absorption estimates. Variance data gives a
slightly better contrast than the mean time of flight.

Utilising both mean time of flight and variance data pro-
vides better contrast and localisation than usage of individual
moments. Further, the relative errors of the absorption and scat-
tering estimates are smaller than those obtained using single
temporal moments.

When compared to utilising Fourier transformed data (33),
usage of one Fourier frequency provides similar quality recon-
struction as usage of two temporal moments. The relative er-
rors obtained using the mean time of light and variance data
are smaller than using the Fourier transformed data at one fre-
quency for all other targets except scattering estimates of target
1 and target 3 that give equal size relative errors.

Using five Fourier frequencies improves all reconstructions.
For example, the highly scattering inclusions in target 2 can now
be distinguished as two separate inclusions. Furthermore, the
relative errors are smaller than using any other data types for all
other targets except for the target 2 where the combined mean
time of flight and variance data gives the lowest relative errors.

Statistics of the relative errors computed from the MAP es-
timates from 100 targets drawn from the prior distribution are
shown in Fig. 3. As it can be seen, using a single data type
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Fig. 3. Statistics of the relative errors Eµa (%) and Eµ′s (%) of the
absorption and scattering estimates from 100 target samples.
The utilised data types were the mean time of flight <t>, vari-
ance c2, their combination (<t>, c2), and Fourier transformed
data at one FTNω=1 and five FTNω=5 frequencies.

produces worse absorption and scattering estimates than using
a combination of multiple data types. Furthermore, combination
of the mean time of flight and variance as data give a better es-
timation accuracy for absorption than utilising a single Fourier
frequency. For scattering, on the other hand, the frequency do-
main data performs better than the combined mean time of flight
and variance. The best estimation accuracy is obtained using
frequency domain data at five Fourier frequencies.

B. Difference imaging
Difference imaging estimates for the simulated four targets util-
ising the temporal moments and Fourier transformed data are
shown in Fig. 4. The corresponding relative errors of the esti-
mates are listed in Table 3.

As it can be seen, the difference imaging estimates using sin-
gle temporal moments show spatial blurring and low contrast
compared to the target optical properties, similarly as in abso-
lute imaging. Using the variance as data gives slightly better
contrast and localisation of the absorption estimates than the
mean time of flight. Utilising both mean time of flight and stan-
dard deviation, provides a better contrast and location than the
individual moments, which is consistent with previous studies
in Refs. [16, 21].

Utilising Fourier transformed data at one frequency provides
lower estimation accuracy than utilising both mean time of flight
and variance for target 1, for both absorption and scattering.
However, in targets 3 and 4, the estimation accuracy for both
parameters is higher when using the Fourier transformed data.
Furthermore, utilising the Fourier transformed data at five fre-
quencies provides better or as good absorption and scattering
estimates as utilising data at one frequency for all targets except
in the case of scattering estimates of target 2.

Statistics of relative errors computed from the difference es-
timates of 100 targets drawn from the prior distribution are
shown in Fig. 5. As it can be seen, using multiple data types
provides better estimates than using the mean time of flight or
variance data alone. Furthermore, utilising Fourier transformed
data at one frequency provides smaller relative errors than using
both mean time of flight and variance. Utilising five Fourier fre-
quencies, improves the estimates even more, giving the lowest
relative errors.

6. DISCUSSION AND CONCLUSIONS

In this work, we studied utilising temporal moments mean time
of flight and variance and Fourier transformed data using one
and five frequencies in time-resolved DOT. The approaches were

Table 3. Relative errors Eδµa (%) and Eδµ′s
(%) of the absorp-

tion and scattering difference estimates shown in Fig. 4.
The utilised data types were the mean time of flight <t>,
variance c2, their combination (<t>, c2), and Fourier trans-
formed data at one FTNω=1 and five FTNω=5 frequencies.

Target 1 Target 2 Target 3 Target 4

Type Eδµa Eδµ′s
Eδµa Eδµ′s

Eδµa Eδµ′s
Eδµa Eδµ′s

<t> 89 85 101 81 86 68 78 56

c2 80 78 91 96 67 141 76 67

<t>, c2 75 79 79 91 81 72 70 61

FTNω=1 82 83 83 81 69 60 63 57

FTNω=5 74 78 73 83 68 58 63 53

tested with several target optical parameter distributions, both
for absolute and difference imaging. In addition to different
reconstructions and their relative errors, a trial with 100 samples
was performed to study the estimates obtained using different
data types systematically.

The simulations show that utilising two temporal moments
and Fourier transformed data at one frequency give almost simi-
lar quality reconstructions with relative errors on a similar level.
For targets studied in the work, the absolute images with tempo-
ral moments are slightly better than with frequency domain data.
On the other hand, in difference imaging, Fourier transformed
data provides better estimates than the temporal moments. Both
in absolute and difference imaging, utilising Fourier transformed
data at five frequencies provides the best estimates with good
image quality and contrast, and most accurate estimates. This
is in line with our previous study [24], where the accuracy of
the estimates increased when the number of Fourier frequencies
was increased, but they did not change substantially after usage
of three or four Fourier frequencies.

Further comparing to the previous work in [24], an alternative
to using the logarithm of amplitude and phase delay (31) as data
types for Fourier transformed data, the real and imaginary parts
of the frquency domain data yωk could be used

yRI =

Re

Im

 yωk

where yRI = [Reyωk ,1, . . . , Reyωk ,Nm , Imyωk ,1, . . . , Imyωk ,Nm ]
T ∈

R2Nm . However, we demonstrate in Appendix B that this can
cause image artefacts in situations where large phase delays are
present, due to the periodic nature of the data with respect to
the phase.

The computation times of the MAP estimates of the target 1
are shown in Table 4. These show that the computation of the
estimates using frequency domain data types are significantly
lower than utilising the temporal moments. As shown in Ap-
pendix A, calculation of the Jacobian matrices of the temporal
moments <t> and c2 is computationally complex, requiring sev-
eral large matrix operations. Hence, compared to the temporal
moments, the frequency domain computations are inexpensive
and their implementation is relatively straightforward. This can
be useful in practical situations, for example online imaging of
optical parameters using TD-DOT.
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Fig. 4. Absorption δµa(mm−1) and scattering δµ′s(mm−1) difference distributions. First row: target distribution. From second to
sixth rows: estimated parameters obtained using data types mean time of flight <t>, variance c2, their combination (<t>, c2), and
Fourier transformed data at one FTNω=1 and five FTNω=5 frequencies.

Fig. 5. Statistics of the relative errors Eδµa (%) and Eδµ′s
(%)

of the absorption and scattering difference estimates from
100 target samples. The utilised data types were the mean
time of flight <t>, variance c2, their combination (<t>, c2),
and Fourier transformed data at one FTNω=1 and five FTNω=5
frequencies.

In this work, we did not consider transformation of noise
from the time-resolved measurement data to temporal moments
or frequency domain. Rather, we added noise to the transformed
data itself. Hence, the results presented here are applicable in
cases where the noise in each data type is well known. Estimat-
ing noise in the transformed data types is a challenging problem
in itself and beyond the scope of this paper.

Furthermore, in this work, we studied DOT with target op-

Table 4. Computation times for absolute Tabs(s) and differ-
ence Tdiff(s) imaging, and the number of iterations Niter re-
quired to reach the convergence of the Gauss-Newton algo-
rithm. The utilised data types were the mean time of flight
<t>, variance c2, their combination (<t>, c2), and Fourier
transformed data at one FTNω=1 and five FTNω=5 frequen-
cies.

<t> c2 (<t>, c2) FTNω=1 FTNω=5

Tdiff 11 26 35 3 7

Tabs 49 187 162 8 52

Niter 6 8 5 5 5

tical parameters in diffuse regime. With smaller size targets
or in a medium with low-scattering regions, the DA is not a
valid approximation and the radiative transfer equation need
to be utilised. In this case, the most suitable data types and
the number of frequencies in the Fourier transformed data may
be different, and would require a separate study. For a study
utilising truncated Fourier-series to approximate the solution of
the time-domain radiative transfer equation, see [43].

Overall, the results show that utilising temporal moments
and Fourier transformed data in TD-DOT results in good quality
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reconstructions with good estimation accuracy. Furthermore,
these estimates are improved if more than one data type is used.
Computationally, it seems that the frequency domain computa-
tions are beneficial to the temporal moments due to the more
simple computation of Jacobians. The future work includes, in
addition to above mentioned, evaluation of these techniques
with experimental data.

APPENDIX A: CALCULATION OF JACOBIANS

In order to form Jacobian matrices for the Gauss-Newton algo-
rithm, derivatives of the FE-matrices used to numerically ap-
proximate the solution of forward models need to be computed.
These are obtained as follows. The FE-sensitivity matrices corre-
sponding to the mean time of flight <t> are given by

∂<t>
∂µ

=


m0(−MK−1 ∂K

∂µ K−1(M(K−1Q))

−MK−1(M(K−1 ∂K
∂µ K−1Q)))

+ m1(MK−1 ∂K
∂µ K−1Q)


m02 (A1)

where µ is either µa or µ′s. Further, ∂K
∂µ for µ = µa and µ = µ′s are

∂K
∂µa

=
∫

Ω

Nn

∑
l=1

(
1

(d(µa,l + µ′s,l))
2 ψl(r)∇ψm(r) · ∇ψk(r)

)
dr

+
∫

Ω

Nn

∑
l=1

ψl(r)ψm(r)∇ψk(r)dr (A2)

∂K
∂µ′s

=
∫

Ω

Nn

∑
l=1

(
1

(d(µa,l + µ′s,l))
2 ψl(r)∇ψm(r) · ∇ψk(r)

)
dr.

(A3)

The FE-sensitivity matrices for the second central moment c2 are
given by

∂c2
∂µ

=


2m0(−MK−1 ∂K

∂µ K−1(M(K−1M(K−1Q)))

−MK−1(MK−1 ∂K
∂µ K−1(M(K−1Q)))

−MK−1(MK−1(MK−1 ∂K
∂µ K−1Q)))

+ m2(MK−1 ∂K
∂µ K−1Q)


m02

−2<t>
∂<t>

∂µ
.

(A4)

Furthermore, the FE-sensitivity matrices for logarithm of am-
plitude and phase of the frequency domain exitance at the fre-
quency ωk can be computed as

∂

∂µ

Re

Im

 log Γ(ωk) =

Re

Im

 −M
[
K + iωk

c M
]−1

∂K
∂µ Φ(ωk)

Γ(ωk)
.

(A5)

APPENDIX B: UTILISING REAL AND IMAGINARY DATA

In a previous work [24], we utilised the real and imaginary parts
of the Fourier transformed data for absolute imaging using one

Fig. 6. Phase delay of frequency domain data at several fre-
quencies (left image) and the corresponding real (red line) and
imaginary (blue line) data (right image).

and several frequencies. We note here the difficulties with this
data type compared to the logarithm of amplitude and phase, Eq.
(33). The real and imaginary parts of the Fourier transformed
data is given by Re

Im

 yωk =

Aωk cos φωk

Aωk sin φωk

 (A6)

where Aωk is the amplitude and φωk is the phase delay of the
Fourier transformed data at frequency ωk.

In Fig. 6, the phase delays from frequency domain data
at several frequencies is visualised together with the corre-
sponding real and imaginary data. The data was simulated in
a 2D circular domain of radius 25 mm with constant optical
properties µa = 0.01 mm−1 and µ′s = 1 mm−1. The source and
detector were positioned on the opposite sides of the domain.
As shown, with higher phase delays, the corresponding real
and imaginary data show cyclic behaviour due to the sine and
cosine functions of the phase, Eq. (A6). Such high phase delays
can be obtained in measurements from medium with high
scattering parameter values. The logarithm of amplitude and
phase, however, are non-cyclic and can still be utilised in such
situations.
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