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Abstract 

Recent increases in the frequency and scale of wildfires worldwide have raised concerns 

about the influence of climate change and associated socio-economic costs. In the western 

U.S., the hazard of wildfire has been increasing for decades. Here, we use a combination 

of physical, epidemiological, and economic models to estimate the economic impacts of 

California wildfires in 2018, including the value of destroyed and damaged capital, the 

health costs related to air pollution exposure, and indirect losses due to broader economic 

disruption cascading along with regional and national supply chains. Our estimation 

shows that wildfire damages in 2018 totaled $148.5 (126.1-192.9) billion (roughly 1.5% of 

California’s annual GDP), with $27.7 billion (19%) in capital losses, $32.2 billion (22%) 

in health costs, and $88.6 billion (59%) in indirect losses. Our results reveal that the 

majority of economic impacts related to California wildfires may be indirect and often 

affect industry sectors and locations distant from the fires (e.g., 52% of the indirect 

losses—31% of total losses—in 2018 were outside of California). Our findings and 

methods provide new information for decision-makers tasked with protecting lives and 

key production sectors and reducing the economic damages of future wildfires.  

 

The frequency and size of wildfires in the western U.S. has been increasing for several decades, 

driven by climate change-related decreases in precipitation and related changes in the moisture 

in vegetation1-5. Meanwhile, land and fire management have likely exacerbated the hazard6, 

and population and economic growth—especially at the wildland-urban interface7—have 

dramatically increased the human exposure to fires. The combined result has been ever rising 

wildfire risks, culminating in California in a series of enormously damaging fires in 2017 and 

2018. To date, efforts to quantify the impacts of specific fires on humans (e.g., by researchers, 

but also by insurance companies, public agencies, and the media) have focused on the physical 

and direct damage to infrastructure and loss of life8. The potential human health effects of 

wildfire smoke is also increasingly recognized, but only rarely estimated9,10. But disasters may 

also have large indirect impacts on economic activities that extend much beyond the location 

of physical destruction or smoke11-13. For example, destruction of productive capital, 

interruption of transportation systems, or labor supply affects other economic activities up and 

down all connected supply chains. Such economic disruption by fires has never been quantified; 

our understanding of the magnitude of wildfire impacts and their distribution across space and 

industries may thus be badly incomplete. In turn, decision makers (including government 

officials, businesses, and residents) may systematically underestimate wildfire risks and 

thereby misallocate resources intended to recover from past fires and/or build up resilience to 

future ones. 
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Here, we use a combination of approaches to evaluate the full economic footprint of 

California wildfires that occurred in 2018. These fires were the deadliest and one of the most 

destructive of any year in California history: 8,527 fires burned an area of 1.9 million acres 

(7,700 km2; approaching 2% of the state’s area)14. Table 1 lists the 17 largest fires by area 

burned, along with their location in the state and duration. Details of our analytical approach 

and data sources are provided in the Methods section. In summary, we estimate capital losses 

as the costs to repair and rebuild damaged or destroyed assets based on data from the U.S. 

National Interagency Fire Center’s Large Incident Year-to-Date Report14 and valuations 

compiled from insurance companies (e.g., Munich RE15). We then estimate morbidity, 

mortality, and health cost (e.g., medical expenses, lost working time, etc.) related to fire-related 

air pollution using the most up-to-date emissions inventory from the fourth-generation global 

fire emissions database (GFED4)16, a regional chemical transport model (developed based on 

the state-of-the-science model GEOS-Chem), and the U.S. Environmental Protection Agency’s 

(EPA) Benefits Mapping and Analysis Program (BenMAP)17. Finally, we estimate indirect 

losses of economic disruption to 80 industry sectors in each of California’s 58 counties and the 

rest of the U.S. using the multiregional disaster footprint model18-20 (see Methods).  

Results 

Figure 1 shows modeled results of monthly-average PM2.5 concentrations related to California 

wildfires between July and December of 2018 along with the corresponding areas of California 

with unhealthy air quality. Major fires in July occurred in both the northern parts of the state 

(e.g., the Pawnee, Klamathon, Carr, and Mendocino Complex, and Whaleback fires; see Table 

1 and Supplementary Figure 1) and the Sierra Nevada (e.g., the Lions and Ferguson fires) (Fig. 

1a). Altogether, fires destroyed 472 structures in July, and negatively affected air quality 

throughout much of the northern half of the state, especially in Shasta, Glenn, and Tehama 

counties in the north and Mariposaa, Tuolumne, and Madera counties in the Sierra Nevada 

(Table 1; Fig. 1a). At the worst, on July 30, the air quality of over 39 million acres was 

categorized as unhealthy or worse—roughly 31% of the state’s area, and 31% of the state’s 

population lives in these areas. Many of the fires which began in July or even June of 2018 

were still burning and spreading in August, when still more fires started both in the north (e.g., 

the Hirz and Stone fire; see Table 1) and the Sierra Nevada (e.g., the Donnell fire), as well as 

in the southern parts of the state (e.g., the Holy fire; Fig. 1b). The fires destroyed an additional 

1,618 structures in August, and further degraded air quality over an even larger area: as of 

August 5, air quality of 36 million acres was categorized as unhealth or worse (29% of the 

state’s area, 25% of the state’s population lives in these area; Fig. 1b). All the major fires begun 

prior to September ended in early September due to increases of precipitation, and the Delta 
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fire in Shasta county was the only new major fire that began in September (on the 5th). As a 

result, fire-related air pollution was much lower in September; at the worst, unhealthy air 

spanned 6.95 million acres in the northernmost part of the state on September 7th (5.6% of the 

state’s population lives in these area; Fig. 1c). The Delta fire destroyed 45 structures, and was 

not fully contained until October 6th. The break in major fires continued throughout October, 

such that fire-related air pollution remained low (Fig. 1d). On November 8th we saw the start 

of the last two major fires of the year, the Camp in northern California and the Woolsey in 

southern California, which contributed to the destruction of 20,447 structures in November. 

These fires also substantially degraded air quality throughout the northern Central Valley, Bay 

Area, and north coast counties; on November 17, air quality was categorized as unhealthy or 

worse over 18.61 million acres (39.0% of the state’s population lives in these areas; Fig. 1e). 

Figure 2 shows our estimates of fire-related damages from the 2018 fires in total and broken 

down by capital losses, health costs, and indirect losses of economic disruption (mean results 

of the sensitivity analysis; see table S1 for county-level damages in each category). Of $27.7 

billion in capital losses, $4.5 billion (17%) belonged to households and $23.2 billion (83%) 

were productive capital, i.e., commercial, industrial, or public assets. The greatest capital losses 

of any individual fire were those related to the Camp fire in Butte county, which totaled $14.6 

billion (53% of all capital losses; Supplementary Figure 2). This helps to explain the 

disproportionately large capital losses in the northern parts of the state, with Ventura and Los 

Angeles counties showing up as southern hotspots of capital losses (Fig. 2a). Given the larger 

populations of these southern counties, per capita capital losses were not as great, however (Fig. 

2b). Health costs fall into three categories: mortality, medical expenses, and work time lost. 

Mortality dominates the total. We estimate 3,652 air pollution deaths were caused by 

California’s 2018 fires which—applying the value of statistical life—represent a loss of $32.2 

billion. It should be noted that the deaths related to air pollution are considerably greater than 

the reported 104 lives (including 98 civilians and 6 firefighters) that were claimed directly by 

the fires. In comparison to the deaths, the costs related to medical expenses and work time lost 

are relatively small: $210 million and $130 million, respectively. The geographical distribution 

of the health costs reflect a combination of the areas most affected by wildfire-related PM2.5 

(Fig. 1) and populated areas. Thus, overall health costs in the Bay Area and Sacramento-San 

Joaquin Delta and Los Angeles metropolitan area are particularly large—despite the fact that 

some of the affected counties had no major fires (Fig. 2c; Table 1). In contrast, per capita health 

costs more closely reflect the highest concentrations of wildfire-related PM2.5 (Figs. 2d and 1). 

Our estimates of indirect losses caused by fire-related economic disruptions in 2018 are 

considerably larger than either direct capital losses or health costs. Total losses in the U.S. were 

$88.6 billion—more than 0.4% of the nation’s GDP that year. Of this total, $42.7 billion 

(48.2%) of the indirect losses occurred in California and $45.9 billion (51.8%) occurred in 



 

5 

 

 

other parts of the U.S. via production and consumption supply chains connected to California. 

Despite having no major fires itself, Sacramento county suffered the greatest indirect losses, 

$6.6 billion (8% of the county’s GDP that year; Supplementary Table 1). But as a share of 

GDP, Butte county (where the Camp fire occurred in November) suffered even greater indirect 

losses: $5.6 billion, or 47.4% of its own GDP. Combining the damages in all categories, the 

geographical distribution of total losses are substantial in many California counties, though 

often for different reasons (Fig. 2g; Supplementary Figure 2). Total losses were again largest 

in Butte county ($23.2 billion), followed by Sacramento and Los Angeles counties ($10.1 and 

$9.1 billion, respectively; Supplementary Table 1). Per capita losses highlight areas with 

relatively low populations but large losses; in Butte, Shasta, and Lake counties, damages were 

$101 thousand, $35 thousand and $13 thousand per capita (Fig. 2h; Supplementary Table 1). 

The ternary plots in Figure 3 shows the magnitude of 2018 fire impacts on specific industry 

sectors in California (size of circles) as well as the relative shares of capital losses, health costs, 

and indirect losses (position of circles; see also Supplementary Table 2). The service industry 

suffered the greatest total losses ($44.4 billion, or 45.1% of the statewide total), with 44.7% of 

this total related to health costs, 33.8% related to capital losses, and 21.5% associated with 

indirect losses (red circle in Fig. 3a). In contrast, 78.1% of damages to the manufacturing sector 

(second largest at $22.3 billion, 22.6% of total losses) indirect losses, with just 15.7% in health 

costs, and 6.2% in capital losses (turquoise circle in Fig. 3a). Combined losses in all of the 

other five major sectors were $31.7 billion (Fig. 3a). Yet, breaking damages into subsectors, 

we see the composition of damages varies widely. For example, in the service sector, damages 

to the real estate industry were heavily concentrated in capital losses (77.2% of the subsector’s 

$9.3 billion in damages) as opposed to mostly health costs in labor-intensive subsectors such 

as education, software, and restaurants (Fig. 3b) and trade (i.e. retail) subsectors (Fig. 3d). 

Damages to some manufacturing subsectors were also mostly health costs (e.g., the aircraft, 

medical and electrical industries), but overall damages are dominated by indirect losses related 

to the chemical industry (Fig. 3c). Chemical industry is the largest manufacturing sector in 

Califonia, which contributes about 3.7% of overall statewide GDP. The figure in some counties, 

such as Solona and Contra Costa, accounts for 25%-29% of county-level industrial outputs. 

During the fire events, chemical industry suffered direct capital loss of $284.5 million and 

health costs of $375.1 million, but the changes of demand and supply patterns in chemical 

production chains caused indirect loss with the state of $13,639.3 million and out of state of  

$2,513.1 million. Supplementary Figures 4-7 and Supplementary Table 2 show and further 

explored subsector results for each of the other major sectors. 

Uncertainties. Sensitivity analysis of parameters in epidemiological model. We perform a 

Monte-Carlo analysis with BenMAP-CE to quantify the 95% confidence interval (CI) around 

the mean incidence and valuation estimates. Although long-term changes in PM2.5 exposure 

dominate the valuation impacts, we report results for both short-term and long-term exposure 

related to the 2018 wildfire episodes. Consistent with the current modeling methods practiced 
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by regulatory agencies including the U.S. EPA and South Coast Air Quality Management 

District, no concentration threshold is assumed for the health impact assessment modeling21. 

Statewide, mean health costs of the fires are $32.15 billion and 95% confidence interval range 

from $13.33 billion to $75.92 billion). The range of uncertainty in our valuation is generally 

consistent with other BenMAP estimates reported in the literature and relates to statistical error 

and cross-study variability21-23. 

Uncertainties in capital damage statistics. The uncertainty in capital damage statistics is 

mostly related to the degree of building losses and their reconstruction costs. Since the degree 

of damage to affected buildings is not given by official reports, we assume the average damage 

proportion is 50%, but with a range uniformly distributed from 1% to 99%. For the 

reconstruction cost of buildings in different region in California, we refer to values reported by 

Allstate, CoreLogic, and reinsurance companies (i.e., Munich RE15). These companies 

Insurance Journal reports provide the number and total reconstruction cost value of buildings 

within the perimeters of the major fires. We then calculate the average reconstruction cost of 

the buildings in different region using these valuations. We find an average reconstruction cost 

for residential buildings of $238,600 in the Camp fire area, and $695,500 in the Woolsey fire 

area. For commercial buildings, the average is $2.69 million in the Camp fire area, and $1.04 

million in the Woolsey fire area. We use these two fires to bound building reconstruction costs 

in other regions, randomly selecting from the full range for Monte Carlo simulations to create 

a distribution of capital losses. In this way, we find the average total damage to residential 

buildings is $4.52 billion, with a 95% confidence interval from $3.13 billion to $7.49 billion, 

and the average total damage to commercial buildings is $23.2 billion, with a 95% confidence 

interval from $15.78 billion to $29.62 billion. 

Sensitivity analysis of parameters in economic model. There are two main parameters in the 

economic model that will bring uncertainty to the results. One is the reconstruction time of the 

building, and the other is the time of traffic recovery in the fire area. We assume the average 

recovery time of a building is 90 days, i.e., it takes 90 days from the acquisition of recovery 

resources to complete rebuilding. This rebuilding time parameter is then varied from 60 days 

to 120 days in our sensitivity analysis. Similarly, we assume that the average recovery time of 

transportation in a fire area was 14 days after the fire was contained, and vary this parameter 

from 7 days and 21 days in the sensitivity analysis. In this way, we find that the average 

production loss is $88.61 billion, ranging from $79.40 billion to $96.05 billion. 

Sensitivity analysis of total economic footprint. Using the distribution of losses obtained by our 

three type of losses uncertainty analysis, we perform 2000 simulations in our Monte Carlo 

analysis to generate a distribution of the total economic footprint of California wildfires in 
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2018. Supplementary Figure 8 shows the resulting distribution of total fire losses along with 

95% confidence intervals: 148.5 billion, ranging from $126.07 billion to $192.93 billion. 

Discussion 

Although substantial, the direct capital losses related to the 2018 California wildfires 

represent only 27.0% of the statewide total damages we estimate in this study, and an even 

smaller share of the impacts in some counties and to specific industry sectors. Health costs and 

indirect economic losses, rarely if ever quantified before, represent an enormous 31.5% and 

41.5% of the statewide total damages, respectively. Moreover, these indirect impacts in some 

case fell heavily on locations (e.g., Sacramento county) and industries (e.g., chemical 

manufacturing) away from major fires. In the same way, our results reveal that the U.S. beyond 

California also suffered considerable economic damages ($45.9 billion) related to California’s 

wildfires. Quantifying and mapping these less obvious but large damages in 2018 leads to the 

conclusion that large wildfires occurring in California or other western states are not isolated 

problems. Although the horrific scenes of death and destruction may seem confined to specific 

communities, the related economic and health impacts affect a much broader area, which in 

2018 included substantial losses to the national economy. Recognizing the full magnitude and 

scope of wildfires’ economic footprint may in turn influence decision-making about land and 

forest management, fire suppression efforts, and development patterns. For example, health 

costs and indirect losses of future fires might be reduced by focusing fire prevention efforts on 

areas typically upwind of major population centers or near important industrial or 

transportation infrastructure. Similarly, our results suggest that the indirect economic losses 

related to the recent forced electricity outages24,25 might be much larger than the capital losses 

that may have been avoided (though lives may have been saved). 

The magnitude and spatial distribution of wildfire impacts support greater investments in 

fire prevention and suppression, including investments by jurisdictions indirectly affected by 

the related pollution and economic disruption. Our work forcefully demonstrates that the 

impacts of wildfires are much more broadly distributed in space than conventional wisdom 

might suggest. Now and as the climate changes, wildfire risks transcend far beyond the 

wildland-urban interface, they are a statewide and regional challenge. In turn, recognizing the 

greater magnitude and far-reaching indirect impacts of the recent fires may justify dedicating 

substantially greater resources to mitigate fire risks and coordinating planning and responses 

across the state and region. 

However, our estimates of wildfire-related damages in 2018 are subject to some important 

uncertainties, and our methods may not capture all types of economic damages. For example, 

the reconstruction cost value of buildings damaged in fire events and to be restored after the 

disaster are based on average estimates of each fire region, rather than specific marketing 

information. Similarly, estimates of health costs assume methods that reasonably account for 

statistical uncertainties but may understate the impact of epistemic uncertainties, including 
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those associated with air quality modeling, epidemiological science, and health economic 

valuation26. Furthermore, only impacts to California populations are quantified though 

intrastate transport of pollutants may accrue health costs elsewhere. Time lags between the 

fires and the restoration of transportation lines, as well as the time require to rebuild are the 

key uncertain parameters in estimating indirect losses. Our analysis also neglects international 

trade and difficult-to-quantify impacts such as effects on mental health and the prospect of 

cascading events such as subsequent landslides. Unfortunately, indirect economic costs are 

extraoridinarily difficult to validate11,18 because models such as ours focus on estimating fire-

related supply-chain losses assuming that the myriad other factors that affect economic growth 

do not change, but the reality is that many such other factors will have changed, and the growth 

of the state’s GDP will be the net of all these changes. In an effort to quantify some of the 

uncertainties, we conducted a sensivitity analysis for each of three models used in the study 

and integrated the results into a single uncertainty analysis of the overall economic footprints. 

Details are available in the Methods and Supplementary Information. Despite the uncertainties, 

projected climate change, population growth, and economic development will continue to 

increase wildfire risks in California and the rest of the western U.S. in the years and decades 

to come. Understanding the economic footprint of past fires can only help in strategically 

confronting these risks so as to cost-effectively minimize the impacts of future fires. 

Methods 

Definition of the economic footprint of wildfires. The economic footprint of a wildfire 

provides a comprehensive accounting of the wildfire-induced both direct and indirect 

economic losses in our socio-economic system. The economic footprint of a wildfire consist 

of (i) the direct capital cost, i.e., the repairing or reconstruction cost of the assets that have 

been damaged or destroyed in the wildfires; (ii) the health cost, i.e., medical costs, working 

time loss and mortality rising, due to air pollution-induced by wildfires; (iii) the indirect cost, 

i.e., the potential value-added losses of the economy due to the supply-chain disruptions 

triggered by wildfires. Note that, the indirect part of the economic footprint of wildfires was 

designed to estimate the potential supply-chain losses related to the wildfires assuming that 

other factors do not change. As such, the analytical framework is fundamentally different 

from those used in other macroeconomic analyses that aim to simulate and project real 

changes in an economy. 

Supplementary Figure 9 shows the overall analytical framework for economic footprint 

accounting. A random forest model was used to estimate the daily mean PM2.5 concentration 

at 4 km spatial resolution over California (Supplementary Fig. 9a). Then, we use two GEOS-

Chem simulations (without- and with fire emissions) to calculate the fraction of wildfire 

induced-PM2.5 emission (Supplementary Fig. 9b). With the estimated gridded pollutant 
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concentration data and population density data as inputs, we use the environmental Benefits 

Mapping and Analysis Program-Community Edition (BenMAP-CE) version 1.5 to assess the 

health-related socio-economic costs attributable to the degradation of air quality from 

wildfire emissions (Supplementary Fig. 9c). On the other hand, we estimated the losses of 

capital stock, both productive capital and residential building losses, according to reports on 

fires by CAL Fire and reports on reconstruction cost by insurance companies (Supplementary 

Fig. 9d). Finally, we use a Multiregional Disaster Footprint (MRDF) model to simulate the 

ripple effect of fire-induced production time loss, capital loss, and traffic disruption on 

supply-chain networks, and assess indirect economic losses (Supplementary Fig. 9e).  

Wildfire-induced air pollution estimation. Daily mean PM2.5 concentrations at 4 km spatial 

resolution over California used in this study were estimated using random forest models that 

incorporated information from multiple sources, including ground measurements, satellite 

remote sensing, chemical transport model simulations, meteorological fields and land use 

variables. This method was widely used in previous studies on estimating high-resolution 

full-coverage PM2.5 concentrations (e.g., Xiao et al.27) and was able to capture large fire 

events28. 

Ground-level PM2.5 measurements for 2018 were obtained from the U.S. Environmental 

Protection Agency’s Air Quality System (web links can be found at Data availability). 

Satellite-based aerosol optical depth (AOD) data retrieved by the Multi-angle Implementation 

of Atmospheric Correction (MAIAC) algorithm at 1 km spatial resolution29,30 based on the 

Moderate Resolution Imaging Spectroradiometer (MODIS) were downloaded from NASA 

Earthdata portal. PM2.5 simulations from the Modern-Era Retrospective analysis for 

Research and Applications, Version 2 (MERRA2) at 0.5° × 0.625° resolution were also used 

in this study as additional information on PM2.5 distribution. Other variables compiled in this 

study included: pressure, temperature, wind speed, specific humidity, precipitation, 

shortwave and longwave fluxes, and evaporation at ~13 km spatial resolution from the North 

American Land Data Assimilation Systems, elevation at 30 m spatial resolution from the 

National Elevation Data set (NED), forest cover, shrub cover and cultivated land cover at 30 

m spatial resolution from the 2011 National Land Cover Database (NLCD), road lengths of 

major roads, highways and interstate highways extracted from ESRI StreetMap USA 

(Environmental Systems Research Institute, Inc., Redland, CA), and population data from 

2017 LandScan data. All data were integrated into the 1 km MAIAC grid and the PM2.5 

concentrtaions were first estimated at 1 km and then aggregated into 4 km grid. 

Generally, random forest algorithm is an ensemble learning method based on decision 

trees, which has the advantage of allowing both continuous and categorical input variables 

and are quite robust to outliers. It also provides variable importance rankings as well as out-
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of-bag errors for variable selection and model evaluation. We built two random forest models 

in this study (i.e., with and without satellite inputs), and then merged their predictions 

together to obtain full spatial and temporal coverage of PM2.5 data, since AOD has 

missingness in certain time and places. Our models produce good results, with out-of-bag R2 

of 0.83 and 0.80 for the two models, respectively.  

When using AOD to estimate PM2.5 concentrations, statistical models (e.g., multi linear 

regression, geographically weighted regression, generalized additive model) or machine 

learning models were built to explain the spatial-temporal varied relationship between AOD 

and PM2.5 at locations where PM2.5 monitors are available, as shown below: 

𝑃𝑀2.5,𝑜𝑏𝑠  =  𝑓(𝐴𝑂𝐷, ancillary data) 

where the independent variable PM2.5,obs is PM2.5 observations; AOD is the satellite AOD at 

corresponding locations; ancillary data includes meteorological conditions, land use variable 

and other parameters that could influence the relationship between AOD and PM2.5. Then 

PM2.5 concentrations outside monitoring locations could be predicted by AOD and the 

ancillary data. Since AOD is randomly missing due to cloud cover and snow cover, we also 

built a model using MERRA-2 data at locations where AOD are unavailable: 

𝑃𝑀2.5,𝑜𝑏𝑠  =  𝑓(𝑃𝑀2.5,MERRA−2, ancillary data) 

Results from the two models are merged to get the final results without double-counting. 

It is worth noting that this method provides total surface PM2.5 from all emission sources 

but cannot identify the part specifically contributed by wildfire emissions. We therefore use a 

second model (GEOS-Chem) to simulate the fraction of PM2.5 induced by wildfires in total 

PM2.5. To calculate the wildfire-induced PM2.5 fractions, we used two GEOS-Chem model 

scenarios–with and without fire emissions. The differences between these two scenarios 

divided by the total PM2.5 were calculated as the wildfire PM2.5 fractions. The fire emissions 

used in this study were GFED4s emissions16. The GFED4 emissions used in this study are at 

spatial resolution of 0.25°×0.25° and temporal resolution of 3-hourly. Our global GEOS-

Chem model has a spatial resolution of 2°×2.5°. The transport/convection timestep in the 

model is 600 seconds and chemistry/emission timestep is 1200 seconds. Secondary organic 

aerosols are included in our model with the simple SOA scheme that provides the correct 

amount of global SOA without detailed chemistry. 

Health impact assessment. A deep breadth of scientific literature demonstrates a positive 

association between exposure to ambient outdoor air pollution and increases in the incidence 

of morbidity and mortality within exposed populations 31-33. Health-related socio-economic 

costs attributable to the degradation of air quality from wildfire emissions was assessed using 
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the environmental Benefits Mapping and Analysis Program—Community Edition (BenMAP-

CE) version 1.517. BenMAP-CE is an open-source software developed by the US 

Environmental Protection Agency and is widely used in emission regulation assessment34,35 

and wildfire health impact evaluation36,37. BenMAP applies the relationship between the 

pollution and certain health effects which is often referred to as the health impact function or 

the concentration-response (C-R) function (derived from Epidemiology studies; 

Supplementary Figure 10). The variables that appear in health impact functions are the 

following ones: 

⚫ Air Quality Change (Delta): The air quality change is the difference between the starting 

air pollution level (baseline) and the air pollution level after some change (control).  

⚫ Health Effect Estimate (β): It is an estimate of the percentage change in the risk of an 

adverse health effect due to changes in ambient air pollution. Effect estimates are 

obtained from epidemiology studies.  

⚫ Exposed Population: The exposed population is the number of people which are in the 

region where we are assessing the air pollution reduction. 

⚫ Health Baseline Incidence: The health incidence rate is an estimate of the average 

number of people who die (or suffer from some adverse health effect) in a given 

population over a given period of time. 

BenMAP also calculates the economic value of avoided health effects. After calculating 

the health changes, you can estimate the economic value by multiplying the reduction of the 

health effect by an estimate of the economic value per case, which is obtained from health 

economic studies. In Supplementary Figure 11 you have a flow diagram where it is resumed 

all the data needed to obtain final monetary benefit results. 

BenMAP-CE utilizes as an input the concentration differences resolved at the 24 hour 

timestep for PM2.5 between the baseline (without-wildfire) and the control case (with-

wildfire) determined in Methods Section 3 (with daily based concentration). Population 

projections are based on suggested BenMAP practices using Landscan data at 1 km spatial 

resolution38 for the year 2018, and downscaled to the 4 km study domain using geospatial 

modeling. Baseline incidence rates at the county level by five-year age groups are obtained as 

appropriate for the current California population, and include estimates from public 

administrative records when possible39. Concentration-response (C-R) functions are used to 

quantify the increased incidence of mortality and morbidity endpoints resulting from 

increases in PM2.5 and are selected from a systematic review of the epidemiological literature 

accounting for applicability criteria including (amongst others) study date and design and 

geography and population characteristics40,41. For example, all-cause mortality effects 
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associated with increases in annual PM2.5 exposure were quantified by pooling C-R functions 

from Jerrett et al.42 and Krewski et al.43. We utilize baseline incidence rates for mortality 

provided by the South Coast Air Quality Management District taken from local health data 

based on public administrative data wherever possible (SCAQMD, 2016), and then calculate 

the additional incidence occurring from increased pollutant exposure. Socio-economic costs 

are then estimated using willingness-to-pay and cost-of-illness valuation functions from a 

survey of health economic literature for mortality and morbidity44,45. The value of statistical 

life selected for application with avoided incidents of mortality was $9 million as a midpoint 

of a range of $4.2 to $13.7 million from Robinson and Hammitt46, all expressed in 2013 

dollars and based on 2013 income levels, as recommended in Industrial Economics and Lisa 

Robinson45.  

Capital damages estimation. The estimation of capital damages mainly requires two types 

of basic data, i.e., the number of each type of buildings damaged or destroyed by wildfires 

and the repairing or reconstruction cost of these structures. The former, structure damage 

situation, is mainly derived from the National Large Incident Year-to-Date Report14, issued 

by the National Interagency Fire Center of the US. The California Fire official website 

provides more detailed statistics or maps for some major wildfires. For the reconstruction 

cost of buildings in different parts of California, we refer to Allstate 

(https://www.insurancejournal.com/news/west/2018/12/13/512021.htm), Corelogic 

(https://www.insurancejournal.com/news/west/2018/11/16/509534.htm), and Munich RE15. 

Their reports on Insurance Journal provide the number and total reconstruction cost value of 

buildings within the perimeter of the major fires. We calculated the average reconstruction 

cost of the buildings in different regions based on it. For the damaged structure, we assume 

that the repairing cost of partially damaged structures is 50% of its reconstruction cost and 

this ratio range from 1% to 99% in the uncertainty analysis.  

Indirect economic impact assessment. The direct losses are used as negative shocks of our 

Multi-Regional Disaster Footprint (MRDF) model to assess the indirect economic impact of 

wildfires on the economic system. MRDF model is an extension of the Adaptive Regional 

Input-Output (ARIO) model proposed by Hallegate18, which has been wildly used in disaster 

impact assessment11,19,20 due to its ability to take into account both changes in production 

capacity due to productive capital losses and adaptive behavior in disaster aftermaths 

simultaneously in the IO framework. We extend the ARIO model to a multi-regional case on 

the basis of the multiregional input-output (MRIO) analysis and the linear programming (LP) 

technique. Linking the improved model with the latest MRIO table for California, we 

assessed the output losses of industrial sectors in different regions caused by the supply-chain 

disruption triggered by the initial wildfire shocks.  

https://www.insurancejournal.com/news/west/2018/12/13/512021.htm
https://www.insurancejournal.com/news/west/2018/11/16/509534.htm
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To estimate the indirect costs of wildfires under the input-output framework, we first 

compiled a MRIO table for the study subjects. There are 59 region in the MRIO table, 

including 58 counties in California and an aggregation region, i.e., the Rest of United States 

(RoUS). Production activities in each region are divided into 80 industrial sectors (see 

Supplementary Table 3) and each sector produce one unique commodity. The basic data 

required to create the raw MRIO table came from IMPLAN, including the regional IO table, 

the import matrix for each county and RoUS, and the trade flow data for each commodity 

between the regions. We use the “Chenery-Moses” approach47 for consistent estimation of 

the intra- and interregional transections and the RAS method for balancing the raw MRIO 

table. 

We assume that the economy before the wildfires is in a stable state and can be expressed 

by equation (1), i.e., the standard open input-output model developed by Leontief, 

𝐱 = 𝐀𝐱 + 𝐟 (1) 

Where 𝐱 is a column vector of dimension 𝑁 × 𝑀 (where 𝑀 is the number of industrial sectors 

and 𝑁 is the number of regions) representing the total production of each industrial sector in 

each region, 𝐀𝐱 represents the intermediate demand vector, where each element of the matrix 

𝐀, [𝑎𝑟𝑠𝑖𝑗], refers to the technical relation showing product 𝑖 in region 𝑟 needed to produce 

one unit of product 𝑗 in region 𝑠. 𝐟 indicates final demand vector of products. This standard 

model exactly replicates the equilibrium without disruptions. 

When an economy is hit by a disaster, some part of its productive capacity is lost due to 

productive constrains, including productive capital loss, productive time loss, and 

transportation constraints. These constraints will first lead to production declines of industrial 

sectors that directly affected by the disaster, and then this initial production decline can 

trigger both forward and backward effects19,20 through the intra- and inter-regional industrial 

linkages.  

Another important aspect to model the disaster aftermath is the reconstruction demand 

from the affected economy. Producers that affected by the disaster directly want to restore 

their production capacity by reconstruct their destroyed buildings or repair their damaged 

buildings. To do that, inductrial sectors need reconstruction resource from construction sector 

or manufacturing sector. Following Hallegate18,19, we assume that damages in each sector 

create an additional demand of 75% of the damage value to the construction sector and of 

25% of the damage value to the manufacturing sector. The reconstruction demand of 

industrial 𝑖 in region 𝑟 to industrial 𝑗 in region 𝑠, 𝑓𝑟,𝑠,𝑖,𝑗,𝑡
𝑅𝐷 , can be calculated as follows, 
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𝑓𝑟,𝑠,𝑖,𝑗,𝑡
𝑅𝐷 = {

0, 𝑘𝑟,𝑖,𝑡
∆ ≥ 𝑘𝑟,𝑖,0

𝑑𝑗 × (𝑘𝑟,𝑖,0 − 𝑘𝑟,𝑖,𝑡
∆ ) ×

𝑥𝑠,𝑗,𝑡

∑ 𝑥𝑠𝑠,𝑗𝑗,𝑡𝑠𝑠,𝑗𝑗
, 𝑘𝑟,𝑖,𝑡

∆ < 𝑘𝑟,𝑖,0
 

Where 𝑡 denotes time, 𝑖, 𝑗 =  1, … 𝑀 (𝑀 denotes the number of sectors), and 𝑟, 𝑠 =  1, … , 𝑁 

(𝑁 denotes the number of regions), 𝑘𝑟,𝑖,𝑡
∆  denotes capital stock of industrial sector 𝑖 in region 

𝑟 in time step 𝑡, 𝑑𝑗 denotes the distribution coefficients, 𝑥𝑠,𝑗,𝑡 denotes the output of industrial 

sector 𝑗 in region 𝑠 in time step 𝑡. 

We assume that each industry sector will try their best to meet the demands from its 

clients under the current constraints. A linear programming (LP) technique are used to 

represent the production behavior of industrial sectors with productive capacity constraints in 

each period48. The LP problem can be described by the following set of equations. A full list 

of all variables and their description can be found in Supplementary Table 4. 

max 𝒊′𝒙𝒕 = ∑ 𝑥𝑠,𝑗,𝑡
𝑠,𝑗

(2) 

Subject to the following production side constraints (i-vi),  

(i) the production technology constraints (the production functions), 

𝑥𝑠,𝑗,𝑡 = 𝑚𝑖𝑛 {∀𝑖,
𝑧𝑟,𝑠,𝑖,𝑗,𝑡

𝑎𝑟,𝑠,𝑖,𝑗
;  ∀𝑢,

𝑣𝑢,𝑠,𝑗,𝑡

𝑏𝑢,𝑠,𝑗
 } (3) 

(ii) the productive capital constraints, 

𝑣𝑘,𝑠,𝑗,𝑡 ≤ (
𝑘𝑠,𝑗,𝑡

𝑘𝑠,𝑗,0
) × 𝑣𝑘,𝑠,𝑗,0 (4) 

(iii) the working time constraints, 

𝑣𝑙,𝑠,𝑗,𝑡 ≤ (
𝑙𝑠,𝑗,𝑡

𝑙𝑠,𝑗,0
) × 𝑣𝑙,𝑠,𝑗,0 (5) 

(iv) the transportation constraints, 

𝑧𝑟,𝑠,𝑖,𝑗,𝑡 ≤ (
𝑝𝑟,𝑡

𝑝𝑟,0
) × 𝑧𝑟,𝑠,𝑖,𝑗,0 (6) 

And, the following demand side constraints, 

(v) the intermediate demand constraints, 

∑ 𝑧𝑟,𝑠,𝑖,𝑗,𝑡
𝑟,𝑖

≤ 𝑥𝑠,𝑗,𝑡 (7) 
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(vi) the total demand constraints, 

𝑥𝑠,𝑗,𝑡 ≤ ∑ 𝑧𝑟,𝑠,𝑖,𝑗,𝑡
𝑟,𝑖

+ ∑ 𝑓𝑟,𝑠,𝑗,𝑡
𝐷

𝑟
+ ∑ 𝑓𝑟,𝑠,𝑖,𝑗,𝑡

𝑅𝐷

𝑟,𝑖
(8) 

where 𝑧𝑟,𝑠,𝑖,𝑗,𝑡 denotes the intermediate demand of industrial 𝑖 in region 𝑟 to industrial 𝑗 in 

region 𝑠, 𝑓𝑟,𝑠,𝑗,𝑡
𝐷  denotes the final demand of households in region 𝑟 to industrial 𝑗 in region 𝑠. 

The solution of the LP problem determined the output of each sector in each region, i.e., 

𝑥𝑠,𝑗,𝑡, which will be distribute into: first (i) the intermediate consumption demand, which is 

determined in the LP solution, and then (ii) other demand, i.e. final demand and 

reconstruction demand. If the output of a industrial sector can not meet the demands from its 

clients, a proportional rationing scheme will be applied18,19. The products will be allocated to 

the clients according to their proportion of demand.  

In our improved model, production capacity will not be restored immediately as the 

reconstruction resources are filled, but with some delay. Reconstruction of production plant 

takes time. We record the recovered resources as construction in progress, which did not play 

any role in the production process. The average time to build a building in California takes 

about 4-8 months. Considering that the speed of post-disaster reconstruction may be faster 

than usual, in this study, we made a less severe assumption that the construction of the 

buildings will take 90 days. In other words, the corresponding production capacity will be 

restored after the reconstruction resource are received. 

The dynamic of another two supply side constraints are modeled as follows: for 

transportation, we assume that transportation in the area that directly affected by fires will be 

disrupted immediately and the lockdown will gradually be released within the next few days. 

For labor, the availability of labor is constrained by transportation disruption and fire 

pollution-induced disease admission. The former is parallel with the transportation disruption 

and the latter is derived from the simulation results of BenMAP.  

The economy will recover to the pre-disaster equilibrium after all constraints are lifted. 

We define the value-added decrease of each industrial sector in a network caused by an 

exogenous negative shock as the disaster impacts of the shock. Note that, we aim to assess 

the potential losses due to only the wildfires. Therefore, other factors, e.g., technology, were 

remain unchanged. In this way, we separately extract the effects of disaster shocks. The 

indirect economic cost, 𝐸𝐶, is calculated as 

𝐸𝐶𝑠,𝑗 =  ∑ 𝑣𝑢,𝑠,𝑗,0
𝑢

× 𝑇 − ∑ 𝑣𝑢,𝑠,𝑗,𝑡
𝑢,𝑡
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where 𝑇 represents the total time step used to recovery to the pre-crisis equilibrium, and 𝑢 

presents the type of primary inputs, 𝑙 or 𝑘.  

Data availability 

Ground-level PM2.5 measurements for 2018 were obtained from U.S. Environmental 

Protection Agency’s Air Quality System (https://www.epa.gov/outdoor-air-quality-data/); 

MAIAC AOD was downloaded from NASA Earthdata portal 

(https://search.earthdata.nasa.gov/); North American Land Data Assimilation Systems, 

elevation at 30 m spatial resolution from the National Elevation Data set (NED, 

http://ned.usgs.gov); forest cover, shrub cover and cultivated land cover at 30 m spatial 

resolution from the 2011 National Land Cover Database (NLCD, http://www.mrlc.gov); 

Road lengths of major roads, highways and interstate highways extracted from ESRI 

StreetMap USA (Environmental Systems Research Institute, Inc., Redland, CA); the 

population data from 2017 LandScan data (https://landscan.ornl.gov/downloads/2017); 

wildland fire information from the National interagency Fire Center (National Large Incident 

Year-to-Date Report 2018), CAL FIRE (https://www.fire.ca.gov/); asset loss data calculated 

based on reports from Munich RE (https://www.munichre.com/en/media-

relations/publications/press-releases/2019/2019-01-08-press-release/index.html); the county 

level input-output table and trade flow data between counties from IMPLAN 

(https://implan.com/data/).  

Code availability 

The simulation code for the indirect economic costs can be accessed at 

https://github.com/DaopingW/Disaster-Footprint-Model. The minimal input for the code is 

multiregional input-output table. The sample code and test data for the minimal inputs are 

also provided.  
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Figure Legends 

Figure 1. Air pollution due to fire emissions from July to December in California. a-f, show monthly mean 

PM2.5 concentrations induced by fire emissions (Maps in the top panel of each subfigure), the area in each air 

quality index category in California (Bar charts in the bottom panel of each subfigure; Please refer to Mintz49 for 

the criteria); data for county boundary lines come from Geography Program of United States Census Bureau 

(www.census.gov/programs-surveys/geography.html). In the maps, pollutant concentrations from low to high 

are indicated using shades from cool colour to warm colour (blue-yellow-red). In the bar charts, the area 

statistics in each air quality category are shown in stacked bar charts (some grids on simulated boundaries, 

outside California, are counted). Wildfires in July, August, September, and November release large amounts of 

pollutants into the air (maps; a,b,c,e): from July to September, wildfires in northern California (e.g., the Carr 

fire in Shasta County from July 23 to August 29; the Mendocino complex fire in Colusa, Glenn, Lake, and 

Mendocino County from July 28 to September 17; Table 1, Supplementary Figure 1) and the Sierra Nevada 

(e.g., the Ferguson fire in Mariposa County from July 14 to August 23; the Lions fire in Madera County from 

June 23 to September 6) caused monthly concentrations of local air pollutants to increase by more than 10ug/m3 

(up to about 60 ug/m3) (maps; a,b,c); In November, the Camp fire in butte county (northern California) 

considerable increased the concentration of pollutants in the air (e). Fire pollutants can spread over great 

distances, resulting in poor air quality in unburned areas (bars; a,b,c,e): from late July to early September and 

mid-November, air quality in many areas of California was not in the "good" category (0-15.4 ug/m3). Note that, 

the area in the bar charts includes the boundary the model area.  

 

Figure 2. Fire-related damages from the 2018 wildfires in California. a-h, Map shows the county-level 

Capital loss (a; in units of millions of dollar), capital loss per capita (b; in units of dollar per person), the 

county-level health cost (c), health cost per capita (d), the county-level indirect loss (e), indirect loss per capita 

(f), county-level total damages (g), and total damages per capita (h). Data for county boundary lines come from 

Geography Program of United States Census Bureau. 
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Figure 3. Impacts of wildfires on specific industry sectors in California. a, ternary plot shows the magnitude 

of 2018 fire impacts on specific industry sectors in California (size of circles) as well as the relative shares of 

capital losses, health costs, and indirect losses (position of circles). b-d, ternary plot shows the losses in each 

subsectors in Services (b), Manufacturing (c), and Trade (d). See figure S5-S8 and Table S2 for damages in 

other subsectors.  

Tables 

Table 1. Seventeen largest fires by area burned in California in 2018 

Name Cause 
Start 

Date 
End Date County 

Size 

(Acres) 

Suppression  

Costs (M$) 

Structures 

Destroyed 

Pawnee Human 23-Jun 7-Jul Lake 15,185 36.5 22 

Lions Lightning 23-Jun 6-Sep Madera 12,990 13.9 0 

Waverly Unclear 29-Jun 2-Jul San Joaquin 11,789 2.5 3 

County Human 30-Jun 13-Jul Yolo 90,288 46.9 30 

Klamathon Unclear 5-Jul 21-Jul Siskiyou 38,008 33.5 82 

Ferguson Unclear 14-Jul 23-Aug Mariposa 9,6901 118.5 11 

Carr Human 23-Jul 29-Aug Shasta 22,9651 158.8 1604 

Cranston Human 25-Jul 8-Aug Riverside 13,139 22.1 12 

Whaleback Unclear 27-Jul 6-Aug Lassen 1,8703 8.9 0 

Mendocino 

Complex 
Unclear 28-Jul 17-Sep 

Colusa, Glenn,  

Lake, 

Mendocino 

459,123 201.0 280 

Donnell Unclear 2-Aug 6-Sep Tuolumne 3,6450 33.6 135 

Holy Unclear 6-Aug 3-Sep 
Orange, 

Riverside 
23,025 25.70 24 

Hirz Human 9-Aug 13-Sep Shasta 46,150 55.5 0 

Stone Lightning  15-Aug 29-Aug Modoc 39,387 16.9 2 

Delta Human 5-Sep 6-Oct Shasta 63,311 64.4 45 

Camp Unclear 8-Nov 25-Nov Butte 153,336 102.8 18804 

Woolsey Unclear 8-Nov 20-Nov 
Los Angeles, 

Ventura 
96,949 56.9 1643 

Source: US National Large Incident Year-to-Date Report 2018. 


