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Hällqvist, Claire Halsband, Wendy Heywood, Henry Houlden, Ismae
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Cristina Licari, Pietro Liò, Claudio Luchinat, Daniel Macias, Stefania
Macrı̀, Francesca Magrinelli, Juan Francisco Martı́n Rodrı́guez,
Massimo Delledonne, Maria Giovanna Maturo, Giacomo Mengozzi,
Gaia Meoni, Francesco Mignani, Maddalena Milazzo, Kevin Mills,
Pablo Mir, Brit Mollenhauer, Christine Nardini, Stefania Alessandra
Nassetti, Nancy L. Pedersen, Maria Teresa Periñán-Tocino, Chiara
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Highlights 

 Several evidences suggest a continuum between ageing and Parkinson’s 

disease 

 Propagation of inflammaging may play a major role in this process 

 PROPAG-AGEING is a H2020 funded Consortium 

 PROPAG-AGEING aims to characterize the contribution of 

ageing/inflammaging to PD  

 PROPAG-AGEING envisages omic analysis of de novo PD, controls and 

centenarians 

 

Abstract 

 

Advanced age is the major risk factor for idiopathic Parkinson’s disease (PD), but to 

date the biological relationship between PD and ageing remains elusive. Here we 

describe the rationale and the design of the H2020 funded project “PROPAG-

AGEING”, whose aim is to characterize the contribution of the ageing process to PD 

development. We summarize current evidences that support the existence of a 

continuum between ageing and PD and justify the use of a Geroscience approach to 

study PD. We focus in particular on the role of inflammaging, the chronic, low-grade 

inflammation characteristic of elderly physiology, which can propagate and transmit 

both locally and systemically. We then describe PROPAG-AGEING design, which is 

based on the multi-omic characterization of peripheral samples from clinically 
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characterized drug-naïve and advanced PD, PD discordant twins, healthy controls and 

"super-controls", i.e. centenarians, who never showed clinical signs of motor 

disability, and their offspring. Omic results are then validated in a large number of 

samples, including in vitro models of dopaminergic neurons and healthy siblings of 

PD patients, who are at higher risk of developing PD, with the final aim of identifying 

the molecular perturbations that can deviate the trajectories of healthy ageing towards 

PD development. 
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Introduction 

In 2016, 6.1 million people suffered from Parkinson’s Disease (PD) worldwide 

(Dorsey et al., 2018). Among neurodegenerative diseases, PD is the second most 

common (after Alzheimer’s Disease) and the one that displayed the largest increase in 

prevalence, which more than doubled from 1990 to 2016 (Dorsey et al., 2018). This 

increase in the number of PD patients is largely, although not exclusively, sustained 

by the ageing of the population, as advanced age is acknowledged to be the major risk 

factor for developing PD (Reeve et al., 2014). Accordingly, PD is uncommon before 

50 years and its prevalence steeply increases after 65 years, peaking between 85 and 

89 years of age (Bennett et al., 1996; Dorsey et al., 2018; Pringsheim et al., 2014). 

In spite of this epidemiological evidence, to date, the biological relationship between 

PD and ageing remains elusive. This is at least in part due the paucity of experimental 

settings specifically aimed at investigating PD in the framework of the ageing 

process, in particular when studies performed on humans are considered (Pang et al., 

2019).  

With the aim of filling this gap, the European Consortium PROPAG-AGEING (“The 

continuum between healthy ageing and idiopathic Parkinson Disease within a 

propagation perspective of inflammation and damage: the search for new diagnostic, 

prognostic and therapeutic targets”; grant agreement 634821) has been established in 

the framework of the European call PHC-01-2014 (Understanding health, ageing and 

disease: determinants, risk factors and pathways). PROPAG-AGEING Consortium is 

highly interdisciplinary and gathers together 9 participants from high ranking 

academic and non-academic institutions throughout Europe, with a well-established 

expertise at both clinical and molecular level (Table 1). 

PROPAG-AGEING implements a Geroscience approach for the study of PD. 

Geroscience is an interdisciplinary field that emphasizes the common mechanisms 

(operating at the level of molecules, cells, organs, systems and ecosystems) shared by 

physiological ageing and age-related diseases (ARDs) (Kennedy et al., 2014). 

According to Geroscience ARDs, including PD, are interpreted as the result of a local 

or systemic accelerated ageing process. This approach can contribute to the study of 

PD at different levels: i) at a mechanistic level, by investigating whether the 

molecular/cellular perturbations characteristic of the ageing process occur, possibly in 

a more pronounced or accelerated fashion, also in PD; ii) at a diagnostic/prognostic 

level, by investigating whether the biomarkers used to track ageing are also able to 

detect the onset or the progression of PD; iii) at the therapeutic level, by investigating 

whether anti-ageing drugs and interventions are potentially effective also in the 

treatment and prevention of PD. 
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In this framework, the main goal of PROPAG-AGEING is to identify the 

molecular/cellular perturbations deviating the phenotype of elderly subjects from a 

physiological decline to clinically overt PD. The design of the project is thus 

specifically implemented in order to track the trajectories of healthy ageing and of 

PD, using the same analytical approaches. 

In the next paragraphs we will summarize the rationale at the basis of PROPAG-

AGEING, which justifies the use of a Geroscience approach to study PD, and we will 

describe the design of the project and its implementation by the members of the 

Consortium. 

 

PROPAG-AGEING rationale: the continuum between ageing and PD and the 

propagation hypothesis 

Ageing is the result of a complex interplay between ontogenetic programs, genetic 

influences, life course environmental exposures and stochastic events (Cevenini et al., 

2010; Dorsey et al., 2018; Franceschi et al., 2020) that concur to the high 

heterogeneity of phenotypes observed among the elderly (Franceschi et al., 2017b). 

Indeed, if on the one hand some persons develop age-related disease like PD, on the 

other some persons can reach the extreme limit of life in good health, i.e. the 

centenarians. Amongst these two extremes, there is a continuum of intermediate 

phenotypes including persons with subclinical manifestations of diseases more or less 

pronounced. This implies that, for a determined age range, it is difficult to classify an 

individual as absolutely healthy and that each individual follows his specific ageing 

trajectory (Figure 1). 

Different authors have identified a limited but highly interconnected set of hallmarks 

of ageing that is also shared with ARDs and therefore contributes to their risk 

(Kennedy et al., 2014; López-Otín et al., 2013). More specifically, features shared 

between ageing and PD include neuroanatomical changes, accumulation of -

synuclein, cell senescence and changes in glial environment, mitochondrial 

dysfunction, oxidative and nitrative stress, impairment in proteasome and lysosome 

functions, gut microbiome deregulation and alteration of glial environment, among 

others (Calabrese et al., 2018). 

Histopathologically, PD is characterized by a patterned, preferential loss of 

dopaminergic neurons (DA) in the pars compacta region in the substantia nigra (SN) 

and the presence of intracellular inclusions, called Lewy bodies, containing -

synuclein aggregates (Braak et al., 2003). A decrease in the number of DA neurons, 

together with other pathological changes in this brain region, is also observed during 

physiological ageing, without clinical symptoms suggesting PD. The course of 

neurodegeneration is gradual and slow and from the initiation of the neuronal damage 

and death to the PD diagnosis there is a long-time lag. Buchman et al. considered a 

large cohort of 744 healthy elderly (average age 88.5 years) without a clinical 

diagnosis of PD at death and found that about 1/3 showed a mild to severe neuronal 

loss within the substantia nigra, 17% showed Lewy bodies and 10% showed both 

these pathological features (Buchman et al., 2012). This study plasticly exemplifies 

the linear relationship between the concomitant increase of life expectancy and PD 

case prevalence. A PD-like pathology is likely much more common in the apparently 

healthy elderly population, but the vast majority of cases do not survive enough to 

pass the quantitative cutoff of neurodegeneration and experience the onset of 

clinically overt disease (Burke and O’Malley, 2013; Cheng et al., 2010). Other studies 

reported an age-dependent increase in -synuclein in the brains of healthy aged 
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humans (Chu and Kordower, 2007; Xuan et al., 2011) as well as in the brain and in 

the enteric nervous system of animal models (Chu and Kordower, 2007; Li et al., 

2018; Phillips et al., 2009), supporting the Braak hypothesis of gut-to-brain spreading 

of -synuclein (Braak et al., 2003; Kim et al., 2019). Experiments in Rhesus monkeys 

also reported a selective age-dependent decline in DA neurons in the ventral tier of 

SN, similarly to what happens in PD (Kanaan et al., 2007). 

 ynuclein clearance from the cytosol is performed by the ubiquitin-proteasome 

and lysosome-autophagy system – advancing age and the PD disease being processes 

both associated with decreased activity in these systems (Collier et al., 2011). 

Accordingly, histological analyses in post-mortem PD tissues identified impaired 

proteasomes and lysosomes (McNaught et al., 2003).  

Increased oxidative and nitrative damage is a hallmark of PD in brain tissue (Dias et 

al., 2013). Reactive oxygen and nitrogen species (ROS and RNS) are produced by 

mitochondria as side-products of aerobic respiration, and their lifelong accumulation 

substantially contributes to ageing (Harman, 1956). Interestingly, -

-synuclein in mitochondria was found in PD, associated to an impairment in the 

activity of electron transport chain complex I and to an increase in oxidative stress 

and in ROS production (Devi et al., 2008). The boost in the ROS generation is closely 

related to the higher inflammation level reported both in ageing and PD (Guo et al., 

2018; Vida et al., 2014). The contribution of peripheral inflammation and 

neuroinflammation to PD pathogenesis has been extensively summarized elsewhere 

(Caggiu et al., 2019; Calabrese et al., 2018; Collins et al., 2012; Qin et al., 2016). 

Here we will underline some general aspects of this phenomenon, relevant in the 

context of the PROPAG-AGEING project:  

1) A close relationship exists between PD-related inflammation and inflammaging. 

Inflammaging, i.e. the chronic, low-grade inflammation that occurs during ageing 

(Calabrese et al., 2018), is regarded as one of the main contributors of ARDs, 

including neurodegenerative diseases (Furman et al., 2019). As recently 

conceptualized (Franceschi et al., 2018a) inflammaging is triggered by the 

accumulation of non-self (pathogens), quasi-self (nutrients and microbiota products) 

and self (damaged and/or misplaced) molecules that converge on the activation of a 

limited number of sensors. These sensors promote the activation of a pro-

inflammatory response, which concomitantly stimulates an adaptive activation of anti-

inflammatory processes (anti-inflammaging). 

In the brain, neuro-inflammaging is sustained by a complex interplay between 

different cellular types, including neurons, microglia, astrocytes and leukocytes that 

can penetrate the damaged blood-brain barrier (Costantini et al., 2018).   

2) Inflammaging can propagate locally (cell-to-cell) and systemically (through the 

blood and lymphatic stream)(Franceschi et al., 2017a). For example, 

damaged/misplaced self-molecules produced within the cell can be released by cell 

necrosis or actively secreted by extracellular vesicles, like exosomes. These pro-

inflammatory compounds can affect the microenvironment of the adjoining cells 

and/or can enter the circulation, stimulating the inflammatory response in distal 

tissues and organs. The same propagation process applies also to the complex mixture 

of cytokines and pro-inflammatory molecules released by senescent cells and termed 

Senescence Associated Secretory Phenotype (SASP) (Acosta et al., 2013; Tchkonia et 

al., 2013). 

Senescent cells have been detected in brains from elderly subjects and patients with 

neurodegenerative diseases (Baker and Petersen, 2018; Martínez-Cué and Rueda, 

2020). In particular, markers of cell senescence have been reported in astrocytes from 
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PD patients, and they have been reported to accumulate as a consequence of the 

exposure to environmental compounds like Paraquat (Chinta et al., 2018, 2013). The 

exact mechanisms by which inflammaging is propagated from the periphery to the 

brain and vice versa are still elusive, but experiments involving heterochronic 

parabiosis and plasma administration strongly support the propagation hypothesis of 

inflammaging and indicate that brain ageing is intimately linked to the presence of 

pro- and anti-ageing molecules in the circulation (Horowitz and Villeda, 2017). A 

propagatory model of inflammaging has been presented (Franceschi et al., 2018b; 

Gordleeva et al., 2020), within a conceptualization of the body as a Super-Network 

(Whitwell et al., 2020).  

3) Inflammaging is a life-course process. The balance between inflammaging and 

anti-inflammaging is continuously remodelled during the life of the individual and is 

the result of the complex interaction between their genetic background and the 

environment to which they are exposed (starting from the very beginning of life and 

considering also preconception and in utero exposures) (Franceschi et al., 2007). Both 

genetic and environmental factors substantially contribute to PD, possibly impinging 

on the balance between inflammaging and anti-inflammaging. Importantly, an 

interplay between ageing, genetic predisposition to PD and exposure to chemicals has 

been reported, supporting the hypothesis that the ageing milieu sustains and amplifies 

the effects of genetic and environmental factors (Liu et al., 2017; Marder et al., 2015; 

Pang et al., 2019). 

In summary, PROPAG-AGEING rationale is based on two main pillars: 

1) The environment feeding PD onset and progression is the elderly physiology, and 

there is therefore a continuum between healthy ageing and PD. The project assumes 

PD as totally embedded within the basic molecular and cellular mechanisms of the 

ageing process, including inflammaging and neuro-inflammaging, among others. 

2) Inflammaging, ageing and PD can propagate and transmit both locally and 

systemically. As a consequence, peripheral biospecimens (like blood, urine and stool) 

can be investigated not only to identify molecular, cellular and clinical markers of PD, 

but also to characterize the alterations that trigger the onset and the progression of the 

disease. 

In the next paragraphs, we will discuss the design of PROPAG-AGEING project, 

which is described in Figure 2 and Table 2. 

 

PROPAG-AGEING design: the cohorts included in the study 

As mentioned above, few studies have investigated in the same experimental settings 

the signatures of ageing and those of PD. The design of PROPAG-AGEING has been 

specifically implemented in order to fill this gap. The project is based on a large 

number of human samples deriving from existing multi-center cohorts (that is, 

collected by the partners before PROPAG-AGEING, in the framework of other 

national and international projects) and including (Figure 2): 

- de novo PD patients, for which clinical characterization and collection of biological 

specimens have been performed at disease onset, before the dopaminergic therapy, 

according to the UK Brain Bank Criteria (Gibb and Lees, 1988). The analysis of de 

novo patients is highly informative, as it avoids possible confounding effects 

associated with the dopaminergic treatment, which is likely to alter the signatures of 

ageing and PD and to impair the detection of early markers of the disease; 

- advanced PD patients; 
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- monozygotic (MZ) and dizygotic (DZ) twins from the Swedish Twin Registry, 

overall followed longitudinally for more than 45 years and assessed for lifestyle and 

place of living, type of work and exposure to potential environmental toxicants. Twin 

couples discordant for PD have been accurately recorded, and biological samples 

(blood and sera) have been collected before PD onset (incident cases) and/or after PD 

onset (prevalent cases); 

- healthy control subjects, including sex-, country- and age-matched with PD patients, 

but also subjects younger and older than PD patients, that allow to track the 

trajectories of healthy/physiological ageing; 

- healthy aged "super-controls", including both thoroughly characterized centenarians 

who never showed clinical signs of motor disability despite their exceptional lifespan, 

and their offspring.  

In PROPAG-AGEING therefore we will consider a continuum of phenotypes and we 

will adopt the highly informative strategy of comparing extreme phenotypes (PD 

patients on one side; centenarians and their offspring, on the other side) (Garagnani et 

al., 2013; Giuliani et al., 2017) to maximize the possibility to identify PD-specific 

signatures. 

Centenarians can be considered a paradigm of healthy ageing, as they largely avoided 

or postponed most of ARDs. Interestingly, while dementia is present in a minority of 

centenarians, PD is not (Arosio et al., 2017; Marcon et al., 2020), suggesting that PD 

is not an unavoidable result of the ageing process. We and others previously 

demonstrated that centenarians are characterized by specific clinical, cellular and 

molecular signatures associated to a healthy phenotype (Collino et al., 2013; Guo et 

al., 2018; Horvath et al., 2015; Montoliu et al., 2014; Rampelli et al., 2020; Santoro et 

al., 2018; Sayed et al., 2019). However, centenarians are unavoidably very old people, 

and it is therefore difficult to disentangle longevity from ageing. For this reason, 

PROPAG-AGEING envisages the inclusion of centenarians’ offspring, a well-

established model of healthy ageing, characterized by decelerated ageing (Bucci et al., 

2016; Conte et al., 2020; Gentilini et al., 2013, 2012; Horvath et al., 2015; Ostan et 

al., 2013; Vitale et al., 2012). Centenarians offspring population age range is very 

similar to those of the major ARDs, including PD, thus it is a priceless instrument to 

distinguish between healthy versus unhealthy ageing trajectories.  

Taken together, these cohorts represent an unprecedented league of datasets and bio-

materials to grasp the molecular pathophysiology of PD. All PD patients involved in 

PROPAG-AGEING have undergone deep phenotyping, including international 

standards of motor classification (Hoehn and Yahr stages), Unified Parkinson’s 

Disease Rating Scale (MDS-UPDRS) scores, MRI imaging data and the assessment of 

non-motor symptoms.  

 

PROPAG-AGEING design: the envisaged characterizations 

In recent years, a growing number of studies has attempted to unveil the molecular 

basis of PD using omic approaches, offering an in-depth characterization of 

potentially pathological alterations in specific biological layers like the genome, the 

epigenome, the transcriptome, the proteome, the metabolome or the metagenome 

(Redenšek et al., 2018). Results of these studies are usually not performed on the 

same PD patients, and are not always overlapping nor concordant, possibly because 

they largely differ in size, type of analyzed samples (genetic or idiopathic PD; de 

novo or advanced PD patients), type of biospecimen (for example, brain, blood, 
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plasma/serum, stool, urine, CSF) and/or analytical approaches. Most importantly, in 

the vast majority of cases these studies are disjointed, i.e. a certain PD cohort has been 

characterized using only one or few omicapproaches (Hertel et al., 2019). 

PROPAG-AGEING aims at overcoming the fragmentation of data and interpretation 

inherent in previous studies by characterizing the cohorts described in the previous 

paragraph using a comprehensive set of advanced omics (whole genome and mtDNA 

sequencing, RNA-Seq, genome-wide DNA methylation, circulating microRNA, 

proteomics, metabolomics and glycomics), that whenever possible are applied to the 

same subjects (Table 2). All the analyses are performed on peripheral biospecimen 

(whole blood for genetic, epigenetic and transcriptomic analysis; plasma/serum/urine 

for circulating microRNA, proteomic, metabolomic and glycomic analyses), in 

accordance with the propagation hypothesis at the basis of PROPAG-AGEING. 

Furthermore, the use of easily accessible biospecimens allows to identify potential 

diagnostic and prognostic biomarkers assessable in clinical practice.  

The analytical approach envisaged in PROPAG-AGEING allows to identify omic-

specific markers, i.e. signatures neatly characterized by a single omic layer, as well as 

signatures that are better described as "multi-omic" covariates, i.e. "compound 

signatures" constituted by a cluster of different omics. Several approaches will be 

applied for the multi-omics integration of PROPAG-AGEING data. One of them 

consists in the application of multilayer networks (Boccaletti et al., 2014). Multilayer 

networks have been successfully applied to the integration (and interpretation) of 

several data types. A multilayer network can be defined as M=(G,C) where G is a set 

of graphs and C is the interconnection between them. For example in the framework 

of PROPAG-AGEING project we will implement a multilayer network in which each 

layer represents a type of omic data.  In this way we can both analyse each layer 

independently (for example analysing communities) and in a fused fashion with the 

others, obtaining, comparing and evaluating single omic signatures, as well as 

integrated ones. 

In parallel to the multilayer networks approach, we will also use an integration of 

omics data to be used as input features in a deep learning framework. In particular, we 

will design experiments to estimate biological age using a deep learning approach. 

The biological age estimation will be first performed in each omic independently as 

well as in the imaging data (MRI brain scans available for the cohort). Subsequently, 

omics will be combined and the integrated dataset will be used in order to undercover 

integrated and combined effects of omic and imaging integration towards biological 

age estimation. Furthermore, the available epidemiological, lifestyle and clinical data 

can be incorporated with omic results and newly generated biochemical data, 

providing a comprehensive systems biology view of the disease. 

Given the conceptual assumptions at the basis of PROPAG-AGEING, particular 

attention is placed to the study of biomarkers of ageing and of inflammageing in the 

PD cohort. Ageing biomarkers can have different natures and are predictive not only 

of the chronological age of individuals, but also of their biological age, i.e. a proxy of 

their healthy status (Cole et al., 2019; Jylhävä et al., 2017). Biomarkers of ageing can 

therefore be informative regarding age acceleration processes associated to the onset 

or the progression of PD. The epigenetic clock, a predictor of age based on DNA 

methylation data, showed an accelerated ageing in whole blood from advanced PD 

patients respect to controls (Horvath and Ritz, 2015), supporting the role of ageing in 
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PD. Within PROPAG-AGEING, besides epigenetic clocks (Bell et al., 2019), we will 

consider GlycoAge (Vanhooren et al., 2008), based on glycomic signatures, and 

brainAge (Cole and Franke, 2017), based on brain imaging data. We will also refer to 

recently published papers that tracked metabolomic and proteomic changes with age 

(Johnson et al., 2020; Robinson et al., 2020). Furthermore, omics data will be 

specifically interrogated in order to evaluate inflammageing, considering pro- and 

anti-inflammatory molecules in the available datasets, like proteomic data (for 

example CRP, IL6, TGF beta, TNF alpha, IL10 and IL18) or miRNA data (for 

example miR-21, miR-155, miR-146). 

Importantly, other national and international studies (in primis the Parkinson’s 

Progression Marker Initiative – PPMI) are designed to establish a comprehensive set 

of clinical, imaging and bio-sample data (characterized by a multi-omic approach) 

that can be used to define biomarkers of PD onset and progression. PROPAG-

AGEING originally contributes to this cooperative network of research studies, 

because the systems biology approach for the analysis of PD and healthy samples is 

contextualized in the framework of the ageing process. 

 

PROPAG-AGEING design: the discovery and the validation phases 

To achieve an optimal balance between in depth characterization of the samples and 

cost-effectiveness of the analyses, PROPAG-AGEING envisages two main blocks of 

activities:  

i) A DISCOVERY PHASE, where a limited number of highly informative samples 

from the existing cohorts (de novo PD patients, twins discordant for the disease, 

healthy subjects of different ages, centenarians and centenarians’ offspring as super-

controls) are analyzed in depth by the above-described omics;  

ii) A VALIDATION PHASE, where a selection of the most informative molecules 

(genetic variants, epigenetic and transcriptomic signatures, proteins, metabolites and 

glycomic markers) emerging from the discovery phase and integrated by the 

environmental and clinical datasets, are tested in larger existing cohorts of PD patients 

(de novo and advanced), healthy and super-healthy subjects. This phase allows 

therefore the technical validation of potential biomarkers, possibly by high-throughput 

techniques alternative or complementary to the omic approaches that have been used 

in the discovery phase. In addition, the validation phase allows to further investigate 

the relationship between specific molecular alterations and clinical characteristics of 

PD. 

The validation phase takes advantage of two additional models: 

1) Dopaminergic neurons (DAn) obtained from human induced pluripotent stem cells 

(iPSC) deriving from PD patients, controls and super-healthy controls. Appropriate 

manipulations of this model (in vitro ageing, exposure to stressors related to neuro-

inflammaging, etc) allow to functionally validate the molecular alterations emerging 

in the discovery phase and to evaluate the propagation hypothesis of ageing and PD 

(Mohamed et al., 2019; Ravaioli et al., 2018).  

2) a multi-center cohort of siblings of PD patients, not affected by PD at the time of 

recruitment but possibly showing more risk factors for PD compared to the general 

population, specifically recruited in the framework of PROPAG-AGEING. Indeed, a 

genetic (risk) component is present in the sporadic PD, supported by GWAS studies 

and observational studies reporting an increased risk of PD associated with a family 

history of the disease (Berg et al., 2015; Delamarre and Meissner, 2017; Kalia and 
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Lang, 2015). Within PROPAG-AGEING, the molecular alterations emerging in the 

discovery phase are tested in the cohort of high-risk PD siblings in order to evaluate 

their potential as early biomarkers of the disease. The PD siblings’ cohort is deeply 

characterized for several clinical parameters, with particular regard for non-motor 

symptoms that usually precede the motor dysfunction (premotor or prodromal phase 

of the disease) by more than a decade (Kalia and Lang, 2015). These non-motor 

symptoms include sleep disorders (Sateia, 2014), in particular REM Sleep Behavior 

Disorder, olfactory dysfunction, cognitive impairment, constipation and autonomic 

dysfunction (Kalia and Lang, 2015). Accurate evaluation of these and other 

parameters allows estimating the risk of developing PD and to correlate it with the 

levels of biomarkers identified in the framework of PROPAG-AGEING. Multiple 

aliquots of different biospecimen (whole blood, plasma/serum, urine and stool) are 

collected from PD siblings. The collection of stool samples is of particular interest 

given the emerging role of the gut microbiota and of the gut-brain-axis alterations in 

ageing and neurodegenerative diseases (Baizabal-Carvallo and Alonso-Juarez, 2020; 

Elfil et al., 2020; Quercia et al., 2014; Santoro et al., 2018). 

 

Conclusions 

The conceptual assumption of PROPAG-AGEING is that there is a continuum 

between healthy ageing and neurodegenerative age-related motor disorders. In this 

framework, the project has the ambitious aim to identify specific cellular and 

molecular patterns that can deviate the trajectories of healthy ageing towards the 

development of PD, or alternatively can protect centenarians and their offspring from 

developing this and other neurodegenerative disorders. These molecular signatures 

hopefully will represent reliable early markers of PD and new potentially druggable 

targets.  
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Figure legends 

 
Figure 1. The continuum between ageing and PD. The continuum is represented as 

a shade of color from green to red. Each line corresponds to the ageing trajectories of 

PD, general population (healthy controls) and long-lived subjects (centenarians and 

their offspring). The colour of circles corresponds to health status at death.  

 

Figure 2. PROPAG-AGEING design. The cohorts included in the project and the 

envisaged workflow are reported. The continuum of phenotypes is represented as a 

shade of colour from red (PD) to green (long-lived subjects). 

 

  

Jo
ur

na
l P

re
-p

ro
of



 

Table 1. PROPAG-AGEING Consortium 

 

 

Partner Acronym Country 

AZIENDA UNITA' SANITARIA LOCALE DI BOLOGNA  AUSL-ISNB  Italy 

UNIVERSITY COLLEGE LONDON  UCL  
United 

Kingdom 

UNIVERSITAETSMEDIZIN GOETTINGEN - GEORG-

AUGUST-UNIVERSITAET GOETTINGEN - STIFTUNG 

OEFFENTLICHEN RECHTS  

UMG-GOE Germany 

SERVICIO ANDALUZ DE SALUD  SAS Spain 

PERSONAL GENOMICS SRL  PG Italy 

THE CHANCELLOR, MASTERS AND 

SCHOLARS OF THE UNIVERSITY OF UCAM CAMBRIDGE 
UCAM 

United 

Kingdom 

CONSORZIO INTERUNIVERSITARIO RISONANZE 

MAGNETICHE DI METALLOPROTEINE  
CIRMMP Italy 

KAROLINSKA INSTITUTET  KI Sweden 

ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA UNIBO Italy 

 
  

Jo
ur

na
l P

re
-p

ro
of



 
Table 2. Overview of PROPAG-AGEING analyses. The table reports the analyses 

foreseen in the project (considering the discovery and the validation phases), the 

techniques applied, the cohorts available for each analysis and the biospecimen. 

Finally, it indicates the comparisons and the scientific questions that will be 

addressed. 

 

 
Analysis Techniques Cohorts Biospecimens Comparisons Scientific questions/Expected results 

Genetics 

discovery 

(UCL) 

Whole genome 

sequencing 

de novo PD, controls 

(UMG-GOE) 

advanced PD (AUSL-

ISNB) 

centenarians, controls 

(UNIBO) 

Whole blood PD (de novo and advanced) vs 

controls, taking into account 

the recruitment center 

Genetic variants associated to PD  

 

PD vs centenarians, taking into 

account the recruitment center 

Genetic variants associated to PD and not 

associated to successful ageing (comparison 

between extreme phenotypes) 

Genetics 

validation 

(UNIBO) 

iPLEX MassARRAY de novo PD, controls 

(UMG-GOE) 

advanced PD (AUSL-

ISNB) 

advanced PD, controls 

(SAS) 

centenarians, controls 

(UNIBO) 

PD siblings (UMG-GOE, 

AUSL-ISNB, SAS) 

Whole blood PD (de novo and advanced) vs 

controls, taking into account 

the recruitment center 

Genetic variants associated to PD  

 

PD vs centenarians, taking into 

account the recruitment center 

Genetic variants associated to PD and not 

associated to successful ageing (comparison 

between extreme phenotypes) 

Association with risk factors in 

PD siblings  

Genetic variants associated with risk of 

prodromal PD 

Epigenetics 

discovery 

(AUSL-ISNB) 

Infinium 

MethylationEPIC 

(Illumina) 

de novo PD, controls 

(UMG-GOE) 

advanced PD (AUSL-

ISNB) 

centenarians, 

centenarians’offspring, 

controls of different age 

(UNIBO) 

 

Whole blood de novo PD vs controls DNAm changes in early phases of PD not 

under treatment 

Advanced PD vs controls DNAm changes in PD under treatment 

PD (de novo and advanced) vs 

centenarians’offspring 

DNAm changes associated to PD and not 

associated to successful ageing 

Association with age (controls 

of different age) and with 

successful ageing 

(centenarians) 

Comparison of DNAm trajectories in 

healthy/successful ageing respect to PD; 

epigenetic clocks (accelerated ageing in PD?) 

MZ and DZ twins 

discordant for PD (KI) 

Intra-couple analysis in 

discordant twins 

DNAm changes associated to PD, taking into 

account the genetic background/environmental 

exposures 

Epigenetics 

validation 

(UNIBO) 

EpiTYPER 

MassARRAY 

 

 

 

 

 

 

de novo PD, controls 

(UMG-GOE) 

advanced PD (AUSL-

ISNB) 

advanced PD, controls 

(SAS) 

centenarians, 

centenarians’offspring, 

controls of different age 

(UNIBO) 

MZ and DZ twins 

discordant for PD (KI) 

Whole blood As in the discovery phase of 

epigenetic analysis 

As in the discovery phase of epigenetic 

analysis 

PD siblings (UMG-GOE, 

AUSL-ISNB, SAS) 

Association with risk factors in 

PD siblings 

DNAm changes associated with risk of 

prodromal PD 

Transcriptomics 

discovery 

(SAS) 

RNA-seq de novo PD, controls 

(UMG-GOE) 

centenarians, controls 

(UNIBO) 

Whole blood de novo PD vs controls 

 

Differentially expressed genes in early phases 

of PD not under treatment 

de novo PD vs centenarians 

controls vs centenarians 

Differentially expressed genes associated to 

PD, ageing and successful ageing 

Transcriptomics 

validation  

(SAS) 

Open Array Real-Time  

PCR system 

de novo PD, controls 

(UMG-GOE) 

advanced PD, controls 

(SAS) 

Whole blood de novo PD vs controls 

advanced PD vs controls 

Differentially expressed genes in early phases 

of PD not under treatment and in PD under 

treatment 

PD siblings (UMG-GOE, 

AUSL-ISNB, SAS) 

Association with risk factors in 

PD siblings 

Differentially expressed genes associated with 

risk of prodromal PD 

miRNomics 

discovery 

(PG) 

miRNA-Seq de novo PD, controls 

(UMG-GOE) 

centenarians, controls 

(UNIBO) 

Serum de novo PD vs controls Differentially expressed circulating miRNA in 

early phases of PD not under treatment 

de novo PD vs centenarians 

controls vs centenarians 

Differentially expressed circulating miRNA 

associated to PD, ageing and successful 

ageing 

MZ and DZ twins 

discordant for PD (KI) 

Intra-couple analysis in 

discordant twins 

Differentially expressed circulating miRNA 

associated to PD, taking into account the 

genetic  background/environmental exposures 

miRNomics 

validation 

(PG) 

qPCR de novo PD, advanced 

PD, controls (UMG-

GOE) 

centenarians, controls 

(UNIBO) 

Serum de novo PD vs controls 

advanced PD vs controls 

Differentially expressed circulating miRNA in 

early phases of PD not under treatment and in 

PD under treatment 

de novo PD vs centenarians 

advanced PD vs centenarians 

controls vs centenarians 

Differentially expressed circulating miRNA 

associated to PD, ageing and successful 

ageing 

PD siblings (UMG-GOE, 

AUSL-ISNB, SAS) 

Association with risk factors in 

PD siblings 

Differentially expressed circulating miRNA 

associated with risk of prodromal PD 

Metabolomics 

discovery 

(CIRMMP) 

NMR de novo PD, controls 

(UMG-GOE) 

centenarians, controls 

(UNIBO) 

Serum and 

urine from 

UMG-GOE 

Serum from 

KI and 

UNIBO 

de novo PD vs controls 

 

Metabolic profiles in early phases of PD not 

under treatment 

de novo PD vs centenarians 

controls vs centenarians 

Metabolic profiles associated to PD, ageing 

and successful ageing 

MZ and DZ twins 

discordant for PD (KI) 

Intra-couple analysis in 

discordant twins 

Metabolic profiles associated to PD, taking 

into account the genetic 

background/environmental exposures 

Metabolomics 

validation 

(CIRMMP) 

NMR de novo PD, advanced 

PD, controls (UMG-

GOE) 

advanced PD, controls 

(SAS) 

centenarians, 

centenarians’offspring, 

Serum from 

UMG-GOE 

and UNIBO 

Plasma from 

SAS 

de novo PD vs controls Metabolic profiles in early phases of PD not 

under treatment 

Advanced PD vs controls Metabolic profiles in PD under treatment 

PD (de novo and advanced) vs 

centenarians’offspring 

Metabolic profiles associated to PD and not 

associated to successful ageing 

Association with age (controls 

of different age) and with 

Comparison of metabolomic profiles in 

healthy/successful ageing respect to PD; 
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controls of different age 

(UNIBO) 

successful ageing 

(centenarians) 

metabolomic clock (accelerated ageing in 

PD?) 

PD siblings (UMG-GOE, 

AUSL-ISNB, SAS) 

Serum  Association with risk factors in 

PD siblings 

Metabolic profiles associated with risk of 

prodromal PD 

Proteomics 

discovery 

(UCL) 

Deep phenotyping by 

label-free proteomics 

and nano 2D-LC QTOF 

MSE  

de novo PD, controls 

(UMG-GOE) 

centenarians, controls 

(UNIBO) 

Plasma  de novo PD vs controls Proteomic profiles in early phases of PD not 

under treatment 

de novo PD vs centenarians 

controls vs centenarians 

Proteomic profiles associated to PD, ageing 

and successful ageing 

MZ and DZ twins 

discordant for PD (KI) 

Serum from 

KI 

Intra-couple analysis in 

discordant twins 

Proteomic profiles associated to PD, taking 

into account the genetic 

background/environmental exposures 

Proteomics 

validation 

(UCL) 

UPLC-MS/MS targeted 

proteomics 

de novo PD, advanced 

PD, controls (UMG-

GOE) 

advanced PD, controls 

(SAS) 

centenarians, 

centenarians’offspring, 

controls of different age 

(UNIBO) 

Plasma and 

urine from 

UMG-GOE 

Plasma from 

SAS and 

UNIBO 

de novo PD vs controls Proteomic profiles in early phases of PD not 

under treatment 

Advanced PD vs controls Proteomic profiles in PD under treatment 

PD (de novo and advanced) vs 

centenarians’offspring 

Proteomic profiles associated to PD and not 

associated to successful ageing 

Association with age (controls 

of different age) and with 

successful ageing 

(centenarians) 

Comparison of proteomic profiles in 

healthy/successful ageing respect to PD; 

proteomic clock (accelerated ageing in PD?) 

PD siblings (UMG-GOE, 

AUSL-ISNB, SAS) 

Plasma Association with risk factors in 

PD siblings 

Proteomic profiles associated with risk of 

prodromal PD 

Glycomics 

(UNIBO) 

DSA-FACE de novo PD, controls 

(UMG-GOE) 

advanced PD, controls 

(SAS) 

Serum from 

UMG-GOE 

Plasma from 

SAS 

de novo PD vs controls Glycomic profiles in early phases of PD not 

under treatment; GlycoAge score 

Advanced PD vs controls Glycomic profiles in PD under treatment 

PD siblings (UMG-GOE, 

AUSL-ISNB, SAS) 

Plasma Association with risk factors in 

PD siblings 

Glycomic profiles associated with risk of 

prodromal PD 

Metagenomics 

(AUSL-ISNB) 

16S sequencing PD siblings (UMG-GOE, 

AUSL-ISNB, SAS) 

Stool Association with risk factors in 

PD siblings 

Metagenomic profiles associated with risk of 

prodromal PD 

Imaging 

(SAS) 

[123I]FP-CIT SPECT 

T1 3D MRI 

de novo PD, controls 

(UMG-GOE) 

advanced PD (SAS) 

Neuroimaging de novo PD vs controls 

de novo PD vs advanced PD 

Association with other 

biomarkers in PD 

Brain aging in PD using neuroimaging data 
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