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Abstract 11 

Genome-wide data is used to stratify patients into classes for precision medicine using clustering 12 

algorithms. A common problem in this area is selection of the number of clusters (K). The Monti 13 

consensus clustering algorithm is a widely used method which uses stability selection to estimate K. 14 

However, the method has bias towards higher values of K and yields high numbers of false positives. 15 

As a solution, we developed Monte Carlo reference-based consensus clustering (M3C), which is 16 

based on this algorithm. M3C simulates null distributions of stability scores for a range of K values 17 

thus enabling a comparison with real data to remove bias and statistically test for the presence of 18 

structure. M3C corrects the inherent bias of consensus clustering as demonstrated on simulated and 19 

real expression data from The Cancer Genome Atlas (TCGA). For testing M3C, we developed 20 

clusterlab, a new method for simulating multivariate Gaussian clusters. 21 
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Introduction 24 

 25 

Stratified medicine is the concept that patients may be clustered into classes to personalise patient 26 

therapy. Increasingly, patient genome-wide expression data is being used to perform clustering1-6 . 27 

Cluster analysis of genome-wide data (e.g. transcriptomics, epigenomics, proteomics, and DNA copy 28 

number) has been shown to identify tumour subtypes with distinct clinical outcomes in cancer 29 

research1-6, and is starting to be applied on other diseases as well7-9. Therefore, there is high demand 30 

for methods that deliver robust results. Broadly, the clustering problem may be broken down into 31 

two steps: select K and separate the data into K groups. The order of these steps varies by clustering 32 

algorithm – K must be defined upfront in k-means, for instance, while it is defined afterwards in 33 

hierarchical clustering. In this study, our primary focus was to develop a method for estimating the 34 

optimal K. 35 

 36 

Numerous methods have been proposed for estimating K, such as: Monti et al. consensus 37 

clustering10, the GAP-statistic11, CLEST12, and progeny clustering13. The concept behind consensus 38 

clustering is that the ideal clusters should be stable despite resampling. Therefore, the degree of 39 

cluster stability for each value of K can be measured to estimate the optimal K. Șenbabaoğlu et al. 40 

made a useful contribution by demonstrating that false positive structures could be found in K=1 null 41 

data using the Monti consensus clustering algorithm14, this is a common problem in cluster analysis. 42 

The authors suggested to generate null datasets with the same gene-gene correlation structure as 43 

the real data to evaluate cluster strength. However, they did not provide a method for performing a 44 

formal hypothesis test. They developed a new metric that measures cluster stability called the 45 

proportion of ambiguous clustering (PAC) score, this is better able to estimate K than the original 46 

delta K metric10 proposed by Monti et al. However, the PAC score does not take into account null 47 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/377002doi: bioRxiv preprint 

https://doi.org/10.1101/377002
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3 
 

reference distributions, has inherant bias towards higher values of K, and does not test the null 48 

hypothesis K=1.  49 

 50 

Our aim was to solve these problems by enhancing the Monti consensus clustering algorithm to 51 

include a Monte Carlo reference procedure to eliminate bias towards higher values of K and to test 52 

the null hypothesis K=1. This method we call M3C 53 

(https://www.bioconductor.org/packages/3.7/bioc/html/M3C.html). To introduce M3C, it is 54 

instructive to define the hypotheses that it tests. M3C calculates null distributions of PAC scores for 55 

each K (starting with K=2) by simulating K=1 null datasets. For each K, this allows us to formally test 56 

the following null hypothesis: 57 

H0: the PAC score comes from a single Gaussian cluster 58 

The alternative hypothesis tested for each K is:  59 

HA: the PAC score does not come from a single Gaussian cluster 60 

If no p values are significant along the range of K we accept the null hypothesis H0 in every case, this 61 

means there is no significant evidence for clusters in the data. If a p value is significant, then we can 62 

reject the null hypothesis H0, thereby accepting HA, this is significant evidence for clusters in the 63 

data. M3C presented us with an opportunity to test two hypotheses on real data. First, that pre-64 

existing high-profile publications contain results that declare evidence of structure when in fact 65 

there is none. Second, that not considering reference distributions when deciding K leads to 66 

systematic bias in the Monti consensus clustering method. The results in this manuscript imply a 67 

more rigorous approach is required. 68 

 69 

 70 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/377002doi: bioRxiv preprint 

https://doi.org/10.1101/377002
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 
 

Results 71 

 72 

Systematic bias detected in two widely applied consensus clustering methods 73 

Using clusterlab (see Methods for details), we first generated a null dataset where no genuine 74 

clusters are found (Fig. 1a). Next, we tested the Monti consensus clustering algorithm on this data, 75 

the cumulative distribution function (CDF) plot corresponding to the consensus matrices from K = 2 76 

to K = 10 for the null dataset demonstrates that as K increases the consensus matrices inherently 77 

become more stable (indicated by a flatter line) (Fig. 1b). The PAC scores, which measure the CDF 78 

plot flatness, steadily decreased with increasing K estimating an optimal K of ten (Fig. 1c). A similar 79 

but reversed effect was observed in the cophenetic metric of Nonnegative Matrix Factorisation 80 

(NMF) consensus clustering15, which estimates an optimal K of two (Fig. 1d). Therefore, consensus 81 

clustering and NMF consensus clustering show bias towards higher and lower values of K, 82 

respectively. Both methods also declare evidence of structure when it does not exist, due to not 83 

comparing against null reference distributions. To demonstrate the functionality of clusterlab, we 84 

generated a ring of four Gaussian clusters, four clusters with varying variance, and a more complex 85 

multi-ringed structure consisting of 25 Gaussian clusters (Supplementary Fig. 1). 86 

 87 

M3C can find K and evaluate the significance of its decision 88 

We provide an overview of our method in Figure 2a. For our initial investigations, we tested M3C on 89 

a negative control, a simulated dataset in which K = 1 (Fig. 2b). The Relative Cluster Stability Index 90 

(RCSI) could not distinguish real from false structure. In contrast, the calculation of Monte Carlo p 91 

values by M3C correctly suggested there was no structure in this negative control dataset (alpha = 92 

0.05), and no bias towards higher values of K was observed. Next, M3C was tested on a positive 93 

control dataset with four simulated clusters (Fig. 2c). The PAC score and the RCSI correctly identified 94 
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four as the optimal value of K. A very low Monte Carlo p-value was found by M3C for K = 4 (p = 95 

9.95x10-21), this correctly implies that this is the optimal K and means we can reject the null 96 

hypothesis H0. 97 

 98 

Next, we reanalysed a range of high-profile stratified medicine datasets where structure had been 99 

declared to test for false positive structures (Table 1 & Supplementary Table 1). Because of the ease 100 

of data availability, these were predominately, but not exclusively, from TCGA. Table 1 demonstrates 101 

the pervasive use of consensus clustering and NMF consensus clustering in the field. Using M3C, we 102 

identified two datasets in which no significant evidence against the null hypothesis could be 103 

detected. First, a systemic lupus erythematosus (SLE) microarray dataset was analysed where seven 104 

major subtypes were reported using hierarchical clustering and dendrogram cutting. However, none 105 

of the p-values along the range of K calculated by M3C reached statistical significance (the lowest 106 

was for K = 3, p = 0.15) (Fig. 2d). Second, a breast cancer miRNA-seq dataset was identified with no 107 

significant evidence of structure (the lowest p value was for K = 4, p = 0.27), whereas seven subtypes 108 

were originally reported using NMF (Fig. 2e). These findings imply that false positive structures exist 109 

in the literature through not comparing against reference datasets. 110 

Table I: Datasets selected for assessment using M3C and optimal K decisions. HC refers to hierarchical 
clustering and CC to Monti consensus clustering. 

Publication Year Data type Original 
algorithm 

Original K M3C K 

Glioblastoma3 2008 Microarray CC 4 4 

Ovarian carcinoma4 2011 Microarray NMF 4 5 

Lung cancer5 2012 RNA-seq NMF 4 2 

Breast cancer16 2012 miRNA-seq NMF  7 1 

Diffuse glioma1 2016 RNA-seq CC  4 8 

Lupus9 2016 Microarray HC 7 1 

Pheochromocytoma2 2017 RNA-seq CC 4 6 

 111 

 112 

Demonstration of the M3C method on TCGA gene expression data 113 
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Of those datasets that exhibited significant evidence of structure using M3C, we used this as an 114 

opportunity to contrast the clarity of the M3C results with those from consensus clustering with the 115 

PAC score, the NMF cophenetic coefficient15, and the GAP-statistic11. Our intention in these analyses 116 

was not to dispute the original reported K, but instead to test whether methods that do not consider 117 

reference distributions along the range of K would lead to visible biases. In these analyses, it was 118 

demonstrated that the GAP-statistic continuously increased, implying improving stability regardless 119 

of the structure (Supplementary Fig. 2). These findings imply the GAP-statistic is not well suited to 120 

analysing complex genome wide expression datasets. Across these datasets, we also demonstrate 121 

why M3C fits a beta distribution to the data to estimate extreme tail values, as for K = 2, the beta 122 

distribution fits the reference slightly better than a normal distribution (Supplementary Fig. 3 and 4). 123 

This step is important as it removes the limitations on p-value derivation imposed by a finite number 124 

of simulations (Supplementary Fig. 5). 125 

 126 

The PAC score displayed the same bias towards higher K values observed earlier on simulated null 127 

datasets, decreasing steadily regardless of the structure, implying increased stability (Figure 3a-e). 128 

This effect is more of a problem in datasets where the clustering is not very clear. For the GBM 129 

dataset3, while a PAC elbow can be seen at K = 4, the global optimal value is K = 10 (Fig. 3a). The 130 

problem with the PAC score resembles the problem encountered by Tibshirani, et al. (2001), when 131 

the authors developed the GAP-statistic to overcome the subjective decision regarding the location 132 

of the elbow. For the GBM case, the Monte Carlo p-values and the RCSI demonstrate a clear optimal 133 

value of K = 4 (p = 0.00059), with additional evidence for structure at K = 5 (p = 0.0071).  134 

 135 

For the ovarian dataset4, a global optimal PAC value is observed at K = 2, which is supported by the 136 

RCSI (Fig. 3b). However, when the Monte Carlo p-values are calculated, it is in fact K = 5 which is the 137 

optimal K (p = 0.0078). This happens because some datasets have a skewed null distribution at K = 2, 138 
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resulting in lower PAC scores (Supplementary Fig. 3b). These are inherently favoured by the 139 

algorithm, a bias that is unaddressed by the PAC score or the RCSI. Only by calculating p-values for 140 

each value of K can we mitigate against these types of systematic biases. 141 

 142 

In cases where the clustering is very clear, the PAC score does perform well. In the lung cancer 143 

dataset5, a global PAC optimal K can be seen at K = 2, which is supported by both the RCSI and the 144 

Monte Carlo p-value (p = 0.0018) (Fig. 3c). Although this conflicts with the original decision of K = 4, 145 

the M3C p-value for K = 4 was also significant (p = 0.0032), implying this would be another 146 

reasonable choice. However, the bias towards high K values of consensus clustering can be observed 147 

again on the diffuse glioma dataset1 (Fig. 3d). Here the PAC score continuously decreases until it 148 

reaches a global optimum at K = 10. However, considering the reference distributions, M3C informs 149 

us that K = 8 is the most significant option (p = 3.5x10-9), which is also supported by the RCSI score. 150 

For the paraganglioma dataset2, the RCSI estimates K = 6 and the Monte Carlo p-value supports this 151 

conclusion (p = 1.6x10-6), while the PAC score continually decreases, giving no clear choice of K (Fig. 152 

3e). This is another example of why the reference distribution matters, as the RCSI method shows a 153 

local maximum for K = 2, while the Monte Carlo p-value does not support this. This is due to the 154 

uneven shape of the PG reference distribution for K = 2, which has positive kurtosis (Supplementary 155 

Fig. 4b). These findings imply results relying just on relative scores or mean comparisons with the 156 

reference can be potentially misleading. 157 

 158 

In agreement with our findings on simulated null data, it was observed that the NMF cophenetic 159 

coefficient has a tendency towards calling K = 2 on real data (Fig. 3a-e). Only in the diffuse glioma 160 

dataset1 did the maximum cophenetic coefficient suggest any other value of K. Although there are 161 

numerous variant decision rules for NMF in use4,5,16, these do not compare against a null 162 

distribution. Instead of taking the most stable consensus matrix (highest cophenetic coefficient) as 163 
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the optimal K, local maxima are often selected4,5. Notably, for the ovarian dataset4 a local maximum 164 

in the NMF cophenetic coefficient was observed at K = 5, which was supported by the M3C decision 165 

in this instance. Additional support was observed for the lung cancer optimal K, as an NMF global 166 

maximum cophenetic coefficient was detected for K = 2, and the M3C p-value also declared this K to 167 

be optimal (p = 0.0018). However, since a tendency in NMF towards K = 2 on null datasets has been 168 

observed in this study, it is unclear how confident we should be in this decision.  169 

 170 

As a final step, we performed t-Distributed Stochastic Neighbor Embedding (t-SNE) on each dataset 171 

then calculated the silhouette width using either the original K or the M3C K to evaluate the relative 172 

strength of the M3C cluster assignments. t-SNE was performed first to reduce dimensionality, 173 

because the silhouette width has been shown to work poorly alone on high dimensional data in 174 

finding the true K14. This analysis demonstrated of the four datasets with differing K decisions to the 175 

original, the M3C decisions were better in three. These findings support the value of M3C’s 176 

reference-based approach to deciding K. 177 

 178 

Table II. Silhouette width of M3C optimal K assignments compared with original K 
decision assignments. Higher values of silhouette width (sil width) correspond to preferable 
clustering. 

 

Dataset Original K Sil width M3C K Sil width  

Glioblastoma3 4 0.28 4 0.28  

Ovarian carcinoma4 4 0.30 5 0.27  

Lung cancer5 4 0.26 2 0.27  

Diffuse glioma1 4 0.041 8 0.18  

Pheochromocytoma2 4 0.20 6 0.23  

 179 

 180 

 181 

 182 
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M3C demonstrates good performance in finding K on simulated data 183 

Next, we sought to evaluate the performance of M3C on simulated data from K = 2 to K = 6 and 184 

compare its performance to existing algorithms. In these tests, we varied the clusterlab alpha 185 

parameter, which controls the distance between the clusters, and used algorithms which were able 186 

to detect the true K from further apart cluster conditions (alpha = 2) to closer ones (alpha = 1) (Fig. 187 

4a,b). Typically, in genome wide analyses many clusters will be overlapping and hard to distinguish 188 

from one another. Therefore, sensitivity under these conditions is very valuable. This analysis found 189 

that M3C using the RCSI score performed better than consensus clustering with the PAC score, M3C 190 

using p-values, the GAP-statistic, CLEST, the original consensus clustering with the delta K score, 191 

NMF, and progeny clustering. Notably, while M3C with the RCSI score was approximately 10% higher 192 

in accuracy than M3C with p-values, the GAP-statistic, and consensus clustering with PAC, these 193 

three methods performed similarly, within 4% of one another. CLEST was also a good performer in 194 

this analysis. Overall, these simulations reinforce our findings on real data that M3C performs better 195 

than other state-of-the-art methods. 196 

 197 

M3C can deal with complex structures using spectral clustering  198 

The performance of M3C is dependent on underlying clustering algorithm. Although k-means and 199 

PAM perform well on the types of data generally encountered in genome-wide studies, they assume 200 

the clusters are approximately spherical and equal in variance, which may not be true. Spectral 201 

clustering is a widely applied technique due to its ability to cope with a broad range of structures17. 202 

Therefore, to increase the capabilities of the M3C software package, it includes self-tuning spectral 203 

clustering18. We tested spectral clustering as M3C’s inner algorithm versus PAM and k-means on two 204 

synthetic datasets, one where the clusters were anisotropic (Fig. 5a), and a second where one 205 

cluster had a far smaller variance than its neighbouring cluster (Fig. 5b). Under these conditions, it 206 

was observed that M3C using PAM and k-means both had problems identifying the true K and 207 
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classifying the members of each cluster correctly. On the other hand, M3C using spectral clustering 208 

did not suffer these drawbacks. Using spectral clustering, M3C is also capable of recognising more 209 

complex non-Gaussian shapes, such as half-moons and concentric circles (Supplementary Fig. 6). The 210 

addition of spectral clustering to the M3C software package allows greater flexibility in the range of 211 

structures that may be examined. 212 

 213 

M3C can quantify structural relationships between consensus clusters 214 

An important question when the optimal K has been decided is, how do the discovered clusters 215 

relate to one another? Inherently, consensus clustering does not distinguish between flat versus 216 

hierarchical structure. To solve this, M3C performs hierarchical clustering on the medoids of each 217 

consensus cluster. To make the analysis statistically principled, M3C iteratively performs the SigClust 218 

method19 on each pair of consensus clusters, then displays the pairwise p-values for each split of the 219 

dendrogram. Testing M3C on the PG dataset revealed a hierarchical relationship between the six 220 

clusters (Fig. 6a), with, for example, consensus clusters one and two grouping together (p = 1.2x10-221 

80). In contrast, testing M3C on a null dataset without clusters demonstrated insignificant SigClust p-222 

values and a flat dendrogram (Fig. 6b). The addition of a hierarchical clustering stage after choosing 223 

the optimal K should prove helpful in identifying structural relationships. 224 

 225 

Sensitivity and complexity analysis of M3C 226 

As a final step, we decided to evaluate M3C’s internal parameters using the PAM algorithm, 227 

compare its runtimes with other methods, and calculate its complexity. A sensitivity analysis of the 228 

number of inner replications and outer simulations found M3C generally yielded stable results across 229 

six TCGA datasets with 100 inner replications and 100 outer simulations (Supplementary Fig. 7-8). 230 

We executed M3C on five datasets on a high-powered desktop computer using a single thread of an 231 
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Intel i7-5960X CPU @ 3.00GHz with 32GB of RAM. Runtimes ranged between 2-25 minutes, 232 

depending on dimensionality (Fig. 7a). We compared the runtime of M3C with other well performing 233 

methods from our earlier analysis on the same computer with a single thread (Fig. 7b-c). M3C, 234 

CLEST, and the GAP-statistic which all use Monte Carlo simulations as a reference were set to 25 235 

reference iterations for comparative purposes. This analysis demonstrated that consensus clustering 236 

with the PAC score was the fastest method, followed by the GAP-statistic. CLEST and M3C were 237 

slower and similar in runtime for lower N (number of samples), but for N greater than 500, M3C 238 

performed more slowly than CLEST (Fig. 7b).  239 

 240 

The complexity of the M3C algorithm is �����/��, where � is the number of Monte Carlo 241 

simulations, � is the number of consensus clustering resamples, and � is the complexity of the 242 

underlying clustering algorithm (see pseudo-code for M3C in Supplementary Note 1). The C denotes 243 

number of available processors, as M3C can be parallelized due to its independent simulations and 244 

subsampling subroutines. We empirically evaluated M3C’s time complexity as a function of sample 245 

size 	 using the PAM algorithm, which has a complexity of ��	�� . Calculating the slope of the log-246 

log plot yielded an empirical complexity of ��	�.��. This demonstrates that M3C is approximately 247 

quadratic in 	. 248 

 249 

Discussion 250 

 251 

We report the advancement of the Monti consensus clustering algorithm to include a Monte Carlo 252 

simulation driven reference system for estimating the optimal K and testing the null hypothesis K=1, 253 

we call the method M3C. Our investigation into this consensus clustering algorithm demonstrated it 254 

has inherent bias towards higher values of K. These occur due to not considering the reference 255 
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distribution along the range of K when deciding on its value. Although considering these 256 

distributions is a relatively straightforward procedure, as we have demonstrated, it has important 257 

implications. To date, testing of the null hypothesis by TCGA has been conducted by SigClust after 258 

deciding on the value of K using the standard methods2,6,16. SigClust tests the null hypothesis K=1 for 259 

pairs of clusters, but it does not directly estimate K. The advantage of M3C is that it can both find K 260 

and test the null hypothesis K=1. 261 

 262 

Our reanalysis of high-profile stratified medicine studies, predominantly from TCGA1-5,9,16, questions 263 

the value of consensus clustering when used without considering the appropriate reference 264 

distributions. The bias towards higher values of K, coupled with subjective decision making as to 265 

what constitutes the optimal K, similar to the original elbow problem solved by the GAP-statistic11, 266 

may provide misleading results. We identified two cases in the literature where structure had been 267 

declared despite M3C indicating no significant evidence against the null hypothesis. In the case of 268 

the SLE study, seven subtypes were originally declared in a major transcriptomic analysis9. Within 269 

the context of these new findings, it is perhaps better to describe these subtypes as existing within a 270 

noisy spectrum of non-distinct states. This hints that there may be publication bias for positive 271 

declaration of structures. 272 

 273 

It is necessary to remark on the limitations of the approach. The M3C method can allow testing of 274 

the null hypothesis K=1 and mitigate bias. However, this method does not allow, for example, the 275 

formal statistical comparison of selecting K=2 compared with other values of K. The relative 276 

magnitude of the p values can be used to estimate the optimal K by comparing against the null K=1 277 

scenario like using the RCSI, however, this is not formal hypothesis testing. A second limitation is 278 

that M3C is computationally expensive, however, extreme tail estimation and multi-core ability 279 
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mitigate this problem. Finally, just because the p-value or RCSI supports a given K gives no guarantee 280 

the identified clusters or their number will be reproducible in an independent validation dataset. 281 

 282 

Other types of consensus clustering methods include Infinite Ensemble Clustering20 (IEC) and 283 

Entropy-based consensus clustering21 (ECC), which can be used for patient stratification. IEC 284 

incorporates marginalized denoising auto-encoder with dropout noises to generate the expectation 285 

representation for infinite basic partitions. ECC employs an entropy-based utility function to fuse 286 

many basic partitions into a single consensus structure. A future challenge is to systematically 287 

evaluate the performance of a wider range of consensus clustering methods on genome wide 288 

expression data.  289 

 290 

We benchmarked the performance of M3C against a number of alternatives, including: Monti 291 

consensus clustering, the GAP-statistic, progeny clustering, and CLEST. Several cluster validity indices 292 

were not tested, however, such as: the Silhouette index22, the Calinski Harabasz index23, the Jaccard 293 

index24, and the Davies-Bouldin index25. It would be interesting to determine if any of these indices 294 

perform well in determining the optimal K when applied on consensus matrices produced by the 295 

consensus clustering algorithm, our study indicates they will be subject to bias without a reference 296 

procedure. It is also relevant to mention that there are other methods that could be applied to 297 

investigate the significance of dendrogram splits, such as the inheritance procedure26. 298 

 299 

Lastly, it is important to mention the methodological contributions of clusterlab. Clusterlab is a 300 

flexible new method for generating Gaussian clusters. Unlike prior methods14,27,28, it is able to 301 

generate and position Gaussain clusters in a highly customisable manner with specified variance, 302 

spacing, and size. Clusterlab can generate data similar in nature to cancer gene expression datasets, 303 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/377002doi: bioRxiv preprint 

https://doi.org/10.1101/377002
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14 
 

which are typically high-dimensional and Gaussian19. The method should appeal to researchers in a 304 

range of disciplines for testing methods for finding K and clustering algorithms. 305 

 306 

Methods 307 

 308 

M3C. The method uses a Monte Carlo simulation, which generates random data with each iteration, 309 

to repeat the Monti et al. consensus clustering algorithm many times over. Then, the real algorithm 310 

is run just once to compare the real cluster stabilities along the range of K with those expected using 311 

random Gaussian data (K = 1). Pseudo-code is given in Supplementary Note 1. This gives a new 312 

method for choosing K after consensus clustering that removes bias towards high values of K and 313 

allows one to statistically test for the presence of structure. The specific details are now given. 314 

Simulation of the reference dataset. There are a range of options for the generation of reference 315 

datasets in M3C’s Monte Carlo simulation. We use an approach first proposed by Tibshirani et al., 316 

which preserves covariance structure via principal component analysis (PCA). With an input matrix, 317 

� � ��� we can compute the input data’s eigenvector matrix � � ��� and its principal component 318 

score matrix, � � ���, where � is the number of features in the provided matrix, and � is the 319 

number of samples. The steps taken to generate random data are repeated � � 1 … � times: 320 

1. Conduct PCA to obtain the orthogonal matrix of eigenvectors, � of the input data �: 321 

���� � ���� � ����     (1) 322 

 323 

2. Next, a random PC score matrix is generated, �� � ���, where the �th column is filled with 324 

random values from a normal distribution with mean zero and standard deviation equal to 325 

the �th column in �. Let, ��  be the standard deviation of ���  and for � � 1 … �: 326 

 327 
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����~	�0, ���     (2) 328 

 329 

3. Multiplying �� with the transpose of � yields �� � ���, a single simulated null dataset 330 

with the same feature correlation structure as �, but without clusters. 331 

 332 

����� �  ����� � �����      (3) 333 

Steps 1-3 are repeated by M3C for each Monte Carlo reference simulation for � � 1 … �, and for the 334 

�th simulation one random dataset, �� is passed into the consensus clustering algorithm (described 335 

below) to calculate null reference stability scores for � � 2, … , � !�. After � simulations, the 336 

consensus clustering algorithm is run just once on the input data for comparison using procedures 337 

we will go on to detail. M3C is set to use � � 100 and this was the parameter setting used for the 338 

simulations in this study. 339 

Consensus clustering. The Monti et al. consensus clustering algorithm subsamples the input data 340 

sample-wise, � times, and with each resampling iteration clusters the perturbed dataset using a 341 

user defined inner clustering algorithm (e.g., PAM) for each value of �. It then measures the stability 342 

of the sample cluster assignments over all resampling iterations to decide �. M3C includes PAM, k-343 

means, and spectral clustering as options, with PAM set by default due to its superior speed. Let, 344 

�	
�, �	��, … , �	�� be the list of � perturbed datasets, and let "	� � #0,1$ ��� be the connectivity 345 

matrix resulting from clustering dataset �	�, the entries of "	� are then defined as: 346 

"	���, %� � &1 if samples i and j are in the same cluster
0 otherwise 9     (4) 347 

To keep count of the number of times samples � and % are resampled together in the perturbed 348 

dataset �	� an indicator matrix :	� � #0,1$ ���  is defined: 349 

:	���, %� � ;1 if samples i and j are in dataset �	�

0 otherwise
9     (5) 350 
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The consensus matrix, " � <0,1=��� , is defined as the normalised sum of all the connectivity 351 

matrices of all � perturbed datasets: 352 

"��, %� �  ∑ ����	�,���
���

∑ ����	�,���
���

     (6) 353 

The entry ��, %�, or consensus index, is the number of times that two samples cluster together 354 

divided by the total number of times they were sampled together across all the perturbed datasets. 355 

A value of 1 would correspond to a perfect score as the two samples are always found in the same 356 

cluster across all resampling runs, while a value of 0 would correspond to the worst score as the two 357 

samples never are found in the same cluster. A consensus matrix is generated for every value of � 358 

and then the stability of each matrix quantified using an empirical cumulative distribution (CDF) plot. 359 

For any given consensus matrix ", the CDF is calculated and is defined over the range <0,1= as 360 

follows: 361 

����>� �  ∑ 
��	�,�������	

�	��
�/�
     (7) 362 

Where 1#… $ denotes the indicator function, "��, %�, denotes entry ��, %� of the consensus matrix ", 363 

	 is the number of rows (and columns) of ", and > is the consensus index value. 364 

Calculation of the PAC score. The CDF plot has consensus index values on the x axis and CDF values 365 

on the y axis. A perfectly stable cluster solution will have a flat CDF plot representing a matrix purely 366 

of 0s and 1s, therefore the degree of CDF flatness for each � is a measure of the stability of �. To 367 

quantify this, M3C uses the PAC score, a metric shown to perform well in simulations14. PAC is 368 

defined as the fraction of sample pairs with consensus index values falling in the intermediate sub-369 

interval �!
 , !�� � <0,1=. For a given value of �, ����>� corresponds to the fraction of sample pairs 370 

with consensus index values less than or equal to > and PAC is defined as: 371 

?����!
 , !�� �  �����!�� @ �����!
�     (8) 372 
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M3C calculates the PAC score with !
 � 0.1 and !� � 0.9. Although the PAC window is a user 373 

defined parameter, we have found these settings to perform well in our experience. 374 

Calculation of the RCSI. To account for the reference PAC scores from � � 1 … �, where � is the 375 

total number of Monte Carlo simulations, M3C uses the RCSI. Let, ?CDE��  be the reference PAC 376 

score from the �th Monte Carlo simulation for a given �, and, ?CD F�  the real PAC score for that �, 377 

then the G��:�  is defined as: 378 

G��:� �  log
� I

�

∑ ?CDE���
��
 K @ log
��?CD F��     (9) 379 

Calculation of the Monte Carlo p value. To improve the selection of the optimal �, M3C derives 380 

Monte Carlo p values by testing the real PAC score for each � against the null PAC distribution, 381 

generated using simulated structureless data. Let L�  be the number of observed PAC scores in the 382 

reference less than or equal to the real PAC score, let � be the total number of Monte Carlo 383 

simulations, and the p value for that value of K, ?�  is then defined as:  384 

?� � �
�


��

     (10) 385 

Where 1 is added the numerator and denominator to avoid p values of zero29. 386 

Interpretation of the p-values. For each � the method will test the null hypothesis �� that the PAC 387 

score, ?CD F� , came from a single Gaussian cluster (� � 1) versus the alternative hypothesis �  388 

that ?CD F�  did not come from a single Gaussian cluster (� M 1). If a p value for a � reaches 389 

significance (alpha=0.05) it should be viewed as evidence that the data is not a single Gaussian 390 

cluster. If no p values along the range of � reaches significance (alpha=0.05) it should be viewed as 391 

evidence that the data is a single Gaussian cluster. The relative significance of the p-values can be 392 

used to suggest the most preferable �, although we caution that the method does not formally test 393 

the selection of one value of � versus another.  394 
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Calculation of the beta distribution p-value. To estimate p-values beyond the range of the Monte 395 

Carlo simulation, M3C fits a beta distribution. This distribution is more flexible than the normal 396 

alternative, which is especially helpful when K = 2, which tends to result in null distributions with 397 

nonzero skew and kurtosis. Moreover, the PAC score is bound on the interval <0,1=, as is the beta 398 

distribution, providing the correct range for computation. The N and O shape parameters required 399 

for the beta distribution are derived using maximum likelihood estimates for the mean, P, and 400 

variance, Q�, of the reference PAC scores for any given K: 401 

P � 



�
∑ ?CDE�!�
!�
      (11) 402 

Q� �  

�

�∑ ?CDE�!�
!�
 @ P��     (12) 403 

N �  I
�"
#�

@ 


"
K P�     (13) 404 

O �  N I

"

@ 1K     (14) 405 

These N and O shape parameters are then used by M3C to generate the reference distribution for K. 406 

The real PAC score is used as a test statistic for derivation of the estimated p value. Let ! denote the 407 

reference PAC score. Then the beta probability density function (PDF) is defined as: 408 

?���!� � $��	
�$���

%	&,%�
     (15) 409 

Simulating NXN dimensional Gaussian clusters in a precise manner. We found that current 410 

Gaussian cluster simulation methods were inadequate for systematic testing of M3C. MixSim27, 411 

generates Gaussian clusters, however, it is not possible to precisely control their positioning. The 412 

Python scikit-learn machine learning module contains a Gaussian cluster simulator, but it generates 413 

clusters randomly and controlled positioning is not possible. Another method allows controlled 414 

spacing14, but does not generate Gaussian clusters, instead the clusters resemble triangular slices 415 

and the variance and size cannot be set. Therefore, we developed clusterlab (https://cran.r-416 

project.org/web/packages/clusterlab/index.html). Clusterlab is a novel method that allows 417 
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simulation of Gaussian clusters with controlled spacing, size, and variance. It works by generating 418 

cluster centres or points on the circumference of a circle in 2D space because this is easier to work in 419 

mathematically than higher dimensional space. The specific details are now given. 420 

Generating evenly spaced points on the perimeter of a circle. To control the spacing, size, and 421 

variance of synthetic clusters, clusterlab works within a 2D Cartesian coordinate system with an 422 

origin at �0,0�. First, the algorithm generates a set � � #R� � � , � � 1, … S$ of S evenly spaced 423 

pairs of coordinates, where R� � �!� , T��, on the perimeter of a circle. Each of these coordinates 424 

later will be the centre of a Gaussian cluster, therefore, S is also the number of clusters to be 425 

generated. Let, C be the radius of the circle, then, for the �th cluster centre from � � 1 … S we need 426 

to set � � 0 for the first cluster centre, so for � � 0 … S @ 1, the coordinate pairs are calculated as 427 

follows: 428 

!� � cos �'
(·�

C     (21) 429 

 T� � sin �'

(·�
C     (22) 430 

This naturally leaves the C parameter as a means of controlling the spacing of the cluster centres. 431 

However, at this point, we also introduce an additional parameter for moving the �th cluster centre, 432 

N� . N�  is a scalar that can be used to push each coordinate pair (or vector) away from its starting 433 

point, yielding the transformed coordinates �!�*, T�*�. In the case of a cluster being left stationary, 434 

N� � 1. More specifically, for all pairs in set �, from � � 1 … S: 435 

�!�*, T�*� � N��!� , T��     (23) 436 

We also leave the option to add a final coordinate to � at (0,0), to allow a central cluster within the 437 

middle of the ring to be generated later. 438 

Generation of more complex multi-ringed structures. As an optional next step to extend the single 439 

ring system, clusterlab can create multiple rings or concentric circles of 2D coordinates. After 440 

simulating the Uth ring, as described above, from U � 1 … �, the Uth rings 2D coordinates are 441 
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pushed away from the origin using vector multiplication with a scalar, let this scalar be O+, let the 442 

newly transformed coordinates be �!�**, T�**�, and so for � � 1 … S: 443 

�!�**, T�**� � O+�!�*, T�*� (24) 444 

Our new total number of samples, �, will be, � � S � �. With each iteration from U � 1 … �, the �th 445 

transformed coordinates, V� � �!�**, T�**�, are added to a new set, G � #V� � �, � � 1, … �$. 446 

Optionally, another layer of complexity may be added by using vector rotations of the Uth rings 447 

coordinate pairs from � � 1 … S, by setting W+ M 0 in the following equation. To calculate each of 448 

the rings new coordinates �!�***, T�***� from � � 1 … S, the following calculation is performed for every 449 

pair:  450 

!�*** � !�** cosXW+Y @ T�** sin�W+�     (25) 451 

T�*** � !�** sin�W+� Z T�** cos�W+�     (26) 452 

Generation of Gaussian clusters. At this point we will assume that multiple rings have not been 453 

generated and we are working with, �, a set of �!�*, T�*� coordinates described by equation 23. 454 

However, the method that generates the Gaussian cluster multi-ringed system is identical to the 455 

single ringed system described below, except we start with the multiplied �!�**, T�**� or multiplied and 456 

rotated set of �!�***, T�***� points from the multi ring 2D coordinate set, G.  457 

To form S Gaussian clusters of size "�  per cluster, we add Gaussian noise from a normal 458 

distribution, 	�0, ���, to the �th pair of cluster centre 2D coordinates, [� � �!�*, T�*�, to create the 459 

new coordinates, \� � X!� , T�Y. Performing this "�  times for each cluster centre, giving a total of 460 

] � ∑ "�
,
��
   coordinate pairs, yields the final set, ^ � #\� � �, � � 1, … ]$. The number of samples 461 

in each cluster may be set by varying "�, and the clusters variance, by setting �� . The new 462 

coordinate pairs, X!� , T�Y, to be added to, ^, for all samples are calculated as follows: 463 

X!� , T�Y � �!�* Z 	�0, ���, T�* Z 	�0, ����    (27) 464 
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Projection of the final 2D coordinates into N dimensions. We transform the cluster sample 465 

coordinates into 	 dimensions with a previously explained method which uses a reverse PCA14. First, 466 

two random vectors are generated of length _, where _ will equal the number of features in the 467 

final matrix, from a normal distribution 	�0,0.1�, let these be `
 and `�. The SD of 0.1 was chosen 468 

empirically after examination of the scale of the simulated PC plots compared to those from real 469 

expression datasets. The `
 and `� vectors are treated as fixed eigenvectors in this method, and 470 

each of our previously simulated coordinate pairs are treated as 2D PC scores. The final matrix, 471 

� � ,�-, comprised of ] rows (samples) and _ columns (features), is formed by linear 472 

combinations of the fixed eigenvectors with the pairs of PC scores. Let, !�  and T� be the PC scores of 473 

the �th sample, from � � 1 . . . ] from set ^, then the �th row of the output matrix � is given by: 474 

��� � !� � `
 Z T� � `�    (28) 475 

Non-Gaussian structures. For generating structures used in the spectral clustering analysis, the CRAN 476 

clusterSim package version 0.47 was used30. For the anisotropic and unequal variance clusters, 90 477 

samples were simulated with two dimensions with the cluster.Gen function using the default 478 

settings. For the half-moon clusters, the shapes.two.moon function was used with 90 samples, and 479 

for the concentric circles the shapes.two.circles function was used with 180 samples, both using 480 

default settings. The sample number was increased in the latter to prevent gaps forming in the 481 

concentric circles. 482 

 483 

Real test datasets. All test datasets, apart from the SLE dataset, were already normalised and 484 

downloaded directly through TCGA publication page (https://tcga-485 

data.nci.nih.gov/docs/publications/) during the period of April to June 2017, further details are 486 

provided in Supplementary Table 1. We chose RNA-seq or microarray data from the TCGA where the 487 

data was already normalised. The diffuse glioma (DG) dataset is a RNA-seq matrix consisting of 2266 488 

features and 667 samples1 (https://tcga-data.nci.nih.gov/docs/publications/lgggbm_2015/LGG-489 
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GBM.gene_expression.normalized.txt). The GBM dataset, is a microarray matrix consisting of 1740 490 

features and 206 samples3 (https://tcga-491 

data.nci.nih.gov/docs/publications/gbm_exp/unifiedScaledFiltered.txt), the feature list used was 492 

taken from a later publication on the same dataset6. The lung cancer (LC) dataset5 used was a RNA-493 

seq matrix consisting of 178 samples and 2257 features (https://tcga-494 

data.nci.nih.gov/docs/publications/lusc_2012/gaf.gene.rpkm.20111213.csv.zip), the feature list used 495 

to filter this dataset was from an earlier publication where four subtypes had been identified 496 

(http://cancer.unc.edu/nhayes/publications/scc/wilkerson.scc.tgz). The paraganglioma (PG) dataset 497 

downloaded was a RNA-seq matrix consisting of 173 samples and 3000 features (https://tcga-498 

data.nci.nih.gov/docs/publications/pcpg_2017/PCPG_mRNA_expression_naRM.log2.csv.zip), the 499 

gene wise filtering scheme used was the same as described as in the corresponding publication2. The 500 

ovarian cancer (OV) dataset4 was a RNA-seq matrix of 489 samples and 800 features (https://tcga-501 

data.nci.nih.gov/docs/publications/ov_2011/TCGA_489_UE.zip), and the gene list used for 502 

subsequent filtering was obtained from an earlier publication that detected four subtypes31. The SLE 503 

dataset9 used was a microarray matrix of 82 samples and 48 features, the data was obtained from 504 

GEO (GSE65391), normalised, and filtered in the manner described in the associated publication. 505 

 506 
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 588 

Figure 1. Bias in the estimation of K using Monti and NMF consensus clustering. (A) A PCA plot of a 589 

simulated null dataset where only one cluster should be declared. (B) Monti consensus clustering 590 

yields a CDF plot implying improved stability with increased K. (C) The PAC score to measure the 591 

stability of K decreases with its value, demonstrating a strong preference towards estimating higher 592 

optimal values of K. (C) NMF consensus clustering yields a cophenetic coefficient plot which implies 593 

lower values of K are preferable using this method.  594 

 595 

Figure 2. Overview of the M3C method and an initial demonstration. (A) A schematic of the M3C 596 

method and software. After exploratory PCA to investigate structure, the M3C function may be run 597 

which includes two functions; M3C-ref and M3C-real. The M3C-ref function runs consensus 598 

clustering with simulated random data sets that maintain the same gene-gene correlation structure 599 

of the input data. While, the M3C-real function runs the same algorithm for the input data. 600 

Afterwards, the relative cluster stability index (RCSI), Monte Carlo p values, and beta p values are 601 

calculated. Structural relationships are then analysed using hierarchical clustering of the consensus 602 

cluster medoids with SigClust to calculate significance of the dendrogram branch points. (B) Results 603 

from running M3C on a simulated null dataset, it can be clearly seen that the p values do not reach 604 

significance along the range of K, therefore the correct result is suggested, K=1. (C) Results from 605 

running M3C on a simulated dataset where four clusters are found, the correct decision is made by 606 

M3C. (D) Using M3C, a systemic lupus erythematosus dataset was detected with no significant 607 

evidence of structure. (E) Similarly, a breast cancer dataset was identified with no significant 608 

evidence of structure. 609 

 610 
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Figure 3. Further evidence of bias existing in widely applied consensus clustering algorithms. (A) 611 

Results from running M3C on a glioblastoma dataset3 found the optimal K was four. Consensus 612 

clustering using the PAC-score shows an optimal K of ten, and NMF of two. (B) Results from running 613 

M3C on an ovarian cancer dataset4 found the optimal K was five. Consensus clustering using the 614 

PAC-score shows an optimal K of two, and NMF also of two. (C) Results from running M3C on a lung 615 

cancer dataset32 found the optimal K was two. Consensus clustering using the PAC-score shows an 616 

optimal K of two, and NMF also of two. (D) Results from running M3C on a diffuse glioma dataset1 617 

found the optimal K was eight. Consensus clustering using the PAC-score shows an optimal K of ten, 618 

and NMF of four. (E) Results from running M3C on a paraganglioma dataset2 found the optimal K 619 

was six. Consensus clustering using the PAC-score shows an optimal K of ten, and NMF of two. It can 620 

be observed, consensus clustering using the PAC-score and NMF both tend towards K=10 or K=2, 621 

respectively, on real data. 622 

 623 

Figure 4. M3C demonstrates good performance in finding K on simulated data. (A) A sensitivity 624 

analysis was conducted for every algorithm for K=2 to K=6 while varying the alpha parameter of 625 

clusterlab (degree of Gaussian cluster separation). Accuracy was calculated as the fraction of correct 626 

optimal K decisions, and for each alpha, with 25 iterations performed at each step. CC(original) 627 

refers to the Monti et al. (2003) consensus clustering method, GAP-STAT refer to the GAP-statistic, 628 

CC(PAC) refers to consensus clustering with the PAC-score. (B) Performance was calculated across 629 

the range of K tested for each algorithm as the mean accuracy.  630 

 631 

Figure 5. M3C uses spectral clustering to deal with complex structures. (A) Results from running 632 

M3C using either spectral, PAM, or k-means clustering on anisotropic structures. The results for K=2 633 

for each inner algorithm are shown in all cases, in the corner of the plots are the optimal K decisions 634 
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using the RCSI. (B) Similarly, results from testing different internal algorithms on structures of 635 

unequal variance.  636 

 637 

Figure 6. M3C can investigate structural relationships between consensus clusters. M3C calculates 638 

the medoids of each consensus cluster, then hierarchical clustering is performed on these, SigClust is 639 

run to detect the significance of each branch point. (A) Results from M3C structural analysis of the 640 

six clusters obtained from the paraganglioma dataset analysis2, all p values were strongly significant, 641 

supporting the M3C decision of the declaration of structure. (B) Results from the same analysis run 642 

on a simulated null dataset of the same dimensions, no p values were significant. 643 

 644 

Figure 7. M3C can perform quickly across a range of datasets. (A) M3C runtimes (in minutes) for 645 

five datasets used in the analysis. Performance was measured on an Intel Core i7-5960X CPU running 646 

at 3.00GHz using a single thread with 32GB of RAM. M3C was run using 25 outer Monte Carlo 647 

simulations and 100 inner iterations using the PAM algorithm. (B) M3C and other method runtimes 648 

in minutes for a series of simulated datasets with the number of samples (N) ranging from 100-1000 649 

for datasets of 1000 features. CLEST and the GAP-statistic, which also use a Monte Carlo reference 650 

procedure, were set to run with 25 Monte Carlo simulations, the same as M3C for comparison. (C) 651 

Log-log plot of the same data shown in B. 652 
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