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ERROR ANALYSIS OF FINITE ELEMENT APPROXIMATIONS OF
DIFFUSION COEFFICIENT IDENTIFICATION FOR ELLIPTIC AND

PARABOLIC PROBLEMS\ast 

BANGTI JIN\dagger AND ZHI ZHOU\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this work, we present a novel error analysis for recovering a spatially dependent
diffusion coefficient in an elliptic or parabolic problem. It is based on the standard regularized output
least-squares formulation with an H1(\Omega ) seminorm penalty and then discretized using the Galerkin
finite element method with conforming piecewise linear finite elements for both state and coefficient
and backward Euler in time in the parabolic case. We derive a priori weighted L2(\Omega ) estimates where
the constants depend only on the given problem data for both elliptic and parabolic cases. Further,
these estimates also allow deriving standard L2(\Omega ) error estimates under a positivity condition that
can be verified for certain problem data. Numerical experiments are provided to complement the
error analysis.
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regularization
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1. Introduction. This work is concerned with error analysis of Galerkin ap-
proximations of regularized formulations for recovering a spatially dependent diffusion
coefficient q for elliptic and parabolic problems. Let \Omega \subset \BbbR d (d = 1, 2, 3) be a convex
polyhedral domain with a boundary \partial \Omega . Consider the following elliptic boundary
value problem:

(1.1)

\Biggl\{ 
 - \nabla \cdot (q\nabla u) = f in \Omega ,

u = 0 on \partial \Omega ,

where the function f denotes a given source term. The solution to problem (1.1) is
denoted by u(q) to indicate its dependence on the coefficient q. The inverse problem
is to recover the exact diffusion coefficient q\dagger (x) from the pointwise observation z\delta ,
with a noise level \delta , i.e.,

(1.2) \| z\delta  - u(q\dagger )\| L2(\Omega ) \leq \delta .

Throughout, the diffusion coefficient q is sought within the admissible set \scrA , defined
by

(1.3) \scrA = \{ q \in H1(\Omega ) : c0 \leq q \leq c1 a.e. in \Omega \} 

for some positive constants c0, c1 > 0.
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120 BANGTI JIN AND ZHI ZHOU

Problem (1.1) is the steady state of the following parabolic initial-boundary value
problem:

(1.4)

\left\{     
\partial tu - \nabla \cdot (q\nabla u) = f in \Omega \times (0, T ],

u(0) = u0 in \Omega ,

u = 0 on \partial \Omega \times (0, T ],

where T > 0 is the final time. The functions f and u0 are the given source term and
initial condition, respectively. The corresponding inverse problem is to recover the
spatially dependent diffusion coefficient q\dagger (x) from the distributed observation z\delta over
\Omega \times (T  - \sigma , T ) (for some measurement window 0 \leq \sigma < T ), with a noise level \delta , i.e.,

(1.5) \| z\delta  - u(q\dagger )\| L2(T - \sigma ,T ;L2(\Omega )) \leq \delta .

The elliptic problem (1.1) and parabolic problem (1.4) describe many important physi-
cal processes, and the related inverse problems are exemplary for parameter identifica-
tions for PDEs (see the monographs [6, 22] for overviews). For example, (1.1) is often
used to model the behavior of a confined inhomogeneous aquifer, where u represents
the piezometric head, f is the recharge, and q is hydraulic conductivity (or transmissiv-
ity in the two-dimensional case); see [18, 36] for parameter identifications in hydrology.
See also [5] for related coupled-physics inverse problems arising in medical imaging.

Due to the ill-posed nature of inverse problems, regularization, especially Tikhonov
regularization, is customarily employed for constructing numerical approximations
(see, e.g., [13, 23]). Commonly used stabilizing terms include H1(\Omega ) and total vari-
ation seminorms, which are suitable for recovering smooth and nonsmooth diffusion
coefficients, respectively. The well-posedness and convergence (with respect to the
noise level) was studied [1, 9, 20, 29], and, further, convergence rates (with respect
to \delta ) were derived under various ``source"" conditions, e.g., variational inequalities
or conditional stability estimates [27]. In practice, the regularized formulations are
further discretized, often with the Galerkin finite element method (FEM), due to its
flexibility with domain geometry and low-regularity problem data. The discretization
step necessarily introduces additional errors which impact the reconstruction qual-
ity. Several studies [20, 27, 37] have analyzed the convergence with respect to the
discretization parameter(s), e.g., mesh size h and time step size \tau , but without error
bounds.

So far, only very few results were available on error bounds of approximate so-
lutions. This is attributed to strong nonlinearity of the forward (parameter-to-state)
map, low regularity of noisy data z\delta , and delicate interplay between different parame-
ters, (noise level, regularization parameter, and discretization parameters). Falk [16]
analyzed a Galerkin discretization of the standard output least-squares formulation
for the elliptic inverse problem (with a Neumann boundary condition) and derived a
rate O(hr + h - 2\delta ) in the L2(\Omega ) norm, where r is the polynomial degree of the finite
element space and h is the mesh size. This result is derived by assuming sufficiently
high regularity of the coefficient q\dagger and a certain structural condition on the gradient
field; see details in Remark 3.2. In the elliptic case, there are also several results
for other discrete formulations: [32] for upwind finite difference approximation of a
transport equation (without noise), [3, 26] for the equation error approach (EEA)
(the fidelity in the negative H1(\Omega ) norm and H1(\Omega ) penalty), and [28] for the EEA
in a mixed formulation. However, no regularization was taken into account in the
works [16, 28, 32], and thus the corresponding discrete formulations can suffer from
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DIFFUSION COEFFICIENT IDENTIFICATION 121

numerical instability. The EEA works only with the case z\delta \in H1(\Omega ), and so is the er-
ror analysis. For the regularized problem, Wang and Zou [35] derived first convergence
rates (in weighted norms) for both elliptic and parabolic cases (equipped with a zero
Neumann boundary condition) with either pointwise or gradient observations. In the

elliptic case, the analysis employs the test function \varphi =
q\dagger  - q\ast h

q\dagger 
e - 2\alpha 0c

 - 1
0 u(q\dagger ) (with q\ast h

being a discrete minimizer, \alpha 0 a parameter in the structural condition; cf. Remark 3.2
and c0 lower bound on q\dagger ) and assumes regularity on both state u and coefficient q\dagger ; in
the parabolic case, it requires a more involved test function. However, no estimate in
the usual L2(\Omega ) was given, and, further, the analysis in the parabolic case requires the
measurement in the entire time interval (0, T ). Deckelnick and Hinze [10] studied the
elliptic inverse problem of recovering matrix valued coefficients using the L2(\Omega ) pen-
alty in theH-convergence framework and in the two-dimensional case proved an L2(\Omega )

estimate O(\delta 
1
2 ), where the coefficient q is discretized using variational discretization.

The estimate was derived under a projected source condition.
In this work, we present a novel approach to derive convergence rates for the stan-

dard regularized output least-squares formulation discretized by Galerkin FEM. The

approach employs the test function \varphi =
q\dagger  - q\ast h

q\dagger 
u(q\dagger ) for both elliptic and parabolic

cases, inspired by the recent work [7] (on the H\"older stability of the elliptic inverse
problems). It enables us to derive convergence rates in a new weighted L2(\Omega ) norm
for both elliptic and parabolic cases, extending the prior result for the time-fractional
diffusion equation [25]. Further, we derive estimates in the usual L2(\Omega ) norm, under
suitable positivity conditions, which hold for a class of problem data. In the par-
abolic case, we relax the restriction in [35] (and also [25]) on the time horizon for
the measurement from [0, T ] to a subinterval [T  - \sigma , T ] for any 0 \leq \sigma < T and the
regularity assumption on the true coefficient q\dagger from W 2,\infty (\Omega ) to W 1,\infty (\Omega )\cap H2(\Omega ).
This former is achieved by a new weighting in the time direction and the latter by
discrete maximal Lp regularity for parabolic problems. In the course of error analysis,
no regularity assumption is made on the state u and no additional temporal regular-
ity on the observation z\delta than L2(T  - \sigma , T ;L2(\Omega )), and, furthermore, no source type
condition is imposed, as is usually done for parameter identifications [14, 27]. To the
best of our knowledge, they are first error estimates of the kind for the concerned
inverse conductivity problems.

The rest of the paper is organized as follows. In section 2, we describe useful facts
about the Galerkin FEM. Then in sections 3 and 4, we describe and analyze the finite
element approximations for the elliptic and parabolic inverse problems, respectively.
Finally, in section 5, we present numerical results to complement the analysis. We
conclude with useful notation. For any k \geq 0 and p \geq 1, the space W k,p(\Omega ) denotes
the standard Sobolev spaces of the kth order, and we write Hk(\Omega ), when p = 2 [2].
The notation (\cdot , \cdot ) denotes the L2(\Omega ) inner product. For the analysis of parabolic
problems, we use the Bochner spacesW k,p(0, T ;B) etc., with B being a Banach space.
Throughout, the notation c, with or without a subscript, denotes a generic constant
which may change at each occurrence, but it is always independent of the following
parameters: regularization parameter \gamma , mesh size h, time step size \tau , and noise level \delta .

2. Finite element approximations. Now we recall briefly the Galerkin FEM
approximation. Let \scrT h be a shape regular quasi-uniform triangulation of the domain
\Omega into d-simplexes, denoted by T , with a mesh size h. Over \scrT h, we define a continuous
piecewise linear finite element space Xh by

Xh =
\bigl\{ 
vh \in H1

0 (\Omega ) : vh| T is a linear function \forall T \in \scrT h
\bigr\} 

D
ow

nl
oa

de
d 

01
/1

9/
21

 to
 1

93
.6

0.
23

8.
99

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

122 BANGTI JIN AND ZHI ZHOU

and similarly the space Vh by

Vh =
\bigl\{ 
vh \in H1(\Omega ) : vh| T is a linear function \forall T \in \scrT h

\bigr\} 
.

The spaces Xh and Vh will be employed to approximate the state u and the diffusion
coefficient q, respectively. First, we introduce useful operators on Xh and Vh. We
define the L2(\Omega ) projection Ph : L2(\Omega ) \rightarrow Xh by

(Ph\varphi , \chi ) = (\varphi , \chi ) \forall \chi \in Xh.

Note that the operator Ph satisfies the following error estimates [34, p. 32]: For any
s \in [1, 2],

(2.1) \| Ph\varphi  - \varphi \| L2(\Omega ) + h\| \nabla (Ph\varphi  - \varphi )\| L2(\Omega ) \leq hs\| \varphi \| Hs(\Omega ) \forall \varphi \in Hs(\Omega ) \cap H1
0 (\Omega ).

Let \scrI h be the Lagrange interpolation operator associated with the finite element space
Vh. Then it satisfies the following error estimates for s = 1, 2 and 1 \leq p \leq \infty (with
sp > d) [15, Theorem 1.103]:

\| v  - \scrI hv\| Lp(\Omega ) + h\| v  - \scrI hv\| W 1,p(\Omega ) \leq chs\| v\| W s,p(\Omega ) \forall v \in W s,p(\Omega ).(2.2)

Further, for any q, we define a discrete operator Ah(q) : Xh \rightarrow Xh by

(2.3) (Ah(q)vh, \chi ) = (q\nabla vh,\nabla \chi ) \forall vh, \chi \in Xh.

3. Elliptic case. In this section, we derive error estimates for the elliptic inverse
problem.

3.1. Finite element approximation. First, we describe the regularized for-
mulation and its finite element approximation. To recover the diffusion coefficient q
in the elliptic system (1.1), we employ the standard output least-squares formulation
with an H1(\Omega ) seminorm penalty,

(3.1) min
q\in \scrA 

J\gamma (q) =
1

2
\| u(q) - z\delta \| 2L2(\Omega ) +

\gamma 

2
\| \nabla q\| 2L2(\Omega ),

where the admissible set \scrA is defined by (1.3) and u(q) \in H1
0 (\Omega ) satisfies the varia-

tional problem

(3.2) (q\nabla u(q),\nabla v) = (f, v) \forall v \in H1
0 (\Omega ).

The H1(\Omega ) seminorm penalty is suitable for recovering a smooth diffusion coef-
ficient. The scalar \gamma > 0 is the regularization parameter, controlling the strength of
the penalty [23]. Using standard argument in calculus of variation, it can be verified
that for every \gamma > 0, problem (3.1)--(3.2) has at least one global minimizer q\ast , and,
further, the sequence of minimizers converges subsequentially in H1(\Omega ) to a mini-
mum seminorm solution as the noise level \delta tends to zero provided that \gamma is chosen
appropriately in accordance with \delta , i.e., lim\delta \rightarrow 0+ \gamma (\delta )

 - 1\delta 2 = lim\delta \rightarrow 0+ \gamma (\delta ) = 0; see,
e.g., [14, 23]. In this work, we focus on the a priori choice \gamma \sim \delta 2 (cf. Remark 3.3
below), which is generally sufficient to ensure the noise level condition (1.2). In prac-
tice, one may also employ a posteriori rules. One popular choice is the discrepancy
principle [23, 31]: Given some \tau > 1, it determines the largest \gamma > 0 such that

\| u(q\ast ) - z\delta \| L2(\Omega ) \leq \tau \delta ,

in line with the a priori knowledge (1.2).
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DIFFUSION COEFFICIENT IDENTIFICATION 123

Now we can formulate the finite element discretization of problem (3.1)--(3.2),

(3.3) min
qh\in \scrA h

J\gamma ,h(qh) =
1

2
\| uh(qh) - z\delta \| 2L2(\Omega ) +

\gamma 

2
\| \nabla qh\| 2L2(\Omega ),

subject to qh \in \scrA h and uh(qh) satisfying

(qh\nabla uh(qh),\nabla vh) = (f, vh) \forall vh \in Xh.(3.4)

The discrete admissible set \scrA h is taken to be

(3.5) \scrA h := \scrA \cap Vh = \{ qh \in Vh : c0 \leq qh(x) \leq c1 in \Omega \} .

For the discrete problem (3.3)--(3.4), the following existence and convergence results
hold. For any fixed h > 0, there exists at least one minimizer q\ast h to problem (3.3)--(3.4).
Further, the sequence of minimizers \{ q\ast h\} h>0 contains a subsequence that converges
in H1(\Omega ) to a minimizer to problem (3.1)--(3.2). The proof follows by a standard
argument from calculus of variation and the density of the space Vh in H1(\Omega ) and
thus is omitted; see [21, 37] for related analysis.

3.2. Error estimates. Now we establish an error estimate of the numerical
approximation (3.3)--(3.4) with respect to the exact conductivity q\dagger . We shall make
the following assumption on the problem data.

Assumption 3.1. The exact diffusion coefficient q\dagger and source term f satisfy q\dagger \in 
H2(\Omega ) \cap W 1,\infty (\Omega ) \cap \scrA and f \in L\infty (\Omega ).

Under Assumption 3.1, there holds (see [30, Lemma 2.1] and [19, Theorems 3.3
and 3.4])

(3.6) u \in H1
0 (\Omega ) \cap H2(\Omega ) \cap W 1,\infty (\Omega ).

Note that this regularity result requires only q\dagger \in W 1,\infty (\Omega ) \cap \scrA .
The following a priori estimate holds. The proof is identical with that for [35,

Lemma 5.2] but with the Dirichlet boundary condition in place of the Neumann
one (see also Lemma A.1 for related argument). The proof requires the estimate
\| q  - \scrI hq\| L2(\Omega ) \leq ch2 due to the use of uh(\scrI hq) as an intermediate solution and

thus the condition q\dagger \in H2(\Omega ) in Assumption 3.1. See the proof in Lemma A.1
and [35, Lemma 5.2] for details.

Lemma 3.1. Let q\dagger \in \scrA be the exact diffusion coefficient, u(q\dagger ) the solution to
problem (3.2), and Assumption 3.1 be fulfilled. Let (q\ast h, uh(q

\ast 
h)) \in \scrA h \times Xh be a

solution of problem (3.3)--(3.4). Then there holds

\| uh(q\ast h) - u(q\dagger )\| L2(\Omega ) + \gamma 
1
2 \| \nabla q\ast h\| L2(\Omega ) \leq c(h2 + \delta + \gamma 

1
2 ).

Now we state the main result of this section, i.e., a weighted error estimate for
the Galerkin approximation q\ast h. The positivity of the weight q\dagger | \nabla u(q\dagger )| 2+fu(q\dagger ) will
be discussed below.

Theorem 3.2. Let Assumption 3.1 be fulfilled. Let q\dagger be the exact diffusion co-
efficient, u(q\dagger ) the solution to problem (3.2), and q\ast h \in \scrA h a minimizer of problem

(3.3)--(3.4). Then with \eta = h2 + \delta + \gamma 
1
2 , there holds\int 

\Omega 

(q\dagger  - q\ast h)
2
\bigl( 
q\dagger | \nabla u(q\dagger )| 2 + fu(q\dagger )

\bigr) 
dx \leq c(h\gamma  - 

1
2 \eta +min(h+ h - 1\eta , 1))\gamma  - 

1
2 \eta .
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Proof. For any test function \varphi \in H1
0 (\Omega ), we have the following splitting (with

u = u(q\dagger )):

((q\dagger  - q\ast h)\nabla u,\nabla \varphi ) = ((q\dagger  - q\ast h)\nabla u,\nabla (\varphi  - Ph\varphi )) + (q\dagger \nabla u - q\ast h\nabla u,\nabla Ph\varphi ).

Applying integration by parts and the variational formulations of u and uh(q
\ast 
h) to the

first and second terms, respectively, leads to

((q\dagger  - q\ast h)\nabla u,\nabla \varphi ) =  - (\nabla \cdot ((q\dagger  - q\ast h)\nabla u), \varphi  - Ph\varphi ) + (q\ast h\nabla (uh(q
\ast 
h) - u),\nabla Ph\varphi )

=: I1 + I2.(3.7)

Next we bound the two terms. Direct computation with the triangle inequality gives

\| \nabla \cdot ((q\dagger  - q\ast h)\nabla u)\| L2(\Omega ) \leq \| \nabla q\dagger \| L\infty (\Omega )\| \nabla u\| L2(\Omega ) + \| q\dagger  - q\ast h\| L\infty (\Omega )\| \Delta u\| L2(\Omega )

+ \| \nabla q\ast h\| L2(\Omega )\| \nabla u\| L\infty (\Omega ).

In view of the regularity estimate (3.6) and the box constraint of the admissible set
\scrA , we derive

\| \nabla \cdot ((q\dagger  - q\ast h)\nabla u)\| L2(\Omega ) \leq c+ \| \nabla q\ast h\| L2(\Omega )\| \nabla u\| L\infty (\Omega ) \leq c(1 + \| \nabla q\ast h\| L2(\Omega )).

This and the Cauchy--Schwarz inequality imply that the term I1 is bounded by

| I1| \leq c(1 + \| \nabla q\ast h\| L2(\Omega ))\| \varphi  - Ph\varphi \| L2(\Omega ).

Now we choose the test function \varphi to be \varphi \equiv q\dagger  - q\ast h
q\dagger 

u, and then direct computation
gives

\nabla \varphi =
\bigl( 
q\dagger  - 1\nabla (q\dagger  - q\ast h) - q\dagger  - 2(q\dagger  - q\ast h)\nabla q\dagger 

\bigr) 
u+ q\dagger  - 1(q\dagger  - q\ast h)\nabla u,

which implies \varphi \in H1
0 (\Omega ). By the box constraint of the admissible set \scrA and the

regularity estimate (3.6), we have

\| \nabla \varphi \| L2(\Omega ) \leq c
\bigl[ 
(1 + \| \nabla q\ast h\| L2(\Omega ))\| u\| L\infty (\Omega ) + \| \nabla u\| L2(\Omega )

\bigr] 
\leq c(1 + \| \nabla q\ast h\| L2(\Omega )).

Now the approximation property of the projection operator Ph in (2.1) implies

\| \varphi  - Ph\varphi \| L2(\Omega ) \leq ch\| \nabla \varphi \| L2(\Omega ) \leq ch(1 + \| \nabla q\ast h\| L2(\Omega )).

Thus, in view of Lemma 3.1, the term I1 in (3.7) can be bounded by

| I1| \leq ch(1 + \| \nabla q\ast h\| L2(\Omega ))
2 \leq ch(1 + \gamma  - 1\eta 2) \leq ch\gamma  - 1\eta 2.(3.8)

For the term I2, by the triangle inequality, inverse inequality on the space Xh, the
L2(\Omega ) stability of Ph, and Lemma 3.1, we have

\| \nabla (u - uh(q
\ast 
h))\| L2(\Omega ) \leq \| \nabla (u - Phu)\| L2(\Omega ) + h - 1\| Phu - uh(q

\ast 
h)\| L2(\Omega )

\leq c(h+ h - 1\| u - uh(q
\ast 
h)\| L2(\Omega )) \leq c(h+ h - 1\eta ).

Meanwhile, clearly, there holds \| \nabla (u  - uh(q
\ast 
h))\| L2(\Omega ) \leq c, and hence the Cauchy--

Schwarz inequality and Lemma 3.1 imply

I2 \leq \| \nabla (u - uh(q
\ast 
h))\| L2(\Omega )\| \nabla \varphi \| L2(\Omega )

\leq cmin(h+ h - 1\eta , 1)(1 + \| \nabla q\ast h\| L2(\Omega ))(3.9)

\leq cmin(h - 1\eta , 1)\gamma  - 
1
2 \eta .
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The estimates (3.8) and (3.9) together imply

((q\dagger  - q\ast h)\nabla u,\nabla \varphi ) \leq c(h\gamma  - 
1
2 \eta +min(h+ h - 1\eta , 1))\gamma  - 

1
2 \eta .

Now we claim the identity

((q\dagger  - q\ast h)\nabla u,\nabla \varphi ) =
1

2

\int 
\Omega 

\Bigl( q\dagger  - q\ast h
q\dagger 

\Bigr) 2\bigl( 
q\dagger | \nabla u| 2 + fu

\bigr) 
dx,

which together with the preceding estimate leads directly to the desired assertion. It
remains to show the claim. Actually, integration by parts yields

((q\dagger  - q\ast h)\nabla u,\nabla \varphi ) =  - 
\Bigl( 
\nabla 
\Bigl( q\dagger  - q\ast h

q\dagger 

\Bigr) 
, q\dagger \varphi \nabla u

\Bigr) 
 - 
\Bigl( q\dagger  - q\ast h

q\dagger 
\varphi ,\nabla \cdot (q\dagger \nabla u)

\Bigr) 
.

By the governing equation for u, f =  - \nabla \cdot (q\dagger \nabla u), we deduce

((q\dagger  - q\ast h)\nabla u,\nabla \varphi ) =
1

2
((q\dagger  - q\ast h)\nabla u,\nabla \varphi ) - 

1

2

\Bigl( 
\nabla 
\Bigl( q\dagger  - q\ast h

q\dagger 

\Bigr) 
, q\dagger \varphi \nabla u

\Bigr) 
+

1

2

\Bigl( q\dagger  - q\ast h
q\dagger 

\varphi , f
\Bigr) 
.

Then plugging in \varphi =
q\dagger  - q\ast h

q\dagger 
u and collecting the terms gives the claim and completes

the proof.

The next result gives an L2(\Omega ) error estimate. The notation dist(x, \partial \Omega ) denotes
the distance of x \in \Omega to the boundary \partial \Omega .

Corollary 3.3. Let Assumption 3.1 be fulfilled, and assume that there exists
some \beta \geq 0 such that

(3.10) (q\dagger | \nabla u(q\dagger )| 2 + fu(q\dagger ))(x) \geq cdist(x, \partial \Omega )\beta a.e. in \Omega .

Then the approximation q\ast h satisfies

\| q\dagger  - q\ast h\| L2(\Omega ) \leq c((h\gamma  - 
1
2 \eta +min(h - 1\eta , 1))\gamma  - 

1
2 \eta )

1
2(1+\beta ) .

In particular, for any \delta > 0, the choices \gamma \sim \delta 2 and h \sim 
\surd 
\delta imply

\| q\dagger  - q\ast h\| L2(\Omega ) \leq c\delta 
1

4(1+\beta ) .

Proof. Let u = u(q\dagger ). Then it follows from Theorem 3.2 that\int 
\Omega 

(q\dagger  - q\ast h)
2
\bigl( 
q\dagger | \nabla u| 2 + fu

\bigr) 
dx \leq c(h\gamma  - 

1
2 \eta +min(h+ h - 1\eta , 1))\gamma  - 

1
2 \eta .

Then we decompose the domain \Omega into two disjoint sets \Omega = \Omega \rho \cup \Omega c
\rho ,

\Omega \rho = \{ x \in \Omega : dist(x, \partial \Omega ) \geq \rho \} and \Omega c
\rho = \Omega \setminus \Omega \rho ,

where the constant \rho > 0 is to be chosen. On the subdomain \Omega \rho , we have\int 
\Omega \rho 

(q\dagger  - q\ast h)
2 dx \leq \rho  - \beta 

\int 
\Omega \rho 

(q\dagger  - q\ast h)
2\rho \beta dx

\leq \rho  - \beta 

\int 
\Omega \rho 

(q\dagger  - q\ast h)
2dist(x, \partial \Omega )\beta dx

\leq c\rho  - \beta 

\int 
\Omega \rho 

(q\dagger  - q\ast h)
2
\bigl( 
q\dagger | \nabla u| 2 + fu

\bigr) 
dx

\leq c\rho  - \beta (h\gamma  - 
1
2 \eta +min(h+ h - 1\eta , 1))\gamma  - 

1
2 \eta .
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126 BANGTI JIN AND ZHI ZHOU

Meanwhile, by the box constraint of \scrA and \scrA h, we have\int 
\Omega c

\rho 

(q\dagger  - q\ast h)
2 dx \leq c| \Omega c

\rho | \leq c\rho .

Then the desired result follows by balancing \rho  - \beta (h\gamma  - 
1
2 \eta + min(h + h - 1\eta , 1))\gamma  - 

1
2 \eta 

with \rho .

Remark 3.1. The positivity condition (3.10) has been established in [7, Lemma
3.7] for \beta = 2 provided that \Omega is a Lipschitz domain, q\dagger \in \scrA , and f \in L2(\Omega ) with
f \geq cf > 0. Moreover, the condition with \beta = 0 holds provided that the domain \Omega is
C2,\alpha , q\dagger \in C1,\alpha (\Omega ), and f \in C0,\alpha (\Omega ) with \alpha > 0 and f \geq cf > 0 [7, Lemma 3.3]. In

the latter case, by choosing \gamma \sim \delta 2 and h \sim 
\surd 
\delta , we obtain

\| q\dagger  - q\ast h\| L2(\Omega ) \leq c\delta 
1
4 .

Qualitatively, this estimate agrees with the conditional stability estimates in [7]. In-
deed, for u(q1), u(q2) \in H2(\Omega ) \cap H1

0 (\Omega ) with \| u(q1)  - u(q2)\| L2(\Omega ) \leq \delta , [7, Theorem
3.2] implies

\| q1  - q2\| L2(\Omega ) \leq c\| u(q1) - u(q2)\| 
1
2

H1(\Omega ).

This, the Gagliardo--Nirenberg interpolation inequality [8]

\| u\| H1(\Omega ) \leq \| u\| 
1
2

L2(\Omega )\| u\| 
1
2

H2(\Omega )

and the regularity estimates u(q1), u(q2) \in H2(\Omega ) directly give

\| q1  - q2\| L2(\Omega ) \leq c(\| u(q1)\| H2(\Omega ) + \| u(q2)\| H2(\Omega ))
1
4 \| u(q1) - u(q2)\| 

1
4

L2(\Omega )

\leq c\| u(q1) - u(q2)\| 
1
4

L2(\Omega ) \leq c\delta 
1
4 .

There is a growing interest in using conditional stability estimates to derive conver-
gence rates for continuous regularized formulations for inverse problems; see, e.g., [12]
and references therein. However, analogous results for discretization errors based on
conditional stability still seem to be missing.

Remark 3.2. Several alternative structural conditions have been proposed for de-
riving convergence rates, and it is instructive to compare these conditions for the
elliptic inverse problem. One condition (with a Neumann boundary condition) is
given by [16]

(3.11) \nabla u(q\dagger )(x) \cdot \nu \geq c > 0 a.e. in \Omega 

for some constant c and constant vector \nu or the less restrictive condition [28]
max(| \nabla u| ,\Delta u) \geq c > 0 a.e. in \Omega . Either condition implies the positivity condi-
tion (3.10) with \beta = 0 provided that u and f have the same sign (e.g., by the weak
maximum principle for elliptic PDEs). Wang and Zou [35] derived an error estimate
under a weaker assumption \alpha 0| \nabla u| 2 \geq f a.e. in \Omega . However, this condition is not
positively homogeneous (with respect to problem data f).

Remark 3.3. Falk [16] proposed a numerical scheme for the elliptic inverse prob-
lem with a Neumann boundary condition, based on the output least-squares formula-
tion, by looking for uh(q

\ast 
h) \in V r

h (continuous piecewise polynomials of degree r) and
q\ast h \in V r+1

h . If assumption (3.11) holds, u \in W r+3,\infty (\Omega ), and q\dagger \in Hr+1(\Omega ) \cap \scrA , then

\| q\dagger  - q\ast h\| L2(\Omega ) \leq c(hr + \delta h - 2).
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DIFFUSION COEFFICIENT IDENTIFICATION 127

If r = 1 and h \sim \delta 
1
3 , it implies an error O(\delta 

1
3 ). This better rate is obtained by the

stronger regularity assumption u(q\dagger ) \in W 4,\infty (\Omega ) than that in Theorem 3.2.

Remark 3.4. Theorem 3.2 provides guidance for choosing the algorithmic param-
eters: Given the noise level \delta , we may choose \gamma \sim \delta 2 and h \sim \delta 

1
2 . The choice \gamma \sim \delta 2

differs from the usual condition for Tikhonov regularization, i.e., lim\delta \rightarrow 0+
\delta 2

\gamma (\delta ) = 0,

but it agrees with that with conditional stability (see, e.g., [12, Theorems 1.1 and
1.2]).

4. Parabolic case. Now we analyze the parabolic inverse problem. For a func-
tion v(x, t) : \Omega \times (0, T ) \rightarrow \BbbR , we shall write v(t) = v(\cdot , t) as a vector valued function
on (0, T ) below.

4.1. Finite element approximation. To recover the diffusion coefficient q\dagger 

in (1.4), we employ the standard output least-squares formulation with an H1(\Omega )
seminorm penalty,

(4.1) min
q\in \scrA 

J\gamma (q) =
1
2\| u(q) - z\delta \| 2L2(T - \sigma ,T ;L2(\Omega )) +

\gamma 
2 \| \nabla q\| 

2
L2(\Omega ),

where the admissible set \scrA is given by (1.3) and u(q) satisfies the variational problem
(4.2)

(\partial tu(q), v) + (q\nabla u(q),\nabla v) = (f, v) \forall v \in H1
0 (\Omega ), t \in (0, T ], with u(0) = u0.

Now we describe a discretization of problem (4.1)--(4.2) based on the Galerkin
FEM in space and the backward Euler method in time. Specifically, we partition the
time interval [0, T ] uniformly, with grid points tn = n\tau , n = 0, . . . , N and a time step
size \tau = T/N . The fully discrete scheme for problem (1.4) reads as follows: Given
U0
h = Phu0 \in Xh, find U

n
h \in Xh such that

(\=\partial \tau U
n
h , \chi ) + (q\nabla Un

h ,\nabla \chi ) = (f(tn)\chi ) \forall \chi \in Xh, n = 1, 2, . . . , N,(4.3)

where \=\partial \tau \varphi 
n = \varphi n - \varphi n - 1

\tau denotes the backward Euler approximation to \partial t\varphi (tn) (with
the shorthand \varphi n = \varphi (tn)). Using operator Ah(q) in (2.3), we rewrite (4.3) as

\=\partial \tau U
n
h +Ah(q)U

n
h = Phf(tn), n = 1, 2, . . . , N.

Then the finite element discretization of problem (4.1)--(4.2) reads

(4.4) min
qh\in \scrA h

J\gamma ,h,\tau (qh) = \tau 

N\sum 
n=N\sigma 

\| Un
h (qh) - z\delta n\| 2L2(\Omega ) +

\gamma 

2
\| \nabla qh\| 2L2(\Omega ),

with

(4.5) z\delta n = \tau  - 1

\int tn

tn - 1

z\delta (t)dt,

where the discrete admissible set \scrA h is given by (3.5) and Un
h (qh) \in Xh satisfies

U0
h = Phu0 and

\=\partial \tau U
n
h (qh) +Ah(qh)U

n
h (qh) = Phf(tn), n = 1, 2, . . . , N + 1.(4.6)

Throughout, we assume that N\sigma = (T  - \sigma )/\tau + 1 is an integer. Analogous to the
elliptic case, the following existence and convergence results hold. If u0 \in H1

0 (\Omega ) and
f \in C([0, T ];L2(\Omega )), for every h, \tau > 0, there exists at least one minimizer q\ast h \in \scrA h

(which depends also on \tau ) to problem (4.4)--(4.6), and, furthermore, the sequence of
minimizers \{ q\ast h\} h,\tau >0 contains a subsequence that converges in H1(\Omega ) to a minimizer
of problem (4.1)--(4.2) as h, \tau \rightarrow 0+; see [20, 27] for a proof.
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128 BANGTI JIN AND ZHI ZHOU

4.2. Error estimates. Now we derive error estimates of approximations q\ast h un-
der the following regularity condition on the problem data.

Assumption 4.1. The diffusion coefficient q\dagger , initial data u0, and source term f
satisfy q\dagger \in H2(\Omega ) \cap W 1,\infty (\Omega ) \cap \scrA , u0 \in H2(\Omega )\cap H1

0 (\Omega )\cap W 1,\infty (\Omega ), f \in L\infty ((0, T )\times 
\Omega ) \cap C1([0, T ];L2(\Omega )) \cap W 2,1(0, T ;L2(\Omega )).

Under Assumption 4.1, the parabolic problem (1.4) has a unique solution

(4.7) u \in W 1,p(0, T ;Lq(\Omega )) \cap Lp(0, T ;W 2,q(\Omega )) \forall p, q \in (1,\infty ).

The result follows directly from maximal Lp regularity of the parabolic equation; see,
e.g., [30, Lemma 2.1]. Then by real interpolation and the Sobolev embedding theorem,
we deduce

(4.8) u \in L\infty (0, T ;W 1,\infty (\Omega )).

Further, there holds [34, Lemma 3.2]

(4.9) \| \partial tu(t)\| L2(\Omega ) + t\| \partial ttu(t)\| L2(\Omega ) \leq c \forall t \in [0, T ].

The latter estimate immediately implies a useful uniform bound \| u(t)\| H2(\Omega ) \leq c since

\| A(q\dagger )u(t)\| L2(\Omega ) \leq \| \partial tu(t)\| L2(\Omega ) + \| f(t)\| L2(\Omega ) \leq c.

With the choice of z\delta n in (4.4), we have the following estimate.

Lemma 4.1. Let Assumption 4.1 be fulfilled. Then for z\delta n defined in (4.5), there
holds

\tau 

N\sum 
n=N\sigma 

\int 
\Omega 

| u(tn) - z\delta n| 2 dx \leq c(\tau 2 + \delta 2).

Proof. Let un = \tau  - 1
\int tn
tn - 1

u(t) dt. Then we have

u(tn) - un = \tau  - 1

\int tn

tn - 1

u(tn) - u(t)dt = \tau  - 1

\int tn

tn - 1

\int tn

t

\partial su(s)dsdt,

and thus by the regularity estimate (4.9),

\| u(tn) - un\| L2(\Omega ) \leq \tau  - 1

\int tn

tn - 1

\int tn

t

\| \partial su(s)\| L2(\Omega )dsdt

\leq c\tau \| \partial tu(t)\| C([tn - 1,tn];L2(\Omega )) \leq c\tau .

Meanwhile, by the Cauchy--Schwarz inequality, \tau | un| 2 \leq 
\int tn
tn - 1

u(t)2dt. The last two

estimates, the definition of the noise level \delta in (1.5), and the stability estimate

\tau 

N\sum 
n=N\sigma 

\int 
\Omega 

| un  - z\delta n| 2 dx \leq 
\int T

T - \sigma 

\int 
\Omega 

| u(t) - z\delta (t)| 2 dxdt \leq \delta 2

imply the desired result immediately.
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The next lemma gives error estimates of a fully discrete scheme for the direct
problem (1.4): Find Un

h (q
\dagger ) satisfying U0

h = Phu0 and

\=\partial \tau (U
n
h (q

\dagger ) - U0
h) +Ah(q

\dagger )Un
h (q

\dagger ) = Phf(tn), n = 1, 2, . . . , N.(4.10)

It plays an important role in the error analysis below. The proof is standard but
lengthy and hence is deferred to Appendix B.

Lemma 4.2. Let q\dagger be the exact diffusion coefficient and u \equiv u(q\dagger ) the solution to
problem (4.2) and \{ Un

h (q
\dagger )\} the solution to problem (4.10). Then under Assumption

4.1,

\| u(tn) - Un
h (q

\dagger )\| L2(\Omega ) \leq c(\tau + h2).

The next lemma provides an error estimate of the scheme (4.10) corresponding
to the coefficient \scrI hq\dagger . It slightly relaxes the regularity assumption in [35, Lemma
6.1] from q\dagger \in W 2,\infty (\Omega ) to q\dagger \in W 1,\infty (\Omega ) \cap H2(\Omega ). The latter is identical with
Assumption 3.1.

Lemma 4.3. Let q\dagger be the exact diffusion coefficient, u \equiv u(q\dagger ) the solution to
problem (4.2), and \{ Un

h (\scrI hq\dagger )\} the solutions to the scheme (4.10) with \scrI hq\dagger . Then
under Assumption 4.1,

\tau 

N\sum 
n=1

\| u(tn) - Un
h (\scrI hq\dagger )\| 2L2(\Omega ) \leq c(\tau 2 + h4).

Proof. Note that Un
h (q

\dagger ) and Un
h (\scrI hq\dagger ), respectively, satisfy

Ah(q
\dagger ) - 1 \=\partial \tau U

n
h (q

\dagger ) + Un
h (q

\dagger ) = Ah(q
\dagger ) - 1Phf(tn), n = 1, 2, . . . , N,

Ah(\scrI hq\dagger ) - 1 \=\partial \tau U
n
h (\scrI hq\dagger ) + Un

h (\scrI hq\dagger ) = Ah(\scrI hq\dagger ) - 1Phf(tn), n = 1, 2, . . . , N,

with U0
h(q

\dagger ) = U0
h(\scrI hq\dagger ) = Phu0. Hence, \rho nh := Un

h (q
\dagger ) - Un

h (\scrI hq\dagger ) satisfies
(4.11)
Ah(q

\dagger ) - 1 \=\partial \tau \rho 
n
h+\rho 

n
h = (Ah(q

\dagger ) - 1 - Ah(\scrI hq\dagger ) - 1)
\bigl( 
Phf(tn) - \=\partial \tau U

n
h (\scrI hq\dagger )

\bigr) 
, n = 1, . . . , N,

with \rho 0h = 0. It follows from direct computation that

(\=\partial \tau Ah(q
\dagger ) - 1\rho nh, \rho 

n
h) = (\=\partial \tau Ah(q

\dagger ) - 
1
2 \rho nh, Ah(q

\dagger ) - 
1
2 \rho nh)

= 1
2
\=\partial \tau \| Ah(q

\dagger ) - 
1
2 \rho nh\| 2L2(\Omega ) +

1
2\tau \| Ah(q

\dagger ) - 
1
2 (\rho nh  - \rho n - 1

h )\| 2L2(\Omega )

\geq 1
2
\=\partial \tau \| Ah(q

\dagger ) - 
1
2 \rho nh\| 2L2(\Omega ),

Then taking inner product (4.11) with \rho nh and by the Cauchy--Schwarz inequality, we
obtain

1
2
\=\partial \tau \| Ah(q

\dagger ) - 
1
2 \rho nh\| 2L2(\Omega ) + \| \rho nh\| 2L2(\Omega )

\leq \| (Ah(q
\dagger ) - 1  - Ah(\scrI hq\dagger ) - 1)

\bigl( 
Phf(tn) - \=\partial \tau U

n
h (\scrI hq\dagger )

\bigr) 
\| L2(\Omega )\| \rho nh\| L2(\Omega )

\leq 1
2\| (Ah(q

\dagger ) - 1  - Ah(\scrI hq\dagger ) - 1)
\bigl( 
Phf(tn) - \=\partial \tau U

n
h (\scrI hq\dagger )

\bigr) 
\| 2L2(\Omega ) +

1
2\| \rho 

n
h\| 2L2(\Omega ).
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Further, by Lemma A.1, we have, for any \epsilon > 0 and p \geq max(d+ \epsilon , 2),

\| Ah(\scrI hq\dagger ) - 1  - Ah(q
\dagger ) - 1\| Lp(\Omega )\rightarrow L2(\Omega ) \leq ch2.

Hence, for p \geq max(d+ \epsilon , 2),

\=\partial \tau \| Ah(q
\dagger ) - 

1
2 \rho nh\| 2L2(\Omega ) + \| \rho nh\| 2L2(\Omega ) \leq ch4\| Phf(tn) - \=\partial \tau U

n
h (\scrI hq\dagger )\| 2Lp(\Omega )

\leq ch4\| f(tn) - \=\partial \tau U
n
h (\scrI hq\dagger )\| 2Lp(\Omega ),

where in the second line we have used the Lp(\Omega ) stability of Ph [11]. Then summing
over n gives

\| Ah(q
\dagger ) - 

1
2 \rho Nh \| 2L2(\Omega ) + \tau 

N\sum 
n=1

\| \rho nh\| 2L2(\Omega )

\leq ch4
\Bigl( 
\tau 

N\sum 
n=1

\| f(tn)\| 2Lp(\Omega ) + \tau 

N\sum 
n=1

\| \=\partial \tau Un
h (\scrI hq\dagger )\| 2Lp(\Omega )

\Bigr) 
.

Then the maximal \ell p regularity for the backward Euler scheme [4] implies

\tau 

N\sum 
n=1

\| \rho nh\| 2Lp(\Omega ) \leq ch4
\Bigl( 
\tau 

N\sum 
n=1

\| f(tn)\| 2Lp(\Omega ) + \| \nabla u0\| 2Lp(\Omega )

\Bigr) 
.

Finally, the desired estimate follows from Lemma 4.2 and the triangle inequality.

The next result gives a priori bounds on q\ast h and error estimates on the corre-
sponding approximations Un

h (q
\ast 
h). This result will play a crucial role in the proof of

Theorem 4.5 below.

Lemma 4.4. Let q\dagger be the exact coefficient and u \equiv u(q\dagger ) the solution to problem
(4.2). Let q\ast h \in \scrA h be the solution to problem (4.4)--(4.6) and \{ Un

h (q
\ast 
h)\} Nn=1 the fully

discrete solution to problem (4.6). Then under Assumption 4.1, there holds

\tau 

N\sum 
n=N\sigma 

\| Un
h (q

\ast 
h) - u(tn)\| 2L2(\Omega ) + \gamma \| \nabla q\ast h\| 2L2(\Omega ) \leq c(\tau 2 + h4 + \delta 2 + \gamma ).

Proof. By the minimizing property of q\ast h \in \scrA h, since \scrI hq\dagger \in \scrA h, we deduce

J\gamma ,h,\tau (q
\ast 
h) \leq J\gamma ,h,\tau (\scrI hq\dagger ).

By the triangle inequality, we derive

\tau 

N\sum 
n=N\sigma 

\| Un
h (q

\ast 
h) - u(tn)\| 2L2(\Omega )

\leq c\tau 

N\sum 
n=N\sigma 

\| Un
h (q

\ast 
h) - z\delta n\| 2L2(\Omega ) + c\tau 

N\sum 
n=N\sigma 

\| z\delta n  - u(tn)\| 2L2(\Omega ).
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These two inequalities together imply

\tau 

N\sum 
n=N\sigma 

\| Un
h (q

\ast 
h) - u(tn)\| 2L2(\Omega ) + \gamma \| \nabla q\ast h\| 2L2(\Omega )

\leq c\tau 

N\sum 
n=N\sigma 

\| Un
h (\scrI hq\dagger ) - z\delta n\| 2L2(\Omega ) + c\gamma \| \nabla \scrI hq\dagger \| 2L2(\Omega ) + c\tau 

N\sum 
n=N\sigma 

\| z\delta n  - u(tn)\| 2L2(\Omega )

\leq c\tau 

N\sum 
n=N\sigma 

\| Un
h (\scrI hq\dagger ) - u(tn)\| 2L2(\Omega ) + c\gamma \| \nabla \scrI hq\dagger \| 2L2(\Omega ) + c\tau 

N\sum 
n=N\sigma 

\| z\delta n  - u(tn)\| 2L2(\Omega )

\leq c\tau 

N\sum 
n=N\sigma 

\| Un
h (\scrI hq\dagger ) - u(tn)\| 2L2(\Omega ) + c\gamma \| \nabla \scrI hq\dagger \| 2L2(\Omega ) + c(\delta 2 + \tau 2),

where the last line follows from Lemma 4.1. Since q\dagger \in W 1,\infty (\Omega ) by Assumption
4.1, \| \nabla \scrI hq\dagger \| L2(\Omega ) \leq c; cf. (2.2). Combining the preceding estimates with Lemma 4.3
completes the proof.

Now we give the main result of this section, i.e., error estimate of the numerical
approximation q\ast h \in \scrA h, with the weight involving q\dagger | \nabla u(tn)| 2+(f(tn) - \partial tu(tn))u(tn),
whose positivity will be analyzed below in section 4.3.

Theorem 4.5. Let q\dagger be the exact diffusion coefficient, u \equiv u(q\dagger ) the solution to
problem (4.2), and q\ast h \in \scrA h a solution to problem (4.4)--(4.6). Then under Assumption

4.1, with \eta = \tau + h2 + \delta + \gamma 
1
2 , there holds

\tau 3
N\sum 

j=N\sigma +1

j\sum 
i=N\sigma +1

j\sum 
n=i

\int 
\Omega 

\Bigl( q\dagger  - q\ast h
q\dagger 

\Bigr) 2\Bigl( 
q\dagger | \nabla u(tn)| 2 + (f(tn) - \partial tu(tn))u(tn)

\Bigr) 
dx

\leq c(h\gamma  - 
1
2 \eta +min(1, h - 1\eta ))\gamma  - 

1
2 \eta .

Proof. For any test function \varphi \in H1
0 (\Omega ), we have

((q\dagger  - q\ast h)\nabla u(tn),\nabla \varphi ) =  - (\nabla \cdot ((q\dagger  - q\ast h)\nabla u(tn)), \varphi  - Ph\varphi )

+ (q\ast h\nabla (Un
h (q

\ast 
h) - u(tn)),\nabla Ph\varphi )

+ (q\dagger \nabla u(tn) - q\ast h\nabla Un
h (q

\ast 
h),\nabla Ph\varphi ) =

3\sum 
i=1

Ini .

Throughout, the test function \varphi is taken to be \varphi \equiv \varphi n =
q\dagger  - q\ast h

q\dagger 
u(tn). Then repeating

the argument in Theorem 3.2 with the regularity estimates (4.7) and (4.8) and the
approximation property of Ph in (2.1) yields
(4.12)
\| \nabla \varphi n\| L2(\Omega ) \leq c(1 + \| \nabla q\ast h\| L2(\Omega )) and \| Ph\varphi 

n  - \varphi n\| L2(\Omega ) \leq ch(1 + \| \nabla q\ast h\| L2(\Omega )).

Next we bound the three terms separately. By Assumption 4.1 (and hence the regu-
larity estimates (4.7) and (4.8)) and the box constraint of q\dagger and q\ast h, the term In1 is
bounded by

| In1 | \leq ch(1 + \| \nabla q\ast h\| L2(\Omega ))
2 \leq ch(1 + \gamma  - 1\eta 2) \leq ch\gamma  - 1\eta 2.

D
ow

nl
oa

de
d 

01
/1

9/
21

 to
 1

93
.6

0.
23

8.
99

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

132 BANGTI JIN AND ZHI ZHOU

For the term In2 , by the triangle inequality, inverse inequality, and L2(\Omega ) stability of
the operator Ph in (2.1), we deduce

\| \nabla (u(tn) - Un
h (q

\ast 
h))\| L2(\Omega )

\leq \| \nabla (u(tn) - Phu(tn))\| L2(\Omega ) + h - 1\| Phu(tn) - Un
h (q

\ast 
h)\| L2(\Omega )

\leq c(h+ h - 1\| Phu(tn) - Un
h (q

\ast 
h)\| L2(\Omega )).

Meanwhile, by the energy argument in Lemma 4.3, we deduce

\tau 

N\sum 
n=1

\| \nabla Un
h (q

\ast 
h)\| 2L2(\Omega ) \leq c

\Bigl( N\sum 
n=1

\| f(tn)\| 2L2(\Omega ) + \| \nabla u0\| 2L2(\Omega )

\Bigr) 
\leq c.

By this and the regularity estimate (4.9), \tau 
\sum 

n \| \nabla (u(tn) - Un
h (q

\ast 
h))\| 2L2(\Omega ) \leq c. Con-

sequently, the Cauchy--Schwarz inequality, Lemma 4.4, and (4.12) imply

\tau 

N\sum 
n=N\sigma 

In2 \leq \tau 

N\sum 
n=1

\| \nabla (u(tn) - Un
h (q

\ast 
h))\| L2(\Omega )\| \nabla \varphi n\| L2(\Omega )

\leq cmin
\Bigl( 
1, h+ h - 1

\Bigl( 
\tau 

N\sum 
n=N\sigma 

\| u(tn) - Un
h (q

\ast 
h)\| 2L2(\Omega )

\Bigr) 1
2
\Bigr) 
(1 + \| \nabla q\ast h\| L2(\Omega ))

\leq cmin(1, h+ h - 1\eta )\gamma  - 
1
2 \eta \leq cmin(1, h - 1\eta )\gamma  - 

1
2 \eta .

Next we bound the term In3 . It follows from the variational formulations (4.2) and
(4.6) that

In3 = (q\dagger \nabla u(tn) - q\ast h\nabla Un
h (q

\ast 
h),\nabla Ph\varphi 

n)

= (\=\partial \tau U
n
h (q

\ast 
h) - \partial tu(tn), Ph\varphi 

n)

= (\=\partial \tau [U
n
h (q

\ast 
h) - u(tn)], Ph\varphi 

n) + (\=\partial \tau u(tn) - \partial tu(tn), Ph\varphi 
n) =: In3,1 + In3,2.

It remains to bound the two terms In3,1 and In3,2 separately. Note that

\=\partial \tau u(tn) - \partial tu(tn) = \tau  - 1

\int tn

tn - 1

\partial su(s) - \partial tu(tn)ds.

Thus, by the regularity estimate (4.9), we have for n \geq 2

\| \=\partial \tau u(tn) - \partial tu(tn)\| L2(\Omega ) \leq 
1

\tau 

\int tn

tn - 1

\int tn

s

\| u\prime \prime (\xi )\| L2(\Omega ) d\xi ds \leq c\tau t - 1
n - 1 \leq c\tau t - 1

n

and for n = 1
\| \=\partial \tau u(\tau ) - \partial tu(\tau )\| L2(\Omega ) \leq c.

Consequently, there holds

| In3,2| \leq \| \=\partial \tau u(tn) - \partial tu(tn)\| L2(\Omega )\| Ph\varphi 
n\| L2(\Omega ) \leq c\tau t - 1

n , n = 1, 2, . . . , N,

and \bigm| \bigm| \bigm| \bigm| \bigm| \tau 3
N\sum 

j=N\sigma +1

j\sum 
i=N\sigma +1

j\sum 
n=i

In3,2

\bigm| \bigm| \bigm| \bigm| \bigm| \leq c\tau 

\int T

T - \sigma 

\int t

T - \sigma 

\int t

s

\xi  - 1 d\xi dsdt \leq c\tau .

D
ow

nl
oa

de
d 

01
/1

9/
21

 to
 1

93
.6

0.
23

8.
99

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DIFFUSION COEFFICIENT IDENTIFICATION 133

Meanwhile, since U0
h(q

\ast 
h) = U0

h and u(0) = u0, the summation by parts formula yields

\tau 

j\sum 
n=i

In3,1 = \tau 

j\sum 
n=i

(\=\partial \tau [U
n
h (q

\ast 
h) - u(tn)], Ph\varphi 

n)(4.13)

= (U j
h(q

\ast 
h) - u(tj), Ph\varphi 

j) - (U i - 1
h (q\ast h) - u(ti - 1), Ph\varphi 

i)

 - \tau 

j - 1\sum 
n=i

(Un
h (q

\ast 
h) - u(tn), \=\partial \tau Ph\varphi 

n+1).

For the first two terms, by the Cauchy--Schwarz inequality and H\"older's inequality,
we have\bigm| \bigm| \bigm| \bigm| \bigm| \tau 2

N\sum 
j=N\sigma +1

j\sum 
i=N\sigma +1

(U j
h(q

\ast 
h) - u(tj), Ph\varphi 

j) - (U i - 1
h (q\ast h) - u(ti - 1), Ph\varphi 

i)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq c

\Biggl( 
\tau 

N\sum 
n=N\sigma +1

\| Un
h (q

\ast 
h) - u(tn)\| 2L2(\Omega )

\Biggr) 1
2

\leq c\eta 

since by (4.9), \| Ph\varphi 
i\| L2(\Omega ) \leq c. Meanwhile, by using the regularity estimate (4.9)

and the box constraint, we have

\| \=\partial \tau Ph\varphi 
n\| L2(\Omega ) = \tau  - 1\| 

\int tn

tn - 1

Ph
q\dagger  - q\ast h
q\dagger 

\partial tu(t)dt\| L2(\Omega ) \leq c\tau  - 1

\int tn

tn - 1

\| \partial tu(t)\| L2(\Omega )dt \leq c,

and hence \bigm| \bigm| \bigm| \bigm| \bigm| \tau 3
N\sum 

j=N\sigma +1

j\sum 
i=N\sigma +1

j - 1\sum 
n=i

(Un
h (q

\ast 
h) - u(tn), \=\partial \tau Ph\varphi 

n+1)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq c\tau 3

N\sum 
j=N\sigma +1

j\sum 
i=N\sigma +1

j - 1\sum 
n=i

\| Un
h (q

\ast 
h) - u(tn)\| L2(\Omega )

\leq c

\Biggl( 
\tau 

N\sum 
n=N\sigma +1

\| Un
h (q

\ast 
h) - u(tn)\| 2L2(\Omega )

\Biggr) 1
2

\leq c\eta .

Finally, this and the identity

((q\dagger  - q\ast h)\nabla u(tn),\nabla \varphi n) =
1

2

\int 
\Omega 

\Bigl( q\dagger  - q\ast h
q\dagger 

\Bigr) 2\bigl( 
q\dagger | \nabla u(tn)| 2 + (f(tn) - \partial tu(tn))u(tn)

\bigr) 
dx

(cf. the proof of Theorem 3.2) lead to the desired assertion, completing the proof.

The next result gives an L2(\Omega ) estimate under a suitable positivity condition
similar to (3.10). The proof is identical with that for Corollary 3.3 and thus is omitted.

Corollary 4.6. Let Assumption 4.1 be fulfilled, and there exists some \beta \geq 0
such that
(4.14)
q\dagger (x)| \nabla u(q\dagger )(x, t)| 2 + (f(x, t) - \partial tu(q

\dagger )(x, t))u(q\dagger )(x, t) \geq cdist(x, \partial \Omega )\beta a.e. in \Omega ,

for any t \in [T  - \sigma , T ]. Then for any \delta > 0, with \eta = \tau + h2 + \delta + \gamma 
1
2 , there holds

\| q\dagger  - q\ast h\| L2(\Omega ) \leq c((h\gamma  - 1\eta + \gamma  - 
1
2 min(1, h - 1\eta ))\eta )

1
2(1+\beta ) .
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134 BANGTI JIN AND ZHI ZHOU

In particular, the choices \gamma \sim \delta 2, h \sim 
\surd 
\delta , and \tau \sim \delta imply

\| q\dagger  - q\ast h\| L2(\Omega ) \leq c\delta 
1

4(1+\beta ) .

Remark 4.1. Note that in the identity (4.13), the first two terms cannot be
bounded directly since only \ell 2 bounds are available on (U j

h(q
\ast 
h)  - u(tj), Ph\varphi 

j) and

(U i - 1
h (q\ast h)  - u(ti - 1), Ph\varphi 

i). The triple sum
\sum N

j=N\sigma +1

\sum j
i=N\sigma +1

\sum j
n=i is precisely to

exploit relevant \ell 2 bounds.

Remark 4.2. The error estimate in Corollary 4.6 provides the usual L2(\Omega ) error
estimate. Alternatively, one obtains the L2(\Omega ) estimate if the following structural
condition holds: For the exact diffusion coefficient q\dagger and the corresponding state
variable u \equiv u(q\dagger ), there holds

(4.15)

\int T

T - \sigma 

\int t

T - \sigma 

\int t

s

\Bigl( 
q\dagger | \nabla u(\xi )| 2+(f(\xi ) - \partial \xi u(\xi ))u(\xi )

\Bigr) 
d\xi dsdt > c0 a.e. x \in \Omega .

Similar structural conditions have been assumed in the literature, e.g., the character-
istic condition [33]

t - 1

\int t

0

\nabla u(q\dagger )(x, s)ds \cdot \nu \geq c > 0 a.e. in \Omega \times (0, T ),

with some constant c and vector \nu , or [35, Theorem 6.4],

\alpha 0| 
\int t

0

\nabla u(q\dagger )(s)ds| 2 + t

\int t

0

(\partial su(q
\dagger )(s) - f(s))ds \geq 0 a.e. in \Omega \times (0, T ).

4.3. On the positivity condition (4.14). Condition (4.14) allows deriving an
L2(\Omega ) estimate; cf. Corollary 4.6. Now we give sufficient conditions on problem data
to ensure (4.14).

Proposition 4.7. Let \Omega be a bounded Lipschitz domain, q\dagger \in \scrA \cap W 1,\infty (\Omega ),
u0 \in H2(\Omega )\cap H1

0 (\Omega ), and f \in H1((0, T );L2(\Omega )). Meanwhile, assume that f \geq cf > 0
and \partial tf \leq 0 a.e. in \Omega \times (0, T ) and u0(x) \geq 0, f(x, 0) +\nabla \cdot (q\dagger \nabla u0(x)) \leq 0 a.e. in
\Omega . Then the positivity condition (4.14) holds with \beta = 2, with the constant c only
depending on c0, c1, cf , and \Omega .

Proof. Since u0 \geq 0 and f > cf , the maximum principle of parabolic equations
[17] implies

u(x, t) \geq 0 \forall (x, t) \in \Omega \times [0, T ].

Let w(x, t) = \partial tu(x, t). Then it satisfies\left\{     
\partial tw  - \nabla \cdot (q\dagger \nabla w) = \partial tf in \Omega \times (0, T ],

w = 0 on \partial \Omega \times (0, T ],

w(0) = f(0) +\nabla \cdot (q\dagger \nabla u0) in \Omega .

By assumption, \partial tf \leq 0 in \Omega \times (0, T ] and w(0) \leq 0 in \Omega . Then the parabolic maximum
principle implies \partial tu(x, t) = w(x, t) \leq 0 in \Omega \times [0, T ]. Therefore, there holds

q\dagger (x)| \nabla u(x, t)| 2 + (f(x, t) - \partial tu(x, t))u(x, t) \geq min(c0, cf )(| \nabla u(x, t)| 2 + u(x, t)).

(4.16)
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So it suffices to prove u(x, t) \geq cdist(x, \partial \Omega )2 for (x, t) \in \Omega \times (0, T ]. For any fixed
t \in [T  - \sigma , T ], we have f(x, t) - \partial tu(x, t) \in L2(\Omega ). Now consider the elliptic problem\Biggl\{ 

 - \nabla \cdot (q\dagger \nabla u(t)) = f(t) - \partial tu(t) in \Omega ,

u(t) = 0 on \partial \Omega .
(4.17)

Let G(x, y) be Green's function corresponding to the elliptic operator \nabla \cdot (q\dagger (x)\nabla \cdot ).
Then G(x, y) is nonnegative (by the maximum principle) and satisfies the following a
priori estimate (see, e.g., [19, Theorem 1.1] and [7, Lemma 3.7]):

G(x, y) \geq c| x - y| 2 - d for | x - y| \leq \rho (x) := dist(x, \partial \Omega ).

Consequently, for any x \in \Omega and t \in [T  - \sigma , T ], there holds

u(x, t) =

\int 
\Omega 

G(x, y)(f(y, t) - \partial tu(y, t)) dy \geq 
\int 
\Omega 

G(x, y)f(y, t) dy \geq cf

\int 
\Omega 

G(x, y) dy

\geq cf

\int 
| x - y| <\rho (x)/2

G(x, y) dy \geq c

\int 
| x - y| <\rho (x)/2

| x - y| 2 - d dy \geq c\rho (x)2.

This completes the proof of the proposition.

The next result gives sufficient conditions for the positivity condition (4.14) with
\beta = 0 under stronger regularity assumptions on the problem data.

Proposition 4.8. Let \Omega be a bounded C2,\alpha domain, f \in C1([0, T ];C0,\alpha (\Omega )) with
f \geq cf > 0, \partial tf \leq 0 in \Omega \times [0, T ], and u0 \in C2,\alpha (\Omega ) \cap H1

0 (\Omega ) with u0 \geq 0 in \Omega .
Moreover, assume q\dagger \in \scrA \cap C1,\alpha (\Omega ) and f(x, 0) + \nabla \cdot (q\dagger \nabla u0(x)) \leq 0 in \Omega . Then
the positivity condition (4.14) holds with \beta = 0, with the constant only depending on
c0, c1, cf ,\Omega , and \| q\dagger \| C1,\alpha (\Omega ).

Proof. By the argument in the proof of Proposition 4.7, we have \partial tu \in 
C([0, T ];C0,\alpha (\Omega )) and \partial tu \leq 0 for all (x, t) \in \Omega \times (0, T ). Hence, the inequality
(4.16) is still valid. Now it suffices to show that for any (x, t) \in \Omega \times [T  - \sigma , T ], there
holds | \nabla u(x, t)| 2 + u(x, t) \geq c > 0. Note that u(x, t) is the solution of the elliptic
problem (4.17) with a C0,\alpha (\Omega ) source term f(t)  - \partial tu(t) \geq f(t) \geq cf . Then the de-
sired result follows from Schauder estimates and a standard compactness argument.
For the details, see the proof of [7, Lemma 3.3].

5. Numerical results. In this section, we present several numerical experiments
to complement the analysis. Throughout, the discrete optimization problem is solved
by the conjugate gradient method, which converges within tens of iterations. The
lower and upper bounds in the admissible set \scrA are taken to be 0.5 and 5, respectively,
and are enforced by a projection step. In the elliptic case, the noisy data z\delta are
generated by

z\delta (x) = u(q\dagger )(x) + \varepsilon sup
x\in \Omega 

| u(q\dagger )| \xi (x),

where \xi follows the standard Gaussian distribution and \varepsilon > 0 denotes the (relative)
noise level and similarly for the parabolic case. The noisy data z\delta is first generated on
a fine mesh and then interpolated to a coarse spatial/temporal mesh for the inversion
step. All the computations are carried out on a personal laptop with MATLAB 2019.
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Table 5.1
Numerical results for Example 5.1: convergence with respect to \varepsilon , with \gamma and h initialized to

5.00e-8 and 2.50e-2.

\varepsilon 5.00e-2 3.00e-2 1.00e-2 5.00e-3 3.00e-3 1.00e-3 5.00e-4

eq 2.52e-1 2.56e-1 8.08e-2 4.84e-2 4.06e-2 1.63e-2 8.43e-3 0.76
eu 2.10e-3 9.89e-4 2.54e-4 1.20e-4 7.45e-5 2.06e-5 8.46e-6 1.16

(a) \varepsilon =1e-3 (b) \varepsilon =1e-2 (c) \varepsilon =5e-2

Fig. 5.1. Numerical reconstructions for Example 5.1 at three noise levels.

5.1. Numerical results for elliptic problems. First, we give one- and two-
dimensional elliptic examples.

Example 5.1. \Omega = (0, 1), q\dagger (x) = 2 + sin 2\pi x and f \equiv 1. The exact data are
generated on a fine mesh with a mesh size h = 1/3200.

The numerical results for Example 5.1 are summarized in Table 5.1, where the
numbers in the last column denote convergence rates with respect to the noise level
\delta , i.e., the exponent \alpha in O(\delta \alpha ). In the tables, eq and eu are defined by

eq = \| q\ast h  - q\dagger \| L2(\Omega ) and eu = \| uh(q\ast h) - u(q\dagger )\| L2(\Omega ),

respectively. For the convergence with respect to \varepsilon , the regularization parameter \gamma 
and mesh size h are taken to be \gamma = c\gamma \varepsilon 

2 and h = ch\varepsilon 
1
2 , respectively, as suggested

by Corollary 3.3, where the constant c\gamma is determined by trial and error. Figure
5.1(a) indicates that the error eq decays to zero as the noise level \varepsilon decreases to zero,
with an empirical rate O(\delta 0.76). Meanwhile, the numerical experiment shows that
the weight | \nabla u(q\dagger )| 2+ fu(q\dagger ) in the error estimate is indeed strictly positive over the
domain \Omega , even though both components have vanishing points. Thus, by Theorem
3.2 and Corollary 3.3, the predicted rate is O(\delta 

1
4 ), which is much lower than the

empirical rate O(\delta 0.76), indicating the suboptimality of the predicted rate. The error
eu converges slightly faster than first order. See also Figure 5.1 for an illustration of
the reconstructions at three different noise levels.

Example 5.2. \Omega = (0, 1)2, q\dagger (x1, x2) = 1 + x2(1  - x2) sin\pi x1, and f \equiv 1. The
data are generated on a fine mesh with a mesh size h = 1/200.

The numerical results for Example 5.2 are presented in Table 5.2 and Figure 5.2.
The empirical convergence rates for eq and eu with respect to \delta are about O(\delta 0.72) and
O(\delta ), respectively, which are comparable with that for Example 5.1. In either metric,
the convergence is very steady. Note that for this example, the weight q\dagger | \nabla u(q\dagger )| 2 +
fu(q\dagger ) is not strictly positive over \Omega since it vanishes at two corners of the square
domain \Omega .
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Table 5.2
Numerical results for Example 5.2: convergence with respect to \varepsilon , with \gamma and h initialized to

5e-6 and 8.33e-2.

\varepsilon 5.00e-2 3.00e-2 1.00e-2 5.00e-3 3.00e-3 1.00e-03 5.00e-4

eq 4.46e-2 3.17e-2 1.27e-2 6.98e-3 5.59e-3 2.64e-03 1.63e-3 0.72
eu 7.88e-4 4.11e-4 1.20e-4 6.56e-5 3.89e-5 1.39e-05 7.72e-6 1.00

(a) exact (b) \varepsilon =1e-2 (c) \varepsilon =5e-2

Fig. 5.2. Numerical reconstructions for Example 5.2 at two noise levels.

Table 5.3
Numerical results for Example 5.3: convergence with respect \varepsilon , with \gamma , h, and \tau are initialized

with 1.00e-7, 2.50e-2, and 1/400.

\varepsilon 5.00e-2 3.00e-2 1.00e-2 5.00e-3 3.00e-3 1.00e-3 5.00e-4

eq 1.97e-2 1.34e-2 6.74e-3 2.58e-3 2.26e-3 8.86e-4 9.57e-4 0.71
eu 2.31e-4 1.07e-4 8.78e-5 3.83e-5 3.68e-5 1.22e-5 1.19e-5 0.64

(a) \varepsilon =1e-3 (b) \varepsilon =1e-2 (c) \varepsilon =5e-2

Fig. 5.3. Numerical reconstructions for Example 5.3 at three noise levels.

5.2. Numerical results for parabolic problems. Now we present numerical
results for one- and two-dimensional parabolic problems.

Example 5.3. \Omega = (0, 1), T = 0.1, \sigma = 0, q\dagger = 2+sin(2\pi x)e - 2(1 - x), u0 = sin(\pi x),
and f = 4x(1  - x). The exact data are generated on a fine mesh with h = 1/1600
and \tau = 1/8000.

The numerical results for Example 5.3 are shown in Table 5.3 and Figure 5.3,
where eq is defined as before and eu is defined by eu = (\tau 

\sum N
n=N\sigma 

\| Un
h (q

\ast 
h)(tn)  - 

u(q\dagger )(tn)\| 2L2(\Omega ))
1
2 . The regularization parameter \gamma , the mesh size h, and the time

step size \tau are chosen such that they all decrease with the noise level \varepsilon , as suggested
by Corollary 4.6. One can check that the positivity condition (4.14) holds, and thus
Corollary 4.6 is indeed applicable. We observe a very steady convergence for both
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Table 5.4
Numerical results for Example 5.4: convergence with respect to \varepsilon , with \gamma , h and \tau , initialized

to 1.00e-6, 8.33e-2, and 1/1600.

\varepsilon 5.00e-2 3.00e-2 1.00e-2 5.00e-3 3.00e-3 1.00e-3 5.00e-4

eq 1.95e-2 9.54e-3 4.32e-3 2.87e-3 2.28e-3 1.37e-3 9.37e-4 0.62
eu 3.49e-3 1.70e-3 7.52e-4 3.92e-4 2.68e-4 7.26e-5 4.17e-5 0.94

(a) exact (b) \varepsilon =1e-2 (c) \varepsilon =5e-2

Fig. 5.4. Numerical reconstructions for Example 5.4 at two noise levels.

quantities eq and eu. The convergence rate for eq is comparable with the elliptic cases
in Examples 5.1 and 5.2; however, the rate for eu is slightly slower, at a rate about
O(\delta 0.64), when compared with the nearly O(\delta ) rate in Examples 5.1 and 5.2. The
precise mechanism for this loss is still unclear.

Example 5.4. \Omega = (0, 1)2, T = 0.1, q\dagger (x1, x2) = 1+(1 - x1)x1 sin(\pi x2), u0(x1, x2) =
4x1(1 - x1), and f \equiv 1. The exact data are generated on a finer mesh with h = 1/200
and \tau = 1/12800.

The numerical results for Example 5.4 are shown in Table 5.4 and Figure 5.4.
The empirical rates with respect to \varepsilon and \tau are largely comparable with the preceding
examples, and the overall convergence is very steady.

In sum, the numerical experiments confirm the convergence of the Galerkin ap-
proximation in the L2(\Omega ). However, the theoretical rate is still slower than the empir-
ical one. It remains an important issue to derive sharp error estimates. In addition,
it is also of interest to derive convergence rates with respect to h for the (nonlinear)
optimal control problems (with fixed \delta and \gamma ), for which there seems to be no known
result.

Appendix A. Basic estimates. We give an error bound on the Galerkin
approximation. This estimate is used in the proof of Lemma 4.3.

Lemma A.1. Let q \in W 1,\infty (\Omega ) \cap H2(\Omega ), with c0 \leq q(x) \leq c1 a.e. \Omega . Let
uh(q) \in Xh and uh(\scrI hq) \in Xh be the solutions to the variational problems

(q\nabla uh(q),\nabla v) = (f, v) and (\scrI hq\nabla uh(\scrI hq),\nabla v) = (f, v) \forall v \in Xh,

respectively. Then for any \epsilon > 0 and p \geq max(d+ \epsilon , 2), there holds

\| uh(q) - uh(\scrI hq)\| L2(\Omega ) \leq ch2\| f\| Lp(\Omega ).

Proof. By the definitions of uh(\scrI hq) and uh(q), wh \equiv uh(q) - uh(\scrI hq) satisfies

(q\nabla wh,\nabla v) = ((\scrI hq  - q)\nabla uh(\scrI hq),\nabla v) \forall v \in Xh.(A.1)
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Since q \geq c0, by the approximation property (2.2), we derive

c0\| \nabla wh\| 2L2(\Omega ) \leq (q\nabla wh,\nabla wh) = ((\scrI hq  - q)\nabla uh(\scrI hq),\nabla wh)

\leq c1\| \scrI hq  - q\| L\infty (\Omega )\| \nabla uh(\scrI hq)\| L2(\Omega )\| \nabla wh\| L2(\Omega )

\leq ch\| q\| W 1,\infty (\Omega )\| f\| L2(\Omega )\| \nabla wh\| L2(\Omega ),

i.e., \| \nabla wh\| L2(\Omega ) \leq ch\| f\| L2(\Omega ). Next, we derive the L2(\Omega ) estimate by using a duality
argument. Let \psi \in H2(\Omega ) \cap H1

0 (\Omega ) solve (q\nabla v,\nabla \psi ) = (v, wh) for any v \in H1
0 (\Omega ).

Meanwhile, we have

\| wh\| 2L2(\Omega ) = (q\nabla wh,\nabla \psi ) = (q\nabla wh,\nabla (\psi  - \scrI h\psi )) + (q\nabla wh,\nabla \scrI h\psi )
\leq \| q\| L\infty (\Omega )\| \nabla wh\| L2(\Omega )\| \nabla (\psi  - \scrI h\psi )\| L2(\Omega ) + (q\nabla wh,\nabla \scrI h\psi )
\leq ch2\| \psi \| H2(\Omega )\| f\| L2(\Omega ) + (q\nabla wh,\nabla \scrI h\psi ).

Further, using (A.1) and the a priori estimate \| u(q)\| W 1,\infty (\Omega ) \leq c\| f\| Lp(\Omega ) for any
p \geq max(d+ \epsilon , 2) [30, equation (2.2)] and the estimate \| \nabla (u(q) - uh(q))\| L2(\Omega ) \leq ch,
we obtain

(q\nabla wh,\nabla \scrI h\psi ) = ((\scrI hq  - q)\nabla uh(\scrI hq),\nabla \scrI h\psi )
= ((\scrI hq  - q)\nabla [uh(\scrI hq) - u(q)],\nabla \scrI h\psi ) + ((\scrI hq  - q)\nabla u(q),\nabla \scrI h\psi )
\leq \| \scrI hq  - q\| L\infty (\Omega )\| \nabla (uh(\scrI hq) - u(q))\| L2(\Omega )\| \nabla \scrI h\psi \| L2(\Omega )

+ \| \scrI hq  - q\| L2(\Omega )\| \nabla u(q)\| L\infty (\Omega )\| \nabla \scrI h\psi \| L2(\Omega )

\leq ch2\| \nabla \scrI h\psi \| L2(\Omega )\| f\| Lp(\Omega ) \leq ch2\| \psi \| H2(\Omega )\| f\| Lp(\Omega ).

This and the regularity \| \psi \| H2(\Omega ) \leq c\| wh\| L2(\Omega ) lead to

\| uh(q) - uh(\scrI hq)\| L2(\Omega ) \leq ch2\| f\| Lp(\Omega )

for any p \geq max(d+ \epsilon , 2). This completes the proof of the lemma.

Appendix B. Proof of Lemma 4.2.

Proof. If f \equiv 0 and u0 \in H2(\Omega ) \cap H1
0 (\Omega ), the estimate can be found in [34,

Theorem 3.1]. It suffices to analyze the case u0 = 0 and f \in W 2,1(0, T ;L2(\Omega )). Let
A \equiv A(q\dagger ) : H1

0 (\Omega ) \rightarrow H - 1(\Omega ) by (Av, \chi ) = (q\dagger \nabla v,\nabla \chi ) for all \chi \in H1
0 (\Omega ). Then A

generates a bounded analytic semigroup e - At on L2(\Omega ) and allows representing the
solution u(t) by

u(t) =

\int t

0

e - A(t - s)f(s) ds.

Then it follows from integration by parts that

\| \partial tu(t)\| L2(\Omega ) + \| Au(t)\| L2(\Omega ) \leq c\| f\| C([0,t];L2(\Omega )) +

\int t

0

\| \partial sf(s)\| L2(\Omega ) ds,

\| A\partial tu(t)\| L2(\Omega ) \leq c
\Bigl( 
t - 1\| f(0)\| L2(\Omega ) + \| f \prime (t)\| L2(\Omega ) +

\int t

0

\| \partial 2sf(s)\| L2(\Omega ) ds
\Bigr) 
.

The second inequality and Assumption 4.1 imply\int t

0

s\| A\partial su(s)\| L2(\Omega ) ds \leq ct.
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Then by the regularity estimate (4.9) and the approximation property (2.1), we derive

\| u(t) - Phu(t)\| L2(\Omega ) \leq ch2\| u(t)\| H2(\Omega ) \leq ch2\| Au(t)\| L2(\Omega ).(B.1)

Let uh be the spatially semidiscrete Galerkin approximation, i.e., \partial tuh+Ahuh = Phf
with uh(0) = 0 and Ah \equiv Ah(q

\dagger ), cf. (2.3). Then the difference \zeta (t) = uh(t) - Phu(t)
satisfies

\partial t\zeta (t) +Ah\zeta (t) = Ah(Rh  - Ph)u(t),

with \zeta (0) = 0, where Rh : H1
0 (\Omega ) \rightarrow Xh denotes the Ritz projection (associated with

q\dagger ). Then (2.1) and the approximation property of Rh [34, Lemma 1.1] lead to

t\zeta (t) = t

\int t

0

e - Ah(t - s)Ah(Rh  - Ph)u(s) ds

=

\int t

0

(t - s)e - Ah(t - s)Ah(Rh  - Ph)u(s) ds+

\int t

0

e - Ah(t - s)Ah(Rh  - Ph)su(s) ds

=: I1 + I2.

Since \| e - AhtAh\| L2(\Omega )\rightarrow L2(\Omega ) \leq ct - 1, we deduce

\| I1\| L2(\Omega ) \leq 
\int t

0

\| (Rh  - Ph)u(s)\| L2(\Omega ) ds \leq ch2
\int t

0

\| Au(s)\| L2(\Omega ) ds \leq cth2.

Similarly, integration by parts allows bounding I2 by

\| I2\| L2(\Omega ) \leq ct\| (Rh  - Ph)u(t)\| L2(\Omega ) + c

\int t

0

\| (Rh  - Ph)\partial s(su(s))\| L2(\Omega ) ds

\leq cth2\| Au\| C([0,t];L2(\Omega )) + ch2
\int t

0

s\| A\partial s(su(s))\| L2 ds \leq cth2.

The preceding two estimates yield \| \zeta (t)\| L2(\Omega ) \leq ch2. This, (B.1), and the triangle
inequality imply \| uh(t) - u(t)\| L2(\Omega ) \leq ch2.Meanwhile, repeating the argument in [24,
Lemma 4.2] yields

\| uh(tn) - Un
h (q

\dagger )\| L2(\Omega ) \leq c\tau 
\Bigl( 
\| f(0)\| L2(\Omega ) +

\int tn

0

\| \partial sf(s)\| L2(\Omega ) ds
\Bigr) 
\leq c\tau .

Then the desired assertion follows immediately by the triangle inequality.
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