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NUMERICAL ESTIMATION OF A DIFFUSION COEFFICIENT IN
SUBDIFFUSION\ast 

BANGTI JIN\dagger AND ZHI ZHOU\ddagger 

Abstract. In this work, we consider the numerical recovery of a spatially dependent diffusion
coefficient in a subdiffusion model from distributed observations. The subdiffusion model involves a
Caputo fractional derivative of order \alpha \in (0, 1) in time. The numerical estimation is based on the
regularized output least-squares formulation, with an H1(\Omega ) penalty. We prove the well-posedness
of the continuous formulation, e.g., existence and stability. Next, we develop a fully discrete scheme
based on the Galerkin finite element method in space and backward Euler convolution quadrature in
time. We prove the subsequential convergence of the sequence of discrete solutions to a solution of
the continuous problem as the discretization parameters (mesh size and time step size) tend to zero.
Further, under an additional regularity condition on the exact coefficient, we derive convergence rates
in a weighted L2(\Omega ) norm for the discrete approximations to the exact coefficient in the one- and
two-dimensional cases. The analysis relies heavily on suitable nonstandard nonsmooth data error
estimates for the direct problem. We provide illustrative numerical results to support the theoretical
study.

Key words. parameter identification, subdiffusion, fully discrete scheme, convergence, error
estimate, Tikhonov regularization
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1. Introduction. Let \Omega \subset \BbbR d (d = 1, 2, 3) be a convex polyhedral domain
with a boundary \partial \Omega . Consider the following initial-boundary value problem of the
subdiffusion equation:

(1.1)

\left\{     
\partial \alpha t u(x, t) - \nabla \cdot (q(x)\nabla u(x, t)) = f(x, t), (x, t) \in \Omega \times (0, T ],

u(x, 0) = u0(x), x \in \Omega ,

u(x, t) = 0, (x, t) \in \partial \Omega \times (0, T ],

where T > 0 is the final time. The functions f and u0 are the given source term
and initial condition, respectively, and their precise regularity will be specified below.
The notation \partial \alpha t u denotes the Caputo fractional derivative in time of order \alpha \in (0, 1),
defined by [33]

\partial \alpha t u(t) =
1

\Gamma (1 - \alpha )

\int t

0

(t - s) - \alpha u\prime (s) ds.

The fractional derivative \partial \alpha t u recovers the usual first-order derivative u\prime (s) as the
order \alpha \rightarrow 1 - for smooth functions u. Thus the model is a fractional analogue of
the classical diffusion model. Throughout, we denote the solution to problem (1.1)
by u(q) to explicitly indicate its dependence on the diffusion coefficient q.
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COEFFICIENT ESTIMATION IN SUBDIFFUSION 1467

The model (1.1) has received enormous attention in recent years, due to its extra-
ordinary capability for describing anomalously slow diffusion processes (also known as
subdiffusion), which displays local motion occasionally interrupted by long sojourns
and trapping effects. At a microscopic level, such anomalous diffusion processes are
accurately modeled by continuous time random walk, where the waiting time between
consecutive particle jumps follows a heavy tailed distribution with a divergent mean,
and the model (1.1) is the macroscopic counterpart, describing the evolution of the
probability density function (in \BbbR d) of the particle appearing at time t and spati-
cal location t, in analogy to Brownian motion for normal diffusion. These processes
are characterized by sublinear growth of the particle mean squared displace with the
time. The model (1.1) has found many applications in physics, biology, finance, etc.,
including electron transport with copier [48], thermal diffusion on fractal domains [43],
dispersive transport of ions in column experiments [1, 18], protein transport within
membranes [35, 34, 46], and solute transport in heterogeneous media [11, 5]. We refer
interested readers to the comprehensive reviews [6, 42, 41] for physical modeling and
long lists of diverse applications.

This work is concerned with numerically identifying the diffusion coefficient q\dagger \in 
L\infty (\Omega ) the model (1.1) from the (noisy) distributed observation

(1.2) z\delta (x, t) = u(q\dagger )(x, t) + \xi (x, t), (x, t) \in \Omega \times [0, T ],

where u(q\dagger ) is the exact data (corresponding to the exact diffusion coefficient q\dagger ),
and \xi denotes the noise, with an accuracy \delta = \| u(q\dagger ) - z\delta \| L2(0,T ;L2(\Omega )). The inverse
problem is a fractional analogue of the inverse conductivity problem for standard
parabolic problems, which has been extensively studied both numerically and theo-
retically; see the monograph [19, Chapter 9] for relevant mathematical theory and
the references [17, 29, 31, 14, 12, 44, 50] for a rather incomplete list of works on nu-
merical identification of a diffusion coefficient in standard parabolic problems. Most
of these existing works formulate the inverse problem into an output least-squares
formulation, with a suitable penalty, e.g., Sobolev smoothness or total variation. For-
mally, the inverse problem is overdetermined for uniqueness/identifiability, and the
terminal data at time T or lateral Cauchy data may suffice for unique recovery (see
[19, Chapter 9] for relevant uniqueness results for a standard parabolic case). None-
theless, numerically, the full space-time datum (1.2) or a restricted version over the
region \Omega \times [T0, T ] is frequently employed in existing studies for standard parabolic
problems [17, 49, 29, 31, 14, 12, 44, 50], due to, e.g., the weak regularity assumption
on problem data. In particular, all existing works [31, 44, 50] on error estimates (for
parabolic problems) require the full space-time datum (1.2), and it appears to be open
to extend these results to partial data. Thus, we shall focus the analysis on the full
datum (1.2) below.

In this work, we shall develop a numerical procedure for recovering a spatially
dependent diffusion coefficient. We formulate an output least-squares formulation
with an H1(\Omega ) penalty, which is suitable for recovering a smooth coefficient q, and
provide a complete analysis of both continuous and discrete formulations, including
well-posedness and convergence of discrete approximations, for weak regularity as-
sumption on the problem data, in sections 2 and 3, respectively. Furthermore, in
section 4, we derive some a priori weighted L2(\Omega ) error estimates on the discrete
approximation under a mild regularity assumption on the exact diffusion coefficient
q\dagger in one- and two-dimensional cases; see Theorem 4.8 and Corollary 4.10. The ob-
tained estimates depend on the spatial mesh size h, temporal step size \tau , the noise
level \delta , and the regularization parameter \gamma . These results extend the corresponding
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1468 BANGTI JIN AND ZHI ZHOU

results for the standard parabolic case [17, 31, 50] and represent the main theoretical
achievements of the work.

Generally, when compared with standard parabolic problems, the presence of the
time-fractional derivative \partial \alpha t u in the model (1.1) poses a number of distinct challenges
to the mathematical and numerical analysis (see [23] for a concise overview): (i) due to
the nonlocality of the Caputo derivative \partial \alpha t u, many powerful tools from PDE theory
and classical numerical analysis, e.g., energy argument and integration by parts for-
mula, are not directly applicable; (ii) the solution u generally has only limited spatial
and temporal regularity, even for smooth problem data; (iii) high-order time stepping
schemes often lack robustness with respect to the regularity of the problem data; (iv)
the nonlocality incurs a storage issue for time stepping. Naturally, these challenges
persist for the analysis of the regularized output least-squares formulation (2.1)--(2.2)
below, and especially items (i) and (ii) represent the main technical challenges in the
convergence analysis, and hence it differs substantially from the standard parabolic
counterpart. Further, the error analysis is greatly complicated by the nonlinearity
of the forward map, and thus standard techniques from optimal control theory, via,
e.g., convexity and the first-order optimality condition, also do not apply directly.
To overcome these technical challenges, we shall employ the positivity of the frac-
tional derivative operators (in Lemmas 2.2 and 3.1), nonsmooth data estimates (in
Lemma 4.2), and novel test function \varphi (in Theorem 4.8), which represent the main
technical novelties of the work.

Now we briefly review relevant works from the inverse problem literature. Inverse
problems for fractional diffusion have started to attract much interest, and there has
already been a vast literature (see, e.g., the review [26]). There are a number of
interesting works on recovering the diffusion coefficient [8, 36, 37, 52, 32]. In an influ-
ential work, Cheng et al. [8] proved the unique recovery of both diffusion coefficient
and fractional order from the lateral Cauchy data for the model (1.1) with a Dirac
source in the one spatial dimensional case. The proof employs Laplace transform and
Sturm--Liouville theory. Recently, Kian et al. [32] proved uniqueness for the recovery
of two coefficients from the Dirichlet-to-Neumann map [32]. Li and co-authors [36, 37]
discussed the numerical recovery of the diffusion coefficient (simultaneously with the
fractional order) and showed various continuity results of the parameter to state map.
However, the numerical discretization was not analyzed in [37]. Zhang [52] proved the
unique recovery for the case of a time-dependent q \equiv q(t) and devised a numerical
scheme for its recovery. See also the work [51] for further numerical results on recov-
ering the diffusion coefficient from boundary data in the one-dimensional case, using
a space-time variational formulation, which allows only a zero initial condition. How-
ever, there is neither analysis of the discretized problem nor error estimates in these
interesting existing works. In sum, there is no rigorous study of the discretization
schemes, and it is precisely this gap that this work aims to fill in. We refer interested
readers also to the works [53, 21, 28] and references therein for further numerical
methods on other nonlinear inverse problems for the subdiffusion model.

The rest of the paper is organized as follows. In section 2, we formulate the
continuous problem and analyze its well-posedness, e.g., existence and stability. Then
in section 3, we describe a fully discrete scheme and show the convergence of the
discrete approximations to a solution of the continuous problem as the discretization
parameters tend to zero. In section 4, we provide detailed error estimates for the
discrete approximations. Finally, in section 5, we present illustrative one- and two-
dimensional numerical results to complement the analysis. We conclude the paper
with further remarks in section 6.
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COEFFICIENT ESTIMATION IN SUBDIFFUSION 1469

We end this section with some useful notation. Throughout, the notation c de-
notes a generic constant, which may change at each occurrence, but it is always
independent of q, mesh size h, and time step size \tau . We shall employ standard
notation for Sobolev spaces [2]. The spaces Lp(\Omega ) and W k,p(\Omega ) are endowed with
the norms \| \cdot \| Lp(\Omega ) and \| \cdot \| Wk,p(\Omega ), respectively, and the notation (\cdot , \cdot ) denotes
the L2(\Omega ) inner product. We denote by H - 1(\Omega ) the dual space of H1

0 (\Omega ). For a
Banach space B (endowed with the norm \| \cdot \| B), we define L2(0, T ;B) = \{ u(t) \in 
B for a.e. t \in (0, T ) and \| u\| L2(0,T ;B) <\infty \} , and the norm is given by \| u\| L2(0,T ;B) =

(
\int T

0
\| u(t)\| 2Bdt)

1
2 . The notation (\cdot , \cdot )L2(0,T ;L2(\Omega )) denotes the inner product in the

space L2(0, T ;L2(\Omega )). Similarly, the space H1(0, T ;B) denotes H1(0, T ;B) = \{ u \in 
L2(0, T ;B) : u\prime (t) \in L2(0, T ;B)\} , with its norm given by \| u\| H1(0,T ;B) = (\| u\| 2L2(0,T ;B)+

\| u\prime (t)\| 2L2(0,T ;B))
1
2 , with the notation \prime denoting the (weak) temporal derivative. Fur-

ther, for any s \geq 0, we denote by \.Hs(\Omega ) = \{ v \in L2(\Omega ) : ( - \Delta )
s
2 v \in L2(\Omega )\} , where

\Delta is the Laplacian with a zero Dirichlet boundary condition and the fractional power
( - \Delta )

s
2 is defined by the spectral decomposition [30]. The space \.Hs(\Omega ) is equipped

with the norm \| v\| \.Hs(\Omega ) = (\| v\| 2L2(\Omega ) + \| ( - \Delta )
s
2 v\| 2L2(\Omega ))

1
2 . Then \.H0(\Omega ) = L2(\Omega ),

\.H1(\Omega ) = H1
0 (\Omega ) and

\.H2(\Omega ) = H2(\Omega ) \cap H1
0 (\Omega ).

2. Well-posedness of the continuous problem. In this section, we formulate
and analyze the continuous formulation of the reconstruction approach. To recover
the diffusion coefficient q, we employ the following output least-squares formulation
with an H1(\Omega )-penalty:

(2.1) min
q\in \scrA 

J\gamma (q; z
\delta ) = 1

2\| u(q) - z\delta \| 2L2(0,T ;L2(\Omega )) +
\gamma 
2 \| \nabla q\| 

2
L2(\Omega ),

where u(q) satisfies the variational problem
(2.2)

(\partial \alpha t u(q), v) + (q\nabla u(q),\nabla v) = (f, v) \forall v \in \.H1(\Omega ), t \in (0, T ] with u(0) = u0.

The admissible set \scrA for the diffusion coefficient q(x) is given by

\scrA = \{ q \in H1(\Omega ) : c0 \leq q \leq c1 a.e. in \Omega \} 

with constants c0, c1 \in \BbbR and 0 < c0 < c1. The H1(\Omega ) seminorm penalty is suitable
for recovering a smooth diffusion coefficient. In the case of nonsmooth coefficients,
alternative penalties, e.g., total variation, should be employed; see Remark 3.8 for
further discussions. The scalar \gamma > 0 is the regularization parameter, controlling
the strength of the penalty [20]. The dependence of the functional J\gamma on z\delta will be
suppressed below whenever there is no confusion. For the analysis in sections 2 and
3, we make the following assumption on problem data. It is sufficient to ensure the
existence of a unique solution u(q) \in L2(0, T ;H1(\Omega )) for any q \in \scrA [23].

Assumption 2.1. u0 \in \.H1(\Omega ), f \in L2(0, T ;L2(\Omega )), and z\delta \in L2(0, T ;L2(\Omega )).

First we show the well-posedness of problem (2.1)--(2.2), which relies on a conti-
nuity result for the parameter-to-state map u(q). First, we recall a stability result on
the solution operator. Below, for any q \in \scrA , the operator A(q) : \.H1(\Omega ) \rightarrow H - 1(\Omega ) is
defined by

 - \langle A(q)\varphi ,\psi \rangle = (q\nabla \varphi ,\nabla \psi ) \forall \varphi ,\psi \in \.H1(\Omega ),

where \langle \cdot , \cdot \rangle denotes the duality pairing between H - 1(\Omega ) and \.H1(\Omega ). For any \varphi \in 
\.H2(\Omega ), there holds A(q)\varphi = \nabla \cdot (q\nabla \varphi ) \in L2(\Omega ).
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1470 BANGTI JIN AND ZHI ZHOU

Lemma 2.2. For any q \in \scrA , let v solve

\partial \alpha t v  - A(q)v = f \forall t \in (0, T ] with v(0) = 0.

Then there holds

\| v\| 2L2(0,T ;H1(\Omega )) \leq c\| f\| 2L2(0,T ;H - 1(\Omega )).

Proof. Taking \phi = v in the weak formulation and then integrating from 0 to T
gives

(\partial \alpha t v(t), v(t))L2(0,T ;L2(\Omega )) + (q\nabla v,\nabla v)L2(0,T ;L2(\Omega )) = (f, v)L2(0,T ;L2(\Omega )).

Since v(0) = 0, the Caputo fractional derivative coincides with the Riemann--Liouville
one [33], and upon extending v by 0 outside [0, T ], it follows directly from [38, Lemma
2.3] that

(\partial \alpha t v(t), v(t))L2(0,T ;L2(\Omega )) \geq 0,

and by Poincar\'e's inequality and the Cauchy--Schwarz inequality, we obtain the desired
estimate.

The next result gives the continuity of the parameter-to-state map.

Lemma 2.3. If the sequence \{ qn\} \subset \scrA converges to q \in \scrA almost everywhere,
then

lim
n\rightarrow \infty 

\| u(q) - u(qn)\| L2(0,T ;H1(\Omega )) = 0.

Proof. Let vn = u(q) - u(qn). Then it satisfies vn(0) = 0 and

\partial \alpha t v
n  - \nabla \cdot (qn\nabla vn) = \nabla \cdot ((q  - qn)\nabla u(q)) \forall t \in (0, T ].

Then by Lemma 2.2 and the definition of the H - 1(\Omega ), we obtain

\| vn\| L2(0,T ;H1(\Omega )) \leq c\| \nabla \cdot ((q  - qn)\nabla u(q))\| L2(0,T ;H - 1(\Omega ))

\leq c\| (q  - qn)\nabla u(q)\| L2(0,T ;L2(\Omega )).

Let \phi n = | q - qn| 2
\int T

0
| \nabla u(q)| 2 dt. Then \phi n \rightarrow 0 almost everywhere (a.e.), since qn \rightarrow q

a.e., and further, since q, qn \in \scrA , we have 0 \leq \phi n \leq 4c21
\int T

0
| \nabla u(q)| 2 dt \in L1(\Omega ). Then,

Lebesgue's dominated convergence theorem [16, Theorem 1.9] implies

lim
n\rightarrow \infty 

\| (q  - qn)\nabla u(q)\| 2L2(0,T ;L2(\Omega )) = lim
n\rightarrow \infty 

\int 
\Omega 

\phi n(x) dx =

\int 
\Omega 

lim
n\rightarrow \infty 

\phi n(x) dx = 0,

which shows the desired estimate.

The next result gives the existence of a minimizer. With Lemma 2.3 at hand, the
result follows by a standard compactness argument in calculus of variation (see, e.g.,
[13, 20]), and the proof is included only for completeness.

Theorem 2.4. Under Assumption 2.1, there exists at least one minimizer to
(2.1)--(2.2).
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COEFFICIENT ESTIMATION IN SUBDIFFUSION 1471

Proof. Since the functional J\gamma is bounded from below by zero, there exists a
minimizing sequence \{ qn\} n\geq 1 \subset \scrA such that limn\rightarrow \infty J\gamma (q

n) = infq\in \scrA J\gamma (q). Thus,
the sequence \{ qn\} n\geq 1 is uniformly bounded in the H1(\Omega ) seminorm, which together
with the box constraint qn \in \scrA implies that it is also uniformly bounded in H1(\Omega ).
Thus there exists a subsequence, still denoted by \{ qn\} n\geq 1, that converges to some q\ast \in 
\scrA weakly in H1(\Omega ), and by compact Sobolev embedding theorem [16], converges also
in L1(\Omega ). Further, by standard measure theory, convergence in L1(\Omega ) implies almost
everywhere convergence up to a subsequence [16, Theorem 1.21, p. 29]. Thus, we may
assume that the subsequence \{ qn\} n\geq 1 converges to q

\ast in L1(\Omega ) and almost everywhere.
Then by Lemma 2.3, for the sequence \{ u(qn)\} n\geq 1 of solutions to problem (1.1), there
holds limn\rightarrow \infty \| u(qn)  - u(q\ast )\| L2(0,T ;H1(\Omega )) = 0. Then by Sobolev embedding [2],

limn\rightarrow \infty \| u(qn)  - z\delta \| 2L2(0,T ;L2(\Omega )) = \| u(q\ast )  - z\delta \| 2L2(0,T ;L2(\Omega )). This and weak lower

semicontinuity of seminorms imply that q\ast is a minimizer to (2.1).

The following continuous dependence results hold, where the minimum H1(\Omega )-
seminorm solution refers to the solution q\dagger of the minimum H1(\Omega ) seminorm among
all solutions within the admissible set \scrA corresponding to the exact data z\dagger = u(q\dagger ).
The proof follows by a standard argument (see, e.g., [13, 20]) and thus is omitted.

Theorem 2.5. Under Assumption 2.1, the following statements hold.
(i) Let \gamma > 0 be fixed, the sequence \{ zj\} j\geq 1 be convergent to some data z in

L2(0, T ;L2(\Omega )), and q\ast j \in \scrA the corresponding minimizer to J\gamma (\cdot ; zj). Then
\{ q\ast j \} j\geq 1 contains a subsequence convergent to a minimizer of J\gamma (\cdot ; z) over \scrA 
in H1(\Omega ).

(ii) Let \{ \delta j\} j\geq 1 \subset \BbbR + with \delta j \rightarrow 0+, \{ z\delta j\} j\geq 1 \subset L2(0, T ;L2(\Omega )) be a se-
quence satisfying \| z\delta j  - z\dagger \| L2(0,T ;L2(\Omega )) = \delta j for some exact data z\dagger =

u(q\dagger ), and q\ast j be a minimizer to J\gamma j
(\cdot ; z\delta j ) over \scrA . If \{ \gamma j\} j\geq 1 satisfies

limj\rightarrow \infty \gamma j = limj\rightarrow \infty 
\delta 2j
\gamma j

= 0, then \{ q\ast j \} j\geq 1 contains a subsequence converging

to a minimum-H1(\Omega ) seminorm solution in H1(\Omega ).

3. Numerical approximation and convergence analysis. Now we describe
the discretization of problem (2.1)--(2.2) and show the convergence of the approxima-
tions.

3.1. Numerical approximation. First, we describe a spatially semidiscrete
scheme for problem (1.1) based on the Galerkin FEM; see [23] for a recent overview
on the numerical approximation of the subdiffusion model. Let \scrT h be a shape regular
quasi-uniform triangulation of the domain \Omega into d-simplexes, denoted by T , with a
mesh size h \in (0, 1). Over \scrT h, we define a continuous piecewise linear finite element
space Xh by

Xh =
\Bigl\{ 
vh \in \.H1(\Omega ) : vh| T is a linear function \forall T \in \scrT h

\Bigr\} 
and similarly the space Vh by

Vh =
\bigl\{ 
vh \in H1(\Omega ) : vh| T is a linear function \forall T \in \scrT h

\bigr\} 
.

The spaces Xh and Vh will be employed to approximate the state u and the diffusion
coefficient q, respectively. We define the L2(\Omega ) projection Ph : L2(\Omega ) \rightarrow Xh by

(Ph\varphi , \chi ) = (\varphi , \chi ) \forall \chi \in Xh.
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1472 BANGTI JIN AND ZHI ZHOU

Note that the operator Ph satisfies the following error estimate: for any s \in [1, 2],

\| Ph\varphi  - \varphi \| L2(\Omega ) + h\| \nabla (Ph\varphi  - \varphi )\| L2(\Omega ) \leq chs\| \varphi \| \.Hs(\Omega ) \forall \varphi \in \.Hs(\Omega ).

Let \scrI h be the interpolation operator associated with the finite element space Vh. Then
it satisfies the following error estimates for s = 1, 2 (see, e.g., [15, Theorem 1.103]):

\| v  - \scrI hv\| L2(\Omega ) + h\| v  - \scrI hv\| H1(\Omega ) \leq ch2\| v\| H2(\Omega ) \forall v \in H2(\Omega ),(3.1)

\| v  - \scrI hv\| L\infty (\Omega ) + h\| v  - \scrI hv\| W 1,\infty (\Omega ) \leq chs\| v\| W s,\infty (\Omega ) \forall v \in W s,\infty (\Omega ).(3.2)

Now we partition the time interval [0, T ] uniformly, with grid points tn = n\tau ,
n = 0, . . . , N , and a time step size \tau = T/N . The fully discrete scheme for problem
(1.1) reads as follows: Given U0

h = Phu0 \in Xh, find U
n
h \in Xh such that

(\=\partial \alpha \tau (U
n
h  - U0

h), \chi ) + (q\nabla Un
h ,\nabla \chi ) = (fn, \chi ) \forall \chi \in Xh, n = 1, 2, . . . , N,(3.3)

where fn = 1
\tau 

\int tn
tn - 1

f(s) ds and \=\partial \alpha \tau \varphi 
n denotes the backward Euler convolution quad-

rature (CQ) approximation (with \varphi j = \varphi (tj)):

(3.4) \=\partial \alpha \tau \varphi 
n = \tau  - \alpha 

n\sum 
j=0

b
(\alpha )
j \varphi n - j with (1 - \xi )\alpha =

\infty \sum 
j=0

b
(\alpha )
j \xi j .

Note that the weights b
(\alpha )
j are given explicitly by b

(\alpha )
j = ( - 1)j \Gamma (\alpha +1)

\Gamma (\alpha  - j+1)\Gamma (j+1) , and

thus

b
(\alpha )
j = ( - 1)j

\alpha (\alpha  - 1) \cdot \cdot \cdot (\alpha  - j + 1)

j!
, j \geq 1,

from which it can be verified directly that b
(\alpha )
0 = 1 and b

(\alpha )
j < 0 for j \geq 1. Similarly,

one deduces b
(\alpha  - 1)
j > 0 for j = 0, 1, . . . . Meanwhile, by definition, we have (with

\varphi 0 = 0)

\=\partial \alpha  - 1
\tau 

\=\partial \tau \varphi 
n = \tau  - \alpha 

n\sum 
j=1

b
(\alpha  - 1)
n - j (\varphi j  - \varphi j - 1) = \tau  - \alpha 

\biggl( 
b
(\alpha  - 1)
0 \varphi n +

n - 1\sum 
j=1

(b
(\alpha  - 1)
n - j  - b

(\alpha  - 1)
n - j - 1)\varphi 

j

\biggr) 
.

Direct computation shows b
(\alpha  - 1)
j  - b

(\alpha  - 1)
j - 1 = b

(\alpha )
j . This and the fact b

(\alpha  - 1)
0 = b

(\alpha )
0 = 1

show the following associativity of convolution quadrature (with \varphi 0 = 0)

(3.5) \=\partial \alpha  - 1
\tau 

\=\partial \tau \varphi 
n = \=\partial \alpha \tau \varphi 

n.

Upon letting the discrete operator Ah(q) : Xh \rightarrow Xh by  - (Ah(q)vh, \chi ) = (q\nabla vh,\nabla \chi )
for all vh, \chi \in Xh, the fully discrete scheme (3.3) can be rewritten as

\=\partial \alpha \tau (U
n
h  - U0

h) - Ah(q)U
n
h = Phf

n, n = 1, 2, . . . , N.

Now we can formulate the finite element discretization of problem (2.1)--(2.2):

(3.6) min
qh\in \scrA h

J\gamma ,h,\tau (qh) =
\tau 

2

N\sum 
n=1

\int 
\Omega 

| Un
h (qh) - z\delta n| 2 dx+

\gamma 

2
\| \nabla qh\| 2L2(\Omega )

D
ow

nl
oa

de
d 

05
/1

4/
21

 to
 1

93
.6

0.
23

8.
99

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COEFFICIENT ESTIMATION IN SUBDIFFUSION 1473

with z\delta n = \tau  - 1
\int tn
tn - 1

z\delta dt, and Un
h (qh) satisfying U

0
h(qh) = Phu0 and

\=\partial \alpha \tau (U
n
h (qh) - U0

h) - Ah(qh)U
n
h (qh) = Phf

n, n = 1, 2, . . . , N.(3.7)

The discrete admissible set \scrA h is taken to be

\scrA h = \{ qh \in Vh : c0 \leq qh(x) \leq c1 in \Omega \} .

Clearly, \scrA h = \scrA \cap Vh. Problem (3.6)--(3.7) is a finite-dimensional nonlinear optimiza-
tion problem with PDE and box constraint and can be solved efficiently. The analysis
of problem (3.6)--(3.7) is the main focus of sections 3.2 and 4.

3.2. Existence and convergence. This part is devoted to the convergence
analysis of the discrete approximations given by the scheme (3.6)--(3.7) to the contin-
uous formulation (2.1)--(2.2). We begin with some a priori estimate on the solutions
of the time stepping scheme (3.3). The proof relies on positivity of CQ.

Lemma 3.1. Let V n
h \in Xh solve

(\=\partial \alpha \tau V
n
h , \chi ) + (qh\nabla V n

h ,\nabla \chi ) = (fnh , \chi ) \forall \chi \in Xh, n = 1, 2, . . . , N,

with V 0
h = 0. Then there holds

\tau 

N\sum 
n=1

(\nabla V n
h ,\nabla V n

h ) \leq c\tau 

N\sum 
n=1

(fnh , V
n
h ).

Proof. Letting \chi = V n
h \in Xh and then summing over n leads to

\tau 

N\sum 
n=1

(\=\partial \alpha \tau V
n
h , V

n
h ) + \tau 

N\sum 
n=1

(qh\nabla V n
h ,\nabla V n

h ) = \tau 

N\sum 
n=1

(fnh , V
n
h ).

Now we shall show that the first term on the left-hand side is nonnegative. To this

end, we extend \{ V n
h \} Nn=0 to \{ V n

h \} n=\infty 
n= - \infty and \{ b(\alpha )n \} n=\infty 

n=0 to \{ b(\alpha )n \} n=\infty 
n= - \infty by zero. Then

\=\partial \alpha \tau V
n
h can be written as \=\partial \alpha \tau V

n
h = \tau  - \alpha 

\sum \infty 
j= - \infty b

(\alpha )
n - jV

j
h . Next we denote the discrete

Fourier transform \widetilde [V n
h ](\zeta ) by \widetilde [V n

h ](\zeta ) =
\sum \infty 

n= - \infty V n
h e

 - in\zeta . By Parseval's theorem,
since V 0

h = 0, we have

N\sum 
j=1

(\=\partial \alpha \tau V
n
h , V

n
h ) =

1

2\pi 

\int \pi 

 - \pi 

( \widetilde [ \=\partial \alpha \tau V n
h ](\zeta ), \widetilde [V n

h ](\zeta )\ast ) d\zeta .

By the property of discrete Fourier transform, we have

N\sum 
j=1

(\=\partial \alpha \tau V
n
h , V

n
h ) =

\tau  - \alpha 

2\pi 

\int \pi 

 - \pi 

\widetilde 
[b

(\alpha )
n ]

\bigm| \bigm| \bigm| \widetilde [V n
h ](\zeta )

\bigm| \bigm| \bigm| 2 d\zeta 
=
\tau  - \alpha 

\pi 

\int \pi 

0

\Bigl[ 
\Re 
\Bigl( 
1 - e - i\zeta 

\Bigr) \alpha \Bigr] \bigm| \bigm| \bigm| \widetilde [yn](\zeta )\bigm| \bigm| \bigm| 2 d\zeta \geq 0.

Then the Cauchy--Schwarz inequality and Poincar\'e's inequality imply the desired
estimate.
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1474 BANGTI JIN AND ZHI ZHOU

Lemma 3.2. The following statements hold:

m\sum 
n=0

b(\alpha )n = b(\alpha  - 1)
m and

\bigm| \bigm| \bigm| \bigm| \tau  - \alpha 
m\sum 

n=0

b(\alpha )n

\bigm| \bigm| \bigm| \bigm| \leq ct - \alpha 
m+1.

Proof. Let
\sum m

n=0 b
(\alpha )
n = vm. Then by changing the order of summation, we have

\infty \sum 
m=0

vm\xi 
m =

\infty \sum 
m=0

\xi m
m\sum 

n=0

b(\alpha )n =

\infty \sum 
n=0

b(\alpha )n

\infty \sum 
m=n

\xi m

=

\infty \sum 
n=0

b(\alpha )n \xi n
\infty \sum 

m=n

\xi m - n =

\biggl( \infty \sum 
n=0

b(\alpha )n \xi n
\biggr) \biggl( \infty \sum 

m=0

\xi m
\biggr) 

= (1 - \xi )\alpha (1 - \xi ) - 1 = (1 - \xi )\alpha  - 1.

Therefore, vm = b
(\alpha  - 1)
m \leq c(m + 1) - \alpha [25, Lemma 2.3], which shows the second

assertion.

The next result gives a discrete analogue of the following well known inequality
[4]:

\varphi (t)\partial \alpha t (\varphi (t) - \varphi (0)) \geq 1
2\partial 

\alpha 
t (| \varphi (t)| 2  - \varphi (0)| 2).

It is useful for deriving a priori estimates on the fully discrete solutions.

Lemma 3.3. Let \=\partial \alpha \tau \varphi 
n be the backward Euler CQ defined as (3.4). Then there

holds \bigl( 
\=\partial \alpha \tau (\varphi 

n  - \varphi 0)
\bigr) 
\varphi n \geq 1

2
\=\partial \alpha \tau 

\bigl( 
| \varphi n| 2  - | \varphi 0| 2

\bigr) 
.

Proof. By the definition of backward Euler CQ in (3.4), we deduce

\bigl( 
\=\partial \alpha \tau (\varphi 

n  - \varphi 0)
\bigr) 
\varphi n = \tau  - \alpha 

\biggl( 
| \varphi n| 2 +

n - 1\sum 
j=0

b
(\alpha )
n - j\varphi 

n\varphi j  - 
\biggl( n\sum 

j=0

b
(\alpha )
n - j

\biggr) 
\varphi n\varphi 0

\biggr) 
.

Now since the binomial coefficient b
(\alpha )
j < 0 for j \geq 1, we deduce

n - 1\sum 
j=0

b
(\alpha )
n - j\varphi 

n\varphi j \geq 1

2

n - 1\sum 
j=0

b
(\alpha )
n - j | \varphi 

n| 2 + 1

2

n - 1\sum 
j=0

b
(\alpha )
n - j | \varphi 

j | 2

and \biggl( n\sum 
j=0

b
(\alpha )
n - j

\biggr) 
\varphi n\varphi 0 \leq 1

2

\biggl( n\sum 
j=0

b
(\alpha )
n - j

\biggr) 
| \varphi n| 2 + 1

2

\biggl( n\sum 
j=0

b
(\alpha )
n - j

\biggr) 
| \varphi 0| 2.

Then the desired result follows immediately.

The next result gives a discrete continuity result.

Lemma 3.4. Let the sequence \{ qjh\} \subset \scrA h be convergent to q\ast h \in \scrA h in L1(\Omega ).
Then

lim
j\rightarrow \infty 

\tau 

N\sum 
n=1

\int 
\Omega 

| Un
h,\tau (q

j
h) - z\delta n| 2dx = \tau 

N\sum 
n=1

\int 
\Omega 

| Un
h,\tau (q

\ast 
h) - z\delta n| 2dx.
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Proof. Using Lemma 3.1, the proof is similar to that of Lemma 2.3, since in a
finite-dimensional space Vh, all norms are equivalent, and the convergence in L1(\Omega )
implies almost every convergence [16]. Thus the proof is omitted.

Then we can obtain the existence of a discrete minimizer q\ast h \in \scrA h. The proof is
identical to that in Theorem 2.4, and hence omitted. Note that the discrete minimizer
q\ast h depends implicitly also on the time step size \tau through the weak formulation (3.7).

Theorem 3.5. Under Assumption 2.1, there exists one minimizer q\ast h \in \scrA h to
(3.6)--(3.7).

Below we analyze the convergence of the sequence \{ q\ast h\} h>0 as h, \tau \rightarrow 0. The next
result is an analogue of Lemma 2.3 and plays an important role in the convergence
analysis. For the sequence of discrete solutions Un

h,\tau \equiv Un
h,\tau (qh) \in Xh to problem

(3.7), we define a piecewise constant in time interpolation uh,\tau (t) by

(3.8) uh,\tau (t) = Un
h,\tau , t \in [tn, tn+1), n = 0, . . . , N  - 1.

Lemma 3.6. Let Un
h,\tau \equiv Un

h,\tau (qh) \in Xh be the discrete solutions to problem (3.7)
with qh \in \scrA h, and the sequence \{ qh \in \scrA h\} h>0 convergent to some q\ast \in \scrA a.e. as
h, \tau \rightarrow 0+. Then under Assumption 2.1, for the piecewise constant interpolation uh,\tau 
defined in (3.8), there holds

uh,\tau (qh) \rightarrow u(q\ast ) weakly in L2(0, T ;H1(\Omega )), as h, \tau \rightarrow 0.

Proof. Taking the test function \chi = Un
h  - U0

h in (3.7) and summing over n yields

\tau 

N\sum 
n=0

(\=\partial \alpha \tau (U
n
h  - U0

h), U
n
h  - U0

h) + \tau 

N\sum 
n=1

(qh\nabla Un
h ,\nabla (Un

h  - U0
h)) = \tau 

n\sum 
n=1

(fnh , U
n
h  - U0

h).

This identity, the nonnegativity of the discrete convolution \=\partial \alpha \tau (see the proof of
Lemma 3.1), the Poincar\'e inequality and Young's inequality, and the L2(\Omega ) stability
of Ph lead to

\tau 

N\sum 
n=1

\| \nabla Un
h \| 2L2(\Omega ) \leq c\tau 

N\sum 
n=1

\Bigl( 
\| \nabla U0

h\| 2L2(\Omega ) + \| fnh \| 2H - 1(\Omega )

\Bigr) 
\leq c

\bigl( 
\| \nabla u0\| 2L2(\Omega ) + \| f\| 2L2(0,T ;H - 1(\Omega ))

\bigr) 
.

Thus, the sequence \{ uh,\tau \} h,\tau >0 is uniformly bounded in L2(0, T ;H1(\Omega )), and thus
there exists a subsequence, still denoted by \{ uh,\tau \} h,\tau >0, and some u\ast \in L2(0, T ;H1(\Omega ))
such that

(3.9) uh,\tau converges weakly to u\ast in L2(0, T ;H1(\Omega )).

Meanwhile, by taking the test function \chi = \=\partial \alpha \tau (U
n
h  - U0

h) in (3.7),

\tau 

N\sum 
n=0

(\=\partial \alpha \tau (U
n
h  - U0

h),
\=\partial \alpha \tau (U

n
h  - U0

h)) + \tau 

N\sum 
n=1

(qh\nabla Un
h ,

\=\partial \alpha \tau \nabla (Un
h  - U0

h))(3.10)

= \tau 

n\sum 
n=1

(fnh ,
\=\partial \alpha \tau (U

n
h  - U0

h)).
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1476 BANGTI JIN AND ZHI ZHOU

Then Lemma 3.3, the fact that b
(\alpha  - 1)
j > 0 for all j \geq 0, and Lemma 3.2 lead to

2\tau 

N\sum 
n=1

(\nabla Un
h )

t \=\partial \alpha \tau \nabla (Un
h  - U0

h) \geq \tau 

N\sum 
n=1

\=\partial \alpha \tau 

\Bigl( 
\| \nabla Un

h \| 2L2(\Omega )  - \| \nabla U0
h\| 2L2(\Omega )

\Bigr) 
= \tau 

N\sum 
j=0

\Bigl( 
\| \nabla U j

h\| 
2
L2(\Omega )  - \| \nabla U0

h\| 2L2(\Omega )

\Bigr) 
b
(\alpha  - 1)
N - j

\geq \tau 

N\sum 
j=0

 - \| \nabla U0
h\| 2L2(\Omega )b

(\alpha  - 1)
N - j \geq  - c\| \nabla U0

h\| 2L2(\Omega ).

Hence, there holds \tau 
\sum N

n=1(qh\nabla Un
h ,

\=\partial \alpha \tau \nabla (Un
h  - U0

h)) \geq  - c\| \nabla U0
h\| 2L2(\Omega ). This and

Young's inequality imply

\tau 

N\sum 
n=1

\| \=\partial \alpha \tau (Un
h  - U0

h)\| 2L2(\Omega ) \leq c(\| \nabla u0\| 2L2(\Omega ) + \| f\| 2L2(0,T ;L2(\Omega ))).

Thus the sequence of piecewise constant interpolation, denoted by \{ \=\partial \alpha \tau (uh,\tau  - U0
h)\} h,\tau >0,

is uniformly bounded in L2(0, T ;L2(\Omega )), and there exists a subsequence, still denoted
by \{ \=\partial \alpha \tau (uh,\tau  - U0

h)\} h,\tau >0, and some v\ast \in L2(0, T ;L2(\Omega )) such that it converges to v\ast 

weakly in L2(0, T ;L2(\Omega )). Next we claim that u\ast satisfies the weak formulation of
u(q\ast ) (cf. (2.2)). To this end, we take a smooth test function \phi \in C1([0, T ]; \.H1(\Omega ))

with \phi (T ) = 0 and define an approximation \phi h,\tau by \phi h,\tau (t) = \tau  - 1
\int tn
tn - 1

Ph\phi (t)dt,

t \in (tn - 1, tn]. Then the density of Xh in \.H1(\Omega ) and piecewise constant functions
in L2(0, T ) imply that limh,\tau \rightarrow 0+ \| \phi h,\tau  - \phi \| L2(0,T ;H1(\Omega )) = 0. Hence, by discrete
summation by parts and straightforward computation, there holds

\tau 

N\sum 
n=1

(\=\partial \alpha \tau (U
n
h  - U0

h), \phi h,\tau (tn)) = (\=\partial \alpha \tau (uh,\tau  - U0
h), Ph\phi (t))L2(0,T ;L2(\Omega ))

= (uh,\tau  - U0
h ,

R \=\partial \alpha \tau Ph\phi (t))L2(0,T ;L2(\Omega )),

where the notation R \=\partial \alpha \tau Ph\phi (t) denotes
R \=\partial \alpha \tau Ph\phi (t) =

\sum N
i=n b

(\alpha )
n - iPh\phi (t+ (i - n)\tau ) for

t \in (tn - 1, tn], n = 1, 2, . . . , N. By the approximation property of R \=\partial \alpha \tau and Ph (see,
e.g., [45, section 2.2]), since \phi \in C1([0, T ]; \.H1(\Omega )), R \=\partial \alpha \tau Ph\phi (t) converges to R\partial \alpha t \phi (t)
in L2(0, T ;L2(\Omega )) as h, \tau \rightarrow 0+, and

lim
h,\tau \rightarrow 0

(uh,\tau  - U0
h ,

R \=\partial \alpha \tau Ph\phi (t))L2(0,T ;L2(\Omega )) = (u\ast  - u0,
R\partial \alpha t \phi (t))L2(0,T ;L2(\Omega )),

and meanwhile, by the weak convergence of \=\partial \alpha \tau (uh,\tau  - U0
h) to v\ast in L2(0, T ;L2(\Omega ))

and the approximation property of Ph,

lim
h,\tau \rightarrow 0

(\=\partial \alpha \tau (uh,\tau  - U0
h), Ph\phi (t))L2(0,T ;L2(\Omega )) = (v\ast , \phi (t))L2(0,T ;L2(\Omega )).

Comparing the preceding two identities shows that v\ast = \partial \alpha t (u
\ast  - u0), i.e., v

\ast is the
weak fractional order derivative of u\ast  - u0. Now taking the test function \chi = \phi h,\tau (tn)
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in (3.7) and summing over n, we obtain

\tau 

N\sum 
n=0

(\=\partial \alpha \tau (U
n
h  - U0

h), \phi h,\tau (tn)) + \tau 

N\sum 
n=1

(qh\nabla Un
h ,\nabla \phi h,\tau (tn))

= \tau 

N\sum 
n=1

(fnh , \phi h,\tau (tn)),

and by the definition of piecewise constant interpolations \=\partial \tau (U
n
h,\tau  - U0

h) and uh,\tau (t)
and the construction of the test function \phi h,\tau (tn), it is equivalent to

(\=\partial \alpha \tau (u
n
h,\tau  - U0

h), Ph\phi )L2(0,T ;L2(\Omega )) + (qh\nabla uh,\tau ,\nabla Ph\phi (t))L2(0,T ;L2(\Omega ))

= (fh,\tau , Ph\phi (t))L2(0,T ;L2(\Omega )),

where fh,\tau (t) = \tau  - 1
\int tn
tn - 1

Phf(t)dt for t \in (tn - 1, tn], n = 1, . . . , N , for which there

holds limh,\tau \rightarrow 0+ \| fh,\tau  - f\| L2(0,T ;L2(\Omega )) = 0. Upon passing the limit on both sides, we
deduce

lim
h,\tau \rightarrow 0+

(\=\partial \alpha \tau (U
n
h,\tau  - U0

h), Ph\phi )L2(0,T ;L2(\Omega )) = (\partial \alpha t (u
\ast  - u0), \phi )L2(0,T ;L2(\Omega )),

lim
h,\tau \rightarrow 0+

(fh,\tau , Ph\phi (t))L2(0,T ;L2(\Omega )) = (f, \phi )L2(0,T ;L2(\Omega )).

Further, to analyze the term (qh\nabla uh,\tau ,\nabla Ph\phi (t))L2(0,T ;L2(\Omega )), we employ the following
splitting:

| (qh\nabla uh,\tau ,\nabla Ph\phi (t))L2(0,T ;L2(\Omega ))  - (q\ast \nabla u\ast ,\nabla \phi (t))L2(0,T ;L2(\Omega ))| 
\leq | (qh\nabla uh,\tau ,\nabla Ph\phi (t))L2(0,T ;L2(\Omega ))  - (qh\nabla uh,\tau ,\nabla \phi (t))L2(0,T ;L2(\Omega ))| 
+ | (qh\nabla uh,\tau ,\nabla \phi (t))L2(0,T ;L2(\Omega ))  - (q\ast \nabla uh,\tau ,\nabla \phi (t))L2(0,T ;L2(\Omega ))| 
+ | (q\ast \nabla uh,\tau ,\nabla \phi (t))L2(0,T ;L2(\Omega ))  - (q\ast \nabla u\ast ,\nabla \phi (t))L2(0,T ;L2(\Omega ))| := I + II + III.

We bound the three terms separately. By the approximation property of Ph and
uniform boundedness of uh,\tau in L2(0, T ;H1(\Omega )) due to (3.9), we deduce

lim
h,\tau \rightarrow 0+

I \leq lim
h,\tau \rightarrow 0+

c\| uh,\tau \| L2(0,T ;H1(\Omega ))\| Ph\phi  - \phi \| L2(0,T ;H1(\Omega )) = 0.

Next, since qh converges to q\ast a.e. and (3.9), by the dominated convergence theorem
[16, Theorem 1.9] (with the argument in Lemma 2.3), we have

lim
h,\tau \rightarrow 0+

II \leq lim
h,\tau \rightarrow 0+

\| uh,\tau \| L2(0,T ;H1(\Omega ))\| (qh  - q\ast )\phi \| L2(0,T ;H1(\Omega )) = 0.

The third term III tends to zero as h, \tau \rightarrow 0+, in view of the weak convergence in
(3.9). Consequently, combining the three assertions together yields

lim
h,\tau \rightarrow 0+

(qh\nabla uh,\tau ,\nabla Ph\phi (t))L2(0,T ;L2(\Omega )) = (q\ast \nabla u\ast ,\nabla \phi (t))L2(0,T ;L2(\Omega )).

In sum, the limit u\ast satisfies that for any \phi \in C1([0, T ]; \.H1(\Omega )), there holds

(\partial \alpha t (u
\ast  - u0), \phi )L2(0,T ;L2(\Omega )) + (q\ast \nabla u\ast ,\nabla \phi )L2(0,T ;L2(\Omega )) = (f, \phi )L2(0,T ;L2(\Omega )).
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1478 BANGTI JIN AND ZHI ZHOU

By the density of the space C1([0, T ]; \.H1(\Omega )) in L2(0, T ; \.H1(\Omega )), the identity holds
also for any \phi \in L2(0, T ; \.H1(\Omega )). This immediately shows that u\ast is a weak solution to
problem (1.1) with q\ast , i.e., u\ast = u(q\ast ). Since every subsequence contains a convergent
sub-subsequence, the whole sequence converges to u(q\ast ). This completes the proof of
the lemma.

Now we can state the main result of this part, i.e., the convergence of the discrete
solutions \{ q\ast h\} h>0 to the continuous optimization problem (2.1)--(2.2). With Lemma
3.6 at hand, the proof is standard and it is included only for completeness.

Theorem 3.7. Let \{ q\ast h\} h>0 be a sequence of minimizers to problem (3.6)--(3.7).
Then under Assumption 2.1, it contains a subsequence convergent to a minimizer of
problem (2.1)--(2.2) in H1(\Omega ).

Proof. Since the constant function qh \equiv c0 belongs to the admissible set \scrA h for
any h, there holds J\gamma ,h,\tau (q

\ast 
h) \leq J\gamma ,h,\tau (c0) <\infty , from which it directly follows that the

sequence \{ q\ast h\} h>0 is uniformly bounded in the H1(\Omega )-seminorm. This and the box
constraint in \scrA h imply that the sequence \{ q\ast h \in \scrA h\} h>0 is uniformly bounded in the
H1(\Omega ) norm. Thus there exists a subsequence, still denoted by \{ q\ast h\} h>0, such that it
converges weakly in the H1(\Omega ) to some q\ast \in \scrA . We claim that q\ast is a minimizer to
problem (2.1)--(2.2). For any q \in \scrA , by the density of W 1,\infty (\Omega ) in H1(\Omega ) [16] (e.g.,
by means of mollifier), there exists a sequence \{ q\epsilon \} \epsilon >0 \subset \scrA \cap W 1,\infty (\Omega ) such that
lim\epsilon \rightarrow 0+ \| q\epsilon  - q\| H1(\Omega ) = 0 and almost everywhere. Now let q\epsilon h = \scrI hq\epsilon \in Vh. By the
minimizing property of q\ast h, there holds

(3.11) J\gamma ,h,\tau (q
\ast 
h) \leq J\gamma ,h,\tau (q

\epsilon 
h).

By the weak lower semicontinuity of norms, we have

\| \nabla q\ast \| L2(\Omega ) \leq lim inf
h\rightarrow 0

\| \nabla q\ast h\| L2(\Omega ).

Similarly, by the weak convergence of uh,\tau (q
\ast 
h) to u(q\ast ) in L2(0, T ;H1(\Omega )) in

Lemma 3.6 and the embedding H1(\Omega ) \lhook \rightarrow L2(\Omega ), and the construction of the function

z\delta \tau (t) = \tau  - 1
\int tn
tn - 1

z\delta (t)dt, for t \in (tn - 1, tn], n = 1, . . . , N , lim\tau \rightarrow 0+ \| z\delta  - z\delta \tau \| L2(0,T ;L2(\Omega ))

= 0, we have \| u(q\ast )  - z\delta \| 2L2(0,T ;L2(\Omega )) \leq lim infh,\tau \rightarrow 0+ \| uh,\tau (q\ast h)  - z\delta \tau \| L2(0,T ;L2(\Omega )) =

lim infh,\tau \rightarrow 0+ \tau 
\sum N

n=1 \| Un
h (q

\ast 
h) - z\delta n\| 2L2(\Omega ), and thus

(3.12) J\gamma (q
\ast ) \leq lim

h,\tau \rightarrow 0+
J\gamma ,h,\tau (q

\ast 
h).

Meanwhile, by Lemma 3.6 and the approximation property of the operator \scrI h in (3.2),

(3.13) lim
h,\tau \rightarrow 0+

J\gamma ,h,\tau (q
\epsilon 
h) = J\gamma (q

\epsilon ).

Thus, taking the limit as h, \tau \rightarrow 0+ in the inequality (3.11) yields J\gamma (q
\ast ) \leq J\gamma (q

\epsilon ).
Further, since q\epsilon \rightarrow q in H1(\Omega ) and almost everywhere as \epsilon \rightarrow 0+, by Lemma 2.3,
there holds

(3.14) lim
\epsilon \rightarrow 0+

J\gamma (q
\epsilon ) = J\gamma (q).

Combining the relations (3.12)--(3.14) yields J\gamma (q
\ast ) \leq J\gamma (q) for any q \in \scrA . This

shows the weak convergence to a minimizer q\ast in H1(\Omega ). Meanwhile, by the weak
lower semicontinuity of the norms and a standard argument by contradiction [20], we
have limh,\tau \rightarrow 0+ \| \nabla q\ast h\| 2L2(\Omega ) = \| \nabla q\ast \| 2L2(\Omega ). Hence, the subsequence \{ q\ast h\} h>0 converges

to q\ast in H1(\Omega ). This completes the proof of the theorem.
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COEFFICIENT ESTIMATION IN SUBDIFFUSION 1479

Remark 3.8. Note that the continuity results in Lemmas 2.3 and 3.6 are stated
with respect to almost everywhere convergence (deduced from the L1(\Omega ) convergence
of the sequence of the diffusion coefficient), which can be induced by other penal-
ties with the underlying space compactly embedding into the space L1(\Omega ), including
the space of bounded variation [16]. Thus, upon minor modifications, the results in
sections 2 and 3 hold also for related regularized formulations, e.g., total variation
penalty, which is suitable for recovering discontinuous coefficients; see, e.g., [17, 7]
for relevant studies in the parabolic and elliptic cases. Also note that the terminal
observation u(T ) may require a stronger regularity condition on the source f than
Assumption 2.1 to ensure u(q) \in C([0, T ];L2(\Omega )), depending on the value of the
fractional order \alpha .

Remark 3.9. Due to the nonlinearity of the parameter-to-state map q \mapsto \rightarrow u(q), the
regularized output least-squares problem (2.1)--(2.2) is expected to be highly noncon-
vex. Hence, numerically one can generally only guarantee to reach a stationary point
\^qh of the optimality system (OS) when solving the discrete optimization problem
(3.6)--(3.7). One important theoretical question is the convergence of the sequence
\{ \^qh\} h>0 of discrete stationary points for OS. Note that the convergence analysis in
section 3 relies essentially on extracting a convergent subsequence of discrete mini-
mizers \{ q\ast h\} h>0 in L1(\Omega ), which in turn follows from the uniform a priori bound on
\{ q\ast h\} h>0 in H1(\Omega ), induced by the H1(\Omega )-seminorm penalty. Thus, one crucial step
in extending the analysis to stationary points is to derive a suitable uniform a pri-
ori bound on \{ \^qh\} h>0. This might be derived from the OS as follows. Indeed, the
box constraints in the admissible set \scrA h allow bounding the discrete state Un

h (\^qh)
(and thus also the discrete adjoint) uniformly in the discrete L2(0, T ;H1(\Omega )) norm,
and then the discrete variational inequality for \^qh in OS allows uniformly bounding
\^qh in suitable Sobolev norm using ``elliptic"" regularity theory. We shall refrain from
a detailed derivation of OS and the associated convergence analysis for stationary
points, since the analysis in section 4 crucially exploits the minimizing property of
the discrete minimizer and does not extend to stationary points directly.

4. Error estimates. Now we derive error estimates of approximations q\ast h under
the following regularity on the problem data.

Assumption 4.1. The following conditions hold.
(i) u0 \in \.H2(\Omega ), f \in C2([0, T ];L2(\Omega ))\cap L\infty (0, T ; \.H\beta (\Omega )) with \beta > max(d2  - 1, 0),

and exact diffusion coefficient q\dagger \in W 2,\infty (\Omega ).
(ii) z\delta \in C([0, T ];L2(\Omega )) \cap C2((0, T ];L2(\Omega )) with

t1 - \alpha \| z\delta \prime (t)\| L2(\Omega ) + t2 - \alpha \| z\delta \prime \prime (t)\| L2(\Omega ) \leq c.

Under Assumption 4.1(i), there exists a unique solution u \in C([0, T ]; \.H2(\Omega )) \cap 
C2((0, T ];L2(\Omega )) and for any s \in [0, \beta ) and r \in [0, 2], there holds

(4.1) \| u(t)\| \.H2(\Omega )+t
s
2\alpha \| u(t)\| \.H2+s(\Omega )+t

1 - (1 - s
2 )\alpha \| u\prime (t)\| \.Hs(\Omega )+t

2 - \alpha \| u\prime \prime (t)\| L2(\Omega ) \leq c.

See [47, 23] for a proof of the regularity estimate.
The better temporal regularity on the observation z\delta and u(q) enables slightly

modifying the discrete optimization problem Jh,\tau ,\gamma , instead of using

z\delta n := \tau  - 1

\int tn

tn - 1

z\delta (t)dt.

In particular, we can employ the trapezoid rule: with a0 = aN = 1/2 and ai = 1,
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1480 BANGTI JIN AND ZHI ZHOU

i = 1, . . . , N  - 1,

(4.2) min
qh\in \scrA h

J\gamma ,h,\tau (qh) =
\tau 

2

N\sum 
n=0

ai

\int 
\Omega 

| Un
h (qh) - z\delta (tn)| 2 dx+

\gamma 

2
\| \nabla qh\| 2L2(\Omega ),

subject to qh \in \scrA h and Un
h (qh) satisfying U

0
h = Phu0 and

\=\partial \alpha \tau (U
n
h (qh) - U0

h) - Ah(qh)U
n
h (qh) = Phf(tn), n = 1, 2, . . . , N.(4.3)

This change allows deriving a better rate in \tau in Theorem 4.8 below. Under Assump-
tion 4.1, Theorems 3.5 and 3.7 in section 3 remain valid for problem (4.2)--(4.3). The
goal of this part is to derive error estimates for the approximation constructed by
(4.2)--(4.3).

We begin with some preliminary estimates under Assumption 4.1(i).

Lemma 4.2. Let q\dagger be the exact diffusion coefficient and u \equiv u(q\dagger ) be the solution
to problem (2.2), and \{ Un

h (q
\dagger )\} and \{ Un

h (\scrI hq\dagger )\} be the solutions to the scheme (3.3)
corresponding to q\dagger and \scrI hq\dagger , respectively. Then under Assumption 4.1(i) with \ell h =
| log h| ,

\| u(tn) - Un
h (q

\dagger )\| L2(\Omega ) \leq c(\tau t\alpha  - 1
n + h2\ell h),

\| u(tn) - Un
h (\scrI hq\dagger )\| L2(\Omega ) \leq c(\tau t\alpha  - 1

n + h2\ell h).

Proof. The first estimate is immediate from [22]

\| u(tn) - Un
h (q

\dagger )\| L2(\Omega ) \leq ch2\ell h

\Bigl( 
\| A(q\dagger )u0\| L2(\Omega ) + \| f\| L\infty (0,T ; \.H\beta (\Omega ))

\Bigr) 
+ c\tau 

\Bigl( 
t\alpha  - 1
n \| A(q\dagger )u0 + f(0)\| L2(\Omega )

+

\int tn

0

(tn  - s)\alpha  - 1\| f \prime (s)\| L2(\Omega ) ds
\Bigr) 
.

To show the second estimate, we bound \rho nh := Un
h (q

\dagger )  - Un
h (\scrI hq\dagger ), which satisfies

\rho 0h = 0 and

\=\partial \alpha \tau \rho 
n
h  - Ah(q

\dagger )\rho nh = [Ah(q
\dagger ) - Ah(\scrI hq\dagger )]Un

h (\scrI hq\dagger ), n = 1, 2, . . . , N,

where Ah(q
\dagger ), Ah(\scrI hq\dagger ) : Xh \rightarrow Xh are the discrete analogues of the elliptic operators

A(q\dagger ) and A(\scrI hq\dagger ) associated with q\dagger and \scrI hq\dagger , respectively. Thus, it can be written
as

(4.4) \rho nh = \tau 

n\sum 
i=1

En - i
h,\tau [Ah(q

\dagger ) - Ah(\scrI hq\dagger )]U i
h(\scrI hq\dagger ),

where En
h,\tau is the fully discrete solution operator, which satisfies that for all vh \in Xh

[25],

\| En
h,\tau vh\| L2(\Omega ) = \| Ah(q

\dagger )
1
2En

h,\tau (Ah(q
\dagger ) - 

1
2 vh)\| L2(\Omega )

\leq ct
 - 1+\alpha 

2
n+1 \| Ah(q

\dagger ) - 
1
2 vh\| L2(\Omega ) \leq ct

 - 1+\alpha 
2

n+1 \| vh\| H - 1(\Omega ).

It follows from this estimate and the solution representation (4.4) that

\| \rho nh\| L2(\Omega ) \leq c\tau 

n\sum 
i=1

t
 - 1+\alpha 

2
n \| [Ah(\scrI hq\dagger ) - Ah(q

\dagger )]Un
h (\scrI hq\dagger )\| H - 1(\Omega ).
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Further, the definitions of Ph and Ah and the H1(\Omega )-stability of Ph yield

\| [Ah(\scrI hq\dagger ) - Ah(q
\dagger )]Un

h (\scrI hq\dagger )\| H - 1(\Omega ) = sup
v\in \.H1

\langle [Ah(\scrI hq\dagger ) - Ah(q
\dagger )]Un

h (\scrI hq\dagger ), v\rangle 
\| v\| \.H1(\Omega )

= sup
v\in \.H1

\langle (q\dagger  - \scrI hq\dagger )\nabla Un
h (\scrI hq\dagger ),\nabla Phv\rangle 

\| v\| \.H1(\Omega )

\leq ch2\| q\dagger \| W 2,\infty (\Omega )\| \nabla Un
h (\scrI hq\dagger )\| L2(\Omega ),

since q \in W 2,\infty (\Omega ) by Assumption 4.1(i) and (3.2). Thus,

\| \rho nh\| L2(\Omega ) \leq ch2\tau 

n\sum 
i=1

t
 - 1+\alpha 

2
n \leq ch2

\int T

0

t - 1+\alpha 
2 dt \leq ch2.

This and the triangle inequality complete the proof of the lemma.

Next we give an error estimate on the CQ approximation of the fractional de-
rivative. The proof is similar to [27, Lemma 4.2] and is given in Appendix A for
completeness.

Lemma 4.3. Let q\dagger be the exact diffusion coefficient and u \equiv u(q\dagger ) be the solution
to problem (2.2). Then under Assumption 4.1, there holds

\| \=\partial \alpha \tau (u(tn) - u0) - \partial \alpha t (u(tn) - u0)\| L2(\Omega ) \leq c\tau t - 1
n .

The next lemma gives a quadrature error estimate.

Lemma 4.4. Let q\dagger be the exact diffusion coefficient and u \equiv u(q\dagger ) the corre-
sponding solution to problem (2.2). Then under Assumption 4.1,

N\sum 
n=0

ai\| u(tn) - z\delta (tn)\| 2L2(\Omega ) \leq c(\delta 2 + \tau 1+\alpha ).

Proof. Let g(t) = z\delta (t) - u(t). By the regularity estimate (4.1) and Assumption
4.1,

(4.5) \| g\| C([0,T ];L2(\Omega )) \leq c, \| g\prime (t)\| L2(\Omega ) \leq ct\alpha  - 1, and \| g\prime \prime (t)\| L2(\Omega ) \leq ct\alpha  - 2.

By the triangle inequality, we have\bigm| \bigm| \bigm| \bigm| \tau N\sum 
n=0

ai\| g(tn)\| 2L2(\Omega )  - 
N\sum 

n=1

\int tn

tn - 1

\| g(t)\| 2L2(\Omega )dt

\bigm| \bigm| \bigm| \bigm| 
\leq 

N\sum 
n=1

\bigm| \bigm| \bigm| \bigm| \int tn

tn - 1

\| g(t)\| 2L2(\Omega )dt - 
\tau 

2

\bigl( 
\| g(tn - 1)\| 2L2(\Omega ) + \| g(tn)\| 2L2(\Omega )

\bigr) \bigm| \bigm| \bigm| \bigm| := N\sum 
n=1

In.

Next we analyze the two cases n = 1 and n > 1 separately. First, for the case n = 1,

I1 \leq 
\bigm| \bigm| \bigm| \bigm| \int \tau 

0

(\| g(t)\| 2L2(\Omega ) - \| g(t0)\| 2L2(\Omega ))dt
\bigm| \bigm| \bigm| +\bigm| \bigm| \bigm| \int \tau 

0

(\| g(t)\| 2L2(\Omega ) - \| g(\tau )\| 2L2(\Omega ))dt

\bigm| \bigm| \bigm| \bigm| := I1,0+I1,1.

Using (4.5), the term I1,0 can be bounded by

I1,0 \leq c\| g(t)\| C([0,\tau ];L2(\Omega ))

\int \tau 

0

\| g(0) - g(t)\| L2(\Omega )dt \leq c\tau 

\int \tau 

0

\| g\prime (s)\| L2(\Omega )ds \leq c\tau 1+\alpha .
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Similarly, we can deduce I1,1 \leq c\tau 1+\alpha . Further, for the case n > 1, g(t) is smooth, and
thus by standard interpolation error estimates, for some \xi n \in [tn - 1, tn], there holds

In \leq c\tau 2
\int tn
tn - 1

\bigm| \bigm| d2

dt2 \| g(t)\| 
2
L2(\Omega )| t=\xi n

\bigm| \bigm| dt. By the bounds in (4.5),
\bigm| \bigm| d2

dt2 \| g(\xi n)\| 
2
L2(\Omega )

\bigm| \bigm| \leq 
2(\| g\prime (\xi n)\| 2L2(\Omega )+\| g(\xi n)\| L2(\Omega )\| g\prime \prime (\xi n)\| L2(\Omega )) \leq ct\alpha  - 2

n - 1. The last two estimates together
imply

N\sum 
n=2

In \leq c\tau 3
N\sum 

n=2

t\alpha  - 2
n - 1 \leq c\tau 1+\alpha .

Then the assertion follows from the triangle inequality and the definition of the noise
level.

Remark 4.5. One can only obtain an O(\tau + \delta 2) rate for the discrete objective
function J\gamma ,h,\tau in (3.6). Then the \alpha exponent in Lemma 4.4 reflects the limited
temporal smoothing property of the solution u(t): the larger the fractional order \alpha is,
the smoother in time the solution u(t) becomes and the faster the quadrature error
decays.

The next result gives a priori bounds on q\ast h and the approximation Un
h (q

\ast 
h). This

result will play a crucial role in the analysis below.

Lemma 4.6. Let q\dagger be the exact coefficient and u \equiv u(q\dagger ) the solution to problem
(2.2). Let q\ast h \in \scrA h be the solution to problem (4.2)--(4.3) and \{ Un

h (q
\ast 
h)\} Nn=1 the fully

discrete solution to problem (3.7). Then under Assumption 4.1, with \ell h = | log h| ,
there holds

\tau 

N\sum 
n=1

\| Un
h (q

\ast 
h) - u(tn)\| 2L2(\Omega ) + \gamma \| \nabla q\ast h\| 2L2(\Omega ) \leq c(\tau 1+\alpha + h4\ell 2h + \delta 2 + \gamma ).

Proof. By the minimizing property of q\ast h \in \scrA h and \scrI hq\dagger \in \scrA h, we deduce
J\gamma ,h,\tau (q

\ast 
h) \leq J\gamma ,h,\tau (\scrI hq\dagger ). By the triangle inequality, we derive

\tau 

N\sum 
n=1

\| Un
h (q

\ast 
h) - u(tn)\| 2L2(\Omega ) \leq c\tau 

N\sum 
n=1

\| Un
h (q

\ast 
h) - z\delta (tn)\| 2L2(\Omega )

+ c\tau 

N\sum 
n=0

an\| z\delta (tn) - u(tn)\| 2L2(\Omega ).

These two inequalities and Lemma 4.4 imply

\tau 

N\sum 
n=1

\| Un
h (q

\ast 
h) - u(tn)\| 2L2(\Omega ) + \gamma \| \nabla q\ast h\| 2L2(\Omega )

\leq c\tau 

N\sum 
n=1

\| Un
h (\scrI hq\dagger ) - z\delta (tn)\| 2L2(\Omega ) + c\gamma \| \nabla \scrI hq\dagger \| 2L2(\Omega ) + c(\delta 2 + \tau 1+\alpha ).

Since q\dagger \in W 1,\infty (\Omega ) by Assumption 4.1, \| \nabla \scrI hq\dagger \| L2(\Omega ) \leq c (cf. (3.2)). Further, by
Lemma 4.2, we have

\| Un
h (\scrI hq\dagger ) - z\delta (tn)\| 2L2(\Omega ) \leq 2\| Un

h (\scrI hq\dagger ) - u(tn)\| 2L2(\Omega ) + 2\| u(tn) - z\delta (tn)\| 2L2(\Omega )

\leq c(\tau t\alpha  - 1
n + h2\ell h)

2 + c\| u(tn) - z\delta (tn)\| 2L2(\Omega ).
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Consequently,

\tau 

N\sum 
n=1

\| \nabla (Un
h (\scrI hq\dagger ) - z\delta (tn))\| 2L2(\Omega )

\leq c\tau 

N\sum 
n=1

(t\alpha  - 1
n \tau + h2\ell h)

2 + c

N\sum 
n=0

an\| u(tn) - z\delta (tn)\| 2L2(\Omega )

\leq c\tau 3
N\sum 

n=1

t\alpha  - 2
n + ch4\ell 2h + c(\tau 1+\alpha + \delta 2)

\leq c(\tau 1+\alpha + h4\ell 2h + \delta 2).

Combining the preceding estimates completes the proof of the lemma.

We shall also need the following lemma on backward Euler CQ.

Lemma 4.7. Let q\dagger be the exact coefficient and u \equiv u(q\dagger ) the corresponding so-

lution to problem (1.1). Then for \varphi m =
q\dagger  - q\ast h

q\dagger 
u(tm), and any \epsilon \in (0,min( 12 , 1  - \alpha )),

there holds \bigm\| \bigm\| \bigm\| \bigm\| \tau  - \alpha 
m\sum 

n=j

b
(\alpha )
n - jPh(\varphi 

n  - \varphi m)

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\Omega )

\leq cT,\epsilon t
 - \epsilon 
j .

Proof. By the associativity of CQ from (3.5), i.e., \=\partial \alpha \tau \varphi 
n = \=\partial \alpha  - 1

\tau 
\=\partial \tau \varphi 

n, if \varphi 0 = 0,

I := \tau  - \alpha 
m\sum 

n=j

b
(\alpha )
n - jPh(\varphi 

n  - \varphi m) = \tau 1 - \alpha 
m\sum 

n=j

b
(\alpha  - 1)
n - j

Ph\varphi 
n  - Ph\varphi 

n+1

\tau 
.

Thus, the L2(\Omega )-stability of Ph, the bound on | b(\alpha  - 1)
j | \leq c(j + 1) - \alpha , and (4.1) imply

\| I\| L2(\Omega ) \leq \tau 1 - \alpha 
m\sum 

n=j

| b(\alpha  - 1)
n - j | 

\bigm\| \bigm\| \bigm\| \bigm\| \varphi n  - \varphi n+1

\tau 

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\Omega )

\leq c\tau 1 - \alpha 
m\sum 

n=j

(n - j + 1) - \alpha \| \varphi \prime (\xi n)\| L2(\Omega )

\leq c\tau 1 - \alpha 
m\sum 

n=j

(n - j + 1) - \alpha t\alpha  - 1
n \leq c

\int tm

tj

(s - tj + \tau ) - \alpha s\alpha +\epsilon  - 1dst - \epsilon 
j =: g(tj)t

 - \epsilon 
j ,

where \xi n \in [tn, tn+1]. We claim that the integral g(tj) is decreasing in tj \in [\tau , tm].
Indeed, for any 0 < \=t1 < \=t2 \leq tm, by changing of variables, there holds

g(\=t1) :=

\int tm

\=t1

(s - \=t1 + \tau ) - \alpha s\alpha +\epsilon  - 1 ds

=

\int tm - (\=t2 - \=t1)

\=t1

(s - \=t1 + \tau ) - \alpha s\alpha +\epsilon  - 1 ds+

\int tm

tm - (\=t2 - \=t1)

(s - \=t1 + \tau ) - \alpha s\alpha +\epsilon  - 1 ds

\geq g(\=t2) +

\int tm

tm - (\=t2 - \=t1)

(s - \=t1 + \tau ) - \alpha s\alpha +\epsilon  - 1 ds \geq g(\=t2).

Thus, \| I\| L2(\Omega ) \leq ct - \epsilon 
j

\int tm
\tau 

(s+ \tau ) - \alpha s\alpha +\epsilon  - 1ds \leq c\epsilon t
 - \epsilon 
j . This completes the proof of the

lemma.
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1484 BANGTI JIN AND ZHI ZHOU

The next theorem represents the main result of this section, i.e., error estimate
of the numerical approximation q\ast h \in \scrA h in a weighted L2(\Omega ) norm, with the weight
q\dagger | \nabla u(tn)| 2 + (f(tn)  - \partial \alpha t u(tn))u(tn). The proof relies crucially on the choice of the

novel test function \varphi =
q\dagger  - q\ast h

q\dagger 
u.

Theorem 4.8. Let q\dagger be the exact diffusion coefficient, u \equiv u(q\dagger ) the solution
to problem (2.2), and q\ast h \in \scrA h the solution to problem (4.2)--(4.3). Then under

Assumption 4.1, for d = 1, 2, with \ell h = | log h| and \eta = \tau 
1
2+

\alpha 
2 + h2\ell h + \delta + \gamma 

1
2 , there

holds

\tau 2
N\sum 

m=1

m\sum 
n=1

\int 
\Omega 

\Bigl( q\dagger  - q\ast h
q\dagger 

\Bigr) 2\Bigl( 
q\dagger | \nabla u(tn)| 2 + (f(tn) - \partial \alpha t u(tn))u(tn)

\Bigr) 
dx

\leq c(h\gamma  - 1\eta + h\gamma  - 
1
2 + h - 1\gamma  - 

1
2 \eta )\eta .

Proof. For any test function \varphi to be specified below, we have the splitting

((q\dagger  - q\ast h)\nabla u(tn),\nabla \varphi )
= ((q\dagger  - q\ast h)\nabla u(tn),\nabla (\varphi  - Ph\varphi )) + (q\dagger \nabla u(tn) - q\ast h\nabla u(tn),\nabla Ph\varphi ).

Thus, applying integration by parts to the first term leads to

((q\dagger  - q\ast h)\nabla u(tn),\nabla \varphi ) =  - (\nabla \cdot ((q\dagger  - q\ast h)\nabla u(tn)), \varphi  - Ph\varphi )

+ (q\ast h\nabla (Un
h (q

\ast 
h) - u(tn)),\nabla Ph\varphi )

+ (q\dagger \nabla u(tn) - q\ast h\nabla Un
h (q

\ast 
h),\nabla Ph\varphi ) =

3\sum 
i=1

Ini .(4.6)

Next we bound the three terms. Direct computation with the triangle inequality gives

\| \nabla \cdot ((q\dagger  - q\ast h)\nabla u(tn))\| L2(\Omega )

\leq \| \nabla q\dagger \| L\infty (\Omega )\| \nabla u(tn)\| L2(\Omega ) + \| q\dagger  - q\ast h\| L\infty (\Omega )\| \Delta u(tn)\| L2(\Omega )

+ \| \nabla q\ast h\| L2(\Omega )\| \nabla u(tn)\| L\infty (\Omega ).

In view of the regularity estimate (4.1), we derive

\| \nabla \cdot (q\dagger  - q\ast h)\nabla u(tn)\| L2(\Omega ) \leq c+ \| \nabla q\ast h\| L2(\Omega )\| \nabla u(tn)\| L\infty (\Omega )

\leq c(1 + t
min(0,1 - d

2 - \epsilon )\alpha 
2

n \| \nabla qh\| L2(\Omega )),

where the second line is due to Sobolev embedding \| \nabla u\| L\infty (\Omega ) \leq c\| u\| Hs(\Omega ) with

s > d
2 + 1 (by the convexity of the domain and elliptic regularity [10, Corollary 19.7,

p. 166]). This and the Cauchy--Schwarz inequality imply that the first term In1 is
bounded by

| In1 | \leq c(1 + \| \nabla qh\| L2(\Omega ))\| \varphi  - Ph\varphi \| L2(\Omega ).

Now we choose the test function \varphi to be \varphi \equiv \varphi n =
q\dagger  - q\ast h

q\dagger 
u(tn) \in H1

0 (\Omega ), and then

straightforward computation gives \nabla \varphi n =
\bigl( 
q\dagger  - 1\nabla (q\dagger  - q\ast h) - q\dagger  - 2(q\dagger  - q\ast h)\nabla q\dagger 

\bigr) 
u(tn)+
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COEFFICIENT ESTIMATION IN SUBDIFFUSION 1485

q\dagger  - 1(q\dagger  - q\ast h)\nabla u(tn). By the box constraint of \scrA and the regularity estimate (4.1), we
have

\| \nabla \varphi n\| L2(\Omega ) \leq c
\Bigl[ 
(1+\| \nabla q\ast h\| L2(\Omega ))\| u(tn)\| L\infty (\Omega )+\| \nabla u(tn)\| L2(\Omega )

\Bigr] 
\leq c(1+\| \nabla q\ast h\| L2(\Omega )),

and the approximation property of the projection operator Ph implies \| \varphi n - Ph\varphi 
n\| L2(\Omega )

\leq ch\| \nabla \varphi n\| L2(\Omega ) \leq ch(1+ \| \nabla q\ast h\| L2(\Omega )). Thus, by Lemma 4.6, the term In1 is bounded
by

| In1 | \leq cht
min(0,1 - d

2 - \epsilon )\alpha 
2

n (1 + \| \nabla q\ast h\| L2(\Omega ))
2

\leq ct
min(0,1 - d

2 - \epsilon )\alpha 
2

n h(1 + \gamma  - 1\eta 2) \leq ct
min(0,1 - d

2 - \epsilon )\alpha 
2

n h\gamma  - 1\eta 2,

which together with the trivial inequality \tau 
\sum N

n=1 t
min(0,1 - d

2 - \epsilon )\alpha 
2

n \leq c implies

(4.7) \tau 

N\sum 
n=1

In1 \leq ch\gamma  - 1\eta 2.

For the term In2 , by the triangle inequality, inverse inequality, and H1(\Omega ) stability of
Ph, we have

\| \nabla (u(tn) - Un
h (q

\ast 
h))\| L2(\Omega ) \leq \| \nabla (u(tn) - Phu(tn))\| L2(\Omega ) + h - 1\| Phu(tn) - Un

h (q
\ast 
h)\| L2(\Omega )

\leq c(h+ h - 1\| u(tn) - Un
h (q

\ast 
h)\| L2(\Omega ),

and consequently, the Cauchy--Schwarz inequality and Lemma 4.6 imply

\tau 

N\sum 
n=1

In2 \leq \tau 

N\sum 
n=1

\| \nabla (u(tn) - Un
h (q

\ast 
h))\| L2(\Omega )\| \nabla \varphi n\| L2(\Omega )

\leq c

\biggl( 
h+ h - 1

\biggl( 
\tau 

N\sum 
n=1

\| u(tn) - Un
h (q

\ast 
h)\| 2L2(\Omega )

\biggr) 1
2
\biggr) 
(1 + \| \nabla q\ast h\| L2(\Omega ))

\leq c(h\gamma  - 
1
2 + h - 1\gamma  - 

1
2 \eta )\eta .(4.8)

Next we bound the third term In3 . It follows directly from (2.2) and (3.7) that

In3 = (q\dagger \nabla u(tn) - q\ast h\nabla Un
h (q

\ast 
h),\nabla Ph\varphi 

n)

= (\=\partial \alpha \tau (U
n
h (q

\ast 
h) - U0

h) - \partial \alpha t (u(tn) - u0), Ph\varphi 
n)

= (\=\partial \alpha \tau [(U
n
h (q

\ast 
h) - U0

h) - (u(tn) - u0)], Ph\varphi 
n)

+ (\=\partial \alpha \tau (u(tn) - u0) - \partial \alpha t (u(tn) - u0), Ph\varphi 
n) =: In3,1 + In3,2.

It remains to bound the two terms In3,1 and In3,2 separately. By Lemma 4.3, there holds

| In3,2| \leq \| \=\partial \alpha \tau (u(tn) - u0) - \partial \alpha t (u(tn) - u0)\| L2(\Omega )\| Ph\varphi 
n\| L2(\Omega ) \leq c\tau t - 1

n , n = 1, 2, . . . , N.

Consequently, \bigm| \bigm| \bigm| \bigm| \tau 2 N\sum 
m=1

m\sum 
n=1

In3,2

\bigm| \bigm| \bigm| \bigm| \leq c\tau 3
N\sum 

m=1

m\sum 
n=1

t - 1
n \leq c\tau log(1 + tN/\tau ).
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1486 BANGTI JIN AND ZHI ZHOU

It remains to bound the term In3,1. Since U
0
h(q

\ast 
h) = U0

h and u(0) = u0, straightforward
computation with summation by parts yields

\tau 

m\sum 
n=1

In3,1 = \tau 

m\sum 
n=0

(\=\partial \alpha \tau [(U
n
h (q

\ast 
h) - U0

h) - (u(tn) - u0)], Ph\varphi 
n)

= \tau 

m\sum 
j=0

([(U j
h(q

\ast 
h) - U0

h) - (u(tj) - u0)], \tau 
 - \alpha 

m\sum 
n=j

b
(\alpha )
n - jPh\varphi 

n).

Next we appeal to the splitting

\tau  - \alpha 
m\sum 

n=j

b
(\alpha )
n - jPh\varphi 

n = \tau  - \alpha 
m\sum 

n=j

b
(\alpha )
n - jPh(\varphi 

n - \varphi m)+\tau  - \alpha 
m\sum 

n=j

b
(\alpha )
n - jPh\varphi 

m := IV1
j,m+IV2

j,m.

By Lemma 3.2, the sum IV2
j,m satisfies

\| IV2
j,m\| L2(\Omega ) \leq c\| \varphi m\| L2(\Omega )

\biggl( 
\tau  - \alpha 

m - j\sum 
n=0

b(\alpha )n

\biggr) 
\leq ct - \alpha 

m - j+1\| \varphi 
m\| L2(\Omega ) \leq ct - \alpha 

m - j+1,

since \| \varphi m\| L2(\Omega ) \leq c. Then Lemma 4.6 and the Cauchy--Schwarz inequality imply

\tau 2
N\sum 

m=1

m\sum 
j=1

\| U j
h(q

\ast 
h) - u(tj)\| L2(\Omega )\| IV2

j,m\| L2(\Omega )

\leq c\tau 2
N\sum 
j=1

N\sum 
m=j

\| U j
h(q

\ast 
h) - u(tj)\| L2(\Omega )t

 - \alpha 
m - j+1

\leq c
\Bigl( 
\tau 

N\sum 
j=1

\| U j
h(q

\ast 
h) - u(tj)\| 2L2(\Omega )

\Bigr) 1
2 \leq c\eta ,

where the second inequality is due to \tau 
\sum N

m=j t
 - \alpha 
m - j+1 \leq ct1 - \alpha 

N - j+1. Similarly, by
Lemma 4.7,

\tau 2
N\sum 

m=1

m\sum 
j=1

\| U j
h(q

\ast 
h) - u(tj)\| L2(\Omega )\| IV1

j,m\| L2(\Omega ) \leq c\tau 2
N\sum 

m=1

m\sum 
j=1

\| U j
h(q

\ast 
h) - u(tj)\| L2(\Omega )t

 - \epsilon 
j

\leq c\tau 

N\sum 
j=1

\| ujh(qh) - u(tj ; q)\| L2(\Omega )t
 - \epsilon 
j \leq c

\biggl( 
\tau 

N\sum 
j=1

\| U j
h(q

\ast 
h) - u(tj)\| 2L2(\Omega )

\biggr) 1
2

\leq c\eta .

These two estimates and the triangle inequality lead to

(4.9)

\bigm| \bigm| \bigm| \bigm| \tau 2 N\sum 
m=1

m\sum 
n=1

(\=\partial \alpha \tau [(U
n
h (q

\ast 
h) - u0h) - (u(tn) - u0)], Ph\varphi 

n)

\bigm| \bigm| \bigm| \bigm| \leq c\eta .

The three estimates (4.7), (4.8), and (4.9) together imply

\tau 2
N\sum 

m=1

m\sum 
n=1

((q\dagger  - q\ast h)\nabla u(tn),\nabla \varphi n) \leq c(h\gamma  - 1\eta + \gamma  - 
1
2 \eta + h - 1\gamma  - 

1
2 \eta )\eta .
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Finally, this and the identity

((q\dagger  - q\ast h)\nabla u(tn),\nabla \varphi n) =
1

2

\int 
\Omega 

\Bigl( q\dagger  - q\ast h
q\dagger 

\Bigr) 2\Bigl( 
q\dagger | \nabla u(tn)| 2+(f(tn) - \partial \alpha t u(tn))u(tn)

\Bigr) 
dx

lead immediately to the desired assertion. This completes the proof of the theorem.

Remark 4.9. The restriction on d = 1, 2 is due to limited regularity pickup on
general convex polyhedral domains, in order to ensure \| \nabla u\| L\infty (\Omega ) \leq c\| u\| Hs(\Omega ) \leq 
c. The result holds also for a polyhedral domain in \BbbR 3 with suitable conditions
[9, Theorem 4, p. 18]. One possible strategy to remove the restriction is to use
maximal Lp(\Omega ) regularity [24], instead of the Hilbert spaceHs(\Omega ). Further, it is worth
noting that the proof relies heavily on the discrete ``integration by parts"" formula for
convolution quadrature when bounding the term I3,1, which is valid only for the whole
interval [0, T ] and represents the main obstacle in extending the analysis to the case
of partial data, e.g., terminal observation.

The next result is an immediate corollary of Theorem 4.8.

Corollary 4.10. Let q\dagger be the exact diffusion coefficient, u \equiv u(q\dagger ) the solution
to problem (2.2), and q\ast h \in \scrA h the solution to problem (4.2)--(4.3). Then under

Assumption 4.1, for d = 1, 2, there holds (with \eta = \tau 
1
2+

\alpha 
2 + h2\ell h + \delta + \gamma 

1
2 )

\int T

0

\int t

0

\int 
\Omega 

\Bigl( q\dagger  - q\ast h
q\dagger 

\Bigr) 2\Bigl( 
q\dagger | \nabla u(s)| 2 + (f(s) - \partial \alpha s u(s))u(s)

\Bigr) 
dxdsdt

\leq c(h\gamma  - 1\eta + h\gamma  - 
1
2 + h - 1\gamma  - 

1
2 \eta )\eta .

Proof. In view of Theorem 4.8, it suffices to bound the quadrature error:\bigm| \bigm| \bigm| \bigm| \bigm| 
\int T

0

\int t

0

| \nabla u(s)| 2dsdt - \tau 2
N\sum 

m=1

m\sum 
n=1

| \nabla u(tn)| 2
\bigm| \bigm| \bigm| \bigm| \bigm| 

+

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int T

0

\int t

0

(f(s) - \partial \alpha s u(s))u(s)dsdt - \tau 2
N\sum 

m=1

m\sum 
n=1

(f(tn) - \partial \alpha t u(tn))u(tn)

\bigm| \bigm| \bigm| \bigm| \bigm| := I + II.

It remains to bound the two terms I and II. For the first term,

I \leq 

\bigm| \bigm| \bigm| \bigm| \bigm| 
N\sum 

m=1

\biggl( \int tm

tm - 1

\int tm

0

| \nabla u(s)| 2dsdt - \tau 2
m\sum 

n=1

| \nabla u(tn)| 2
\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 

+

\bigm| \bigm| \bigm| \bigm| \bigm| 
N\sum 

m=1

\int tm

tm - 1

\int tm

max(t,tm - 1)

| \nabla u(s)| 2dsdt

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq \tau 

N\sum 
m=1

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int tm

0

| \nabla u(s)| 2ds - \tau 

m\sum 
n=1

| \nabla u(tn)| 2
\bigm| \bigm| \bigm| \bigm| \bigm| \underbrace{}  \underbrace{}  

Im

+\tau 

N\sum 
m=1

\int tm

tm - 1

| \nabla u(s)| 2ds.

By the regularity estimate (4.1), \| \nabla u\prime (s)\| L2(\Omega ) \leq cs
\alpha 
2  - 1 and \| \nabla u(t)\| C([0,T ];L2(\Omega )) \leq 
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c. Clearly \tau 
\sum N

m=1

\int tm
tm - 1

| \nabla u(s)| 2ds \leq c\tau . Further,

\int 
\Omega 

Imdx \leq 
m\sum 

n=1

\int tm

tm - 1

\| \nabla (u(s) + u(tn))\| L2(\Omega )\| \nabla (u(s) - u(tn))\| L2(\Omega )ds

\leq c\| \nabla u\| C([0,tm];L2(\Omega ))

m\sum 
n=1

\int tm

tm - 1

\bigm\| \bigm\| \bigm\| \bigm\| \nabla \int tn

s

u\prime (\zeta )d\zeta 

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\Omega )

ds

\leq c\| \nabla u\| C([0,tm];L2(\Omega ))\tau 

\int tm

0

s
\alpha 
2  - 1ds \leq c\tau .

The preceding two estimates imply
\int 
\Omega 
Idx \leq c\tau . The term II can be bounded similarly

as
\int 
\Omega 
IIdx \leq c\tau | ln \tau | . Indeed, under Assumption 4.1(i), the estimate (4.1), and (1.1),

we have \| \partial \alpha t u\| L2(\Omega ) \leq c and \| (\partial \alpha t u)\prime (t)\| L2(\Omega ) \leq ct - 1, and thus g(t) \equiv \partial \alpha t u(t)  - f(t)
satisfies \| g(t)\| L2(\Omega ) \leq c and \| g\prime (t)\| L2(\Omega ) \leq ct - 1. Then repeating the argument
completes the proof.

Remark 4.11. There has been much interest in deriving error bounds on the
Galerkin approximation q\ast h in the usual L2(\Omega ) or Sobolev norm for nonlinear pa-
rameter identification problems. However, for the inverse conductivity problem in
either the elliptic or parabolic case, such an estimate remains elusive, largely due to
a lack of convexity of the regularized problem. The error estimate given in Corollary
4.10 provides one possible route to derive an L2(\Omega ) estimate. Indeed, if the exact
coefficient q\dagger and the corresponding state u \equiv u(q\dagger ) satisfy

(4.10)

\int T

0

\int t

0

\Bigl( 
q\dagger | \nabla u(s)| 2 + (f(s) - \partial \alpha s u(s))u(s)

\Bigr) 
dsdt > c a.e. x \in \Omega ,

then the usual L2 estimate follows directly. In the classical parabolic case, similar
structural conditions have been assumed in the literature, e.g., the following charac-
teristic condition [49, 29]: t - 1

\int t

0
\nabla u(x, s)ds \cdot \nu \geq \delta 0 > 0 for all (x, t) \in Q \equiv \Omega \times (0, T ],

where \nu is a constant vector, or [50, Theorem 6.4] \alpha 0| 
\int t

0
\nabla u(x, s)ds| 2+ t

\int t

0
(u\prime (x, s) - 

f(x, s))ds \geq 0 a.e. (x, t) \in Q. Note that this latter condition is not positively homo-
geneous (with respect to problem data). Next we comment on the condition (4.10).
If f \equiv 0 in Q, u0 > 0 in \Omega , then the maximum principle for the subdiffusion model
[39] implies u > 0 in Q. Further, w = \partial \alpha t u satisfies \partial \alpha t w  - \nabla \cdot (q\dagger \nabla w) = \partial \alpha t f in Q,
with initial condition w(0) = \nabla \cdot (q\dagger \nabla u0) + f(0) in \Omega and boundary condition w = 0
on \partial \Omega \times (0, T ]. If \partial \alpha t f(t) \leq 0 and \nabla \cdot (q\dagger \nabla u0)+f(0) \leq 0, then the maximum principle
implies \partial \alpha t u = w \leq 0 in Q. Further, if f > 0 in Q, then f  - \partial \alpha t u > 0 in Q, which
implies (f  - \partial \alpha t u)u > 0 in Q. Thus at least a weak version of condition (4.10) holds.
We leave further discussions on the condition (4.10) and its analogues to future work.

Remark 4.12. Theorem 4.8 and Corollary 4.10 show that the convergence rate is
of order O(\delta 

1
4 ) in the weighted norm, provided that \gamma = O(h4) = O(\delta 2) = O(\tau 1+\alpha ).

The error estimate in Theorem 4.8 and Corollary 4.10 is expected to be suboptimal,
due to the presence of the factor h - 1, which arises from the use of inverse inequality
in (4.8). It remains unclear how to achieve optimality, even in the standard parabolic
case [50].

5. Numerical results and discussions. Now we present numerical results to
illustrate the fully discrete scheme (3.6)--(3.7) with one- and two-dimensional exam-
ples, with the measurement z\delta over the time interval [T0, T ] (by a straightforward
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Table 1
The reconstruction error \| q\ast h  - q\dagger \| L2(\Omega ) for Example 5.1.

\epsilon 0 1.00e-3 5.00e-3 1.00e-2 3.00e-2 5.00e-2
\gamma 1.00e-14 1.00e-13 3.00e-13 5.00e-13 1.00e-12 3.00e-12

\alpha = 0.25 7.75e-3 9.95e-3 1.33e-2 1.53e-2 2.50e-2 3.64e-2
\alpha = 0.50 8.73e-3 1.00e-2 1.33e-2 1.50e-2 2.65e-2 4.11e-2
\alpha = 0.75 9.92e-3 1.16e-2 1.80e-2 2.24e-2 3.30e-2 5.16e-2

adaptation of the formulation; see Remark 3.8), with T fixed at 1. Throughout, the
corresponding discrete problem is solved by the conjugate gradient (CG) method [3],
with the gradient computed using the standard adjoint technique. Unless otherwise
stated, the lower and upper bounds in the admissible set \scrA are taken to be c0 = 0.5
and c1 = 5, respectively, and are enforced by a projection step after each CG iter-
ation. The minimization method converges generally within tens of iterations. The
noisy data z\delta is generated by

z\delta (x, t) = u(q\dagger )(x, t) + \epsilon sup
(x,t)\in \Omega \times [T0,T ]

| u(x, t)| \xi (x, t), (x, t) \in \Omega \times [T0, T ],

where \xi (x, t) follows the standard Gaussian distribution, and \epsilon \geq 0 denotes the (rela-
tive) noise level. The noisy data z\delta is first generated on a fine spatial-temporal mesh
and then interpolated to a coarse spatial/temporal mesh for the inversion step. The
scalar \gamma in the functional J\gamma plays an important role in determining the accuracy of
the reconstructions, but it is notoriously challenging to choose (see, e.g., [20]). In
our experiments, its value is determined by a trial and error manner, first for the
fractional order \alpha = 0.50 and then for the cases \alpha = 0.25 and \alpha = 0.75, which might
be suboptimal but works reasonably well in practice.

5.1. Numerical results in one spatial dimension. First we present numer-
ical results for two examples on unit interval \Omega = (0, 1). The reference data u(q\dagger ) is
computed with a mesh size h = 1/400 and time step size \tau = 1/2048, and the inver-
sion step is carried out with a mesh size h = 1/200 and time step size \tau = 1/1024,
unless otherwise specified.

The first example has a smooth exact coefficient q\dagger , and the problem is homoge-
neous.

Example 5.1. u0 = x(1 - x), f \equiv 0, q\dagger = 2 + sin(2\pi x).

First, we let T0 = 0.75 and study how the reconstruction error changes with
respect to different parameters. The numerical results for the example with different
noise levels \epsilon , and fixed h and \tau , are summarized in Table 1. The chosen \gamma is relatively
small, since the magnitude of the exact data u(q\dagger ) is actually very small: for example,
upon convergence, the functional value J\gamma ,h,\tau (q

\ast 
h) is about O(10 - 12) for exact data

and about O(10 - 9) for \epsilon = 1.00e-2. Clearly, the L2(\Omega ) error eq of the reconstruction
q\ast h, i.e., eq = \| q\dagger  - q\ast h\| L2(\Omega ), decreases steadily as the noise level \epsilon tends to zero.
(Note that even at \epsilon = 0, the reconstruction error eq is nonzero due to the presence of
discretization errors.) The convergence is consistently observed for all three fractional
orders. Interestingly, for a fixed noise level \epsilon , as the fractional order \alpha increases
from 0.25 to 0.75, the reconstruction error tends to deteriorate slightly. It might be
related to the fact that for homogeneous subdiffusion, the smaller \alpha is, the quicker
the state u(t) approaches a ``quasi""-steady state; then the inverse problem reduces
to the elliptic counterpart, i.e.,  - \nabla \cdot (q\nabla u) = f , which is known to be beneficial
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\epsilon = 0 \epsilon = 1.00e-2 \epsilon = 5.00e-2

Fig. 1. Numerical reconstructions for Example 5.1 with \alpha = 0.5.

Table 2
Reconstruction errors \| q\ast h - q\ast \| L2(\Omega ) for Example 5.1 with \epsilon = 1.00e - 2 (and \beta = 5.00e - 13)R,

vs. the mesh size h = 1/M with \tau fixed at \tau = 2 - 10.

M 10 20 40 80 160 320
\alpha = 0.25 5.39e-2 2.74e-2 2.33e-2 1.46e-2 2.04e-2 1.15e-2
\alpha = 0.50 5.38e-2 2.56e-2 2.51e-2 1.56e-2 1.16e-2 6.51e-3
\alpha = 0.75 4.61e-2 2.57e-2 2.26e-2 2.41e-2 1.14e-2 8.00e-3

Table 3
Reconstruction errors \| q\ast h  - q\ast \| L2(\Omega ) for Example 5.1 with \epsilon = 1.00e - 2 (and \beta = 5.00e - 13),

vs. the time step size \tau , with h fixed at h = 5e - 3.

\tau 2 - 5 2 - 6 2 - 7 2 - 8 2 - 9 2 - 10

\alpha = 0.25 3.78e-2 3.88e-2 2.03e-2 8.30e-3 2.38e-2 6.27e-3
\alpha = 0.50 3.90e-2 3.80e-2 1.98e-2 1.92e-2 2.07e-2 8.46e-3
\alpha = 0.75 9.31e-2 4.47e-2 2.64e-2 1.06e-2 1.45e-2 6.64e-3

for numerical reconstruction [26]. However, the precise mechanism remains to be
ascertained. We refer to Figure 1 for exemplary reconstructions: the recoveries are
qualitatively comparable with each other and all reasonably accurate for \epsilon up to
\epsilon = 5.00e-2. These observations concur well with the numbers in Table 1.

Next we examine the convergence with respect to the mesh size h and time step
size \tau ; see Tables 2 and 3 for the empirical convergence with respect to h and \tau ,
respectively. The reference regularized solution q\ast is computed with h = 1/800 and
\tau = 1/2048, and it differs slightly from the exact diffusion coefficient q\dagger , due to the
presence of data noise (\epsilon = 1e-2). Clearly, the L2(\Omega ) error \| q\ast  - q\ast h\| L2(\Omega ) of the
reconstruction q\ast h (which depends also implicitly on \tau via the optimization problem
(3.6)--(3.7)) decreases as either the mesh size h or time step size \tau tends to zero,
and the convergence is generally steady. These observations partially confirm the
convergence result in Theorem 3.7.

Last, we take T0 = 0 and examine the convergence of the errors eq = \| q\dagger  - q\ast h\| L2(\Omega )

and eu = (\tau 
\sum N

n=1 \| u(tn)  - Un
h (q

\ast 
h)\| 2L2(\Omega ))

1
2 , with respect to \epsilon . Motivated by the er-

ror estimates in Theorem 4.8 and Remark 4.12, we fix a small \tau = 1/2048 and let
h =

\surd 
\epsilon and \gamma = 10 - 4 \times \epsilon 2. The errors eq and eu are plotted in Figure 2: a first-order

convergence O(\epsilon ) is clearly observed. This shows the suboptimality of the theoreti-
cal convergence rate in Theorem 4.8. This remains an outstanding question for the
analysis of the discrete problem and seems open even for the standard parabolic case.

The second example has a nonsmooth exact coefficient q\dagger , and the problem is
inhomogeneous. The notation min denotes the pointwise minimum.
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Fig. 2. Plot of eu and eq versus \epsilon with h =
\surd 
\epsilon , \gamma = 10 - 4 \times \epsilon 2, and \tau = 1/2048.

Table 4
Reconstruction error \| q\ast h  - q\dagger \| L2(\Omega ) for Example 5.2.

\epsilon 0 1.00e-3 5.00e-3 1.00e-2 3.00e-2 5.00e-2
\gamma 1.00e-15 2.00e-13 4.00e-13 1.00e-12 4.00e-12 9.00e-12

\alpha = 0.25 4.36e-3 7.91e-3 1.28e-2 1.56e-2 2.21e-2 3.02e-2
\alpha = 0.50 6.13e-3 6.95e-3 1.30e-2 1.58e-2 2.34e-2 2.89e-2
\alpha = 0.75 1.04e-2 1.14e-2 1.44e-2 1.54e-2 2.18e-2 3.23e-2

\epsilon = 0 \epsilon = 1.00e-2 \epsilon = 5.00e-2

Fig. 3. Numerical reconstructions for Example 5.2 with \alpha = 0.5.

Example 5.2. u0(x) = x2(1 - x)2, f(x, t) = ex(1 - x)x(1 - x)t, q\dagger = 2+min( 12 , sin
4

(2\pi x)), and T0 = 0.75.

The numerical results for the example with different noise levels are given in Table
4 and Figure 3, where the lower and upper bounds in the admissible set \scrA are taken
to be c0 = 1.9 and c1 = 2.7. With this choice, the box constraint becomes active
at some CG iterations. The observations from Example 5.1 remain largely valid:
the error eq = \| q\dagger  - q\ast h\| L2(\Omega ) decreases as the noise level \epsilon decreases to zero. The
results are mostly comparable for all three fractional orders. For high noise levels,
e.g., \epsilon = 5.00e-2, the reconstruction error is clearly dominated by the oscillations
within the flat regions, which is reminiscent of the Gibbs phenomenon arising from
the approximation of the kinks, and also the deviations in the valley. Nonetheless, all
the results are fair and represent acceptable approximations.

5.2. Numerical results in two spatial dimensions. Now we present numer-
ical results for the following example on the unit square \Omega = (0, 1)2. The domain
\Omega is first uniformly divided into M2 small squares, each with side length 1/M , and
then a uniform triangulation is obtained by connecting the lower-left and upper-right
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Table 5
Reconstruction error \| q\ast h  - q\dagger \| L2(\Omega ) for Example 5.3.

\epsilon 0 1.00e-3 5e-3 1.00e-2 3.00e-2 5.00e-2
\gamma 1.00e-14 3.00e-12 1.00e-11 3.00e-11 2.00e-10 5.00e-10

\alpha = 0.25 1.51e-3 1.75e-3 2.87e-3 3.64e-3 5.82e-3 7.81e-3
\alpha = 0.50 1.61e-3 1.86e-3 2.80e-3 3.62e-3 6.58e-3 9.57e-3
\alpha = 0.75 1.59e-3 2.21e-3 3.38e-3 4.66e-3 1.13e-2 1.64e-2

\epsilon = 0 \epsilon = 1.00e-2 \epsilon = 5.00e-2

Fig. 4. Numerical reconstructions for Example 5.3 with \alpha = 0.50.

vertices of each small square. The reference data is first computed on a finer mesh
with M = 100 and a time step size \tau = 1/2000. The inversion is carried out with a
mesh M = 40 and \tau = 1/500.

Example 5.3. u0(x1, x2) = x1(1 - x1) sin(\pi x2), f \equiv 0, q\dagger (x1, x2) = 1+sin(\pi x1)x2
(1 - x2), and T0 = 0.8.

The numerical results for the example with different noise levels are presented
in Table 5 and Figure 4. The empirical observations are in excellent agreement with
Example 5.1, e.g., convergence as the noise level \epsilon decreases to zero and slightly
improved reconstructions for increasing fractional orders \alpha . Figure 4 indicates that
the pointwise error eq = q\ast h  - q\dagger lies mainly in recovering the peak, but the overall
shape is well recovered.

6. Conclusions. In this work, we have studied the numerical recovery of a spa-
tially dependent diffusion coefficient from the full space-time datum using a regular-
ized least-squares formulation. First, we proved the well-posedness of the continuous
formulation, e.g., stability and convergence. Second, we described a fully discrete
scheme based on the Galerkin finite element method in space and convolution quad-
rature in time and showed the convergence of the numerical approximation. Third,
we derived error estimates for the numerical approximation under certain regularity
conditions on the exact diffusion coefficient and problem data.

This work presents only a first step toward rigorous numerical analysis of the
inverse conductivity problem. There are several avenues deserving further research.
First, it is important to analyze the formally determined case, e.g., terminal data or
lateral Cauchy data. This is apparently very challenging, since even for the classi-
cal parabolic counterparts, a rigorous error estimate (in either a weighted norm or
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the usual L2(\Omega )) remains elusive. The techniques in this work also do not extend
directly, due to their heavy use of the discrete ``integration by parts"" formula over
the interval [0, T ]. Second, even for full data, the obtained error estimates remain
suboptimal in terms of their dependence with the mesh size h, when compared with
the empirical convergence rate. Partly, this arises from the inverse inequality, and it
remains unclear how to achieve optimality. Third, it is of great interest to recover
the fractional order \alpha and the diffusion coefficient q simultaneously, or a space-time
dependent diffusion coefficient. Fourth and last, it is of much interest to derive the
necessary and sufficient optimality conditions for the regularized formulation, to carry
out convergence and error analysis with respect to stationary points, and to develop
more efficient numerical algorithms. The optimality system may be derived using the
spike variation technique in a fairly general setting (see, e.g., [40] for the standard
parabolic case).

Appendix A. Proof of Lemma 4.3.
The proof relies on the discrete Laplace transform and the following two estimates:

c1| z| \leq | \delta \tau (e - z\tau )| \leq c2| z| \forall z \in \Gamma \tau 
\theta ,\delta ,(A.1)

| \delta \tau (e - z\tau )| \leq | z| 
\infty \sum 
k=1

| z\tau | k - 1

k!
\leq | z| e| z| \tau \forall z \in \Sigma \theta (A.2)

with \Sigma \theta = \{ z \in \BbbC : z \not = 0, | arg(z)| \leq \theta \} and \Gamma \tau 
\theta ,\delta = \{ z = re\pm i\theta , \delta \leq r \leq \pi sin \theta 

\tau \} \cup \{ z =
\delta ei\varphi : | \varphi | \leq \theta \} , where \theta \in (\pi 2 , \pi ) is fixed, and the resolvent estimate

(A.3) \| (z  - A(q)) - 1\| \leq c| z|  - 1 \forall z \in \Sigma \theta .

Now let y(t) = u(t) - u0. Then y(t) satisfies

\partial \alpha t y(t) - Ay(t) +Au0 = f(t), 0 < t \leq T.

Taking the Laplace transform gives

z\alpha \widehat y(z) - A\widehat y(z) + z - 1Au0 = \widehat f(z),
i.e., \widehat y(z) = (z\alpha  - A) - 1( \widehat f(z) - z - 1Au0). Since \widehat \partial \alpha t y(t) = z\alpha \widehat y(z) and \widehat \=\partial \alpha \tau y = \delta \tau (z)

\alpha \widehat y(z),
then wn = \partial \alpha t y(tn) - \=\partial \alpha \tau y(tn) is represented by

wn =
1

2\pi i

\int 
\Gamma \tau 
\theta ,\delta 

eztnK(z)(z - 1Au0  - \widehat f(z)) dz + 1

2\pi i

\int 
\Gamma \theta ,\delta \setminus \Gamma \tau 

\theta ,\delta 

eztnK(z)(z - 1Au0  - \widehat f(z)) dz
with K(z) = (\delta \tau (e

 - z\tau )\alpha  - z\alpha )(z\alpha  - A) - 1. Recall the following estimate:

(A.4) | \delta \tau (e - z\tau )\alpha  - z\alpha | \leq c\tau z1+\alpha \forall z \in \Gamma \tau 
\theta ,\delta .

By choosing \delta = c/tn and (A.3), I = 1
2\pi i

\int 
\Gamma \tau 
\theta ,\delta 
eztnK(z)z - 1(Au0  - f(0))dz is bounded

by

\| I\| L2(\Omega ) \leq c\tau \| Au0  - f(0)\| L2(\Omega )

\biggl( \int \pi sin \theta 
\tau 

c
tn

e - c\rho tn d\rho +

\int \theta 

 - \theta 

ct - 1
n d\theta 

\biggr) 
\leq c\tau t - 1

n \| Au0  - f(0)\| L2(\Omega ).
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Further, by (A.2), for any z = \rho e\pm i\theta \in \Gamma \theta ,\delta \setminus \Gamma \tau 
\theta ,\delta and choosing \theta \in (\pi /2, \pi ) close to

\pi ,

| eztn(\delta \tau (e - z\tau )\alpha  - z\alpha )z - 1| \leq etn\rho cos \theta (c| z| \alpha e\alpha \rho \tau + | z| \alpha )| z|  - 1 \leq c| z| \alpha  - 1e - c\rho tn .

Then the term II = 1
2\pi i

\int 
\Gamma \theta ,\delta \setminus \Gamma \tau 

\theta ,\delta 
eztnK(z)z - 1(Au0  - f(0))dz is bounded by

\| II\| L2(\Omega ) \leq c\| Au0  - f(0)\| L2(\Omega )

\int \infty 

\pi sin \theta 
\tau 

e - c\rho tn\rho  - 1 d\rho \leq c\tau t - 1
n \| Au0  - f(0)\| L2(\Omega ).

In view of the splitting f(t) = f(0)+ tf \prime (0)+ 0I
2
t f

\prime \prime (t), it remains to bound the other
two terms. Upon extending f \prime \prime (t) by zero to \BbbR  - , straightforward computation gives

wn =  - 1

2\pi i

\int 
\Gamma \theta ,\delta 

eztnK(z)z - 2 dzf \prime (0)ds

 - 1

2\pi i

\int tn

0

\int 
\Gamma \theta ,\delta \setminus \Gamma \tau 

\theta ,\delta 

ez(tn - s)z - 2K(z) dzf \prime \prime (s) ds.

Then repeating the preceding argument leads to

\| wn\| L2(\Omega ) \leq c\tau 
\Bigl( 
\| f \prime (0)\| L2(\Omega ) +

\int tn

0

\| f \prime \prime (s)\| L2(\Omega )ds
\Bigr) 
.

Combining the preceding estimates shows the desired assertion.
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