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Abstract
The multispecies coalescent (MSC) model provides a natural framework for species tree estimation accounting for
gene-tree conflicts. While a number of species tree methods under the MSC have been suggested and evaluated
using simulation, their statistical properties remain poorly understood. Here we use mathematical analysis aided by
computer simulation to examine the identifiability, consistency, and efficiency of different species tree methods in the
case of three species and three sequences under the molecular clock. We consider four major species-tree methods
including concatenation, two-step, independent-sites maximum likelihood (ISML) and maximum likelihood (ML). We
develop approximations that predict that the probit transform of the species tree estimation error decreases linearly
with the square root of the number of loci. Even in this simplest case major differences exist among the methods. Full-
likelihood methods are considerably more efficient than summary methods such as concatenation and two-step. They
also provide estimates of important parameters such as species divergence times and ancestral population sizes while
these parameters are not identifiable by summary methods. Our results highlight the need to improve the statistical
efficiency of summary methods and the computational efficiency of full likelihood methods of species tree estimation.
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Introduction
The multispecies coalescent (MSC) model (Rannala and

Yang 2003) combines the phylogenetic process of spe-

cies divergences with the population genetic process of

coalescent and naturally accommodates delayed coale-
scence (also known as incomplete lineage sorting, Mad-

dison 1997), the phenomenon in which gene sequences

fail to coalesce in their most recent common ancestor

but do so only in more ancient ancestors. Delayed

coalescence causes the gene tree for a gene or genomic

region to differ from the species tree and is the most

important factor for gene-tree–species-tree discordance

(Maddison 1997; Nichols 2001; Szollosi et al. 2015).

The MSC provides a natural framework for estimating

species trees accounting for genealogical heterogeneity

among genes or across the genome (Edwards 2009; Xu

and Yang 2016; Kubatko 2019; Rannala et al. 2020).

Two lines of research into the MSC have provided the

foundation for species tree methods. The first concerns

the probabilities of different gene tree topologies (Hud-

son 1983; Pamilo and Nei 1988) and algorithms for their

efficient calculation given the species tree (Degnan and

Salter 2005; Degnan and Rosenberg 2006). The gene

tree distribution can be used in the two-step method of

species tree estimation, by inferring gene trees for the

individual loci and then applying maximum likelihood

(ML) to counts of gene tree topologies (as in STELLS,

Wu 2012). Nevertheless, widely used two-step methods,

including ASTRAL (Mirarab et al. 2014) and MP-EST

(Liu et al. 2010), are simpler, and estimate species trees

for species triplets (assuming the molecular clock) or

quartets (without the clock) and then assemble the sub-

trees to produce a species-tree estimate for all species.

Studies of gene-tree probabilities led to the discovery

of the anomaly zone, the region of the parameter space

in which the most probable gene tree has a different

topology from the species tree (Degnan and Salter 2005;

Degnan and Rosenberg 2006). In the anomaly zone, the

two-step method, which uses the most common gene tree

as the species tree estimate, will be inconsistent.

The second line of research into MSC is the develo-

pment of the joint probability distribution of the gene© The Author 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved.
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tree and coalescent times (Rannala and Yang 2003). This

forms the basis for exact methods of inference, including

ML (Yang 2002; Dalquen et al. 2017) and Bayesian

methods (Liu and Pearl 2007; Heled and Drummond

2010; Yang and Rannala 2014; Ogilvie et al. 2017;

Rannala and Yang 2017). While heuristic methods use

summaries of the data, exact methods use the multi-locus

sequence alignments directly and naturally accommo-

date phylogenetic reconstruction errors and uncertainties

(Xu and Yang 2016; Kubatko 2019; Rannala et al. 2020).

Simulation has been used to examine the performance

of different species-tree methods (e.g., Leaché and

Rannala 2011; Mirarab et al. 2014; Chou et al. 2015; Xu

and Yang 2016). A limitation of simulation is that it can

examine only a small portion of the parameter space and

the results often have limited applicability. Analytical

results on the efficiency of different methods have been

lacking. Here we analyze species tree estimation under

the MSC in the case of three species, with one sequence

from each species per locus. We focus on closely

related species and assume the JC mutation model (Jukes

and Cantor 1969) and the molecular clock. We are

in particular interested in the efficiency of the various

methods, measured by the probability of recovering the

correct species tree.

We consider four inference methods: (i) ML (a full

likelihood method under the MSC applied to the multilo-

cus sequence alignments), (ii) 2-STEP (or majority-vote),

(iii) concatenation (CONCAT), and (iv) independent-sites

ML (ISML, also known as coalescent-aware concatena-

tion or CONCAT) (Xu and Yang 2016). ML is the full-

likelihood method and calculates the likelihood function

using the multi-locus sequence alignments or a sufficient

summary. The 2-STEP method estimates the gene tree

at each locus and then uses the most common gene

tree as the species tree estimate. It does not account

for the uncertainties in the estimated gene trees. For

the case of three species considered here, 2-STEP is

equivalent to the maximum pseudo-likelihood method

(MP-EST) (Liu et al. 2010). Concatenation applies ML

to the concatenated sequences, assuming that the same

tree underlies all sites in the super alignment. In the case

considered here, concatenation is equivalent to STEAC

(Liu et al. 2009), which uses average coalescent times

over loci as data to infer a gene tree, which is the species

tree estimate. ISML (or CONCAT) estimates the species

tree by ML under the assumption that all sites, both from

the same locus and from different loci, have independent

gene trees (Xu and Yang 2016). This was suggested

as an improvement to SVDQUARTETS of Chifman and

Kubatko (2014). All four methods considered here use

ML, but the likelihood function is applied to different

summaries of the same data. Here we refer to the full-

likelihood or full-data method as the ML method, while

all other methods (2-STEP, concatenation, and ISML)

are considered heuristic summary methods: 2-STEP uses

the (estimated) gene tree topologies, while concatenation

and ISML use the site-pattern counts pooled across loci.

We derive approximations to the error rate of species

tree estimation by the different methods and assess

their accuracy. We use the theory to characterize the

differences in the use of information in the data by

different methods.

Results
Multispecies coalescent in the case of three species

For three species A,B, and C, there are three possible

species trees: S1 = ((AB)C), S2 = ((BC)A), and S3 =
((CA)B), each with two divergence times (τ0 and τ1) and

two population sizes (θ0 and θ1) (fig. 1a). Both τs and

θs are measured by the expected number of mutations

per site. For each species, the population size parameter

is θ = 4Nμ , where N is the (effective) population size

and μ is the mutation rate per site per generation.

We consider only one sequence from each species, so

that θs for the modern species are not considered.

The parameters have different interpretations in different

species trees: in S1, the two ancestral species are AB
and ABC so the parameters are θθθ 1 = {τ0,τ1,θ0,θ1} =

{τABC,τAB,θABC,θAB}.

At each locus, three sequences (a,b, and c) are sam-

pled, one from each species. They are related through a

gene tree. The three possible gene trees are G1 =((ab)c),
G2 = ((bc)a), and G3 = ((ca)b), with probabilities

P(G1|S1,θθθ 1) = 1− 2
3 φ ,

P(G2|S1,θθθ 1) = P(G3|S1,θθθ 1) =
1
3 φ ,

(1)

where φ = e−2(τABC−τAB)/θAB is the probability that

sequences a and b do not coalesce in population AB so

that all three sequences enter the ancestor ABC and the

three gene trees occur with equal probability (fig. 1b)

(Hudson 1983). Here 2(τABC −τAB)/θAB is known as the

internal branch length in coalescent units, as the average

coalescent time in population AB is 2NAB generations or

θAB/2 mutations per site.

For locus i, let ttti = {ti0, ti1} be the coalescent times

(node ages) on the gene tree (fig. 1b). The joint MSC

density for the gene tree and coalescent times given

species tree S1 and parameters θθθ 1 is then

f (G1a, ttti|S1,θθθ 1) =
2
θ1

e
− 2

θ1
(ti1−τ1) · 2

θ0
e
− 2

θ0
(ti0−τ0),

τ1 < ti1 < τ0, ti0 > τ0,

f (Gk, ttti|S1,θθθ 1) = e
− 2

θ1
(τ0−τ1)

× 2
θ0

2
θ0

e
− 6

θ0
(ti1−τ0)− 2

θ0
(ti0−ti1),

ti1 > τ0, ti0 > ti1,

(2)

for k = 1b,2,3 (Takahata et al. 1995; Yang 2002). The

probability densities for S2 and S3 are given similarly.
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The data consist of sequence alignments at m loci.

Under the JC mutation model, the data at locus i can be

summarized as counts of five site patterns: xxx, xxy, yxx,

xyx, and xyz, where x,y, z are any three distinct nucleo-

tides. Let those counts be xxxi = {xi0,xi1,xi2,xi3,xi4}, with

∑4
j=0 xi j = n to be the number of sites (sequence length)

at each locus. Let fi j = xi j/n be the frequencies. Let data

at all m loci be xxx = {xxxi}.

Given the gene tree and coalescent times at locus

i, the probability of the sequence data, f (xxxi|Gi, ttti), is

given by the multinomial distribution for the five site

patterns. For example, given gene tree G1 with node

ages ti0 and ti1 (fig. 1b), the site-pattern probabilities,

pppi = {pi0, pi1, pi2, pi3, pi4}, are

pi0 = P(xxx|G1, ttti) =
1
16(1+3v2 +6u+6uv),

pi1 = P(xxy|G1, ttti) =
1
16(3+9v2 −6u−6uv),

pi2 = P(yxx|G1, ttti) =
1
16(3−3v2 +6u−6uv), (3)

pi3 = P(xyx|G1, ttti) = p2,

pi4 = P(xyz|G1, ttti) =
1
16(6−6v2 −12u+12uv),

where u = e−8ti0/3 and v = e−4ti1/3 (Yang 1994b). Note

that pi1 > pi2 = pi3 as ti0 > ti1. The probabilities for gene

trees G2 or G3 are given by symmetry. Then the sequence

data or the five site-pattern counts at the locus have the

multinomial probabilities

f (xxxi|G1, ttti) = pxi0
i0 pxi1

i1 pxi2+xi3
i2 pxi4

i4 ,

f (xxxi|G2, ttti) = pxi0
i0 pxi2

i1 pxi3+xi1
i2 pxi4

i4 , (4)

f (xxxi|G3, ttti) = pxi0
i0 pxi3

i1 pxi1+xi2
i2 pxi4

i4 .

The ML method of species tree estimation

The log-likelihood function for species tree S1 with

parameters θθθ 1 is given by summing over the gene trees

and integrating over the coalescent times.

�1(θθθ 1) =
m

∑
i=1

log f (xxxi|S1,θθθ 1)

=
m

∑
i=1

log

{
∑
Gi

∫
f (Gi, ttti|S1,θθθ 1) f (xxxi|Gi, ttti)dttti

}
,

(5)

where f (Gi, ttti|S1,θθθ 1) is the MSC density for the gene

tree and coalescent times at locus i (eq. 2), and

f (xxxi|Gi, ttti) is the probability of the sequence data at

locus i given the gene tree (eq. 4). The log likelihood

functions, �2(θθθ 2) and �3(θθθ 3), for S2 (with parameters

θθθ 2) and S3 (with θθθ 3) are defined similarly.

Maximizing the log-likelihood function (eq. 5) with

respect to the parameters will lead to a log-likelihood

value for the given species tree, and the species tree that

achieves the highest � is the ML species tree. This is not

analytically tractable. The program 3S implements the

method by explicitly summing over the gene trees (Gi)

and by using Gaussian quadrature to calculate the 2-D

integrals over ttti (eq. 5) (Yang 2002; Zhu and Yang 2012;

Dalquen et al. 2017). This is used in simulations.

We present two theorems for approximating the error

in species tree estimation.

THEOREM 1. (a) Suppose zi = (zi1,zi2,zi3)
T , i =

1, · · · ,m, are an independent and identically distributed
(i.i.d.) sample of size m from a distribution with means
μ = (μ1,μ2,μ2)

T , with Δμ = μ1−μ2 > 0, and variances
Σ= {σ jk}, where σ11 = σ2

1 , σ12 = σ13 = ρ12σ1σ2, σ22 =
σ33 = σ2

2 and σ23 = ρ23σ2
2 . Let z̄ = {z̄1, z̄2, z̄3}T be the

sample means, with z̄ j =
1
m ∑m

i=1 zi j, j = 1,2,3. For large
m, z̄ ∼ N3(μ, 1

m Σ). Let ζ = P{z̄1 < max(z̄2, z̄3)}. Then

ζ ≈ Φ

⎛
⎝ −Δμ

√
m+

√
1
π (σ

2
2 −σ23)√

σ2
1 −2σ12 +σ2

2 − 1
π (σ

2
2 −σ23)

⎞
⎠

≡ ζN(m,Δμ,σ2
1 ,σ

2
2 ,σ12,σ23),

(6)

where Φ is the cumulative distribution function (CDF)
for the normal distribution N(0,1). We also write ζN as
ζN(m,Δμ,Σ).

(b) Let a = s2/s1 and b = Δμ
√

m/s1, with s2
1 = σ2

1 −
2σ12 +σ2

2 − 1
2(σ

2
2 −σ23) and s2

2 =
1
2(σ

2
2 −σ23). Then ζ

is bounded by

Φ(−h)
(
1+ 2

π tan−1 a
)≤ ζ < 2Φ(−h)

= Φ
(−h+ 1

h log2+o( 1
h)
)
,

(7)

where h = b√
1+a2

. The equality for the lower bound

holds when h = b = 0. We write those bounds as ζL1 <
ζ < ζU1, so that Φ(−h)≤ ζL1 ≤ ζ < 2Φ(−h).

Proof . A proof is given in Appendix A, in which we

discuss alternative approximations and also give a tighter

pair of bounds (ζL2,ζU2) in eq. A27, with ζL1 < ζL2 <
ζ < ζU2 < ζU1. �

In this paper, ζ represents the error probability of

species tree estimation. Thus the bounds Φ(−h) ≤ ζ <
2Φ(−h) suggest that when m → ∞, the probit transform

of the species-tree error probability, Φ−1(ζ ), where Φ−1

is the inverse CDF of N(0,1), decreases linearly with√
m. For practical calculations for finite m in this paper,

eq. 6 is more accurate (see Appendix A) and will be used

later.

COROLLARY 2. Let (y0,y1,y2,y3) be random variables
from the multinomial distribution MN(m, q0, q1, q2, q3),
with q0 = 1−q1 −q2 −q3, q1 > q2 = q3, and Δq = q1 −
q2 > 0. Then P{y1 < max(y2,y3)} can be approximated

3
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by

ζ (m,q1,q2) = Φ

⎛
⎝ −Δq

√
m+

√
q2
π√

q1 +q2 − (Δq)2 − q2
π

⎞
⎠ , (8)

ζZLY(m,q1,q2) = Φ

⎛
⎜⎝−Δq

√
m− 1

Δq +
√

q2
π√

q1 +q2 − q2
π

⎞
⎟⎠ . (9)

Proof . Let z̄ j = y j/m, j = 1,2,3 be the observed

frequencies. We have σ j j = q j(1−q j) and σ jk =−q jqk
for j 	= k. Then eq. 8 follows from eq. 6 in Theorem

1. The form ζZLY, an alternative to eq. 8, is from Yang

(1996, eq. 3), based on Zharkikh and Li (1992, eq. 20).

This applies the term 1/Δq to correct for discontinuity

(Fleiss et al. 2003) and ignores correlations between y1,

y2, and y3 as well as some terms of small probabilities.

The discontinuity correction does not appear to be

useful. If m 
 1/Δq, both forms, with and without the

discontinuity correction, are very close. �

The error rate for the ML method (eq. 5) is analyzed

in Appendix B. When the number of loci m → ∞, the

MLE θ̂θθ j → θθθ ∗
j in species tree S j, j = 1,2,3. Note that S1

represents the true model and θθθ ∗
1 are the true parameter

values, while S2 and S3 are misspecified models and

θθθ ∗
2 and θθθ ∗

3 are the best-fitting or pseudo-true parameter
values. The Kullback-Leibler distance D12 from S2 to S1

is

D12 =
∫

f (x|S1,θθθ ∗
1) log

f (x|S1,θθθ ∗
1)

f (x|S2,θθθ ∗
2)

dx

= E(l1(θθθ ∗
1))−E(l2(θθθ ∗

2)),

(10)

where l j(θθθ ∗
j) ≡ log f (x|S j,θθθ ∗

j), with x to be one data

point (or site pattern counts at one locus), and where

the integral means summation over all possible data

outcomes at a locus. We use the per-locus log-likelihood

values to compare the three species trees: z̄ j ≡ 1
m� j(θ̂θθ j),

j = 1,2,3. When m is large, these have the means

E(z̄ j) ≈ E(l j(θθθ ∗
j)) ≡ μ j, with μ1 − μ2 = D12, and

the variance matrix 1
m Σ, where Σ = {σ jk} and σ jk ≡

Cov(l j(θθθ ∗
j), lk(θθθ

∗
k)). The error of the ML method, eML =

P{�1(θ̂θθ 1) < max(�2(θ̂θθ 2), �3(θ̂θθ 3))}, is then given by

Theorem 1 as

eML = P{z̄1 < max(z̄2, z̄3)} ≈ ζN(m,D12,Σ). (11)

Eq. 11 cannot be used to calculate the error rate for ML

as D12 and σ jk are not easily computable. It predicts a

linear relationship between Φ−1(eML) and
√

m. This is

confirmed by simulation (fig. 2a′-c′).
Precise results may be obtained in special cases. In the

case of one locus (m = 1), the ML gene tree is the ML

species tree except for rare datasets: the true species tree

S1 is recovered if xi1 > max(xi2,xi3). In rare datasets of

extreme divergence, even if xi1 > max(xi2,xi3), ties for

gene trees are possible, with the star tree being as good

as the binary trees (Yang 2000), while ML under MSC

favors S1. One such dataset is xi = (4,13,12,11,50),
in which case the three gene trees as well as the star

tree achieve the same likelihood, while ML under MSC

favors S1. However, such datasets involve sequences

more divergent than random sequences have vanishingly

small probability when n is large. Thus we ignore them

and consider all methods to be equivalent when m = 1.

With one locus, it is impossible to identify all parameters

in the MSC model: there are four parameters and only

three independent site-pattern frequencies ( fi0, fi1, fi2 +
fi3 for S1, for example).

The case of one site per locus (n = 1) is analyzed

later in the section on ISML. Numerical calculations on a

model species tree are presented in table 1. They will be

discussed later in comparison with other methods.

In the case of n → ∞, the gene tree (including the

coalescent times) at each locus is given without errors.

The likelihood is then the product of MSC densities of

gene trees across the loci (eq. 2). This likelihood has

singularities, with one or more species trees achieving

infinite likelihood (Liu et al. 2010; Yang 2014). In the

case of three species considered here, only one species

tree (given by the smallest coalescent time) achieves

infinite likelihood and will be the unique species-tree

estimate, so that the estimation can proceed despite

the singularity (Yang 2014, p.360, Problem 9.4). Let

the smallest coalescent/divergence time between species

across all loci be tab, tbc and tca. If tab is the smallest

among the three, then species tree S1 achieves infinite

likelihood, by collapsing on the coalescent time tab; that

is, �1(θ̂θθ 1) → ∞ as τ̂0 = τ̂1 = tab and θ̂1 → 0 (see eq. 2)

(Yang 2014, p.338-9), while the other two species trees

have finite likelihood.

Given S1 as the true species tree, both tbc and tca
are > τABC (fig. 1b). If sequences a and b coalesce in

population AB at any of the m loci, tab will be smaller

than both tbc and tca, and S1 will be the ML species tree.

Thus an incorrect species tree is inferred only if a and b
do not coalesce in AB at any of the m loci and are not the

first to coalesce in the root population ABC. Thus

eML,∞ = φ m × 2
3 , (12)

where φ = e
− 2

θAB
(τABC−τAB) is the probability that a and b

do not coalesce in population AB. This equation is exact

and applies to both small and large m (fig. 3b).

Concatenation

Sequence alignments at the m loci are merged into a

super-alignment of length nm, and the data are the site-

pattern counts pooled across loci: xxx. = {x· j}, with x· j =
∑i xi j, j = 0,1, · · · ,4. The likelihood function is given

by the multinomial probability of eq. 4 except that x· j
is used instead of xi j. The ML tree is G1 if x·1 >
max(x·2,x·3) (Yang 1994b; 2000). We discuss the error
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rate of concatenation below in the section on the ISML

method.

We also examine biases in parameter estimation using

concatenation. We use species tree S1 with τABC = 0.02,

τAB = 0.01, θABC = 0.02 and θAB = 0.01 to simulate

m = 104 loci each with n = 250 sites. We obtain MLEs

t̂0 and t̂1 on gene tree G1 from the concatenated data

for comparison with the MLEs τ̂0 and τ̂1 on species

tree S1 in the MSC model (eq. 5). With so much data,

both concatenation and ML recover the true tree with

near certainty. The MLEs under the MSC (obtained

using the 3S program) are very close to the true values,

while concatenation (BASEML in PAML, Yang 2007)

produced seriously biased estimates (table 2). Even the

relative age, t̂0/t̂1 = 1.92, differs from τABC/τAB = 2,

which means that molecular clock dating analysis using

concatenated data will produce biased time estimates

(Angelis and dos Reis 2015; Ogilvie et al. 2017; Tiley

et al. 2020).

ISML

The ISML method assumes that all sites in the

super-alignment are i.i.d. Like concatenation, the data

are summarized as pooled site-pattern counts, xxx. =
{x·0,x·1,x·2,x·3,x·4}. However, ISML is coalescent-aware

and uses the MSC model to calculate the probabilities

for the site patterns. By averaging the conditional site-

pattern probabilities of eq. 3 over the MSC density of

gene trees and coalescent times of eq. 2, we derive the

marginal site-pattern probabilities, p̄pp = ( p̄0, · · · , p̄4), as

p̄0 =
1
16 (1+18a0 +54a0b+54a0c0 +9c1 +9a1) ,

p̄1 =
3
16 (1−6a0 −18a0b−18a0c0 +9c1 +9a1) ,

p̄2 =
3
16 (1+6a0 −18a0b−18a0c0 −3c1 −3a1) , (13)

p̄3 = p̄2,

p̄4 =
6
16 (1−6a0 +18a0b+18a0c0 −3c1 −3a1) ,

where a0 = e−8τ0/3

3+4θ0
, a1 = e−8τ1/3

3+4θ1
, b = e−4τ1/3

3+2θ1
, c0 = 2φ ·

(θ1 −θ0) · e−4τ0/3

(3+2θ0)(3+2θ1)
, and c1 = 4φ · (θ1 −θ0) · a0

3+4θ1
,

with φ = e−2(τ0−τ1)/θ1 . Note that {p̄ j} are functions of

a0, b+ c0 and a1 + c1, although these do not appear to

permit simple biological interpretations. The cases for

S2 and S3 are given by symmetry.

The likelihood function (or the probability for the

pooled site-pattern counts) for each species tree is

f (xxx.|S1,θθθ 1) = p̄x·0
0 p̄x·1

1 p̄x·2+x·3
2 p̄x·4

4 ,

f (xxx.|S2,θθθ 2) = p̄x·0
0 p̄x·2

1 p̄x·3+x·1
2 p̄x·4

4 , (14)

f (xxx.|S3,θθθ 3) = p̄x·0
0 p̄x·3

1 p̄x·1+x·2
2 p̄x·4

4 .

THEOREM 3. (a) If the true species tree is S1 with
parameters θθθ 1, then p̄1 > p̄2 = p̄3. (b) ISML infers the
species tree S1 if x·1 > max{x·2,x·3}.

Proof . (a) Each of the marginal site pattern probabi-

lities p̄ j, j = 0, · · · ,4, is a sum over the four gene trees

of figure 1b: G1a,G1b,G2 and G3. The three gene trees

G1b,G2, and G3 have the same densities (eq. 2). Together

their contribution to the site pattern xxy is the same as

that to the pattern yxx or pattern xyx. If the gene tree

is G1a (with any coalescent times t0 > t1), site pattern

xxy will have a higher probability than yxx or xyx, with

p1 > p2 = p3. Averaging over all the four gene trees, we

have p̄1 > p̄2 = p̄3.

(b) We show that if x·1 > x·2, then �(S1, θ̂θθ 1) >

�(S2, θ̂θθ 2), where θ̂θθ 1 and θ̂θθ 2 are the MLEs under each

species tree. First note that if x·1 > x·2 and q1 > q2 > 0,

then qx·1
1 qx·2

2 > qx·2
1 qx·1

2 . Let q1 = p̄1(S1, θ̂θθ 2) and q2 =

p̄2(S1, θ̂θθ 2), and we have �(S1, θ̂θθ 2) > �(S2, θ̂θθ 2). In other

words, even if we use θ̂θθ 2 (the MLE for S2) to calculate

the likelihood for species tree S1, tree S1 will have a

higher likelihood than S2. Since θ̂θθ 2 may not be optimal

for S1, it follows that �(S1, θ̂θθ 1) ≥ �(S1, θ̂θθ 2) > �(S2, θ̂θθ 2).
�

Theorem 3 means that ISML infers species tree S j
if x· j is the greatest among x·1, x·2, and x·3, just like

concatenation.

To study the error rate for ISML (or CONCAT), let pi j,

j = 0, · · · ,4 be the site-pattern probabilities at any locus

i. Data at each locus are represented by the site-pattern

frequencies fi j = xi j/n. Let fi = { fi j} be the data at locus

i. The fi are i.i.d. among loci from a common distribution

with mean E( fi j) = p̄ j and variance/covariance σ j j ≡
V( fi j) and σ jk ≡ Cov( fi j, fik). Let f̄ j =

1
m ∑m

i=1 fi j =
x· j/m be the means over loci. Here { fi j} constitute

the full data while { f̄ j} are summaries used by ISML:

the species tree estimate is S j if f̄ j is the largest

among ( f̄1, f̄2, f̄3). Thus eISML = P( f̄1 < max{ f̄2, f̄3}) ≈
ζN(m, p̄1− p̄2,Σ), where Σ= {σ jk}. Below we derive the

variances.

At n = 1, they are given by the multinomial distribu-

tion as

σ (1)
j j = p̄ j(1− p̄ j), σ (1)

jk =−p̄ j p̄k, 1 ≤ j,k ≤ 3. (15)

At n = ∞, we have fi j = pi j, given by eq. 3. The

variances, denoted σ (∞)
jk , can be generated by simulating

gene trees with coalescent times and calculating the site-

pattern probabilities (eq. 3) (table S1). This distribution

is 3-dimensional (for fi0, fi1, and fi2 = fi3 under S1),

indexed by four parameters (θθθ 1 in S1), and is a mixture

distribution with 4 components corresponding to the

four gene trees of figure 1b. It reflects the coalescent

fluctuation in gene genealogies.

For any finite 1 ≤ n < ∞, the variances are given by

σ j j = V(E( fi j|pi j))+E(V( fi j|pi j))

= V(pi j)+E(pi j(1− pi j)/n)

= V(pi j)+
1
n [E(pi j)(1−E(pi j))−V(pi j)]

5
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= 1
n σ (1)

j j + n−1
n σ (∞)

j j , (16)

σ jk = Cov(pi j, pik)+E(Cov( fi j, fik|pi j, pik))

= Cov(pi j, pik)+
1
n [−E(pi j)E(pik)−Cov(pi j, pik)]

= 1
n σ (1)

jk + n−1
n σ (∞)

jk ,

where E(pi j) ≡ p̄ j (eq. 13), while V(pi j) = σ∞
j j and

Cov(pi j, pik) = σ∞
jk are the variances/covariances over

the coalescent process. These are calculated for a set of

parameter values in table S1. The variances of fi j are

thus weighted averages of variances at n = 1 and ∞.

The approximation eISML ≈ ζN(m, p̄1 − p̄2,Σ) is very

accurate, with errors < 0.002 in the simulation of table

1. At large n, accommodating correlation is useful as

ζN0 which ignores correlation is less accurate (see fig. 4

for the case of n = ∞). For example, the correlation

ρ( fi1, fi2) =
σ12√

σ11σ22
is −0.124,−0.153, and −0.181 at

n = 1,1000, and ∞, respectively (table S1).

We now consider parameter estimation by ISML.

Theorem 3 allows species tree estimation by ISML

without knowledge of the MLE of the parameters. With

data of x. j, j = 0, · · · ,4, there are only three observations

(three free proportions f̄0, f̄1, and f̄2 + f̄3 in the case of

S1). As there are four parameters in the MSC model, it is

impossible to identify all of them.

If we assume θ0 = θ1 = θ (as in Tian and Kubatko

2016), all three parameters (τ0,τ1,θ ) will be identifiable.

As c0 = c1 = 0, eq. 13 simplifies to

p̄0 =
1

16 (1+18a0 +54a0b+9a1) ,

p̄1 =
3

16 (1−6a0 −18a0b+9a1) ,

p̄2 =
3

16 (1+6a0 −18a0b−3a1) = p̄3,

p̄4 =
6

16 (1−6a0 +18a0b−3a1) ,

(17)

where a0, a1 and b are defined in eq. 13 with θ0 = θ1 = θ .

By equating the observed site-pattern frequencies to their

expected probabilities (eq. 17), we have

1
4(9a1 +1) = f̄0 + f̄1 ≡ h1,

1
4(9a0 +1) = f̄0 +

1
2( f̄2 + f̄3)≡ h2, (18)

3
8(−18a0b+3a1 +1) = f̄1 +

1
2( f̄2 + f̄3)≡ h3.

Thus we have a quadratic equation in θ̂ :

4(4h3 −2h1 −1)2θ̂ 2 +[3(4h3 −2h1 −1)2

−(4h1 −1)(4h2 −1)2](4θ̂ +3) = 0. (19)

This always has a unique positive root. Given θ̂ , the

estimates τ̂0 and τ̂1 are given by eq. 18, which are

guaranteed to be positive.

Thus under the assumption θ0 = θ1, the ISML method

provides estimates of the three parameters in the model:

θ , τ0 and τ1. As there is a one-to-one correspondence

between the parameters and the multinomial proportions,

the estimates are consistent and approach the true values

when m → ∞ for any n ≥ 1 if the assumption of θ0 =
θ1 is correct (table 3c&d). However, the pooled site-

pattern counts or average site-pattern frequencies are

summaries of the original data and are not sufficient

statistics. It then follows that the ISML estimates will

be less efficient and have larger asymptotic variances

than the MLEs obtained from the full data under the

same model assumption of θ0 = θ1 (table 3, case c).

Furthermore, if θ0 	= θ1, assuming θ0 = θ1 will lead to

biased and inconsistent parameter estimates even if the

same species tree estimate is produced. In other words if

θ0 	= θ1, the ISML method assuming θ0 = θ1 will produce

a consistent estimate of the species tree and inconsistent

estimates of the model parameters (table 3, cases e&f).

Two-step method (majority vote)

In the 2-STEP method we estimate gene trees at indi-

vidual loci and then use the most common gene tree

topology as the species tree estimate. Under JC, the ML

gene tree for locus i (which is also the UPGMA tree) is

tree G j if xi j is the largest among xi1,xi2, and xi3 (Yang

1994b; 2000); site patterns xxy, yxx and xyx ‘support’

gene trees G1, G2, and G3, respectively. There is no need

for numerical optimization to obtain the ML tree at each

locus.

Let g1,g2 and g3 be the probabilities that the estimated

gene tree is G1,G2 and G3, respectively; that is, g1 =
P{xi1 > max(xi2,xi3)}, and so on. These are functions of

all four parameters in the MSC model (θθθ 1) as well as

the sequence length n, and can be computed numerically

(Yang 2002, eq. 12) or by simulation. Under JC and the

clock, g2 = g3 < g1 < P(G1|S1,θθθ 1) (Yang 2002). This

result has several implications. First, g1 < P(G1) means

that phylogenetic errors inflate gene-tree–species-tree

discordance and lead to underestimation of the internal

branch length in the species tree (Yang 2002). Second

g1 < P(G1) also means that use of estimated (rather

than true) gene trees leads to reduced probability for

recovering the correct species tree. Third, g1 > g2 = g3

means that the 2-STEP estimate of the species tree is

consistent even if estimated gene trees are used.

Let the number of loci at which G1 is the ML

tree be m1 = ∑m
i=1 Ixi1>max(xi2,xi3), where the indicator

function Ia = 1 if statement a is true and 0 otherwise.

Similarly define m2 and m3 to be the counts for the

two mismatching gene trees. The correct species tree

is inferred if and only if m1 > max(m2,m3). Thus the

error rate can be approximated by e2-STEP ≈ ζ (m,g1,g2)
(eq. 8).

The accuracy of this approximation is assessed in

table 1 at different values of n with m = 1000 and with

parameter values τ0 = 0.02, τ1 = 0.019, θ0 = 0.01, and

θ1 = 0.05. Consider first the case of n = 1. The gene

tree is resolved if the single site at the locus has site

patterns 1, 2, or 3, but is unresolved if the site has

patterns 0 or 4. Whether we ignore loci with ties (with

6
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site patterns 0 or 4) or break ties evenly (assigning 1
3 to

each gene tree) does not affect the species tree estimate.

Thus g1(1) = p̄1 and g2(1) = p̄2 (eq.13) and the error

is e2-STEP ≈ ζ (m, p̄1, p̄2). This is equivalent to eISML ≈
ζN(m, p̄1 − p̄2,Σ) for ISML, consistent with the fact that

at n = 1 all methods considered here are equivalent.

If n = ∞, the estimated gene trees will be the true

gene trees so that g1 = P(G1) and g2 = P(G2). The error

rate is then ζ (m,P(G1),P(G2)) = ζ (1000, 0.3594737,

0.3202631) = 0.1132, close to 0.114 from simulation.

At n = 1000, the proportions of estimated gene trees are

g1 = 0.33273 and g2 = 0.30811, so that ζ (m,g1,g2) =
0.264, close to 0.260 by simulation (table 1). These are

much larger than 0.114 at n = ∞, suggesting that with

n = 1000 sites in the sequence, the estimated gene trees

have substantial errors and uncertainties.

The approximations ζZLY and ζ (eq. 8) give nearly

identical results. The error rate is found to be very

sensitive to the precise values of g1 and g2. Overall, the

approximation is good, with errors within or close to 1%.

Numerical comparison of different methods

We use simulation to compare the different species-tree

estimation methods and to assess the reliability of our

approximations. We use a challenging species tree with

parameters τ0 = 0.02, τ1 = 0.019, θ0 = 0.01, and θ1 =
0.05. The error is plotted against the number of loci (m)
when the number of sites per locus is fixed at n = 1, 2,

or 1000 (fig. 2).

In the case of one site per sequence (n = 1), all four

methods considered in this study are equivalent, with

the species tree given by the most frequent pooled site

pattern (i.e., the greatest of x·1, x·2, and x·3). With one

site, the independent-sites assumption is correct, and ML

and ISML are exactly the same. As discussed earlier,

concatenation and 2-STEP also select the species tree

according to the pooled site patterns. Treatment of ties

among x·1,x·2,x·3 has very minor effects on the error

rate. For n = 1 and m = 1000, simulation gave the error

estimate e = 0.642 if ties are broken evenly (table 1)

or 0.641 if datasets with ties are ignored. As predicted

by our theory, the probit transform of the error, Φ−1(e),
shows a linear relationship with

√
m (fig. 2a′, R2 =

0.9994).

In the case of n = 2 sites per locus, ISML (=

concatenation), 2-STEP and ML are all distinct. To see

that concatenation and 2-STEP may produce different

species trees, consider the case of m = 3 loci and n = 2

sites. If the dataset at the three loci are 11, 02, and 00,

where 0–4 represent the five site patterns, concatenation

will infer the correct species tree S1 (as x·1 = 2,x·2 =
1,x·3 = 0), while 2-STEP will have a tie between S1

and S2 (as m1 = 1,m2 = 1,m3 = 0). If the dataset at

the three loci are 33, 01, and 14, concatenation will

have a tie between S1 and S3 (as x·1 = 2,x·2 = 0,x·3 =
2) while 2-STEP will infer the correct species tree (as

m1 = 2,m2 = 0,m3 = 1). We also confirm that at n = 2

ML differs from all three summary methods and can

identify and consistently estimate all four parameters in

the MSC model. Indeed ML is far more efficient for

species tree estimation than the summary methods when

n = 2 (fig. 2b&b′). While the summary methods improve

only slightly when n changes from 1 to 2, there is a

major performance boost for ML (fig. 3a). This may

be due to the fact that the model is fully identifiable

with n = 2 but not when n = 1. The predicted linear

relationship between Φ−1(e) and
√

m holds well for the

three summary methods (fig. 2b′). For ML, if we remove

the first two points (for m = 10 and 20), the relationship

is nearly linear, with y =−0.0022x+0.0391, with R2 =
0.97.

The most interesting case is with n 
 1, since in real

datasets n may be in the range 50–5000, say. We used

n = 1000 in fig. 2c&c′. As in the case of n = 2, there

is a large performance divide between ML and the three

summary methods (ISML = CONCAT and 2-STEP), while

the summary methods have similar performance. The

approximate linear relationship between Φ−1(e) and
√

m
holds well for all methods.

The superior performance of ML persists in the limit

of n = ∞ (fig. 3b). For example, eML,∞ = 0.45 and 0.01

for ML at m = 10 and 100, respectively, compared with

e2-STEP,∞ = 0.60 and 0.46 for 2-STEP or eISML,∞ = 0.62

and 0.51 for ISML. The differences between ML and 2-

STEP reflect the information in the coalescent times or

gene-tree branch lengths. The differences between ML

and ISML reflect the information in the variation of site-

pattern frequencies among loci, as ISML uses only the

averages across loci.

Fig. 3c examines the error rates of different methods

while nm= 104 is fixed. At the two ends (n= 1 or m= 1),

all four methods are equivalent, with e =0.587 at n = 1

and m = 104, and e =0.646 at m = 1 and n = 104. Note

that when n = 1 and m → ∞, the error e → 0, whereas if

m = 1 and n → ∞, the error e = 1−g1(n)→ 1−P(G1) =
0.6405. The high error at m = 1 even when n = ∞
is because a single gene tree (with coalescent times),

even if known with certainty, does not contain much

information about the MSC process. Away from the two

ends (n > 1 or m > 1), ML is considerably more efficient

than the summary methods (fig. 3c). The case of m= 104

(n = 1), at which eML = 0.587, and the case of m = 2

(n = 5000), at which eML = 0.487, make an interesting

contrast. In the first case all sites are i.i.d., while in

the second there are only two independent genes, each

of 5000 sites in complete linkage. One might expect

data of independent sites to be more informative than

two loci with correlated sites at the same locus (e.g.,

Long and Kubatko 2018), but the opposite is true. With

n = 1, not all model parameters are identifiable, and this

non-identifiability issue appears to impact species tree

7
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estimation as well (Shi and Yang 2018, p.172). With nm
fixed, the smallest error eML occurs at intermediate values

of n and m, around n = m = 100, although performance

is similar over a large range of n (fig. 3c).

In table 1, we calculated the species-tree error proba-

bility using eqs. 6 and 8, as well as two pairs of bounds

(ζL1,ζU1) and (ζL2,ζU2) (Theorem 1, Appendix A), for

comparison with the simulation results. The asymptotic

results are expected to apply when the sequence length n
is fixed while the number of loci m → ∞. Here m is fixed

at 1000, so that b < 2 for all cases (table 1), and is too

small for the asymptotic approximations to be reliable.

As a result, eqs. 6 and 8 are more accurate.

Discussion
Errors of species tree estimation by different
methods

Under the MSC model, data at different loci are i.i.d.,

so that the number of loci (m) constitutes the sample

size in the statistical model. Thus we have derived

approximations to the error rate for different methods

when m increases, with the sequence length n fixed. For

large m, the error can be approximated by Φ(−c
√

m),
where c is a constant. This is seen to apply to all

four methods considered in this study (ML, ISML =

concatenation, and 2-STEP) (see table 4 for a summary).

The theory for ML in Appendix B applies generally

to ML selection of nonnested models, whether one

model (which may and may not be the true model)

fits the data better than the others, judged by the K-L

divergence to the true data-generating model. In parti-

cular, the theory applies to conventional phylogenetic

reconstruction without the MSC model. For example,

figure 5 applies the same prediction to simulation results

on four-taxa trees from Yang (1997). Previously Susko

(2011) developed a large-sample approximation to the

log-likelihood difference between two trees and to the

probability that each tree will be the ML tree in the

case of four-species without the molecular clock. It was

assumed that the internal branch length in the tree is

small and approaches 0 at the rate of n−
1
2 or faster when

the number of sites n increases. In our analysis, we take

the conventional approach of fixing the parameters when

the data size increases.

We note that in problems of parameter estimation, the

standard error for the parameter estimate or the width of

the confidence interval typically decreases at the rate of

n−
1
2 , so that quadrupling the data size halves the interval.

In contrast, the probability of recovering the best-fitting

model approaches 1 much faster. As the probit transform

of the error decreases linearly with
√

n, it will soon reach

a point beyond which the precise error probability is

of no practical significance: for example, Φ−1(e) = −3

means e = 0.0013 while Φ−1(e) =−5 means e = 2.9×
10−7. The different dynamics between model selection

and parameter estimation when the data size grows is

consistent with the fact that we tend to obtain extreme

support for phylogenies inferred in large datasets (Yang

and Zhu 2018).

Implications of our study to species tree methods

While the species tree problem studied here is the

simplest, it has the complexities of the general problem.

Furthermore, we have represented all major species

tree methods in our analysis. We expect ML to be

asymptotically similar to Bayesian inference as both are

full-data methods.

We have assumed the JC mutation model and the

molecular clock. Our results are thus applicable to

shallow species phylogenies and may not apply to

distantly related species for which the JC model may be

inadequate for multiple-hit correction and the molecular

clock may be seriously violated. In the case of three

species examined in this paper, concatenation and ISML

always produce the same species tree estimate. However,

in more general settings with four or more species and

when the clock is violated and unrooted trees are used,

concatenation and ISML are known to be different. In

particular, concatenation (as well as 2-STEP) can be

inconsistent (Roch and Steel 2015), while ISML is a

coalescent-aware method and is always consistent.

The ISML method considered here is similar to

SVDQUARTETS (Chifman and Kubatko 2014). Both

are summary methods based on pooled site-pattern

counts. SVDQUARTETS is sometimes described as a

site pattern-based method (e.g. Kubatko 2019). This

is not a helpful description. Site-pattern counts for

different loci ({ fi j}) are sufficient statistics under the

model and carry the same amount of information as the

sequence alignments at the same loci so that it makes

no difference whether site patterns or sequences are

used. Indeed virtually all methods involving likelihood

calculation on sequences operate on site patterns instead

of sites. Instead what matters is whether site patterns are

pooled across loci. In the original data, the sites of the

same locus share the same gene tree and the variation

among loci provides information about parameters of the

coalescent process such as the ancestral population sizes.

Pooling sites across loci means that such information is

lost (Shi and Yang 2018). As a result, the pooled site-

pattern counts are unable to identify all parameters of

the MSC model even if they can identify the species

tree topology. Previously Long and Kubatko (2018)

found in simulations that SVDQUARTETS performed

better in datasets of 600 coalescent-independent sites

(m = 600,n = 1 in the notation of this paper) than in

data of two genes each of 300 bp (m = 2,n = 300),

and suggested that this is because ”[t]he 600 sites

observed from 600 distinct gene trees give independent

genealogical information about the species tree, though

indirectly, while the 300 sites for each of the two

8
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genes can give a reasonable indication of the individual

gene trees, but still provide only two observed gene

genealogies.” Our analysis suggests that this is not a

correct interpretation. When the information in the data

is used properly (as in the ML method), there is in fact

more information in two genes each of 300bp than in 600

independent sites (fig. 3c).

To understand the issue of parameter unidentifiability

and the potential information loss for species tree

estimation due to the pooling of sites across loci in

SVDQUARTETS, consider the simple random-effects

model

yi j = μ +αi + ei j, i = 1, · · · ,m; j = 1, · · · ,n, (20)

where the treatment effect αi ∼ N(0,σ2
a ) and the error

ei j ∼ N(0,σ2
e ). Parameters in the model include the

grand mean μ and the variance components σ2
a and

σ2
e . It is obvious that if there are no replications within

treatment (n = 1) or if the observations (yi j) are pooled

across treatments, the between-treatment variation and

within-treatment errors will be confounded so that σ2
a

and σ2
e will not be identifiable even though μ still is.

In species tree estimation, pooling site patterns across

loci (as in ISML and SVDQUARTETS) causes some

parameters of the MSC model to become unidentifiable

even though the species tree still is. This issue of

information loss due to averaging over the whole genome

may be even more serious for methods designed for data

of single nucleotide polymorphisms (SNPs) (Leaché and

Oaks 2017), such as SNAPP (Bryant et al. 2012), because

the removal of constant sites in the SNP data causes

further loss of information (even if the ascertainment

bias is accounted for in the method).

An important difference between ISML and SVDQU-

ARTETS is that ISML applies ML to the pooled site-

pattern counts while SVDQUARTETS uses a criterion

based on linear invariants to avoid the ML optimization

(Xu and Yang 2016). Use of a non-ML criterion is

expected to lead to further reduction in efficiency, in

addition to information loss due to the pooling of sites

across loci (Chou et al. 2015; Xu and Yang 2016; Shi

and Yang 2018).

The MSC model analyzed in this paper assumes

free recombination among loci and no recombination

between sites of the same locus. Data for such analysis

are typically loosely linked short genomic segments that

are far apart from each other so that recombination

within a locus is rare while different loci are nearly

independent (e.g. Takahata et al. 1995; Burgess and

Yang 2008; Lohse et al. 2016). Both assumptions of

free recombination among loci and no recombination

within locus are expected to be violated in real data

analysis, and the impact of within-locus recombination

is of particular concern. The ML method considered

in this paper assumes no recombination (with r =
0) while ISML (and SVDQUARTETS) assumes free

recombination (r = ∞). The relative performance of the

methods will depend on the true recombination rate:

ML may be expected to perform better than ISML if

r is close to 0, while ISML may be superior if r is

large. At very high recombination rates, it may even

be possible for ML (assuming r = 0) to be inconsistent

since the method is similar to concatenation and merges

sites of the same locus with different histories into one

sequence. In contrast ISML is consistent for all values

of r. Previously Lanier and Knowles (2012) found in

a computer simulation that species-tree estimation was

robust to moderate levels of within-locus recombination

(see also discussions in Xu and Yang 2016; Edwards

et al. 2016). It will be interesting to evaluate the relative

performance of modern species-tree estimation methods

(including ISML and SVDQUARTETS) under realistic

recombination rates.

Materials and Methods
Simulation

We use a challenging species tree with parameters τ0 =
0.02, τ1 = 0.019, θ0 = 0.01, and θ1 = 0.05 (fig. 1a). A C

program is written to simulate gene trees and sequence

alignments for the case of three species/sequences, under

the JC model (Jukes and Cantor 1969) with the clock.

To simulate the gene tree and the sequence alignment

for each locus, we generate an exponential coalescent

waiting time (s1) with mean θ1/2. If s1 < τ1, the gene

tree is G1a, and another exponential waiting time s0 is

generated with mean θ0/2 to get t0 = τ0+ s0 and t1 = s1.

If s1 > τ1, the gene tree is one of G1b,G2,G3, chosen

at random, and two coalescent waiting times (s1 and s0)

are generated with means θ0/6 and θ0/2, respectively,

so that t1 = τ0 + s1 and t0 = t1 + s0 (fig. 1b). The gene

tree and node ages (t0, t1) are then used to calculate

the site-pattern probabilities for the locus (eq. 3), and

the site-pattern counts are generated from multinomial

sampling (eq. 4). Each dataset consists of m loci with

the sequence length of n sites. We use a large number of

replicates (typically R = 106 or 108) so that sampling

errors due to a limited number of replicates is not a

concern. Species tree estimation by concatenation (=

ISML) and 2-STEP is done by counting site patterns.

For the ML method (eq. 5), we used the simulation

program MCCOAL, which is part of the BPP program

(Yang 2015), to simulate the gene trees and sequence

alignments. The data are then analyzed using the ML

program 3S (Yang 2002; Dalquen et al. 2017). The JC

model is used to simulate and analyze data.
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Appendix A. Proof of Theorem 1
(a) Define the random variable

y = z̄1 −max(z̄2, z̄3) = z̄1 − 1
2(z̄2 + z̄3)− 1

2 |z̄2 − z̄3|
= y1 −|y2|, (A1)

where y1 = z̄1 − 1
2(z̄2 + z̄3) ∼ N(Δμ,s2

1/m) and y2 =
1
2(z̄2 − z̄3)∼ N(0,s2

2/m), with

1
m s2

1 = V(z̄1)+
1
4 V(z̄2 + z̄3)−2Cov(z̄1, z̄2)

= 1
m

[
σ2

1 +
1
2(σ

2
2 +σ23)−2σ12

]
,

1
m s2

2 =
1
4 V(z̄2 − z̄3)

2 = 1
2m(σ

2
2 −σ23).

(A2)

Here we treat z̄1, z̄2 and z̄3 as normal variables, according

to the central limit theorem as m → ∞. As Cov(y1,y2) =
0 and both y1 are y2 are normal variables, they are

independent. Then

ζ = P{y1 < |y2|}
= P{y2 < 0,y1 <−y2}+P{y2 > 0,y1 < y2}
= 2P{y2 > 0,y1 < y2}

= 2

∫ ∞

0
φ(y2;0, 1

m s2
2)Φ

( y2−Δμ
s1/

√
m

)
dy2

= 2

∫ ∞

0
φ(t)Φ(at −b)dt,

(A3)

where a = s2/s1, b = Δμ
√

m/s1, and φ(x; μ,σ2) is the

probability density function (PDF) for N(μ,σ2) while

φ(x) is the PDF for N(0,1). The last integral has been

studied by Yang and Rodrı́guez (2013, SI) in a different

context and can be written as

ζ =
1

π

∫ tan−1 a

− π
2

exp

{
− b2

2(sinθ −acosθ)2

}
dθ , (A4)

or, by letting t = a− tanθ , with dθ =− 1
t2+1

dt, as

ζ =
1

π

∫ ∞

0

1

(t −a)2 +1
e
− b2[(t−a)2+1]

2t2 dt. (A5)

Eqs. A4 and A5 can be calculated using Gaussian

quadrature and match direct calculations using the CDF

for the bivariate normal distribution for (z̄1− z̄2, z̄1− z̄3).
When Δμ = 0, we have b = 0 and

ζ = 2

∫ ∞

0
φ(t)Φ(at)dt = 1

2 +
1
π tan−1 a. (A6)

In the symmetrical case of Δμ = 0, σ2
1 = σ2

2 , and σ12 =
σ23 (with a = 1√

3
, b = 0), this gives 1

2 +
1
π tan−1

(
1√
3

)
=

2
3 , as expected. In this case the three variables z̄1, z̄2 and

z̄3 have the same probability of being the greatest so that

the error is 2
3 .

To avoid numerical integration, we note that y2 ∼
N
(
0, 1

2m(σ
2
2 −σ23)

)
, and |y2| is a folded normal variable

with mean and variance

E(|y2|) =
√

1
mπ (σ

2
2 −σ23),

V(|y2|) =
(

1
2m − 1

mπ
)
(σ2

2 −σ23).
(A7)

Thus

E(y) = Δμ −
√

1
mπ (σ

2
2 −σ23).

V(y) = V(z̄1)+
1
4 V(z̄2 + z̄3)+

1
4 V(|z̄2 − z̄3|)

−Cov(z̄1, z̄2 + z̄3)−Cov(z̄1, |z̄2 − z̄3|)
+ 1

2 Cov(z̄2 + z̄3, |z̄2 − z̄3|)
= V(z̄1)+

1
4 V(z̄2 + z̄3)+

1
4 V(|z̄2 − z̄3|)

−2Cov(z̄1, z̄2)−Cov(z̄1, |z̄2 − z̄3|)
+Cov(z̄2, |z̄2 − z̄3|).

(A8)

We have

V(z̄2 + z̄3)+V(|z̄2 − z̄3|) = E(z̄2 + z̄3)
2 +E(z̄2 − z̄3)

2

−E
2(z̄2 + z̄3)−E

2(|z̄2 − z̄3|)
= 4E(z̄2

2)−4μ2
2 − 4

mπ (σ
2
2 −σ23),

= 4
m σ2

2 − 4
mπ (σ

2
2 −σ23),

Cov(z̄1, |z̄2 − z̄3|) = 0, (A9)

Cov(z̄2, |z̄2 − z̄3|) = 0.

Collecting all terms in eq. A8, we get

V(y) = 1
m

[
σ2

1 −2σ12 +σ2
2 − 1

π (σ
2
2 −σ23)

]
(A10)

If we assume that y is approximately normally distri-

buted, as in Zharkikh and Li (1992) and Yang (1996),

then eq. 6 follows. Note that eq. 6 can also be written

as ζN = Φ

(
−b+a

√
2/π√

1+a2(1− 2
π )

)
. Because |y2| has a folded

normal distribution and is not a normal variable, the error

of approximation of eq. 6 does not approach zero when

m → ∞. For instance, in the symmetrical case (Δμ = 0,

σ2
1 = σ2

2 , and σ12 = σ23), eq. 6 gives Φ
(

1√
2π−1

)
=

0.66824, not 2
3 . This level of accuracy is acceptable for

our calculations for finite m in this paper, as the precise

value of the error is unimportant if the error is nearly

zero, but eq. 6 may not give the correct asymptotic error

rate when m → ∞ (fig. 6, a = 10).

(b) To study the asymptotic behavior of the error

probability ζ when m→∞, we derive bounds on ζ . From

eq. A3,

ζ = 2

∫ ∞

0
φ(t)

∫ at−b

−∞
φ(x)dxdt

= 2

∫ ∞

−∞

∫ at−b

−∞
φ(t)φ(x)dxdt −2

∫ 0

−∞

∫ at−b

−∞
φ(t)φ(x)dxdt

= 2S−2A,
(A11)
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where the first integral is S = Φ(−h), with h = b√
1+a2

=

Δμ
√

m√
σ2

1−2σ12+σ2
2

to be the distance from the origin (0,0) to

the line x = at −b (fig. 7), and the second integral is

2A = 2

∫ 0

−∞

∫ at−b

−∞
φ(t)φ(x)dxdt

=
∫ −b

−∞
φ(x)

∫ −(x+b)/a

(x+b)/a
φ(t)dtdx.

(A12)

By considering the area of integration (fig. 7), it is

obvious that

0 < 2A ≤ Φ(−b)
[
1− 2

π tan−1 a
]
, (A13)

where the equality holds when b = 0. Let

ζL2 = 2Φ(−h)−Φ(−b)
[
1− 2

π tan−1 a
]
.

As Φ(−b)> Φ(−h), we have

ζL2 > Φ(−h)
[
1+ 2

π tan−1 a
]≡ ζL1, (A14)

or

Φ(−h)≤ ζL1 ≤ ζL2 ≤ ζ < 2Φ(−h)≡ ζU1, (A15)

as in eq. 7. The equality in the lower bounds is achieved

at b = 0. Note that the bounds apply to all a > 0 and

b > 0. We use the bounds (ζL1,ζU1) in Theorem 1 and

in the calculation of table 1. The width of the interval

is Φ(−h)
[
1 − 2

π tan−1 a
] ≤ Φ(−h) ≤ ζ , so that using

any value inside the interval as the estimate will give

an error of approximation that is smaller than the error

probability ζ .

Note that the bounds Φ(−h) < ζ < 2Φ(−h) are also

given by the definition ζ = P{z̄1 < z̄2 ∪ z̄1 < z̄3}, since

P(z̄1 < z̄2)< ζ < P(z̄1 < z̄2)+P(z̄1 < z̄3) = 2P(z̄1 < z̄2),
(A16)

with P(z̄1 < z̄2) = Φ(−h).
Next we consider the upper bound in eq. A15 when h

or b is large. Note that

Φ(−h) =
∫ ∞

h

1√
2π

e−y2/2 dy

=
∫ ∞

0

1√
2π

e−
1
2 (x+h)2

dx

=
1√
2π

e−h2/2
∫ ∞

0
e−(hx+ 1

2 x2) dx

=
1

h
√

2π
e−h2/2

∫ ∞

0
e−t e

− 1

2h2 t2

dt

=
1

h
√

2π
e−h2/2 B,

(A17)

where B =
∫ ∞

0 e−t e
− 1

2h2 t2

dt <
∫ ∞

0 e−t dt = 1. For large h,

B >
∫ √

h

0
e−t e

− 1

2h2 t2

dt > e−
1
2h

∫ √
h

0
e−t dt

= e−
1
2h (1− e−

√
h) = 1− 1

2h +o
(

1
h

)
.

(A18)

Thus for large h, Φ(−h) is bounded by(
1− 1

2h +o
(

1
h

))
1

h
√

2π
e−h2/2 < Φ(−h)< 1

h
√

2π
e−h2/2,

(A19)

or

Φ(−h) =
1

h
√

2π
e−h2/2+O

(
1
h2 e−h2/2

)
. (A20)

Let ε > 0 such that Φ(−(h+ ε)) = αΦ(−h) for 0 <
α < 1; in other words, ε is the offset at the probit level

to reduce the probability by a fraction. From eq. A20,

1

(h+ε)
√

2π
e−

1
2 (h

2+2εh+ε2)+O
(

1
(h+ε)2 e−

1
2 (h+ε)2 )

= α
h
√

2π
e−

1
2 h2

+O
(

1
h2 e−

1
2 h2 )

.
(A21)

Thus

1
h+ε e−

1
2 (h

2+2εh+ε2) = α
h e−

1
2 h2

+O
(

1
h2 e−

1
2 h2 )

, (A22)

which gives ε =− 1
h logα +o( 1

h) or

Φ
(−h+ 1

h logα +o( 1
h)
)
= αΦ(−h). (A23)

In particular, for α = 1
2 , we have

Φ
(−(

h+ 1
h log2+o( 1

h)
))

= 1
2 Φ(−h). (A24)

Thus for large h, we have

2Φ(−h) = Φ
(−h+ 1

h log2+o( 1
h)
)
, (A25)

as in eq. 7. It may be noteworthy that for large h, a very

small change at the probit level, of about 1
h log2, changes

the probability by a factor of 2.

A tighter lower bound for 2A than zero of eq. A13 is

2A >
ϕ
π

exp

{
−b2(a2k2 +1)

2a2(k−1)2

}
, (A26)

where ϕ = tan−1 1
ka with k > 1 (fig. 7). Thus we have a

tighter pair of bounds on ζ ,

2Φ(−h)−Φ(−b)
[
1− 2

π tan−1 a
]≤ ζ <

2Φ(−h)− 1
π tan−1 1

ka exp

{
−b2(a2k2 +1)

2a2(k−1)2

}
,

(A27)

where k > 1. We write this pair of bounds as ζL2 < ζ <
ζU2. We have Φ(−b)≤Φ(−h)≤ ζL1 ≤ ζL2 ≤ ζ < ζU2 <
ζU1 = 2Φ(−h). These bounds, as well as the exact value

and eq. 6, are plotted against b in fig. 7 for a= 0.01,0.1,1
and 10.
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Appendix B. The asymptotics of ML
species tree estimation
The proof below borrows heavily from White (1982),

Dawid (2011) and Yang and Zhu (2018). Let S j, j =
1,2,3 be the three species trees with parameters θθθ j. Note

that S1 is the true model while S2 and S3 are mis-specified

models. Let the data at m loci be xxx = {xxxi}, i = 1, · · · ,m.

The log-likelihood function is � j(θθθ j) = log f (xxx|S j,θθθ j).
We also define l j(θθθ j) = log f (x|S j,θθθ j) for one data point

(that is, site-pattern counts at any single locus), x ≡
(xi0,xi1,xi2,xi3,xi4). When the number of loci m → ∞,

the MLE θ̂θθ j → θθθ ∗
j . We assume that both θ̂θθ j and θθθ ∗

j are

inner points in the parameter space. Whether θ̂θθ j is inside

the parameter space or at its boundary should not affect

the asymptotic rate of convergence. Here θθθ ∗
1 for the true

species tree S1 is the true parameter value, while θθθ ∗
2 for

S2 (as well as θθθ ∗
3 for S3) is the pseudo-true parameter

value, which minimizes the Kullback-Leibler distance

from the misspecified model S2 to the true model S1.

D12 =
∫

f (x|S1,θθθ ∗
1) log

f (x|S1,θθθ ∗
1)

f (x|S2,θθθ ∗
2)

dx

= E{l1(θθθ ∗
1)− l2(θθθ ∗

2)},
(A28)

where the expectation is over the true distribution

f (x|S1,θθθ ∗
1). D13 is defined similarly, with D13 = D12.

We consider the log-likelihood ratio, � j(θ̂θθ)− � j(θθθ ∗),
given the data (xxx) for any of the species tree j. We drop

the subscript j for clarity. As in White (1982) and Dawid

(2011), we define two matrices:

I(θθθ) = E{∇ log f (x|θθθ) ·∇ log f (x|θθθ)T}
= E{l′(θθθ)(l′(θθθ))T},

J(θθθ) = E{−∇2 log f (x|θθθ)}= E{−l′′(θθθ)},
(A29)

where the superscript T stands for transpose and where

the expectation is over the true distribution, and ∇ and

∇2 are the first and second derivatives with respect to θθθ .

Apply Taylor expansion to the log likelihood around

the MLE θ̂θθ :

�(θθθ)≈ �(θ̂θθ)+ �′(θ̂θθ)(θθθ − θ̂θθ)+ 1
2(θθθ − θ̂θθ)T �′′(θ̂θθ)(θθθ − θ̂θθ),

(A30)

where both the gradient and the Hessian are evaluated at

the MLE (θ̂θθ ), with �′(θ̂θθ) = 0. Setting θθθ = θθθ ∗, we have

�(θ̂θθ)≈ �(θθθ ∗)+ 1
2(θ̂θθ −θθθ ∗)T (−�′′(θ̂θθ))(θ̂θθ −θθθ ∗). (A31)

Apply Taylor expansion to the derivative �′(θθθ) around

the MLE θ̂θθ and let θθθ = θθθ ∗, and we have

�′(θθθ)≈ �′′(θ̂θθ)(θθθ − θ̂θθ), (A32)

and

θ̂θθ −θθθ ∗ ≈ −�′′(θ̂θθ)−1�′(θθθ ∗), (A33)

Each of �′(θ̂θθ) and �′′(θ̂θθ) is a sum of m i.i.d. elements.

When m → ∞, −�′′(θ̂θθ) ≈ mE{−l′′(θθθ ∗)} = mJ∗, with

J∗ = J(θ ∗) (eq. A29). Furthermore,

E{�′(θθθ ∗)}= 0,

V{�′(θθθ ∗)}= mV{l′(θθθ ∗)}= mI∗,
(A34)

where I∗ = I(θθθ ∗) (eq. A29). Thus

√
m(θ̂θθ −θθθ ∗) P−→ N

(
0,(J∗−1)T I∗(J∗−1)

)
. (A35)

Thus θ̂θθ = θθθ ∗+Op(m−1/2). Eq. A31 becomes

�(θ̂θθ)≈ �(θθθ ∗)+ 1
2{
√

m(θ̂θθ −θθθ ∗)}T J∗{√m(θ̂θθ −θθθ ∗)}
= �(θθθ ∗)+Op(1). (A36)

Eqs. A29–A36 apply to all three species trees. In

the case of S1 (the true model), J∗ = I∗, the Fisher

information matrix, and �(θ̂θθ)− �(θθθ ∗) ∼ 1
2 χ2

d . For S2 or

S3, �(θ̂θθ)− �(θθθ ∗) is a quadratic form of normal variates

and is a mixture of noncentral χ2 variables with mean
1
2 tr(I∗J∗−1) and variance 1

2 tr((I∗J∗−1)2), both of O(1).

Now consider using z̄ j ≡ 1
m� j(θ̂θθ j), j = 1,2,3, to

compare species trees S1, S2 and S3. We have

E(z̄ j)≈ E(l j(θθθ ∗
j))≡ μ j,

V(z̄ j)≈ 1
m V(l j(θθθ ∗

j))≡ 1
m σ j j, (A37)

Cov(z̄ j, z̄k)≈ 1
m Cov(l j(θθθ ∗

j), lk(θθθ
∗
k))≡ 1

m σ jk.

Thus when the number of loci m→∞, {z̄ j}= { 1
m� j(θ̂θθ j)}

have means (μ1,μ2,μ2) and variance/covariance matrix
1
m Σ, where Σ = {σ jk} is O(1) and independent

of m. The error of the ML method, P{�1(θ̂θθ 1) >

max(�2(θ̂θθ 2), �3(θ̂θθ 3))} = P{z̄1 > max(z̄2, z̄3)}, is then

given by Theorem 1 as eq. 11.
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Table 1. Probabilities (g1,g2,g3) of estimated gene trees at different sequence lengths (n) and the error rates for the summary methods

2-STEP and ISML with m = 1000 loci, each with n sites

n 1 2 10 100 1000 ∞

2-STEP (MP-EST)

P(tie) 0.92948 0.8673 0.57015 0.22159 0.05105 0

g1(n) 0.02378 0.04474 0.14515 0.26646 0.33273 0.35947

g2(n) = g3(n) 0.02337 0.04398 0.14235 0.25598 0.30811 0.32026

e2-STEP 0.642 0.633 0.597 0.470 0.260 0.114

ζ (m,g1,g2) 0.644 0.635 0.600 0.472 0.264 0.113

ζZLY(m,g1,g2) NA NA 0.613 0.482 0.271 0.117

(ζL1,ζU1) (0.635, 0.953) (0.623, 0.935) (0.578, 0.869) (0.430, 0.647) (0.219, 0.331) (0.087, 0.132)

(ζL2,ζU2) (0.637, 0.729) (0.626, 0.714) (0.585, 0.668) (0.446, 0.561) (0.242, 0.328) (0.103, 0.132)

ζ (mean2) 0.683 0.670 0.627 0.504 0.285 0.118

a 0.574051 0.574056 0.573612 0.569708 0.562911 0.555962

b 0.0678913 0.0930368 0.190376 0.527747 1.11658 1.72268

ISML (CACAT)

eISML 0.642 0.632 0.590 0.438 0.246 0.196

ζN 0.644 0.634 0.592 0.443 0.254 0.194

ζN0 0.643 0.633 0.591 0.437 0.234 0.166

(ζL1,ζU1) (0.635, 0.953) (0.622, 0.934) (0.568, 0.854) (0.397, 0.598) (0.211, 0.318) (0.157, 0.237)

(ζL2,ζU2) (0.637, 0.728) (0.625, 0.713) (0.576, 0.659) (0.416, 0.536) (0.233, 0.316) (0.177, 0.237)

ζ (mean2) 0.683 0.669 0.618 0.476 0.275 0.207

a 0.574029 0.573971 0.57356 0.569747 0.558232 0.553151

b 0.067892 0.0958963 0.21228 0.607057 1.14253 1.35035

Note.— P(tie) is the probability for ties in gene trees, with P(tie)+g1 +2g2 = 1. The probabilities of estimated gene

trees (g1,g2,g3) as well as the error rates (e2-STEP and eISML) are estimated by simulation using a C program, with

≥ 106 replicates. Ties are broken evenly in the error calculation. The parameter values used are (τ0,τ1,θ0,θ1) = (0.02,

0.019, 0.01, 0.05). The marginal (pooled) site pattern probabilities are p̄pp = (p̄0, p̄1, p̄2, p̄3, p̄4) = (0.92831926,

0.023777106, 0.023372801, 0.023372801, 0.001158033), given by eq. 13. For 2-STEP, at n = 1, the estimated gene

tree is determined by the single site so that g1(1) = p̄1 and g2(1) = p̄2, while at n = ∞ the estimated gene tree is the

true gene tree, so that g1(∞) = P(G1) and g2(∞) = P(G2) (eq. 1). For 2-STEP, ζZLY (eq. 9) is inapplicable at n = 1 or

2 as m = 1000 is too small. For ISML, ζN0 = ζN(m,Δμ,σ2
1 ,σ

2
2 ,0,0) ignores the correlation (eq. 6), while ζN accounts

for the correlation. The bounds (ζL1,ζU1) and (ζL2,ζU2) are calculated using eqs. 7 and A27, with k = 2 used in ζU2.

“mean2” is the average of the tight bounds: (ζL2 +ζU2)/2.

Table 2. Estimates of divergence times (true values in parentheses) by ML under the MSC (3S) and by concatenation (BASEML) in two

simulated datasets, each of m = 104 loci and n = 250 sites

τABC τAB θABC θAB
data/method (0.02) (0.01) (0.02) (0.01)

dataset 1, 3S 0.0201 0.0096 0.0199 0.0101

dataset 2, 3S 0.0196 0.0100 0.0201 0.0100

dataset 1, BASEML 0.0298 0.0155

dataset 2, BASEML 0.0298 0.0156
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Table 3. Characterization of the ISML method

true model assumption data size parameters ISML vs. ML

(a) θ0 	= θ1 θ0 	= θ1 n > 1 3 out of 4 identifiable ISML 	= ML

(b) θ0 	= θ1 θ0 	= θ1 n = 1 3 out of 4 identifiable ISML = ML

(c) θ0 = θ1 θ0 = θ1 n > 1 all 3 identifiable ISML 	= ML

(d) θ0 = θ1 θ0 = θ1 n = 1 all 3 identifiable ISML = ML

(e) θ0 	= θ1 θ0 = θ1 n > 1 3 out of 4 identifiable, inconsistent ISML 	= ML

(f) θ0 	= θ1 θ0 = θ1 n = 1 3 out of 4 identifiable, inconsistent ISML = ML

Note.— In all cases, the species tree topology is identifiable and consistently estimated by ISML when the number of

loci m → ∞. If the parameters are identifiable, their estimates will be consistent. When ISML differs from ML and the

assumed model is correct, ISML is less efficient than ML for parameter estimation (case c).

Table 4. Summary of analytical approximations to species-tree estimation error by different methods

Method n = 1 n ≥ 2 n = ∞

ML eq. 11 eq. 12

2-STEP ζ (m, p̄1, p̄2) ζ (m,g1,g2) ζ (m,P(G1),P(G2))

ISML/concatenation ζN(m,Δp,Σ(1)) ζN(m,Δp,Σ(n)) ζN(m,Δp,Σ(∞))

Note.— For ISML/concatenation, Δp = p̄1 − p̄2, and the variance-covariance matrix at n is Σ(n) = 1
n Σ(1) + n−1

n Σ(∞)

(eq. 16). In the case of n = 1, ζ (m, p̄1, p̄2) = ζN(m,Δp,Σ(1)), and 2-STEP, ISML, concatenation, and ML are all

equivalent.

S

S AB C
A B C B C A C A B

S BC A S CA B

S G a ab c G b ab c G ca bG bc a
a b c a b ca b c a b cA B C

t

t
t

FIG. 1. (a) The three species trees (S1,S2,S3) for three species (A,B,C) and the parameters in each MSC model. (b) The possible gene

trees with coalescent times (t0, t1) for a locus with three sequences (a,b,c) given the species tree S1. The probabilities for the gene trees are

shown above them, where φ = e
− 2

θ1
(τ0−τ1) is the probability that a and b do not coalesce in population AB or over the time interval (τ1, τ0).

Note that if the species tree is S2 (or S3), it will be possible for sequences b and c (or c and a) to coalesce in the time interval (τ1, τ0).
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n n n

FIG. 2. (a–c) Species-tree estimation error (e) at three sequence lengths (n= 1,2,1000) plotted against the number of loci (m) for different

methods. (a′–c′) The probit transform of the species-tree error, Φ−1(e), plotted against
√

m. The parameters used in the simulation are

τ0 = 0.02, τ1 = 0.019, θ0 = 0.01, and θ1 = 0.05. When n = 1, all four methods (ML, 2-STEP, concatenation, and ISML) give the same

species tree estimate, while concatenation and ISML are equivalent in all cases considered in this paper. The number of replicates is R ≥ 104

for ML and ≥ 106 for the other methods.

e

n

n nm
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m

m
m

m
m

m
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FIG. 3. Error rates in species-tree estimation by ML, 2-STEP and ISML (= concatenation). (a) Error plotted against sequence length n

when the number of loci m is fixed at 100 or 1000, generated by simulation. (b) Error plotted against m when n = ∞. Error for ML is given

by eq. 12, while those for ISML and 2-STEP are generated by simulation. (c) Error plotted against n when nm = 104 is fixed, generated

by simulation. Note that all four methods are equivalent when n = 1 or m = 1, while concatenation and ISML are equivalent in all cases.

Parameters used in the simulation are τ0 = 0.02, τ1 = 0.019, θ0 = 0.01, and θ1 = 0.05. The number of replicates is R ≥ 104.
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FIG. 4. Species tree error for ISML at n = ∞ generated by simulation (108 replicates) and by approximation based on ζN either with and

without accounting for correlations. The error goes from 0.64 (at m = 1) ) to 0.19 (at m = 1000). Results for other methods for the same

parameter settings are in figure 3b.

n

e

n

FIG. 5. The probit transform of the phylogenetic reconstruction error, Φ−1(e), is a linear function of the square root of the number of

sites in the alignment (
√

n). Simulation results from Yang (1997, fig. 1A & B) are used in the plot. The trees used in the simulation have

four taxa, with branch lengths ((0.5, 0.5):0.1, 0.5, 0.5) for tree A and ((0.5, 0.5):0.1, 0.6, 1.4) for tree B. Data are simulated under the JC+G

model (Yang 1994a) and analyzed under both JC and JC+G (Jukes and Cantor 1969; Yang 1994b). Note that in (B), ML under the incorrect

model (JC) is more efficient than ML under the correct model (JC+G).
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a a

a

b

a

b

FIG. 6. Probit of error, Φ−1(ζ ), plotted against b for different values of a. Six methods for calculated ζ are shown. The first five are, from

top to bottom, ζU1 (brown dashed line), ζU2 (orange dotted), Exact (black solid line), ζL2 (blue dotted), and ζL1 (purple dashed). Eq. 6

(black dotted) is included as well.

b

b a

b a

x

t

h
t xA

A'

B
C O

FIG. 7. The areas of integration for integrals in eqs. A11 and A12. The two angles are ψ = tan−1 1
a and ϕ = tan−1 1

ka , k > 1, with ϕ <

ψ < π
2 . The integral over the half-plane x <−b is Φ(−b), while the integral over the half-plane t > (x+b)/a is S = Φ(−h) = P{z̄1 < z̄2}.

The integral over the arc ABA′ (the shaded area) is 2A = P{z̄1 < z̄2, z̄1 < z̄3}. This is smaller than Φ(−b) ·ψ/ π
2 and greater than the integral

over the area shaded with the brick pattern: these give the bounds (ζL2,ζU2) in Appendix A. The pink dashed lines are t = (x+b)/(ka) and

t =−(x+b)/(ka). They cross the blue lines at A and A′, with the length of the line segment OA to be r = b
√

a2k2+1
a(k−1)

. Note that the integral

over the circle x2 + t2 < r2 is 1− e−
1
2

r2

.

19



� �

� �

· doi:10.1093/molbev/mst012 MBE

Table S1. Variances-covariance matrix of site-pattern frequencies ( f jk) among loci (with n sites per locus)

pattern 0 : xxx 1 : xxy 2 : yxx 3 : xyx 4 : xyz

mean ( p̄ j) 0.92831926 0.023777106 0.023372801 0.023372801 0.001158033

n = 1
0: xxx 0.0665371525 −0.0220737114 −0.0216961587 −0.0216906657 −0.00107661674
1: xxy −0.0220737114 0.0232125909 −0.000555721922 −0.000555581223 −2.7576288×10−5

2: yxx −0.0216961587 −0.000555721922 0.022825064 −0.000546078464 −2.71046183×10−5

3: xyx −0.0216906657 −0.000555581223 −0.000546078464 0.0228194232 −2.70977559×10−5

4: xyz −0.00107661674 −2.7576288×10−5 −2.71046183×10−5 −2.70977559×10−5 0.00115839534

n = 2
0: xxx 0.0333193524 −0.0110518301 −0.010863736 −0.0108646269 −0.000539159418
1: xxy −0.0110518301 0.0116302167 −0.000282670114 −0.000282578449 −1.31380675×10−5

2: yxx −0.010863736 −0.000282670114 0.0114355946 −0.000276246353 −1.2942121×10−5

3: xyx −0.0108646269 −0.000282578449 −0.000276246353 0.0114364545 −1.30027622×10−5

4: xyz −0.000539159418 −1.31380675×10−5 −1.2942121×10−5 −1.30027622×10−5 0.000578242368

n = 10
0: xxx 0.00674696401 −0.00223806143 −0.00219929448 −0.00219926798 −0.000110340106
1: xxy −0.00223806143 0.00236735227 −6.38114276×10−5 −6.36625594×10−5 −1.81685014×10−6

2: yxx −0.00219929448 −6.38114276×10−5 0.00232577673 −6.08615665×10−5 −1.80925447×10−6

3: xyx −0.00219926798 −6.36625594×10−5 −6.08615665×10−5 0.00232560997 −1.81786191×10−6

4: xyz −0.000110340106 −1.81685014×10−6 −1.80925447×10−6 −1.81786191×10−6 0.000115784072

n = 100
0: xxx 0.000767781846 −0.000254691861 −0.000249506713 −0.000249726749 −1.38565232×10−5

1: xxy −0.000254691861 0.000282913562 −1.45054073×10−5 −1.44492196×10−5 7.32926136×10−7

2: yxx −0.000249506713 −1.45054073×10−5 0.000275629759 −1.23445851×10−5 7.2694645×10−7

3: xyx −0.000249726749 −1.44492196×10−5 −1.23445851×10−5 0.000275789815 7.30738276×10−7

4: xyz −1.38565232×10−5 7.32926136×10−7 7.2694645×10−7 7.30738276×10−7 1.16659123×10−5

n = 1000
0: xxx 0.000169701052 −5.65782078×10−5 −5.44757242×10−5 −5.44615584×10−5 −4.18556146×10−6

1: xxy −5.65782078×10−5 7.46936699×10−5 −9.51058048×10−6 −9.60077773×10−6 9.95896135×10−7

2: yxx −5.44757242×10−5 −9.51058048×10−6 7.05311669×10−5 −7.5138745×10−6 9.69012304×10−7

3: xyx −5.44615584×10−5 −9.60077773×10−6 −7.5138745×10−6 7.06080886×10−5 9.68122061×10−7

4: xyz −4.18556146×10−6 9.95896135×10−7 9.69012304×10−7 9.68122061×10−7 1.25253095×10−6

n = ∞
0: xxx 0.000103268649 −3.42669472×10−5 −3.29431183×10−5 −3.29485916×10−5 −3.10999147×10−6

1: xxy −3.42669472×10−5 5.1215364×10−5 −8.98272353×10−6 −8.98309369×10−6 1.01740041×10−6

2: yxx −3.29431183×10−5 −8.98272353×10−6 4.78926166×10−5 −6.96552523×10−6 9.98750549×10−7

3: xyx −3.29485916×10−5 −8.98309369×10−6 −6.96552523×10−6 4.7898289×10−5 9.98921539×10−7

4: xyz −3.10999147×10−6 1.01740041×10−6 9.98750549×10−7 9.98921539×10−7 9.49189765×10−8

Note.— The parameter values used are (τ0,τ1,θ0,θ1) = (0.02, 0.019, 0.01, 0.05). The means are calculated using eq. 13, confirmed by

simulation. The variances at n = ∞ are estimated by simulating gene trees with coalescent times and calculating p j (eq. 3). Those for

other n are estimated by simulating gene trees, calculating site-pattern probabilities p j (eq. 3), and then using them to sample the

site-pattern counts from the multinomial distribution (eq. 4). The number of replicates ranges from R = 106 to 5×109.
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