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Abstract

The objects of study of this thesis are the origins of the quantum computational speed-

up. For the past three decades research in quantum foundations pointed to a few dif-

ferent properties of quantum systems that could be linked to computational power. We

start our study investigating the power of correlations, as it is intrinsically found in the

measurement-based model of quantum computation. An important recent contribu-

tion to the field showed that measurements on three-qubit GHZ states lead to universal

classical computation. In that scenario, a client initially limited to compute only sums

modulo-2 can deterministically evaluate a non-linear (NAND) function when control-

ling measurements on a GHZ state. We were interested in achieving deterministic

computation of maximally non-linear functions using the same type of resource.

Another interesting result related to the computation of a NAND function using

GHZ states shows that it is possible to achieve the same task with unitary transfor-

mations performed on a single qubit. Differently than in the protocol that uses GHZ

states, in the single-qubit one, non-locality and traditional forms of contextuality can-

not be linked to the computational advantage. In this thesis, we address the question

of which type of non-classicality gives us the same computational power in the single-

qubit scheme. We analyse carefully chosen variations of the protocol in terms of Bell’s

and Tsirelson’s bounds and detect a connection between reversibility in transforma-
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tions and the computational capability of the system.
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Impact Statement

Recent research in quantum computation has boosted the field of foundations of quan-

tum mechanics beyond the interest of a few extremely brilliant minds. There are con-

crete applications of uniquely quantum mechanical phenomena such as illustrated in

Bell’s theorem. Bell’s theorem shows that quantum mechanics is incompatible with

the local realism of classical physics. Its application in quantum information range

from secure cryptographic protocols to random number generators.

A form of nonlocality, contextuality has been proven a useful resource for quan-

tum information processing in the measurement-based model of quantum computation.

The results of this thesis focus on contextuality as a source of computational power and

on novel insights in properties of single systems. They are a step forward in under-

standing how such fundamental properties of quantum systems can contribute to more

powerful computers than classical ones. When understanding what specifically boosts

the computational power, we can more efficiently find new protocols, architectures and

algorithms.

One of our results concerns how to more efficiently obtain a very important tool

for classical cryptography and the other shines a new light on a relationship between

quantum physics and a famous information theoretic principle. Therefore, apart from

the applications in quantum technology, our results allow us to better understand the
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nature of quantum systems itself which is the most fundamental goal of physics.
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Chapter 1

Introduction

Quantum mechanics was born in the beginning of the twentieth century, when physi-

cists were attempting to answer crucial questions on the frontiers of science. Following

previous success in obtaining complete theories to explain phenomena like classical

mechanics, electromagnetism and thermodynamics, they sought a definitive model for

the atom and for the phenomena related to light.

That was a very eventful moment in the history science, a moment of revolution-

ary change in thinking that required many decades to be broadly established. It was

in that context that Thomas Kuhn coined the term paradigm shift [74]. The term is

commonly used to describe a moment in which scientists encounter phenomena that

cannot be understood within the current accepted paradigm in which scientific knowl-

edge has been constructed until then. A few examples of the consequences of that shift

are Einstein’s theory of relativity, quantum physics, and the theories of the limitations

of (traditional) formal logical systems, namely Gödel’s incompleteness theorems [51],

Church’s proof that a general solution for the decision problem is impossible [38] and

Turing’s proof that there exists no formal language to solve the halting problem [126].

Quantum physics and the theory of relativity placed the established Newton’s the-

ories for gravity and mechanics in a larger domain. In it, for the subatomic dimensions
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and the vast ones of the universe, new conceptual models must be applied. These mod-

els force us to change our views about the nature of light, matter, energy, space, and

even the reality we live in.

One of the open problems of the time was to explain how the energy of thermal

(black body) radiation is distributed over the frequencies of the electromagnetic spec-

trum. The classical electromagnetic theory didn’t explain the available experimental

evidence, showing a contradiction with it at short wavelengths. That was solved by

Max Planck in 1900 [100]. As an improvement of previous attempts to find a function

that well approximated the experimental curve, Planck produced his law that perfectly

fitted the results. To do so, he focused on calculating the entropy of any irradiated

monochromatic oscillator as a function of its vibrational energy. He then followed

Boltzmann’s heuristic method of calculation to derive his entropy formula in his ki-

netic theory of gases [24]. He conjectured that the energy was emitted in a discrete

way and called the energy packets quanta (plural for quantum). The quanta would

have energy proportional to their corresponding frequency.

In 1905, Einstein took the next step towards the consolidation of that idea [46]. He

detected and explained the photoelectric effect, that is when a metallic plate is hit by a

light beam and electrons come out of its surface. According to him, there should exist

quanta of light (later named photons) which interacted with the electrons individually.

He then showed that there existed phenomena which could not be explained in terms

of light as a wave.

The principle of wave-particle duality was created, the idea that, depending on

the phenomena being observed and the experiment, light (and all electromagnetic ra-

diation) could be perceived either as wave or as a particle. Still, the reason why the

energy was emitted in a discrete way was only formulated later, by Niels Bohr [22,

20
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21]. In his atomic model from 1913, the electrons orbit the nucleus but are restricted

to certain trajectories (shells) characterized by their amount of energy. The idea was

that the electrons could leap from one shell to another by gaining or losing energy in

the form of photons. The model explained the black body radiation emission. When a

gas was heated, the electrons in its atoms would gain energy and leap to higher energy

levels. When going back to lower levels, they would emit photons. That idea of a

discontinuous change in position and momentum was later explained by the Born rule,

i.e. by the electrons existence in a superposition and by a probability of absorbing a

photon or not.

Later on, the double slit experiment showed that electrons, which had always been

understood as particles, could also behave like waves [41]. Throughout the 1920s,

physicists and mathematicians developed interpretations and the mathematical formal-

ism of quantum mechanics, setting new limits to modern physics [118].

But it wasn’t perhaps until 1964 that the paradigm shift of the twentieth century

was best exemplified, with Bell’s theorem [15, 16]. Bell cleverly proved that no local

and realistic theories (for well-defined meanings of those words) could agree with the

predictions of quantum mechanics. He showed that quantum mechanics allows for cor-

relations which would be impossible in any universe where the observable properties

of a system pre-exist prior to a measurement (realism) and where such properties obey

relativistic causality (locality).

At the same time, a paradigm shift in mathematics was taking place. It was the

height of David Hilbert’s formalist program [102]. At the turn of the twentieth century,

Hilbert provided a new axiomatization for geometry. Its consistency proof relied on an

interpretation of the objects based on statements about the real numbers. Hence, the

axioms of geometry depended on the consistency of the axioms of the real numbers.

21
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But the axiomatization and foundations of arithmetic, at the time, faced controversies

because they relied on paradoxical assumptions about the nature of infinity. Hilbert

then proposed that a consistency proof of Peano arithmetic was an open problem in

mathematics. Ultimately, he called for a formalization of all mathematical theories

using a finite and complete set of axioms and for a proof that those axioms were con-

sistent. As part of the same program to provide solid foundations for all mathematics,

he suggested that there should be a formal system to decide whether any statement in

mathematics was true or false.

In 1931, Gödel published his incompleteness theorems [51] in which he showed

that no complete and consistent - as defined in classical logic - system is able to for-

malize all mathematics. He also showed that no such formal system could prove its

own consistency. But, in classical logic, a formal system is assumed to be decidable,

meaning there should be an effective method that allows to decide whether an arbitrary

statement is an axiom in the system or not, and, if not, whether it can be derived from

or proved in the system. The problem was that a precise and formal definition of such

an effective method, one that didn’t require any imagination or ingenuity, was yet to

be developed.

A few years later, Alonzo Church and Alan Turing separately achieved that goal

[38, 126]. They developed different though equivalent notions of assessing the state-

ment “there should be an effective method”. They are equivalent in the sense that both

notions refer to the exact same set of mathematical functions whose values could be

obtained. Church’s lambda calculus is a formal system in mathematical logic for ex-

pressing computation based on functions as abstraction terms and on arguments sub-

stitution. Turing’s idea was of a mechanical protocol through which, if there is an

effective method to evaluate a certain function, that function can be computed by the

22
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(Turing) machine. The concepts of computability and computational complexity were

then introduced to mathematics.

Concomitantly, Claude Shannon, who, like Turing, was also working for national

defense during World War II, demonstrated that electromechanical circuits could sim-

ulate all problems in boolean algebra [113]. Shannon gave many brilliant contributions

to a few different disciplines like communications theory and cryptography. In 1948,

while working with communications and the problem of how to best encode infor-

mation, he introduced the concept of information entropy, using ideas from statistical

thermodynamics. He created a metric for information, a mathematical notion of it.

Analogous to the concept of entropy used in statistical mechanics and thermodynam-

ics, it can also be understood as measure of disorder or uncertainty. The information

entropy is a measure of how much new information one can get from the occurrence

of one event in a stochastic source of data.

Shannon had founded a new area of knowledge, information science. But he had

also quantified the abstract idea of information. In hindsight, it seems obvious that

information, as everything that happens between a cause and an effect, is essentially a

physical quantity.

The idea of a quantum computer came up in the 1980s and Feynman is credited

with it. Feynman’s concern was the simulation of physical systems [48]. They are

often used by scientists whenever a system’s state is not accessible in a laboratory or

even to predict what would happen in an experiment. Of course, computers are much

faster and more accurate than humans when it comes to make calculations. Feynman

asked whether a universal classical computer, even a probabilistic one, could simulate

any physical system. The main problem he spotted was how to keep track of quantum

superposition states. For systems of many particles, encoding all their possible states
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would require a number of classical bits which grows exponentially with the number

of particles. As an early idea towards quantum computation, Feynman proposed the

use of quantum systems to simulate other quantum systems.

To this day, quantum mechanics is widely revered as our most successful theory,

meaning that it makes accurate and useful predictions. However, in fundamental sci-

ence, we also expect our theories to help us understand nature and quantum mechanics

still leaves many questions open. The study of quantum information processing gives

us valuable insights on the foundations of quantum mechanics.

For a few decades, the idea of a quantum computer was of theoretical interest only,

especially in the fields of quantum foundations and computational complexity theory.

However, the significance of Shor’s factorization algorithm [117], as being able to

break the best encryption methods we have today, always brought broader attention to

the topic of quantum computation. Other algorithms like Grover’s [55] and Deutsch-

Jozsa [43] are of similar importance. From the existence of such efficient quantum

algorithms and the general difficulty of simulating quantum systems using classical

systems, it is probable that quantum computation is intrinsically more powerful than

classical computation [23, 26, 115]. Results on the border of quantum foundations and

computational complexity theory also indicate that quantum theory is optimal for com-

putation in the space of all operational theories [77]. The no-cloning theorem which

says that it is not possible to create a copy of an arbitrary unknown quantum state has

profound consequences for quantum cryptography and quantum communications [95].

Moreover, recent progress in experiments and engineering completely changed the ap-

proach to research in the field that now receives high investments all over the world, in

the race to build the first useful quantum computer. And to find useful applications for

the ones that are already out there.
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One of the main obstacles quantum computing faces is decoherence which causes

a quantum system to lose unitarity (or reversibility) of computational steps. Deco-

herence times for all the candidate systems are typically between nanoseconds and

seconds, at low temperatures. The error rates are usually proportional to the ratio be-

tween the computation time and the decoherence time so that any operation must be

completed in a much shorter time interval than the decoherence time. Only if the error

rate is low enough is it possible to efficiently apply quantum error correcting codes

with which we could have computation times larger than decoherence times and, in

principle, arbitrarily large.

Another problem is scalability, especially when considering the increase in the

number of qubits necessary for any computation which requires error correction. For

no physical implementation proposed until today, it is simple to manage such a large

number of qubits in order to solve any interesting computational problem.

The current state of quantum computation is such that we have small noisy devices

for which research in quantum algorithms investigates possible applications. It has

remained unclear what properties of quantum systems boosts computational power

and what type of problems we can solve more efficiently with quantum computers.

This is the motivation for the work reported in this thesis.
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Chapter 2

Quantum correlations

Since its first formulation, in the 1920s, quantum mechanics was the target of many

objections, some of them were superficial and others more serious. Even if those

objections would not invalidate the formalism, they pointed out some aspects of it, or

their interpretation, that should be made clearer. So, while very successful as model

for experimental implementations and predictions, there were fundamental questions

about quantum mechanics which were not purely semantic.

This chapter explains some of the background about quantum correlations which

will be useful for the entirety of this thesis.

2.1 Locality
The principle of locality states that an object is directly affected only by its immediate

neighbourhood in physical space. This is opposed to the concept of instantaneous

action at a distance. The concept evolved out of the field theories in classical physics.

The idea is that for an event happening at one point to affect an object at another point,

a carrier, a field or a particle, moving in space must mediate the action.

The special theory of relativity sets a limit on the speed at which those carriers

can travel. It cannot exceed the speed of light, c. Therefore, the principle implies that
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an event at one point cannot cause a simultaneous effect at another point. An event at

point A cannot affect an object at point B in a time shorter than t = d
c , where d is the

distance between the points.

On the other hand, action at a distance, or nonlocality, is the idea that an object at

point B can be instantaneously affected, or changed, by an event at point A. Nonlocality

was introduced in the early theories of gravity and electromagnetism [63]. Further

investigation of the phenomena led to significant developments in physics, such as the

concept of a field and quantum entanglement, that has proven to be a valuable resource

for quantum technologies.[97, 11, 13, 129, 86, 98, 49].

2.2 Elements of reality

The most famous argument presented against the Copenhagen interpretation of quan-

tum mechanics is the one in the article by Einstein, Podolsky and Rosen [47]. In it,

the authors propose a definition of reality that seemed flawless: “A sufficient condition

for the reality of a physical quantity is the possibility of predicting it with certainty,

without disturbing the system.”

Following quantum mechanics, EPR assume that a quantum state gives us a com-

plete description of an isolated quantum system. According to Heisenberg’s uncer-

tainty principle [60], observables corresponding to non-commutable operators are in-

compatible. That means they cannot have well-defined values, simultaneously. Ac-

cording to EPR’s definition of reality [47], the quantities corresponding to those ob-

servables cannot have simultaneous reality.

They then present a thought experiment in which two sub-systems interact and are

then separated in space. We knew the states of each one of them before the interaction.

According to quantum mechanics, after the interaction, the combined system of the
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two sub-systems can be described by a single wave function [19]. An example of this

is the singlet state

|ψ〉= 1√
2
(| ↑↓〉− | ↓↑〉). (2.1)

In the expression above, both | ↑〉 and | ↓〉 are eigenstates of the spin operator on the

z-axis,

σz =
h̄
2

1 0

0 −1

 . (2.2)

Hence,

| ↑〉=

1

0

 and | ↓〉=

0

1

 . (2.3)

The tensor product | ↑↓〉 = | ↑〉1| ↓〉2 refers to the two spin-1
2 particles | ↑〉1 and | ↓〉2,

and, analogously for | ↓↑〉.

In a singlet state, all particles are paired. It is a set of particles whose net angular

momentum is zero. It is important to notice that the particles in a singlet state do

not need to be locally bound to each other. For instance, when the spin states of two

electrons are correlated by their emission from a single quantum event that conserves

angular momentum, the electrons will stay in a singlet state even when separated in

space, as long as their total angular momentum remains unchanged.

EPR use a more general formulation for the thought experiment, one which uses

wave mechanics. It can, however, be explained by the following example if we make

it clear that the combined state in question is, here, a consequence of its wave function

description and not only of angular momentum conservation. Let us say the two sub-

systems in question are a pair of electrons, I and II, which interacted for a finite time.

After the interaction, the combined system of the two electrons is described by the

singlet state. Electron I is then sent to an observer Alice and electron II to an observer
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Bob. Let us assume that Alice measures her electron’s spin along the x axis, defined

by

σx =
h̄
2

0 1

1 0

 . (2.4)

and obtains one of the possible outcomes, +1 or −1 which are the eigenvalues of σx.

Whatever the measurement outcome she obtains, according to quantum mechanics, af-

ter the measurement, her system will be in its corresponding eigenstate. Because the

electrons I and II were initially in the singlet state, after the measurement, Bob’s elec-

tron will be in the eigenstate that corresponds to the opposite measurement outcome.

From then on, his electron will be in that eigenstate of σx. That means whenever he

measures his electron’s spin in the x axis, he will always obtain that same outcome.

However, there is obviously no preferred direction for the measurement and the

singlet state is equally well represented in any direction. Let us then suppose that

Alice decides to measure her electron’s spin along the y axis. Then, again, we can

expect a situation analogous to the one described for the x direction. In this case,

we would know the state of Bob’s electron in the y direction with certainty after the

measurement. But assuming that no measurement performed by Alice could disturb

Bob’s system (locality), it would simply be possible to assign two different quantum

states to his system. Furthermore, since the operators σx and σy do not commute,

those quantities should not have definite values simultaneously. They should not have

simultaneous reality.

EPR’s conclusion was that a quantum state would not give us a complete descrip-

tion of a quantum system.
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2.3 EPR’s paradox

For anyone accepting EPR’s conclusion that quantum mechanics is an incomplete the-

ory, the answer would be in finding extra variables (λ ) describing the system’s prop-

erties which became known as hidden variables. They should mathematically describe

that part of the physical reality which quantum mechanics does not. Well-defined

values of those hidden variables should lead to well-defined values of the elements of

reality. Also, specific probability distributions of the local hidden variables should lead

to distributions of the elements of reality such as predicted by quantum mechanics. In

an analogy with classical physics, the statistics of the local hidden variables should

lead to quantum mechanics just as the statistical mechanics of position and velocity

lead to thermodynamics.

However, EPR propose a dichotomy. Either quantum mechanics is incomplete or

there are physical variables that cannot have well-defined values simultaneously.

2.4 Entanglement

A property of quantum systems which plays a crucial role in EPR’s formulation of

the paradox is called entanglement. The term entanglement itself was later coined by

Schrödinger [111, 112]. It describes the phenomenon in which a group of particles

cannot be characterised as individual ones in well-defined states. In other words, they

cannot be expressed as a separable state. A separable state can be written as a proba-

bility distribution over uncorrelated states, product states. For pure two-particle states,

a separable state between particles A and B is of the form

|ΨAB〉= |ΨA〉⊗ |ΨB〉 (2.5)
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Entangled particles can only be described as a whole system represented by a single

wave function. Entanglement is experimentally verified and it has no classical equiva-

lent.

Entanglement is responsible for special correlations between observables, like in

the example given above for the singlet state. It is possible to prepare two (or more)

particles in a singlet state of spin zero such that if one of them is measured and the result

is a spin up, the other automatically will have a spin down. These strong correlations

make it seem like the measurements performed on one particle influence other systems

entangled with it, even if space-separated. However, there is no classical information

being transmitted from one particle to the other because it is not possible to transmit

any classical information at a higher speed than light speed.

Entanglement was assumed by EPR as an argument against the completeness of

quantum mechanics. Their intention was to prove that the correlations predicted by

the theory were inconsistent with the principle of local realism which should apply

to all physics. According to local realism, every particle should have a well-defined

state independent of any other space-like separated particles. Over time, entanglement

ended up as one of the most surprising aspects of quantum mechanics. It is crucial

to new technologies such as quantum computation and quantum cryptography and the

basis of quantum teleportation.

2.5 Bell’s Theorem and the CHSH Inequality

As stated before, the EPR argument was based on the assumptions of locality and

realism. In the 1960s, John Bell, inspired by EPR’s paper, developed a precise logical

and mathematical formulation of those concepts, and proved that they are inconsistent

with quantum mechanics [15, 16]. The supposed local hidden variables λ should have
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the properties

1) Well-defined values of λ must lead to well-defined values of elements of reality.

2) Probability distributions of λ must lead to probability distributions of the ele-

ments of reality which are in accordance with quantum mechanics.

3) Space-like separated events are statistically independent.

Figure 2.1: Bell’s experiment. The figure illustrates the scenario in Bell’s experiment.
On two space-like separated particles (e.g., electrons), Alice and Bob make measure-
ments a and b respectively. Both can choose from two possible types of measurement.
Their outcomes, x and y, in local hidden variables models, can depend on the choice
of measurement and on λ .

Bell’s theorem proves that properties 2 and 3 are not consistent with quantum me-

chanics. Other theorems, like Kochen-Specker [73] and Greenberger-Horne-Zeilinger

[54], prove the impossibility of property 1. These will also be described here, in sec-

tions 2.7 and 2.6.

Indeed, its importance lies in that it is about the whole space of physical theories.

We will present it as the Clauser-Horne-Shimony-Holt inequality [40], which provides

an experimental framework to support the theorem. The inequality is derived assuming
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that there exist local hidden variables which determine constraints on the expected re-

sults of a Bell’s test. Experimental violation of the inequality is then taken as evidence

against the existence of local hidden variables.

Once again, let us imagine that a third party prepares two systems and send one

of them to Alice and the other one to Bob. They are separated in space. Each one

of them has two measurement choices available. We assume they have freedom of

choice [10, 57]. Let us name them A0, A1, B0 and B1 and, for simplicity, name their

values the same. Each measurement has two possible outcomes, +1 or −1. Both of

them choose randomly which measurement they will perform. Following the concept

of realism, let us imagine that those values are objective properties, elements of reality,

of those systems. The values are simply discovered by the measurements. Alice and

Bob perform the measurements simultaneously i.e., there is no causal relation between

them because no physical mediator can propagate faster than light. A0 and A1 are

Alice’s choices of measurements, and B0 and B1 are Bob’s. We then have

A0 =±1,A1 =±1,B0 =±1,B1 =±1 (2.6)

Let us consider the expression A0B0 +A1B0 +A0B1−A1B1. In quantum physics, we

define the correlation of two binary variables as the average (over many realisations)

of the product of a pair of measurements. We have the following combination of such

products

A0B0 +A1B0 +A0B1−A1B1 = (A0 +A1)B0 +(A0−A1)B1. (2.7)

However, each of the four quantities A0, A1, B0 and B1 assumes the values ±1 only.
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Then, A0 +A1 = 0 or A0−A1 = 0, and

A0B0 +A1B0 +A0B1−A1B1 =±2. (2.8)

Now, let us imagine that A0, A1, B0 and B1 are elements of reality, that they are the

values the system is at before the measurements take place. Let us call the probability

of that happening p(A0,A1,B0,B1). And, let us denote

〈A0B0 +A1B0 +A0B1−A1B1〉

= ∑
A0,A1,B0,B1

p(A0,A1,B0,B1)(A0B0 +A1B0 +A0B1−A1B1)≤ 2.
(2.9)

But,

〈A0B0 +A1B0 +A0B1−A1B1〉

= 〈A0B0〉+ 〈A1B0〉+ 〈A0B1〉−〈A1B1〉
(2.10)

That gives us the CHSH inequality

〈A0B0〉+ 〈A1B0〉+ 〈A0B1〉−〈A1B1〉 ≤ 2 (2.11)

As we can see, this result involves statistics. Upon repeating the experiment many

times, Alice and Bob can calculate all the quantities on the left-hand side of the in-

equality. It turns out that, in a real experiment with quantum systems, the results

violate it. Let us now take as an example a quantum state more commonly used in

quantum information theory

|ψ〉= 1√
2
(|01〉− |10〉). (2.12)
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Alice and Bob receive the first and second qubits, respectively. Now, let us take as an

example the following set of measurements (where 1 and 2 are indices representing

each qubit)

A0 = Z1,A1 = X1,B0 =
−Z2−X2√

2
,B1 =

Z2−X2√
2

(2.13)

If we calculate the mean values of these operators evaluated for the given quantum

state, we obtain

〈A0B0〉= 〈Ψ|A0B0|Ψ〉=
1
2
(〈01|− 〈10|)Z1

−Z2−X2√
2

(|01〉− |10〉)

=
1

2
√

2
(〈01|− 〈10|)Z1[−Z2(|01〉− |10〉)−X2(|01〉− |10〉)]

=
1

2
√

2
(〈01|− 〈10|)Z1[−(−|01〉− |10〉)− (|00〉− |11〉)]

=
1

2
√

2
(〈01|− 〈10|)(|01〉− |10〉− |00〉− |11〉)

=
1

2
√

2
×2 =

1√
2
.

(2.14)

Similar calculations will result in 〈A1B0〉 = 1√
2
,〈A0B1〉 = 1√

2
and 〈A1B1〉 = − 1√

2
.

Hence,

〈A0B0〉+ 〈A1B0〉+ 〈A0B1〉−〈A1B1〉= 2
√

2. (2.15)

That is an example of a choice of quantum state and measurements which violates the

CHSH inequality. Despite entanglement being necessary for violations of the CHSH

inequality, not all entangled states can provide a violation [137].

As experimentally demonstrated by Aspect et al [8, 7, 6, 5, 4], in 1980, na-

ture seems to behave according to the predictions of quantum mechanics. In their

experiment, they used pairs of photons generated by spontaneous parametric down-

conversion to produce polarisation entanglement. However, there may be experimen-

tal problems in Bell test experiments that affect the validity of the conclusions, the
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so-called loopholes. Ronald Hanson et al. of the Delft University of Technology claim

to have realised the first Bell experiment that closes both the detection and the com-

munication loopholes [62].

The results of those experiments mean that at least one of the assumptions made

by Bell was not in accordance to how nature works. Two assumptions were made in the

derivation of the inequality. One was that the physical quantities A0, A1, B0 and B1 had

well-defined values before the measurements and independent of them (realism). The

other was that any choice of measurement made by either Alice could not influence the

outcome of Bob’s measurement and vice-versa (locality).

This result can also be described in a computer-theoretic framework, as a game

[130]. In the analogous CHSH game, Alice and Bob have two measurement choices

each, A0 or A1 and B0 or B1, respectively. They receive input bits from a third party,

Alice receives x and Bob receives y. Their goal is to output a and b, respectively, such

that a⊕b = x · y mod 2. They are allowed to communicate before the game begins to

agree on a certain strategy that maximizes their chances of winning the game. After

this, they cannot communicate anymore.

In game theory, the optimal success probability for a game is called its value,

which we denote by ω . The value of the CHSH game, ω(CHSH), depends upon the

physics of the systems exploited by Alice and Bob. It is well-known that if Alice and

Bob employ only classical strategies, the value of the CHSH game is ω(CHSH) = 0.75

and this is called a Bell bound. On the other hand, if they have access to quantum re-

sources, ω(CHSH) = cos2(π

8 )≈ 0.85. The fact that the value of the game when using

quantum resources violates the Bell inequality, but is nevertheless limited substan-

tially below 1, was first noted by Tsirelson [39], and the value cos2(π

8 ) is known as

Tsirelson’s bound. In 1994, Popescu and Rohrlich [101] stated that, in more general
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Figure 2.2: CHSH game. In the CHSH game a third party asks binary questions, x and
y,to Alice and Bob, who answer with bits a and b. They can no longer communicate
once they receive the questions. They win the game if a⊕b = x · y mod 2.

theories than quantum mechanics, perfect strategies for the CHSH game that achieve

a value of 1 could exist via a correlation now known as a Popescu-Rohrlich (PR) box,

without violating the no-signaling assumption between Alice and Bob during the game.

Now, let us analyse the value of the CHSH game for classical and quantum strate-

gies. First, let us show that the optimal winning probability is 75% in the classical case.

A deterministic strategy entails that Alice chooses a bit ax dependent on the bit x she

receives and Bob chooses a bit by dependent on the bit y he receives. Alice and Bob

share their outcomes after the experiment to compute ax⊕by. 2.3 lists all the possible

choices for x and y and the result of ax⊕by for each choice. For each choice of x and

y, Alice and Bob win if the equation in the corresponding row is satisfied.
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Figure 2.3: Classical Strategy in the CHSH game. All possible outcomes of a CHSH
game where Alice’s and Bob’s strategies are classical and deterministic. Each row
corresponds to a possible choice of bits x and y. The symbol

∧
means the logical

AND.

Now, consider the sum mod 2 of the entries in columns 3 and 4. Note that, while

all the terms in the third column add to one, the terms in the fourth column add to

zero. This is a contradiction. Therefore, there does not exist a choice of ax and by such

that all four equations are satisfied. The next best possible strategy is one that satisfies

three of the four equations. Indeed, if both Alice and Bob send back 0, irrespective

of what bits x and y they receive from the referee, we can see that this strategy results

in a winning probability of 3/4 = 75%. Hence a classical strategy affords a maximal

winning probability of 3/4.

Now, let us consider the quantum case where the optimal winning probability is

85%. In a quantum strategy, we allow Alice and Bob to share the entangled state in

2.12,

|Ψ〉AB =
|01〉− |10〉√

2
, (2.16)

although they still cannot communicate. A quantum strategy involves Alice and Bob

performing some measurement on their respective qubits based on the bits each one

of them receives from the referee. The maximal violation of the CHSH inequality

is obtained with the choice of gates in 2.13. So, their strategy will consist of Alice
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performing A0 or A1 depending on receiving the bits 0 or 1, respectively. The same

will work for Bob. Now, let us consider the expression

1
4
〈Ψ|ABA0B0 +A0B1 +A1B0−A1B1|Ψ〉AB. (2.17)

This is the probability that Alice and Bob win minus the probability they that loose.

This comes from the fact that 〈Ψ|ABAxBy|Ψ〉AB is the expected value of the product

of Alice and Bob’s ±1 measurement outcomes. When xy ∈ {00,01,10}, this is the

probability of winning minus the probability of losing on questions (x,y) because they

win when their measurement outcomes are the same (have product 1) and lose when

they are different (have product −1). In the last case, xy = 11, they win when their

measurement outcomes disagree (have product 1), so we put a minus sign in front of

the term A1B1 to reflect this. For the operators in 2.13, we have

〈Ψ|ABA0B0|Ψ〉AB = 〈Ψ|ABA0B1|Ψ〉AB = 〈Ψ|ABA1B0|Ψ〉AB

=−〈Ψ|ABA1B1|Ψ〉AB =
1√
2
,

(2.18)

and so the probability of winning minus that of losing is 1√
2
. Since the probability of

winning plus the probability of losing must be equal to 1, the probability of winning is

1
2 +

1
2
√

2
≈ 0.85.

In section 4.2, we introduce the CHSH* game, explain how it relates to the CHSH

game and how its value varies with the system and gates used. We also describe other

protocols related to the CHSH game.
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2.6 Contextuality

Contextuality is a type of nonclassicality which, in one of its forms, is proven to boost

computational power in a specific model of quantum computation. GHZ contextuality

is the underlying topic of the work presented in chapter 3. We will explain the GHZ

theorem in section 2.7 and give now a more general notion of contextuality. Knowing

these traditional forms of contextuality introduced here is also important to understand

that they are not present in the CHSH* game, described in chapter 4. The motivation

for the work of chapter 4 comes from the fact that these traditional forms of contextu-

ality are ruled out as the source of computational power in the single-system protocol

of [45]. This will be made clearer in the chapter.

The notion of contextuality was first introduced by Kochen and Specker in 1967

[73]. The Kochen-Specker theorem is a result in foundations of quantum mechanics

that rules out noncontextual hidden variables theories. Since then, other proofs have

been proposed to simplify their argument which was formulated as the impossibility

to color rays in a 3-dimensional space [131, 132, 99, 82]. The proofs of KS theorem

proposed by Peres [96] and Mermin in the 1990’s [88], based on observables, are

simpler and more elegant version of the theorem. We will briefly explain it.

The theorem states that, in a Hilbert space of dimension d ≥ 3, it is not possible

to assign definite values to all in a set of commuting projective operators such that if

∑
i

Oi = I, then ∑
i

v(Oi) = 1, for i = 1,2,3, ...d2. v(Oi) are the well-defined values of

each operator. That means that we can only reconcile hidden variable theories - and

its well-defined values for the outcomes of projective measurements - with quantum

mechanics if they are contextual. In other words, in such a hidden variable theory,

the outcome of any projective measurement must depend on all the other commuting

measurements performed together with it.
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Kochen and Specker proved that in a very convoluted way, using 117 vectors

in a 3-dimensional space. It was later simplified by Peres and finally by Cabello.

However, the simplest way of explaining the notion of contextuality, and probably the

first one comes across when studying it, is the Peres-Mermin square. It was inspired

by a mistaken argument by Von Neumann and it is illustrated below.

X
⊗

I I
⊗

X X
⊗

X
I
⊗

Z Z
⊗

I Z
⊗

Z
X
⊗

Z Z
⊗

X ±Y
⊗

Y
Table 2.1: Nine Pauli observables acting on a two-qubit system. Each row and column
contains only commuting observables. THe red colour indicates the contradiction.

It is easy to see that if we understand each row and each column as a set of

projective measurements performed simultaneously on the system and if we assume

that the product of the observables is simply equal to the product of the outcomes, we

get a contradiction. On the assumption of non-contextuality, i.e. that the outcome of

each projective measurement does not depend on the other measurements performed

together with it, is is not possible to assign values to all of the observables. Focusing on

the last row and on the last column of the table above, we see that (X
⊗

Z).(Z
⊗

X) =

Y
⊗

Y while (X
⊗

X).(Z
⊗

Z) =−(Y⊗Y ). One can also easily see that this argument

does not depend on the state upon which the measurements are being performed. It is

an example of state-independent contextuality.

GHZ contextuality, explained in the previous session, is an example of state-

dependent contextuality.

There exist results from attempts to classify contextuality. Those take graph-

theoretic and sheaf-theoretic approaches, such as the Cabello-Severini-Winter inequal-
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ity [35] and the Abramsky-Brandenburger framework [1]. We will mention further

ahead a result that derives from the sheaf theoretic structure of contextuality. Accord-

ing to the Abramsky-Brandenburger way of classifying contextuality, GHZ models of

parties 3 or greater are strongly contextual. Raussendorf [103] showed that this type

of contextuality is necessary to the task of computing non-linear boolean functions in

the measurement-based model of quantum computation. However, we will not explain

either of them in details here as a deeper understanding is not necessary for the content

of this thesis.

Another form of contextuality which is today considered standard is a general-

ization of Kochen-Specker’s. In 2005, Spekkens formulated a notion of contextuality

based on an operational approach [119]. The elements of such an approach are the

experimental procedures implemented in a laboratory. The statistics each one of those

elements produce will allow us to define equivalence classes as follows. In its most de-

tailed description, the elements are preparations, transformations and measurements.

In different physical theories, these will correspond to different mathematical objects

but that operational structure is common to all.

A physical theory lets us compute the probability p(k|P,T,M) of getting a certain

outcome for a given set of a preparation P, a transformation T and a measurement M.

In quantum mechanics, these elements correspond respectively to the initial quantum

state, denoted by a density operator ρ , the completely positive (CP) map τ and the

positive-operator valued measure (POVM) Ek.

This approach defines two elements of the experimental procedure as equivalent

if they provide the same statistics. For example, two preparations P and P′ are consid-

ered equivalent if p(k|P,T,M) = p(k|P′,T,M), for all T and all M. We then define an

equivalence class e(P) for such preparation procedures and similarly for transforma-
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tions and measurements.

Now let us consider a physical system which we could subject to these experi-

mental procedures. Let us assume that this system has intrinsic properties which are

independent of any interactions we might have with it.

Here, we will address hidden variable models more generally, as ontological mod-

els. In the ontological model framework [119], the physical properties of the system

are specified, at a given time, in the ontic state of the system, which is represented by

a point λ in a measurable set Λ. It relates the experimental procedures to probability

distributions on the ontic space Λ. Ontological models are usually used as synonyms

of hidden variable models.

A system prepared by preparation procedure P is represented by a probability

distribution µP(λ ) over the ontic space, where µP : Λ→ [0,1] and
∫

µP(λ )dλ = 1.

A transformation T of the ontic state of a system is represented by a transition

matrix ΓT (λ
′,λ ), where ΓT : Λ×Λ→ [0,1] and

∫
ΓT (λ

′,λ )dλ ′ = 1.

Finally, a measurement M with outcomes k is represented by a set of functions

{ξM,k(λ )}k over the ontic space, where ξM,k : Λ→ [0,1] and ∑
k

ξM,k(λ ) = 1.

Hence, in this ontological model framework, the predictions of any operational

theory are given by

p(k|P,T,M) =
∫

dλ
′dλξM,k(λ

′)ΓT (λ
′,λ )µP(λ ), (2.19)

for all P, T and M.

An ontological model of an operational theory is preparation non-contextual if

µP(λ ) = µe(P)(λ ), for all P. In other words, an experimental procedure is prepa-

ration non-contextual if its features are characterized by characterizing the equiva-

lence class to which it belongs. Equivalently, an ontological model is transforma-
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tion non-contextual if ΓT (λ
′,λ ) = Γe(T )(λ

′,λ ) and measurement non-contextual if

ξM,k(λ ) = ξe(M),k(λ ).

In quantum mechanics, the equivalence classes of preparation, transformation and

measurement procedures are the density operators ρ , the completely-positive trace-

preserving maps τ and the POVM Ek, respectively.

In the Kochen-Specker definition of contextuality, we only deal with sharp mea-

surements and outcome determinism. Outcome determinism is the assumption that

the functions ξM,k(λ ) can only take the values 0 or 1. Spekkens’ contextuality gen-

eralizes that original notion of contextuality by Kochen-Specker, extending it to un-

sharp measurements, preparations and transformations. Operational theories which

are non-contextual for preparations, transformations and measurements are impossible

for quantum mechanics.

The diagram in figure 2.4 characterizes the different types of contextuality. In

2014, Howard et al [67] showed that, in a model of quantum computation known

as state-injection by magic states scheme, contextuality is necessary to achieve uni-

versal quantum computation. More specifically, for systems of qudits of odd-prime

dimensions, universal quantum computation is only achieved when the magic states

are contextual. This result motivated further research focused on studying the role of

contextuality in quantum computation.

2.7 Greenberger-Horne-Zeilinger-Mermin theorem

We will now introduce a form of strong contextuality illustrated by the Greenberger-

Horne-Zeilinger-Mermin theorem.

In 1989, Greenberger, Horne and Zeilinger demonstrated [54] how systems of

four particles could exhibit a stronger form of violation of local realism than the one in
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Bell’s theorem. This form of violation doesn’t require inequalities nor statistics over

many measurements. It is commonly called all versus nothing. In a GHZ experiment,

assumptions of local realism lead to results that should always occur and, in quantum

mechanics, they never do. Subsequently, upon a suggestion by Mermin [89], Green-

berger, Horne and Zeilinger reformulated their argument for systems of three particles

as follows. Let

|ψ〉= 1√
2
(|000〉+η |111〉), (2.20)

where η = ±1, be a entangled state of three qubits. A state of that specific form is

called a GHZ state. |0〉 =

1

0

 and |1〉 =

0

1

 are the computational basis, or the

eigenstates of the σz operator. So, we have

σx|0〉= |1〉,σx|1〉= |0〉 (2.21)

and

σy|0〉= i|1〉,σy|1〉=−i|0〉 (2.22)

where,

σy =

0 −i

i 0

 . (2.23)

Now, we calculate the probabilities for the outcomes of measurements of certain prod-

ucts of three compatible (or commuting) operators. They commute, in pairs, when they

don’t share the same index for the qubits. That is to say, if we have our state |ψ〉 in

(2.20), we will, for example, get

σx1|ψ〉= |ψ ′〉=
1√
2
(|100〉+η |011〉) (2.24)
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and

σy2σx1|ψ〉= σy2|ψ ′〉

=
i√
2
(|110〉−η i|001〉).

(2.25)

And, finally,

σy3σy2σx1|ψ〉=
1√
2
(−|111〉−η |000〉) =−η |ψ〉. (2.26)

So, |ψ〉 is an eigenfunction of the operator σx1σy2σy3 with eigenvalue −η . By sym-

metry, the same works for the operators σy1σx2σy3 and σy1σy2σx3 . Following the same

reasoning, we obtain

σx1σx2σx3|ψ〉= η |ψ〉. (2.27)

If we let η =−1, we get

σx1σx2σx3|ψ〉=−|ψ〉

σx1σy2σy3|ψ〉= |ψ〉

σy1σx2σy3|ψ〉= |ψ〉

σy1σy2σx3 |ψ〉= |ψ〉.

(2.28)

Now, let us assume realism and denote by Xi and Yi the outcomes of the measurements.

We get the set of equations

X1X2X3 =−1

X1Y2Y3 = 1

Y1X2Y3 = 1

Y1Y2X3 = 1

(2.29)
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where Xi
2 = 1 and Yi

2 = 1, for i = 1,2,3. If we multiply the last three equations,

dropping ordering of product for the outcomes Xi and Yi, we have X1X2X3 = 1, which

contradicts the first equation. This demonstrates the impossibility of assigning definite

values for the operators. In Bell’s theorem, for systems of two sub-systems, the vio-

lation of local realism or the impossibility of local hidden variables theories emerged

from statistics. Here, for three sub-systems, they emerge for any single run of the

experiment. GHZ paradox is a common proof of both non-locality and contextuality.

Contextuality was shown to be a resource for quantum computation. While most

of the recent research into the topic is in the framework of the circuit model, maybe the

most remarkable results lie in the measurement-based model of quantum computation

(MBQC)[3, 103]. Anders and Browne [3] showed that a control computer limited to

evaluating linear boolean functions is able to evaluate general (non-linear) functions,

when given the outcomes of measurements performed on a contextual resource state.

Their framework was exactly Mermin’s simplified GHZ paradox [87], in which linear

operations determine the local measurement settings and allow for the evaluation of a

NAND gate. Subsequently, Raussendorf [103] generalised their results, proving that

the computation of any non-linear function in such a model (with linear pre- and post-

processing) implies that it is not possible to aasign non-contextual observables to the

single qubits.

In the next chapter, we will describe Anders and Browne’s results in more details.

We will also introduce a generalisation of the use of GHZ contextuality to evaluate

non-linear functions, in our case maximally non-linear functions on four variables.
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Figure 2.4: The scope of the different types of contextuality Spekkens notion of
noncontextuality [119] generalises Kochen-Specker’s one [73], extending it to unsharp
measurements, preparations and transformations. Noncontextual ontological models
of quantum mechanics are impossible for both notions (also, for only preparation and
transformation noncontextuality, but not for measurement noncontextuality). Given a
set of projective measurements, Kochen-Specker contextuality may arise only for cer-
tain states. We call it state-dependent contextuality (the most common example is the
GHZ paradox). When the contextuality arguments hold for any quantum state, like
in the Peres-Mermin square, we call it state-independent contextuality. It results that
qubit stabiliser quantum mechanics is Kochen-Specker contextual, while odd dimen-
sional qudit stabiliser quantum mechanics is not, due to the intrinsic difference in the
structure of the Pauli groups in the two cases.
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In their paper, [47] Einstein, Podolsky and Rosen proposed a thought experiment

which should prove the incompleteness of quantum mechanics, as we saw in section

2.3. Later, Bohr provide an interesting analysis of the problem in [20]. A new in-

sight was achieved by Bell [15], in 1964 (section 2.5). Bell showed that, assuming

the arguments of EPR, some inequalities must hold. Bell’s inequality shows that no

local hidden variable theory can reproduce the predictions of quantum mechanics for

the correlations of two distant spin-1/2 particles. More specifically, the maximum

quantum value of a certain correlation operator exceeds the maximum value allowed

by hidden variables, where both the quantum and the hidden variables predictions are

probabilistic. In 1989, Greenberger, Horne, and Zeilinger [54] showed a stronger form

of the theorem, for a system of three spin-1/2 particles, which allows a definite, non-

statistical, prediction. In their theorem, they show that the product of three spin pro-

jections measured at space-like separated sites takes a single definite value, even if

the local measured values are random. Hence, knowledge of local observables at two

space-like separated sites allows prediction with certainty of that at the third site. On

an application interest, this definiteness is essential in quantum information protocols

such as quantum error correction [116] and quantum secret sharing [64].

Mermin generalized the GHZ theorem and provided Bell inequalities (now called

Mermin inequalities), for all n ≥ 3, which are based on the correlations predicted by

quantum mechanics. [87]. His result allowed for experimental tests of GHZ paradoxes

for taking into account the uncertainty present in actual measurements. Such tests have

used Mermin inequalities to demonstrate GHZ paradoxes with a probability of many

standard deviations. The first test [94] was performed a decade later and a recent one

[121] describes the current state of the art. Extensions of Mermin’s work for qubit

systems include GHZ paradoxes based on particular error-correcting codes [44], and
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Mermin-like inequalities for graph states [44, 56, 33, 110, 125, 12, 139, 34].

There are also extensions to higher dimensions d and they are different for even

and odd cases. They include GHZ paradoxes for odd n > d [37], GHZ paradoxes for

odd n < d [78], and more recently, GHZ paradoxes for systems of all n ≥ 4 (with

even d), using GHZ-type graph states [122]. It was not until 2013 that it was shown

that GHZ paradoxes existed for any odd d [109, 76]. Their discovery means that

the GHZ paradoxes for all n ≥ 3 for every d ≥ 2 have now been established. These

odd-d paradoxes, however, cannot be based on stabilizer sets [66], as is typical in even

dimensions. In fact, for d = 2, the key ingredient for GHZ paradoxes and Mermin-type

Bell inequalities is a n-qubit quantum state, called a stabilizer state. A stabilizer state

is a simultaneous eigenstate of n commuting local observables. Up to local rotations,

any stabilizer state corresponds to a graph state [128]. These states are fundamental

in quantum error correction theory [59] and measurement-based quantum computation

[104]. In [34], Cabello et al defined a Mermin inequality as a Bell inequality for which

i) the Bell operator (the right-hand side of Bell’s inequality) is a sum of stabilizing

operators that represent the perfect correlations in their simultaneous eigenstate, and

ii) the violation is maximal.

The study of Bell inequalities is, in many ways, analogous to the combinato-

rial problems of designing classical computer logic circuits [114]. It is also known

that there exists a relation between Bell inequalities and applications of boolean func-

tions theory to classical cryptography. For example, classification of Bell inequalities

discussed in [136] is closely connected to group-based cryptography [127], and the

maximal classical and quantum violations of a given Bell inequality is connected to

the nonlinearity of the corresponding boolean (probability) function, as we will see in

section 3.4.
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In this chapter, we analyse this connection between the nonlinearity of boolean

functions and GHZ paradoxes for multi-qubit systems. We try to generalise the re-

sults of Hoban et al. [65], where it was identified that pairwise AND functions,

f (x1, . . . ,xn) = ∑ j>k x jxk, could be efficiently realised via measurements on an n+ 1

qubit GHZ state. Hoban et al's result is, in its turn, a generalisation of the Anders and

Browne one [3] for three qubits. Their result showed how a three-qubit GHZ state can

be used as a resource to compute an AND function. This framework was also shown to

deliver potential benefits for secure function evaluation in a delegated setting using a

single qubit by Dunjko et al [45]. In particular, we wanted to seek more general func-

tions than the pairwise AND that could be realised efficiently. Hoban et al also showed

that all functions can be realised with exponentially growing resources. We sought to

identify the family of functions that can be attained with polynomially many resources.

Our hypothesis is that maximally nonlinear functions, like the pairwise AND, are good

candidates. We will explore in more details how the nonlinearity of the function is re-

lated to the violation of those inequalities both in a purely mathematical as well as in a

physical way, in a measurement-based quantum computation scenario.

3.1 Background

Before we introduce the original material in this chapter in section 3.4, we present

some background material.

3.1.1 Measurement-based quantum computation

The first proposed models of quantum computation are directly analogous to well

known classical constructs. These include quantum Turing machines, quantum walks

and circuits. These models use unitary evolution as the basic mechanism to process

information and only at the end we make measurements, converting quantum informa-
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tion into classical information in order to obtain classical answers. The circuit model

[42, 9, 92] has been the most popular one for the development of quantum computa-

tion, acting both as a framework for theoretical investigations and as a guide for ex-

periment. In the circuit model, those unitary operations are represented by a network

of reversible quantum gates such as two-qubit gates and single-qubit rotations. Differ-

ently from unitary evolution, measurements are irreversibly destructive, involving loss

of potential information about a quantum state. Therefore, it is interesting that we can

perform universal quantum computation using only measurements as computational

steps [53, 91, 80, 79, 93, 105].

Measurements on entangled states play a key role in many quantum information

protocols, such as teleportation [53] and key distribution [18]. Quantum teleportation,

an idea introduced by Gottesman and Chuang [53] was later developed into a compu-

tational model by Nielsen, Leung and others [91, 80]. In those protocols, an entangled

state is prepared and then measurements are made which use the quantum correlations

to accomplish a certain task. To repeat the protocol a fresh entangled state must be

prepared. In the so-called one-way quantum computation, the quantum correlations in

an entangled state called a cluster state [27] or, more generally, a graph state [59] allow

for universal quantum computation through single-qubit measurements alone. The al-

gorithm is designed by choosing the bases for those measurements and the structure of

the resource state, as we will see in details soon.

Measurement-based models provide not only a new framework for experiments

but are also interesting for fundamental issues. They have no obvious classical ana-

logues and offer a new perspective on the role of entanglement in quantum computa-

tion. They also offer interesting possibilities for issues such as fault tolerance [93].

In this section, we will give an introduction to the measurement-based, or cluster
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state, quantum computation of Raussendorf and Briegel [104, 105]. We will use as a

reference the very clear explanation given by Nielsen in [90].

3.1.1.1 The circuit model

All the well-accepted existing models of quantum computation are operationally equiv-

alent. That means that they can be translated into one another and can efficiently solve

the same classes of computational problems. Among these models, the quantum cir-

cuit model [42] is the most commonly used. It is analogous to the classical circuit

model and also based on boolean logical gates. The figure below shows an example of

a quantum circuit and some if the main gates used.

Figure 3.1: Example of a quantum circuit The horizontal lines represent qubits and
the left-to-right progress on each line represents the steps of the computation.

All the gates are represented in the computational basis, |0〉 and |1〉. The initial

state of the qubits is usually a product state, such as |0〉⊗n. The evolution of the qubits

happens under a sequence of one- and two-qubit gates which are unitary operations.

An example of a single-qubit gate is the Hadamard gate,

H =
1√
2

1 1

1 −1

 . (3.1)
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The Hadamard gate takes, for example, the input qubit |0〉 and transforms it to (|0〉+

|1〉)/
√

2. Other examples of widely used single-qubit gates are the Pauli gates X , Y

and Z. Finally, entangling two-qubit gates are the controlled-unitary gates,

.

The top qubit is the control one and the bottom qubit is the target. In the circuit

on the left, U acts on the target qubit if the control qubit is 1 and in the circuit on the

right U acts on the target qubit if the control qubit is 0. One specific type of controlled-

unitary gate that is often used is the controlled-not,

.

The controlled-not takes |x,y〉 to |x,y⊕x〉, where⊕ is addition mod 2. That means

that the control qubit is never changed while the target qubit is flipped when the control

is 1, and is unchanged if the target is 0. Another common controlled-unitary gate is the

controlled-phase gate,

.

The controlled-phase acts as |x,y〉 → (−1)xy|x,y〉.

The action of all the unitary gates combined is also a unitary transformation on the

input qubits. And, if the set of available gates include all possible single-qubit rotations
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and at least one two-qubit gate, the set is universal. That means, it can represent any

arbitrary unitary operation on the qubits [30]. One of the challenges of experimentally

implementing quantum circuits or of developing quantum software (e.g., compilers) is

to find small, simple, circuits that represent useful unitary operations. For a generic

unitary U acting on n qubits, the number of gates required to decompose U scales

exponentially in n [70].

The computation in a quantum circuit ends with the read out the final state of the

qubits i.e., with the measurement of the qubits (or a subset of them) in the computa-

tional basis, as shown in 3.1. The result of the computation is then a string of classical

bits. Of course, allowing the input states or the measurements to be prepared or per-

formed in other bases is equivalent to preparing them in the computational basis and

applying further single-qubit gates.

One variant of the circuit model, as it was described, involves performing mea-

surements during the computation and letting later transformations depend on those

measurements results.

3.1.1.2 The cluster state model

A cluster-state computation, originally introduced in [104], begins with the prepara-

tion of an entangled many-qubit quantum state, the cluster state. Then, a sequence

of adaptive single-qubit measurements is performed, and, in the end, the result of the

computation comes from the measurements on the remaining qubits.

The cluster state is a special case of graph states where the graph is a connected

subset of a d-dimensional square lattice. To any graph G with n vertices we associate

an n-qubit cluster state, by assigning one qubit to each vertex, and then designating

a preparation procedure to them. The 2-dimensional square graph below represents a

six-qubit cluster state,
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.

The preparation procedure is as follows.

1. Each of the n qubits is prepared in the state |+〉= (|0〉+ |1〉)/
√

2.

2. Controlled-phase gates are applied between qubits that correspond to connected

vertices.

The controlled-phase gates commute with one another, so the order in which the gates

are applied is not relevant. Next, we perform a sequence of measurements on the state

such that,

1. They are all single-qubit measurements.

2. The choice of measurement basis for one qubit may depend on the outcomes of

previous measurements.

3. The measurement outcomes are processed by a control classical computer such

that the later choices of basis are a function of previous measurement results.

Thus, for the cluster-state computation to be efficient, the classical computation must

be polynomial in time. The following figure is an example of a cluster state computa-

tion.
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Figure 3.2: A cluster-state computation [90] The integers indicate the time ordering
of the measurements. The qubits with associated single-qubit unitaries are the ones
in which processing measurements occur. The remaining qubits are the output of the
computation.

In figure 3.2, the labeled qubits are the ones on which processing measurements

occur and the unlabeled ones are those which remain as the output of the computation

once the processing measurements are complete. The integers 1 and 2 indicate the

time order in which the measurements should be performed, where qubits that have the

same label can be measured simultaneously. The order in which the measurements are

performed is important because it determines which outcomes can be used to determine

further measurement bases. In the single-qubit unitaries, the indices α and β indicate

the basis in which the qubits should be measured (a rotation by the unitary followed

by a measurement on the computational basis). The ± signs indicate that the choice of

either + or − depends on the outcomes of earlier measurements.

Now, we will explain how cluster state computation can simulate any quantum

circuit. By doing so we will also describe the cluster state model in more detail. Also,

because the set of gates that can be represented in the quantum circuit model is univer-

sal, we will show that the cluster state model is universal as well . The underlying idea

in the simulation is the protocol known as single-qubit teleportation [53].
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Figure 3.3: Quantum circuit for teleporting a qubit. The figure shows a pair of
entangled states. A gate H is applied on the first qubit. The meter represents a mea-
surement of which m is the outcome. The bottom line shows the final state of the
second qubit.

The outcome m of the computational basis measurement on the first qubit will

be either 0 or 1. If we let |Ψ〉 = α|0〉+ β |1〉, the state after the controlled-phase

and Hadamard gates is α|++〉+β | −−〉, which can also be written as (|0〉H|Ψ〉+

|1〉XH|Ψ〉)/
√

2. We can then see that the protocol works. Note that, despite the mea-

surement on the first qubit, no quantum information is lost. For whatever measurement

outcome, the final state of the second qubit is related to the input |Ψ〉 by a known uni-

tary. We can extend that protocol in other related ways like,

Figure 3.4: Quantum circuit for teleporting a qubit rotated of an angle θ around
the Z axis. Again, the initial state is an entangled state. HZθ is applied to the first
qubit. After measurement of the first qubit, the bottom line shows the final state of the
second qubit.

Because Zθ commutes with the phase gate, we can simply imagine the protocol

in figure 3.4 as being the same as in figure 3.3 where we are teleporting a rotated state
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Zθ |Ψ〉. As θ is an arbitrary angle, no matter what choice of basis we make to measure

the first qubit, the unitary transformation on the second qubit will vary accordingly,

without destroying any quantum information. We will use 3.4 to show how cluster

state computation can simulate quantum circuits.

Let us imagine a single-qubit circuit where the initial state is |+〉 and on which

we apply the gates HZα , like in figure 3.5

Figure 3.5: Single-qubit circuit. Input in the state |+〉 and a sequence of gates of the
form HZα , for arbitrary α .

The cluster-state computation used to simulate the above circuit is

Figure 3.6: Cluster state with three qubits. Input prepared in the state |+〉 and
measurements of the form HZα performed on the first two qubits.

That cluster state computation, by the definition we have given in section 3.1.1.2,

has the same output as the quantum circuit in 3.7.
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Figure 3.7: Quantum circuit representation of the cluster state 3.6 The double
vertical lines between the meter in the first qubit and the gate in the second qubit
indicate the classical feed forward and control of later operations.

To see how this works, remember that the controlled-phase commutes with the Zα

and if we swap these operations, we have a double teleportation protocol. That means

that the output of the circuit is

Xm2HZ±α2Xm1HZα1|+〉, (3.2)

where m1 and m2 are the outputs of the measurements on the first and second qubits, re-

spectively. The classical feed-forward of the measurement outcome in the first qubit is

used to choose the sign of ±α2 directly. Also, m1 and m2 are such that their respective

measurement outcomes are equal to (−1)mi . Hence, we have

Z±α2Xm1 = Xm1Zα2 and (3.3)

HXm1 = Zm1H. (3.4)

Therefore, the output can be rewritten as

Xm2Zm1HZα2HZα1|+〉, (3.5)
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which, up to the Pauli matrix Xm2Zm1 , is the same as the output of the single-qubit

quantum circuit in figure 3.5. This same sequence of steps can be used to simulate for

any larger single-qubit circuit such as the one in figure 3.5. They also generalize to

multi-qubit quantum circuits, such as

which can be simulated using the cluster state computation in 3.2. Conversely, any

cluster state computation may be efficiently simulated in the quantum circuit model,

and thus the two models are computationally equivalent. That way, just like the circuit

model, the cluster-state model is also universal, which means that even though the

results of the measurements in every step are random, any quantum computation can

deterministically be realized.

As we will see in section 3.1.2, there are models of measurement-based quantum

computation in which the measurements are not adaptive. It is also possible to con-

struct protocols with linear clusters, although these are proven not to be universal for

quantum computation [90].

Our focus in this thesis will be in the theoretical value of this alternative model

of quantum computation. However, MBQC can have practical advantages over the

standard circuit model in a variety of different physical settings, such as optical lattices

[27, 28, 84], linear optics [29] and superconducting qubits [133].

Questions of fundamental interest naturally arise, such as which properties of the

cluster state make it a useful resource for quantum computation.
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3.1.2 Contextuality as a resource for quantum computation

It has been proposed that contextuality is a source of computational power of quan-

tum systems. In the measurement-based model of quantum computation, contextuality

naturally emerges as a computational resource. That is, when local measurements

on a multi-qubit entangled state can be used to compute nonlinear boolean functions

with side processing restricted to be linear, then this computation constitutes a proof

of contextuality. Multiple qubits show state-independent contextuality with only Pauli

observables.

Contextuality is the impossibility to pre-assign outcomes to all potential measure-

ments performed on a quantum system, independent of their measurement context [73,

89, 88, 96]. This property allows quantum systems to overcome ceertain constraints

present in classical correlations, leading to a strong form of nonlocality. While most

of research involving contextuality as a resource for quantum computation is in the

framework of the circuit model, the most significant results in this direction arise in

the measurement-based model of quantum computation (MBQC). Anders and Browne

[3] showed that a control computer limited to evaluating only linear boolean functions

can be boosted to one that evaluates nonlinear functions, when given access to the out-

comes of local measurements on a contextual resource state. In their example, it is

Mermin’s simplified GHZ paradox, where linear manipulation of those measurement

outcomes lead to the computation of a NAND gate.

3.1.2.1 GHZ computations

In Anders and Browne’s analysis it is crucial that the classical side process is limited

to linear boolean functions (essentially modulo 2 additions) and nothing else. In such a

model alone, a nonlinear function, such as a NAND gate, is impossible. Thus achieving

a NAND gate in their thought experiment is due to the quantum correlations. For
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Figure 3.8: Quantum resource and side-processing scheme. The figure [3] shows
the Anders and Browne scheme which involves measurements on a contextual resource
state, and pre- and post-processing of classical data.

the remainder of this chapter, we will call these experiments which use mod 2 linear

classical side processing in MBQC, GHZ computation of boolean functions, or simply

GHZ computations.

They showed that computing nonlinear functions deterministically with GHZ

computations is possible with an appropriate choice of quantum resource state. They

consider a three-qubit GHZ state, |ΨGHZ〉= (|001〉− |110〉)/
√

2, with local measure-

ments of Pauli observables X or Y on each qubit. This setup allows for the deterministic

computation of the NAND gate, as follows. The control computer receives the string

of input bits i = (i1, i2) ∈ Z2
2. The classical pre-processing that determines the mea-

surements to be performed on each qubit consists of evaluating the linear functions

f1(i) = i1, f2(i) = i2 and f3(i) = i1⊕ i2. The bits qk = fk(i) are mapped into measure-

ment settings according to Mk(0) = X and Mk(1) =Y , for k ∈ 1,2,3. If we observe the
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eigenvalue +1, then the value mk(qk) = 0 is recorded. If we observe the eigenvalue

−1, then the value mk(qk) = 1 is recorded. These measurement settings define the

observables M(i1, i2) = M1(i1)⊗M2(i2)⊗M3(i1⊕ i2) such that

M(0,0) = X⊗X⊗X

M(0,1) = X⊗Y ⊗Y

M(1,0) = Y ⊗X⊗Y

M(1,1) = Y ⊗Y ⊗X

(3.6)

with the state |ΨGHZ〉 being a simultaneous eigenvector of each observable, with cor-

responding eigenvalues given by

(−1)o(i1,i2) = (−1)NAND(i1,i2). (3.7)

Linear post-processing of the measurement outcomes of the local X and Y measure-

ments then allows for the computation of the function o(i) = ∑
3
k=1 mk(i), which by the

equation above, results in o(i1, i2) = NAND(i1, i2). The GHZ computation realises a

nonlinear function on the input bits that could not be realised by the control computer

alone.
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Figure 3.9: AND as the parity of measurement outcomes. The figure [3] shows an
ideal nonlocal box defined to implement an AND and the measurements on a 3-qubit
GHZ state implementing the same. The AND emerges as the parity of all outcomes.
The NAND can be computed by a single NOT operation by the control computer.

Questions that naturally arise from this result are what specific resource states

allow for the computation of nonlinear functions and which properties of that quan-

tum resource state enable the boost in computational power. These properties of a

GHZ computation that allow for the computation of nonlinear boolean functions have

been studied and characterised. Raussendorf has shown that any GHZ computation

that realises a nonlinear boolean function is contextual [103] and if a GHZ compu-

tation can be described by a noncontextual hidden variable model, it is restricted to

computing only linear functions. This result also holds in the adaptive framework of

measurement-based quantum computation, where each measurement setting is deter-

mined by previous measurement outcomes. In the Anders and Browne example there

is no possible pre-assignment of measurement outcomes to the local observables which

can reproduce the correlations necessary to compute the NAND gate.

Raussendorf’s theorem of Ref. [103] can be restated as

Theorem. Let M be a GHZ computation which deterministically evaluates a boolean

function o : Zn
2 → Z2. If o(i) ∈ Z2 is nonlinear mod 2 in i ∈ Zn

2 then M is contextual.

He also proved a relation between the nonlinearity of a function computed in the
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measurement-based quantum computation model and the degree of noncontextuality

involved in that computation.

3.2 Prior work

Following the work of Anders and Browne [3], Hoban et al showed that all boolean

functions can be deterministically computed in a similar setting, but that for some

functions n must scale exponentially in the number of input bits. They also showed that

for the pairwise AND, n scales linearly with the number of input bits. The pairwise

AND is the function of the form fn(x) =
⊕n−1

j=1 x j(
⊕n

k= j+1 xk). It computes the sum

(modulo 2) of the pairwise product of all pairs of bits.

Their goal was to compute a boolean function f (x) with an n-bit bit-string x as

input and a general GHZ state as a resource, in which spatially separated measurements

are performed on each qubit. The measurement basis are chosen from, M0 or M1, and

the choice of all measurement bases and their respective measurement outcomes are

the bit strings s and m, where |s| = |m| and the elements of each string is denoted by

s j and m j. Their model is non-adaptive, which means measurement settings do not

depend on previous outcomes but only on x, and they depend linearly on x, since, like

in the Anders and Browne method, all side-processing must be linear. Finally, the

output of the computation is achieved by linear post-processing on the measurement

outcomes m, typically the parity of m. This non-adaptive measurement based quantum

computation will be deterministic when the parity of m always gives f (x) for all values

of x.

Whilst few computations in MBQC can be performed deterministically without

adaptive measurements, Raussendorf showed that, in a setting very similar to ours,

one can compute nonlinear functions using a certain type of stabilizer states, called
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Reed–Muller states. Moreover, he showed that the deterministic evaluation of any

nonlinear function cannot be achieved with local hidden variables correlations and,

hence, led to a GHZ-type paradox.

All boolean functions f (x) on an n-bit string x can be represented uniquely as a

polynomial over Z2 (i.e. using modulo 2 arithmetic). This polynomial is known as

the algebraic normal form for the function. The ANF allows one to classify boolean

functions in linear or non-linear, according to the definition given in section 3.3.

Their method is as follows. To compute any boolean function on an arbitrary n-bit

string x deterministically, we use a 2n−1 qubit GHZ state, |GHZ〉= 1√
2
(|0〉⊗(2n+1)+

|1〉⊗(2n+1)). As described above, each measurement device receives a bit-value s j ,

which is a linear function on input bit-string x. The measurements are performed

accordingly, and the outputs m j are returned (as classical bits) to the side processor.

For each s j, the measurement is made in the basis cos(s jφ j)σx+ sin(s jφ j)σy, where φ j

is an angle that must be specified. Thus, as in the Anders and Browne’s method [3], a 0

input always corresponds to a measurement of σx. The output of these measurements

will be mapped as 0 for eigenvalue +1 and 1 for eigenvalue −1 and those will be

returned to the side linear processor.

The (deterministic) result of the computation, the function f (x), will be given by

the parity of these outcomes. Using the properties of GHZ states [136], Hoban et al

[65] show that the parity of the output bits will always be equal to f (x) if the following

equation is satisfied

ei∑ j s j(x)φ j = (−1) f (x),∀x ∈ {0,1}n. (3.8)

We will give a detailed summary of their argument. Without loss of generality, f (x) can

be restricted to functions for which f (0⊗n) = 0 and any additional bit-flip can be added

in post-processing. The argument of the exponential on the left-hand side of equation
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3.8 is a sum over real numbers (in the angles φ j) whereas the term in the exponent

of the right-hand side is a boolean function, a polynomial over Z2, i.e. with addition

modulo 2. It is easy to see that, from an initial general GHZ state 1√
2
(|0〉⊗n + |1〉⊗n),

the phase on the left-hand side of 3.8 accumulates after what we can think of as each

operation on each of the qubits as follows

1√
2
((|0〉+ eis1φ1 |1〉)⊗ (|0〉⊗n−1 + |1〉⊗n−1), (3.9)

for the first qubit. And then, consecutively, until the nth qubit. The final state to be

measured would then be

1√
1+ e2i∑ j s j(x)

(|0〉+ ei∑ j s j(x)φ j |1〉). (3.10)

If we restrict ∑ j s j(x) to be a multiple of π (by restricting the possible values of φ j), we

see that the state in 3.10 will be either 1√
2
((|0〉+ |1〉) = |+〉 or 1√

2
((|0〉− |1〉) = |−〉,

when ∑ j s j(x) is an even or an odd multiple of π , respectively. That means, if we

measure the state in the X basis and map the outcome 1 to binary 0, such that we have

f (x) = 0 and the outcome−1 to binary 1, such that f (x) = 1, we see that equation 3.8.

holds.

This method exploits the fact that these different types of addition lead to dif-

ferent notions on linear independence. We will refer to linear (in)dependence over

the reals as R-linear (in)dependence and linear (in)dependence over Z2 as Z2-linear

(in)dependence. The set of linear boolean functions s j(x), that appear in the sum on

the left-hand side of the equation, are not necessarily Z2 linearly independent, but, as

it will be shown below, all of them are linearly independent over the reals. This means

that linear boolean functions (over Z2) can be combined linearly (in the real vector
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space, i.e. with real coefficients - φ j) to produce a non-linear boolean function (which

appear in the exponent on the right-hand side). We give the AND function as an ex-

ample. The AND is the function x1x2 on two bits x1 and x2 and it can be written as a

linear combination of Z2-linear functions as

x1x2 =
1
2
(x1 + x2− (x1⊕ x2)). (3.11)

Or, equivalently,

x1⊕ x2 = x1 + x2−2x1x2. (3.12)

This is an example of a more general identity expressing the parity of a bit-string in

real arithmetic given by

⊕
i

xi =
1
2
[1−∏

i
(1−2xi)] = ∑

b
(−2)W (b)−1

n

∏
j

xb j
j (3.13)

where the sum is over all n-length bit-strings b and W (b) is the Hamming weight of b.

It is easy to see that, for i = 2, equation 3.13 reduces to 3.12. Hoban et al show that

all functions for which f (0⊗n) = 0 can be constructed using R-linear combinations

of parity functions fa(x) = ⊕n
j=1a jx j. Hence, there will exist solutions for equation

3.8 for any boolean function f (x) on n bits. Solving equation 3.8 will provide the

measurement angles φ j necessary to implement the computation.

Theorem 1 of Hoban et al [65] provides a general framework for studying GHZ

computations and in particular show the conditions that must be satisfied (in terms of

the choice of φ j and s j) to realise any boolean function in the model. However, they

do not provide a general method to find φ j and s j for a given function. Instead, they

provide two example families of functions, both generalisations of the AND function.
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There are 2(2
n) n-bit boolean functions leading to, potentially, a vast range of different

GHZ computations and therefore a vast range of contextuality experiments. While it

is true that these general boolean functions can be composed via a network of AND

and XOR gates, and hence GHZ computations for these functions can, in principle, be

achieved via many parallel copies of the Anders and Browne’s 3-qubit construction,

this misses the opportunity to find different realisations, and hence entirely new GHZ-

type contextuality experiments. Here we introduce a method to construct GHZ compu-

tations for boolean functions which does not rely on a decomposition into Anders and

Browne’s 3-qubit experiments, but, instead, allows one to derive the measurements

to implement the function directly with a single GHZ state. The family of boolean

functions is doubly-exponentially large, so we need to identify interesting functions

to demonstrate this method. The functions we choose are the Bent functions, which,

as the next section shows, are a very special class of functions with many interesting

properties.

3.3 Bent functions

The question of who first introduced bent functions remains without an exact answer. It

is accepted that Rothaus is the authority in the field, having introduced bent functions

in 1966. His fundamental paper [106] was declassified in 1976 and is well known

to everybody who studies the subject. His work was included in Knuth’s The Art

of Computer Programming [72]. Other researchers, like him, studied bent functions

in the Soviet Union, and they called them minimal functions. They published their

results as technical reports but those have still not been declassified [124]. Since then,

extensive research has been done on bent functions [36] and we will provide here a

concise exposition of their main properties. Bent functions are the most nonlinear
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functions among n-variable boolean functions and have very important cryptographic

applications. boolean functions are functions of the form f : Bn → B, in which B ∈

{0,1} and n is a non-negative integer.

A linear function is either the constant 0 function or the XOR function of one or

more variables. For example, there are four 2-variable linear functions, 0,x1,x2 and

x1⊕ x2. Only one of them actually depends on the two variables.

An affine function is a linear function or the complement of a linear function.

Hence, there are eight different affine functions on 2 variables,0,x1,x2,x1⊕ x2,1,x1⊕

1,x2⊕1 and x1⊕x2⊕1. Affine functions are a special type of boolean function. Here,

we are interested in how distant a boolean function is from affine functions. This

distance considered here is the Hamming distance.

Cryptographers define the nonlinearity of a function f as the minimum number

of entries in its truth table that should be changed to transform f to an affine func-

tion. In other words, the nonlinearity is the minimum Hamming distance between the

truth tables output of f and that of some affine function. In our example of 2-variable

functions, the function f = x1x2 is not affine, it has nonlinearity 1. One can see that

flipping the only digit 1 in its truth table to a 0, transforms it into the affine constant

0 function. The table in figure 3.10 shows all 2-variable boolean functions and their

nonlinearities. Now, there are a few different but analogous ways in which bent func-

tions can be defined. Let f be a boolean function on n-variables, with n being even.

f is bent if its nonlinearity is maximal, namely 2n−1− 2
n
2−1, for n even. This means

that bent functions are at a maximum distance from all affine functions. For example,

the 4-variable function f = x1x2⊕ x3x4 is a bent function. Its nonlinearity is 6. Its

Hamming distance is 6 from 16 of the 32 affine 4-variable functions and 10 from the

other 16. That means, the minimum number of entries of the truth table of f that must
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Figure 3.10: All 2-variable functions and their nonlinearities. The first column on
the left shows the four possible combinations for the values to the two variables. All
the other columns show the truth tables of the 16 boolean functions on two variables.
The last row shows their nonlinearities. There are 2×22 = 8 affine functions (nonlin-
earity=0). For all the other functions, a single flip in a truth table value transforms it
into an affine function.

be changed to transform it into an affine function is 6.

Bent functions are important because there is a cryptanalysis technique, called a

linear attack, that consists of approximating the nonlinear functions used in the encryp-

tion by linear ones. That is, when the encryption function is only slightly nonlinear,

one can use a linear approximation in an attack. That approximation is related to the

number of bit flips needed in the output of a truth table to achieve the encryption func-

tion. Bent functions are the most difficult to approximate in a linear attack.

We can see in the table of figure 3.10, that eight of the 2-variable functions are

affine and for each of the other eight, if we change one output in their truth tables, we

get an affine function. Hence, there are eight bent functions on 2-variables. Figure

3.11 shows the distribution of all 4-variable functions over the different nonlinearities.

From figure 3.11 we can see that most 4-variable functions have nonlinearities around

3, 4, and 5, and that functions with nonlinearity in the extremes, 0 or 6, are rare. The

32 functions with nonlinearity 0 are the affine functions and the 896 functions with

nonlinearity 6 are the bent functions. The precise number of bent functions is known

only for n≤ 8, at the moment [36, 25] and there is no formal way of constructing them.

That is an open question with a number of studies in combinatorics [36, 106].
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Figure 3.11: Distribution of all functions on 4 variables over different nonlineari-
ties [32]. The graph shows that 32, 512, 3840, 17920, 28000, 14336 and 896 4-variable
functions have a nonlinearity of 0, 1, 2, 3, 4, 5 and 6, respectively.

Another useful way to define a bent function is in terms of its Walsh-Hadamard

transform, which links it to Bell inequalities. The terms of its Walsh-Hadamard trans-

form are the coefficients of the Bell inequality corresponding to a given boolean func-

tion. A bent function can also be defined as a boolean function whose Walsh-Hadamard

transform has constant absolute value ±2n. The Walsh-Hadamard transform of a

boolean function is the function f̂ : Zn
2→ Z such that

f̂ (u) = ∑
x∈Zn

2

(−1)u.x+ f (x) (3.14)

where u,x ∈ Zn
2 and the dot product u.x is mod2. If we define the sets S0 = {x ∈ Zn

2 :
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f (x) = u.x} and S1 = {x ∈ Zn
2 : f (x) 6= u.x}, then obviously

|S0|+ |S1|= 2n. (3.15)

Since both f (x) and u.x are boolean, we also have

f̂ (u) = |S0|− |S1|= 2|S0|−2n. (3.16)

But |S0| can range from 0 to 2n. Then

−2n ≤ f̂ (u)≤ 2n. (3.17)

Now, considering that all the possible affine functions for a certain boolean variable x

are u.x and u.x+1, we see that

f (x) = u.x→ f̂ (u) = 2n (3.18)

and that

f (x) = u.x+1→ f̂ (u) =−2n. (3.19)

We will not explore this definition and its connection with Bell inequalities in details

here but it can be found in [114].

3.4 GHZ computations for bent functions

Every GHZ contextuality experiment has a corresponding Bell inequality, often called

a Mermin inequality [87]. One way to look at this is by considering the GHZ exper-

iment as a game. The game is won when the parity of the measurement outcomes is
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equal to the n-bit nonlinear function defining the experiment for all inputs.

We can assign a value to the game by assuming that the inputs are provided uni-

formly by a verifier, and ask then, what is the average success probability for the game?

In the quantum case, we know that this value is 1. We can also calculate a classical

value, the highest achievable average success probability of the game with a classical

model, or noncontextual local hidden variable model.

We know that the parity of the outcomes in any classical model is a linear function.

Therefore, the best classical strategy for the game will be to find the linear function

which is closest to the nonlinear function defining the game. We construct bit strings

representing the output bits of the functions for all input values from 0 to 2n−1. The

Hamming distance between these two strings represents the distance between them.

We can use nonlinearity to derive the classical value (and hence the Bell/Mermin

inequality) corresponding to the game. The optimal classical strategy for the game will

correspond to the closest linear function. There are 2n inputs to the function. Of these,

the game will be won for 2nonlinearity of the inputs, we can therefore derive the classical

value (maximal probability of success) for the game

2n−nonlinearity
2n (3.20)

For example, for the AND function, n = 2 and the nonlinearity = 1, and we recover

the well known CHSH classical value 3/4.

Bent functions are maximally nonlinear. They lead to Bell/Mermin inequalities

with a maximal difference between quantum and classical values, and thus a maximal

Bell inequality violation, like Tsirelson’s bound is the maximal violation for comput-

ing the AND function (which is a bent function) with two qubits. By studying GHZ

experiments defined by bent functions, we identify those GHZ experiments with the
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highest difference between quantum and classical value. In some sense, these are the

“most quantum” of the GHZ experiments, but with a more practical motivation, these

are also the experiments whose quantum violation is most robust with respect to bit

flip noise on the outputs.

Figure 3.12: Linear attacks. Linear attacks are as efficient as the maximal classical
probability to compute a nonlinear function.

Remembering that the nonlinearity of bent functions is 2n−1−2
n
2−1, we can thus

compute the classical value for any GHZ experiment defined by a bent function, as

shown in figure 3.13.

Figure 3.13: Optimal classical probability as a function of n The table shows how
the optimal classical probability of computing a bent function depends on the number
of variables. One can see that it seems to converge to 0.5, which means that the best
classical strategy is no better than a random one.
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3.5 Results

Hoban et al give two specific examples of GHZ computations, for two particular fami-

lies of boolean functions. The first of these they call the pairwise AND function. Now,

let us focus on Hoban et al's [65] result for the pairwise AND function. Computing the

pairwise AND function deterministically, in GHZ computation, requires at least n+1

qubits. The resource used to achieve this bound is an n+ 1 qubit GHZ state of the

form |GHZ〉 = 1√
2
(|0〉⊗n+1 + |1〉⊗n+1). The qubits are numbered j = 1,2, ...,n,n+1.

With input bits s j = x j, for j = 1, ...,n and sn+1 =
⊕

j x j, and measurement bases σx

or σy for inputs 0 or 1, respectively, one can verify that the parity of all n+1 outputs

is always equal to fn(x).

The pairwise AND is a bent function. Moreover, their result is constructive, iden-

tifying the resource states and a means to choose the measurement bases to compute

the function. It also provides an upper bound to the number of measurements needed

for implementing any boolean function deterministically in GHZ computation.

Based on their method, we will now introduce our analysis. Let us consider an n-

qubit GHZ state, a state of the form |GHZ〉= 1√
2
(|0〉⊗n+ |1〉⊗n). Again, for each qubit

we designate two measurement bases M̂0 and M̂1. The computation should proceed as

follows. A linear side-processor receives input bits xi and compute n linear functions

of those bits. These functions will determine which observable is measured on each

qubit. In the same manner as in the CHSH game, the final output of the computation

will be a linear function of these measurement outputs (and possibly of the input bits

as well).

In Hoban et al's analysis, they only needed to consider the measurement bases

M0 = σx and M1 = cos(s jφ j)σx + sin(s jφ j)σy.

For the pairwise AND function, the key piece of mathematics behind the con-
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struction is the identity 3.11.

A number of bent functions are known, so we can actually look for constructions

within the GHZ (or the single qubit rotations [45]) setting. All the following facts

about bent functions come from [32]. Up to relabelings of the inputs and extra linear

functions on the output, there are precisely 4 four-qubit bent functions.

For clarity, we shall call our input bits here a, b, c and d.

The four bent functions for four variables are (fig. 3 of [32]):

f1 = ab⊕ cd,

f2 = ab⊕bc⊕ cd,

f3 = ab⊕bc⊕ cd⊕ac,

f4 = ab⊕bc⊕ cd⊕ac⊕ad⊕bd,

(3.21)

where ⊕ means addition mod 2.

The function f4 is the pairwise AND function, studied by Hoban et al [65]. We

will derive implementations of the other 3, but first let us reconsider the mathematics

involved in the construction of f4.

They make n = 5, and let s1 = a, s2 = b, s3 = c, s4 = d, s5 = a⊕b⊕ c⊕d. Also,

they choose φ j =+Π/2 for j = 1, . . .4 and φ5 =−Π/2, as illustrated in 3.1.

Qubit s j φ j
1 a π/2
2 b π/2
3 c π/2
4 d π/2
5 a⊕b⊕ c⊕d -π/2

Table 3.1: Inputs for implementing f4
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With these choices, eq. (3.8) reduces to

cos[
π

2
(a+b+ c+d− (a⊕b⊕ c⊕d))] = (−1) f (x). (3.22)

Since cos(π

2 x) = cos[π

2 (x mod 4)] and f (x) is boolean, we then must have

1
2
((a+b+ c+d− (a⊕b⊕ c⊕d)) mod 4) = f (x). (3.23)

Lemma 1. Under the condition that φ j =±π

2 , equation 3.8 will have a solution if and

only if the sum of all s j equals an even integer or zero.

We prove this by analysing equation 3.22, which derives from equation 3.8 when

the angles φ j are restricted to±π

2 . We see that, given that f (x) is boolean, the equation

will have a solution only if the argument of the cosine is an integer multiple of π and

therefore, only if the sum of all s j (the sum in parenthesis) is an even integer or zero.

Now, from 3.13, we do the transformation

a⊕b⊕ c⊕d =

a+b+ c+d−2(ab+bc+ cd +ac+ad +bd)

+4(abc+abd +acd +bcd)−8abcd.

(3.24)

Note that, because we restricted φ j to be ±π

2 , we can take ′+′ (for the sum of s j) to

be addition mod 4 in the equation above and ignore the terms multiplied by 4 and 8.

Thus, we have

(a⊕b⊕ c⊕d) mod 4 =

a+b+ c+d−2(ab+bc+ cd +ac+ad +bd),
(3.25)
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where the expression in parenthesis is, in arithmetic mod 2, exactly the function we

want to compute, f4. Hence, replacing 3.25 in 3.23, we see that f (x) = ab+bc+cd+

ac+ad +bd which, in mod 2, is f4.

Equation 3.25 exposes the mathematical basis of Hoban et al's construction. We

see that the mod 2 sum of the four bits is equal, up to a linear correction (a+b+c+d)

and a rescaling by a factor of 2, to the function f4. This leads to the recipe for a GHZ

computation on a 5-qubit GHZ state as shown in 3.1 and provokes a general method

for developing GHZ computations for other functions.

We use identities of the form of equation 3.13 to identify mod 2 sums which have

the form of (some of) the nonlinear terms in our expression. We repeat this until all

nonlinear terms are identified. Then, the remaining linear correction terms show us the

qubit measurements we need to add to complete the computation’s description.

Now, let us apply the same approach to the other three bent functions.

3.5.1 Implementing f1

Let us see how we can apply our method for the function

f1 = ab⊕ cd. (3.26)

We know we can implement it with six qubits, using two parallel copies of the Anders

and Browne GHZ protocol [3].

We know that a⊕b = a+b−2ab and c⊕d = c+d−2cd. If we choose two of

the measurements to be a⊕b and c⊕d, on the left-hand side of equation 3.23, we will
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have the expression

1
2
(a⊕b+ c⊕d + s3 + ...+ sn)

=
1
2
(a+b−2ab+ c+d−2cd + s3 + ...+ sn)

=
1
2
(a+b+ c+d−2(ab+ cd)+ s3 + ...+ sn).

(3.27)

Following the same analysis as for f4 and considering Lemma 1, it’s easy to see that we

would need to add four more measurements, a, b, c, d in order to be left with ab+ cd

which, in mod 2 arithmetic is equal to f1. This is due to the fact that a+ b+ c+ d

is not always an even integer for all possible values of a, b, c and d. We would then

need a total of six measurements, as shown in table 3.2. This is the same number of

measurements as two parallel copies of the Anders and Browne protocol. Therefore for

this first function, we see no advantage of our method. Nevertheless, we shall proceed

with further bent functions, which may give an advantage.

Qubit s j φ j
1 a π/2
2 b π/2
3 c π/2
4 d π/2
5 a⊕b -π/2
6 c⊕d -π/2

Table 3.2: Inputs for implementing f1

3.5.2 Implementing f2

Now, let us analyse

f2 = ab⊕bc⊕ cd. (3.28)
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Looking at the identity in 3.11 and considering that we want to recover a function with

the above terms ab, bc and cd, we choose three of the measurements to be a⊕b, b⊕ c

and c⊕d. Then, from equation 3.8, we have

a⊕b+b⊕ c+ c⊕d

= a+b−2ab+b+ c−2bc+ c+d−2cd

= a+d +2(b+ c)−2(ab+bc+ cd).

(3.29)

If we compute it with five qubits such that

Qubit s j φ j
1 a π/2
2 d π/2
3 a⊕b -π/2
4 b⊕ c -π/2
5 c⊕d -π/2

Table 3.3: Inputs for implementing f2

we will have, from equation 3.23,

1
2
(a+d− (a+d +2(b+ c)−2(ab+bc+ cd))

=−(b+ c+ab+bc+ cd) = f (x).
(3.30)

We see that, up to linear correction terms, the left-hand side of the equation above

is equal to f2. This function can be implemented with three parallel copies of the

Anders and Browne protocol, using nine qubits. Then, the result using our method

represents a saving of four qubits compared to that.
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3.5.3 Implementing f3

Finally, we consider

f3 = ab⊕bc⊕ cd⊕ac, (3.31)

in which one the variables appears in three different terms.

If we re-write it as

f3 = (ab⊕bc⊕ac)⊕ cd, (3.32)

set one input to a⊕b⊕ c and the second to c⊕d, we get

(a⊕b⊕ c)+(c⊕d)

= a+b+ c−2(ab+ac+bc)

+4abc+ c+d−2(cd)

= a+b+d +2c−2 f3.

(3.33)

Since we are working in mod 4 we can neglect the triple product abc because, when

multiplied by 4, it will only assume the values 0 or 4, and 4 in mod 4 arithmetic is also

0.

An implementation of Anders and Browne would require 12 qubits.

We see that the repeated input bit c recurring in each term gives us an advantage.

We can implement the function with 5 qubits as shown below.

Qubit s j φ j
1 a π/2
2 b π/2
3 d π/2
4 a⊕b⊕ c -π/2
5 c⊕d -π/2

Table 3.4: Inputs for implementing f3
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3.5.4 Further discussion

Our method relies on the identity in 3.12,

x1⊕ x2 = x1 + x2−2x1x2.

When x1⊕ x2 is used to define a measurement on one of the qubits of the GHZ state,

both the desired non-linear term 2x1x2 and the undesired terms x1 and x2 are added to

the phase on the exponent of the left-hand side of equation 3.8.

One could naively expect that, every time that identity is used, we would always

need two additional measurements to cancel out x1 and x2 from the sum in the phase,

like in our example in section 3.2, for the function f1. In that example, we needed six

measurements, three for each non-linear term in f1.

However, for the functions f2 and f4, studied in sections 3.5.2 and 3.1, that was

not the case. These functions have three and six non-linear terms respectively and

we compute them both with only five-qubits GHZ states, which corresponds to five

measurements.

The reason for that improvement in the number of measurements is that some of

the undesired terms that come from different applications of the identity 3.12 cancel

out. We therefore seek terms, where the repetition of bits between different non-linear

terms will lead to these desired cancellations.

For example, consider the function

g1 = ab+bc+ cd +da. (3.34)

According to [32], this is not a bent function. The function g1 has a special cyclic

symmetry; each input bit appears twice, in two different non-linear terms. It should
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have a very efficient implementation when compared to previously known methods.

Indeed, we can implement it with 4 measurements, of the inputs a⊕b, b⊕c, c⊕d,

d⊕a, like in the table below

Qubit s j φ j
1 a⊕b −π/2
2 b⊕ c −π/2
3 c⊕d −π/2
4 d⊕a −π/2

Table 3.5: Inputs for implementing ab+bc+ cd +da

We then have

(a⊕b)+(b⊕ c)+(c⊕d)+(d⊕a)

= a+b+b+ c+ c+d +d +a−2(ab+bc+ cd +da)

= 2(a+b+ c+d +ab+bc+ cd +da)

(3.35)

Similarly, we can implement

g2 = ab+bc+ ca (3.36)

with 3 qubits. This is also not a bent function. We choose a⊕ b, b⊕ c, and c⊕ a as

inputs as in

Qubit s j φ j
1 a⊕b −π/2
2 b⊕ c −π/2
3 c⊕a −π/2

Table 3.6: Inputs for implementing ab+bc+ ca
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Then, we have

(a⊕b)+(b⊕ c)+(c⊕a)

= a+b+b+ c+ c+a−2(ab+bc+ ca)

= 2(a+b+ c+ab+bc+ ca)

(3.37)

So, we have a three-bit function on a 3-qubit GHZ state.

We note that most of the examples found here ( f4 being the only exception) follow

a pattern, summarised below.

№ of measurements

= № of non-linear terms+№ of inputs that appear an odd № of times
(3.38)

This can easily be seen in the table

Function Inputs appearing odd times Non-linear terms Measurements
f1 4 2 6
f2 2 3 5
f3 1 4 5
f4 4 6 5
g1 0 4 4
g2 0 3 3

Table 3.7: Number of measurements as a function of number of non-linear terms
and number of inputs that appear an odd number of times The table shows the
relationship illustrated in equation 3.38 and that it does not apply only to f4.

3.6 Conclusion
In this chapter, we have investigated the role of GHZ contextuality in the computation

of maximally nonlinear boolean functions (bent functions). We have used a method

which we called GHZ computation and involves performing non-adaptive measure-
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ments on a GHZ state. We have seen that, for three of the four bent functions on four

variables, we can find better ways to implement functions than the previously known

approaches. The following table summarizes our findings.

Function Our method Previous methods
f1 6 6
f2 5 9
f3 5 12
f4 5 18
g1 4 12
g2 3 9

Table 3.8: Number of qubits required to compute bent functions on four variables
The table shows the number of qubits which are necessary to compute each of the
functions using our method and previously know methods.

Our method, which provides a recipe for constructing GHZ computations for non-

linear functions (in terms of the choice of φ j and s j). We saw that, in particular, for

functions with a cyclic symmetry it led to GHZ computations with just one measure-

ment per non-linear term. However, it relies, to some extent, in trial and error. We

do not have a general method for finding optimal number of measurements for general

boolean functions, nor have we proved that the GHZ computations here are optimal.

Our framework applies only to GHZ states because they satisfy equation 3.8. An

obvious question is whether we could achieve more efficient results using different

types of entangled states, such as W states or cluster states.

There is strong evidence that GHZ states are the optimal resource for non-adaptive

measurement based quantum computations. Hoban et al showed that their GHZ com-

putations correspond to a certain family of Bell inequalities introduced by Werner,

Wolf, Zuchowski and Bruckner. Werner and Wolf [136] proved that, for that spe-

cific family of Bell inequalities, the optimal quantum violation was always achieved

88



3.6. CONCLUSION CHAPTER 3. BENT FUNCTIONS

by GHZ states. This means that, for any non-linear boolean function computed with

a specific number of qubits, a GHZ state will always achieve the maximal success

probability. Thus, in the non-adaptive setting, GHZ states are the most suitable for

these computational tasks. This is the reason why, in this thesis, we call them GHZ

computations.

We do not have a proof that the GHZ computations presented in this chapter use

the minimal number of measurements. We have seen that they are more compact (in

some cases, significantly more compact) than previously proposed methods. For the

functions g1 and g2, we conjecture that these are the optimal form, since the GHZ

computation uses a single qubit for each non-linear term in the functions. Our work

motivates further research in the study of general lower bounds for the number of

measurements in GHZ computations, which would allow for proofs of optimality.

Although the methods presented in this chapter can be applied to all non-linear

boolean functions, we chose to focus on Bent functions in this chapter, due to their

importance in cryptography. Bent functions have already been studied in quantum

foundations and computation, in the context of hidden shift problems [108, 107]. In the

context of cryptography, we believe that it would be interesting to find a more general

protocol to deterministically compute bent functions with GHZ-type states which have

been used as a resource in many multi-party protocols of quantum secret sharing [140,

134, 83, 58, 69]. Finally, we also wonder if the maximal level of Bell inequality

violation we expect for them might have any practical applications.
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CHAPTER 4. SINGLE-SYSTEM GAME

In the previous chapter we studied the role of GHZ contextuality in the computa-

tion of nonlinear functions with restricted resources. Our resource was the three-qubit

GHZ state which allows us to compute an AND gate with certainty. That protocol

was later mapped to one that uses a single qubit to achieve the same task [45]. In

other words, it is a scenario that exhibits quantum computational advantages but where

nonlocality and contextuality (in its standard definitions [73, 119]) are not present. In

Dunjko et al’s scheme, the initial system is in a fixed pure state, the transformations

are unitaries that do not form operationally equivalent decompositions of a completely-

positive-trace-preserving map and the projective measurement is also fixed.

Computational protocols in which quantum mechanical strategies provide an ad-

vantage over classical ones have long been an important focus of study. A well-known

example is the previously explained CHSH game, a game for which quantum strategies

can provide an advantage. The CHSH game can be generalised to mod q arithmetic in

the CHSHq game, which has been studied in [31, 68, 81, 14]. Naturally, a key focus

of these studies has been to find the Bell bound and Tsirelson bound for these games.

However, success has been limited. Upper bounds on the Tsirelson bound given by a

precise mathematical expression have been provided in [14] when q is a prime or prime

power, but these are not known to be tight. Moreover, numerical analysis on lower and

upper bounds suggest different values [81]. The CHSH game is of great importance

because the sensitivity of its optimal success probability depending on the underlying

physical model gives us a tool to distinguish different types of theories experimentally,

and allows us to test nature.

Other protocols showing similar features to the CHSH game exist [50, 120]. In

particular, quantum random access codes (QRACs), where Alice encodes m bits in n <

m information carriers to communicate to Bob the value of one of the bits (randomly
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chosen), the optimal classical and quantum strategies are closely related to the ones

used in the CHSH protocol and provide the same bounds.

Inspired by these works, we here propose and investigate a single-system proto-

col, which is a simple single-player variant of the CHSH game. Due to its similarity

with the CHSH game we call it the CHSH* game [61]. We study the probability of

success of the CHSH* game in different settings. We first show that, when the player

applies unitary dynamics and projective measurements on a qubit system, the maxi-

mum probability of success of the game is equal to Tsirelson’s bound; this is proven

via an explicit mapping from the strategies in the CHSH* game to the strategies in

CHSH game (lemma 2).

We then illustrate that the game is sensitive to a broad range of properties of the

system used, specifically whether the system is quantum or classical, what is the set

of operations allowed to the player (namely, reversible versus irreversible and Clifford

versus non-Clifford) and what the dimension of the system is. We demonstrate that the

Bell bound holds for classical reversible strategies and quantum strategies involving

only Clifford computation, while the possibility of performing irreversible computa-

tion allows one to win the game with certainty. Moreover, following Landauer’s state-

ment that only reversible operations are truly fundamental, we show that bit erasure is

a powerful tool for increasing the winning probability, shedding light on the source of

quantum advantage in this game. We finally conjecture that our results also apply to

the CHSH*q game for any dimension q, by considering the case of q = 3.

In this chapter, we start with some relevant background material on other proto-

cols related to the CHSH game (section 4.1.1) and on Landauer’s principle (section

4.1.2). In section 4.2.1, we introduce the CHSH* game, how it is related to the CHSH

game and its characterisation in terms of the system and gates used. Given the crucial
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role of irreversible versus reversible computation for the performances of the protocol,

we make a connection with Landauer’s principle in section 4.3. In the same section we

also discuss the presence of a new notion of contextuality in certain quantum strategies

for the CHSH* game. Finally, we briefly treat the case of the CHSH*q game in section

4.4.

4.1 Background

Before we introduce the original material in this chapter in section 4.2 we present some

background material.

4.1.1 Related protocols

There exist other protocols similar to the CHSH game, where the non classical prop-

erties that boost computational power are different from nonlocality. One of those

protocols is called quantum random access codes (QRACs). It was first proposed by

Wiesner, in 1983 [138] and was then rediscovered by Ambainis et al., in [2] and stud-

ied by Galvao, in 2002 [50]. In QRACs, Alice encodes m bits in n < m information

carriers. She sends them to Bob, who wishes to learn the value of a single bit among

the m ones (Alice does not know which one) with a probability at least p (figure 4.1).

We use the notation m→ n. They have to agree on a particular efficient encoding to

maximise the probability of success. QRACs have been generalized and studied also

considering qudits of arbitrary dimensions [123]. Here, we will focus, for simplicity,

on the 2→ 1 protocol. Analogously to the CHSH game, the optimal classical strategy

succeeds with probability ωC(QRAC) = 0.75, while the optimal quantum strategy suc-

ceeds with ωQ(QRAC) = cos2(π

8 )≈ 0.85. A strategy for the classical case consists of

Alice sending the bit 0 to encode the bits 00 or the bit 1 to encode the bits 11, and suc-

ceeding with probability 1 in both cases. For the other two cases, she sends the bit 0 or
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Figure 4.1: Quantum Random Access Codes. Alice encodes m bits in n < m infor-
mation carriers and sends to Bob. He wants to know one of the m bits, and Alice does
not know which. Their goal is to come up with an encoding strategy to maximise their
probability of success.

the bit 1 for encoding 01 and 10 and succeeds with probability 0.5 in both. Therefore,

on average, the probability of success is 1
4(1+1+0.5+0.5) = 0.75. An optimal quan-

tum strategy consists of Alice sending a qubit in the state |Ψ00〉 = Rz(
π

4 )|+〉 = T |+〉

to encode the bits 00, in the state |Ψ01〉 = Rz(
7π

4 )|+〉 = T †|+〉 to encode the bits

01, in the state |Ψ10〉 = Rz(
3π

4 |+〉 = ST |+〉 to encode the bits 10, or in the state

|Ψ11〉 = Rz(
5π

4 )|+〉 = S†T †|+〉 to encode the bits 11. Rz(θ) represents a rotation of

angle θ around the z-axis on Bloch sphere, and S = Rz(
π

2 ) and T = Rz(
π

4 ). Thus, the

states above lie in the XY plane of the Bloch sphere. Bob then needs to measure on

the X basis if he wants to know the first bit, and on the Y basis if he wants to know the

second bit (positive eigenvalues correspond to the bit 0 and negative ones to the bit 1).

Hence, the probability of obtaining the eigenvalue corresponding to the correct bit is

cos2(π

8 ) ≈ 0.85, for each of the four cases. This strategy is strictly related to the one

described in detail in section 4.2 and illustrated in figure 4.7.

As we have seen, 2→ 1 QRACs are related to the CHSH game as they provide

the same bounds for classical and quantum strategies and, as we will show in the next

section, the strategies themselves are strictly related to the ones in the CHSH protocol.
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The same will also hold for the CHSH* game. The source of nonclassicality here

derives from the fact that Bob uses non-commutative measurements and that the states

sent by Alice point in a direction in between these two measurements (red square in

figure 4.7). This cannot be achieved with only classical resources.

Another protocol, similar to QRACs, that also resembles the CHSH* game is the

parity oblivious multiplexing (POM). However, unlike the CHSH* game, it displays

preparation contextuality as a necessary resource for the quantum computational ad-

vantage. The protocol was introduced in 2009 by Spekkens et al [120]. Let us imagine

that Alice has an m-bit string, like in QRACs, which here we call x. We then impose a

constraint called parity obliviousness: Alice cannot communicate to Bob the parity of

x. Formally, let us say that s ∈ Par, where Par = {r ∈ {0,1}m | ∑i ri ≥ 2}, i.e Par is

the set of m-bit strings in which at least two bits are in the state 1. Alice cannot send to

Bob any information about the s-parity, i.e. s · x =⊕i sixi. Let the bit that Bob outputs

be b. Let y denote which of the m bits b should correspond to, and xy denote the actual

bit in Alice’s string.

The optimal classical probability of success satisfies p(b = xy) ≤ m+1
2m since the

only classical encoding that transfers some information to Bob without violating the

parity obliviousness consists of encoding only a single bit xi. Let us see how. Given

that y is chosen at random, any bit xi would work. Therefore, Alice and Bob can

agree beforehand that Alice will always send xi and Bob will always output b = x1.

The probability of success will then be the probability that y = 1, which is 1
m , and

the probability that Bob outputs correctly (randomly, with probability 0.5) in the other

cases, where y 6= 1, will be m−1
m . Hence, in this optimal classical strategy, we obtainp

(pb = xy) =
1
m + 1

2 ·
(m−1)

2m = m+1
2m . We can see that, for m = 2, ωC(POM) = 0.75, like

the Bell bound of the CHSH game and QRACs. Spekkens et al proved the following

95



4.1. BACKGROUND CHAPTER 4. SINGLE-SYSTEM GAME

theorem.

Theorem. [120] The optimal success probability in m-bit parity oblivious multiplexing

of any operational theory that admits a preparation noncontextual ontological model

satisfies p(b = xy)≤ m+1
2m .

In other words, preparation contextuality is a necessary resource for performing

the m-bit parity oblivious multiplexing protocol with higher success probability than

with purely classical resources.

4.1.2 Landauer’s Principle

Landauer’s principle is commonly regarded as the basic principle of the thermodynam-

ics of information processing. It was intended to explain why Maxwell’s Demon [71]

cannot violate the second law of thermodynamics. In [17], Bennett stated it as

Principle. Any logically irreversible manipulation of information, such as the era-

sure of a bit or the merging of two computation paths, must be accompanied by a

corresponding entropy increase in non-information-bearing degrees of freedom of the

information-processing apparatus or its environment.

In 1961, Rolf Landauer [75], applying thermodynamic concepts to digital com-

puters, came up with a restatement of the second law. Inspired by the distinction, in sta-

tistical physics, between macroscopic and microscopic degrees of freedom, he noticed

that some of a computer’s degrees of freedom are used to encode the logical state of

the computation. These are the information bearing degrees of freedom. A computer’s

logical state evolves deterministically as a function of its initial state, regardless of any

fluctuations in the environment or in the computer’s non-information bearing degrees

of freedom (physical states). Landauer realised that, while a computer as a whole,

could be viewed as a closed system obeying reversible laws of motion (Hamiltonian
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or, for a quantum system, unitary dynamics), its logical states sometimes evolve irre-

versibly. That means, when the number of logical states at the end of the computation

is smaller than the number of initial logical states, the computation is irreversible. That

irreversible operation of the information-bearing degrees of freedom corresponds to a

decrease in the entropy of the isolated system. Hence, as a consequence of the second

law of thermodynamics, that entropy decrease must be accompanied by an equal or

greater entropy increase in the non-information-bearing degrees of freedom and the

environment. Usually, an entropy increase takes the form of heat, and it is dissipated

into the environment, but it can also, for example, be represented as a randomization

of the microscopic degrees of freedom of the environment.

Landauer’s principle assumes that logically-reversible operations are those which

can be carried out without any erasure and without releasing heat. It was first argued

by Landauer that irreversible operations are not fundamental. We can imagine an ir-

reversible operation as a reversible operation plus the erasure of some information in

the isolated system and the minimum information that can be erased is one bit. This

erasure corresponds to an increase in the entropy. We, therefore, associate the erasure

of a single bit with an increase in the entropy of kT log22, where k is the Boltzmann

constant and T the temperature of the system and the environment.

If a logically irreversible operation, like erasure, is applied to random data, the

operation can still be thermodynamically reversible because it does not represent any

decrease in the entropy of the data. It represents a reversible transfer of entropy from

the data to the environment. But if the logically irreversible operation is applied to

known data (data whose entropy is already zero), the operation is thermodynamically

irreversible, because the environmental entropy increase is not accompanied by any

decrease of entropy of the data. In classical computation, it is possible to decompose
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any deterministic computation as a sequence of logically reversible steps, provided

the computation is allowed to save a copy of its input. The computation can then be

performed in a thermodynamically reversible way.

4.2 The CHSH* game

We now describe in detail the CHSH* game. This game was first described by us in

[61]. It is a single-system game, it does not involve two space-like separated parties

and, like in Dunjko et al’s protocol, nonlocality and contextuality cannot be used to

explain its computational advantages.

4.2.1 General setting

In this game (illustrated in Fig. 4.2), a single player has in her possession a single

system of dimension d, that can be classical or quantum. She is given a specification of

the state preparations, transformations and measurements that she is allowed to employ

and in the course of the game, she is also provided with two uniformly random bits a

and b. Choosing from the allowed operations, the player must specify in advance an

initial state, controlled operations Aa and Bb and a final two-outcome measurement M.

Once the player receives a and b, the corresponding operations are implemented in

sequence and measurement M is performed, returning outcome c. The player wins the

game when c = a · b (mod 2). We are interested in finding the value ω(CHSH*) of

this game, which corresponds to the average winning probability of the best possible

strategies:

ω(CHSH*) = max
all strategies

1
4 ∑

a,b∈Z2

p(c = a ·b | a,b). (4.1)
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a · b

a b

Aa BbSystem c

M

Figure 4.2: Single-system protocol. An initial system, which can be either a bit or a
qubit, is subjected to controlled transformations, with control bits a and b, respectively,
and then measured. The goal is to maximise the probability that the value of the output
is the product of the values of the input bits.

We will study the CHSH* game in a variety of settings (Fig. 4.3), where we make

different assumptions about the physics of the system available to the player.

Figure 4.3: Settings. The different settings of the CHSH* game for a single bit or a
single qubit system.

4.2.2 Unitary setting

First, we consider the case where the player’s system is a single qubit in the unitary

setting, meaning that all transformations applied during the game are unitary. We

further assume that the final measurement is a projective two-outcome measurement.

Proposition 1. The value of the CHSH* game with a d = 2 quantum system in the

unitary setting is cos2(π

8 ).

This result follows directly from the following lemma.
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Lemma 2. For every strategy in the CHSH* game in the unitary setting with d = 2,

we can derive an equivalent strategy for the two-player CHSH game such that both

strategies lead to the same average success probability.

We prove this explicitly. We first consider the CHSH* game and assume with-

out loss of generality that the initial state is |+〉 and the measurement is the Pauli X

observable. A strategy thus consists of optimally choosing the gates A0,A1,B0,B1.

In Fig. 4.5, we show how, given a strategy for the CHSH* game, we can construct

a strategy for the CHSH game. The key ingredient is a teleportation protocol that uses

entanglement shared via the CNOT gate to teleport the effect of gate Aa from one site

(Alice’s) to another spatially separated site (Bob’s). Since operations Aa are unitary, it

holds that

AT
a ⊗ I

( |00〉+ |11〉√
2

)
= I⊗Aa

( |00〉+ |11〉√
2

)
. (4.2)

The teleported state on Bob’s side after Alice measures her qubit is AaZx |+〉 , where Z

is the Pauli Z. The bits x and y are Alice’s and Bob’s outputs respectively. In order to

prove the lemma, we will show that the success probabilities for obtaining c = a ·b in

the CHSH* game and x⊕ y = a ·b in the CHSH game are equal, i.e.:

∑
a,b

Pr(c = a ·b|a,b) = ∑
a,b

Pr(x⊕ y = a ·b|a,b). (4.3)

We proceed by showing that the terms in the above sums are pairwise equal, i.e. for

every a,b ∈ {0,1},

Pr(c = a ·b | a,b) = Pr(x⊕ y = a ·b | a,b). (4.4)
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In the case that x = 0 this holds trivially; and when x = 1, this reduces to showing that

|〈+|BbAa|+〉|2 = |〈−|BbAa|−〉|2 (4.5)

|〈−|BbAa|+〉|2 = |〈+|BbAa|−〉|2, (4.6)

which is necessarily true for any 2×2 unitary gates.

To see that Lemma 2 implies Proposition 1 we recall that Tsirelson’s bound up-

perbounds the CHSH game at probability cos2(π

8 ) ≈ 0.85. A strategy which achieves

this success probability involves the following gates: A0 = 1,A1 = S,B0 = T †,B1 = T,

where S = Rz(
π

2 ) and T = Rz(
π

4 ) correspond to rotations around the z-axis in the usual

Bloch sphere representation of the qubit. The probability of success is then given by

Psuc =
1
4 ∑

a,b∈Z2

p(c = a ·b | a,c)

=
1
4
[|〈+|B0A0|+〉|2 + |〈+|B1A0|+〉|2

+ |〈+|B0A1|+〉|2 +(1−|〈+|B1A1|+〉|2)]

=
1
4 ∑

a,b∈Z2

[
1
2
+(−1)a·b cos(θab)

2

]
.

(4.7)

where θab is the angle resulting from the rotation BbAa = Rz(θab) on the input state

|+〉. For the gates above, we obtain psuc = 0.85. Figure 4.4 shows the states BbAa|+〉

and the values of the probabilities p(c | a,b) for the four possible inputs a,b. These

unitaries are the gates mapping between the observables typically used to attain the

Tsirelson bound in the CHSH game when the parties share a Bell pair. This strategy

is also strictly related to the optimal strategies used in other tasks involving one qubit,

like QRACs and POM, previously defined. Lemma 2 demonstrates a tight link between

Tsirelson’s bound for the CHSH game and the value of CHSH* game in the above
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Figure 4.4: Optimal quantum strategy for the CHSH* game. The table shows the
state, BbAa|+〉,before the measurement on the X basis and the probability p(c|a,b) for
each pair a,b in the optimal quantum strategy, given by gates A0 = I, A1 = S,B0 =
T ,B1 = T †. For every pair a,b the probability of obtaining a · b mod 2 is cos2(π

8 ) ≈
0.85.

setting.

Figure 4.5: Mapping of the CHSH* game to the CHSH game. Figure (a) shows
the single qubit scheme, with the initial qubit in state |+〉 , controlled gates Aa,Bb,
measurement on the X basis and output c. Figure (b) shows the corresponding CHSH
game, where Alice and Bob share a Bell pair, and apply gates AT

a ,Bb to their systems
to obtain measurement results x and y respectively.

The proof of Lemma 2 relied on the fact that the transformations are unitary, and

that the system in the CHSH* game had dimension 2. We will now study the game
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in other settings, and see that its value, as defined by equation 4.1, is strongly setting-

dependent.

4.2.3 Irreversible setting

Now, we relax the restriction that transformations must be unitary by considering the

irreversible setting. We now allow irreversible transformations, such as the ERASE

map, which maps any qubit state to the state |0〉. This may be achieved via a Z mea-

surement and conditional X correction. Introducing irreversible transformations has a

dramatic effect on the value of the CHSH* game.

Proposition 2. The value of the CHSH* game with a d = 2 classical or quantum

system in the irreversible setting is 1.

Proof is via explicit example. Let the initial state be |0〉 and let A0 = I, A1 =

X , B0 = ERASE,B1 = I. The final measurement is in the Z basis. Considering the 4

cases, we see that the output c will always be 0 unless both a and b are 1. Thus this

strategy always wins the game. Every element of the strategy presented in this proof

can be achieved in a classical system, hence we can conclude that this maximum value

of 1 can be achieved even with no quantum dynamics at all.

4.2.4 Reversible classical setting

The increase in the value of the game depends crucially on the irreversibility of the

ERASE map. As we see now, if we restrict logic operations to be reversible, we find

that the value of the game is reduced.

Proposition 3. The value of the CHSH* game with a d = 2 classical system in the

reversible setting is 0.75.

To show that the value is at least 0.75, it suffices to describe a protocol which

attains this success probability. This is given by the trivial protocol where the input bit
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is set to 0 and gates Aa and Bb are the identity, and thus the output is always 0. To see

why this cannot be exceeded, we observe that all reversible one-bit functions are linear

functions. The closest linear function to a ·b is the constant function f (a,b) = 0.

To summarise the results so far, we have studied the CHSH* game with a variety

of restrictions on the system, which we called settings. We have found values of the

game of 0.75, cos2(π

8 ) and 1, depending on the setting. These precisely match the Bell

bound, Tsirelson bound and PR-box value of the CHSH game.

4.2.5 Clifford setting

We now show that the CHSH* game is sensitive to further restrictions. Recall that

stabilizer states [52] are eigenstates of Pauli operators and that the Clifford gates are

gates that map stabilizer states to stabilizer states. We shall denote the Clifford setting

as the setting where the initial system is a pure stabilizer state, all transformations are

unitary Clifford and the measurement is a Pauli observable.

Proposition 4. The value of the CHSH* game with a d = 2 quantum system in the

Clifford setting is 0.75.

The state BbAa|+〉 before the measurement is an eigenstate of Pauli operators,

which, when measured on the Pauli X operator, will always yield one of the possi-

ble outcomes with probability 0, 0.5 or 1. Therefore the probability of success for

any choices of input bits a and b will always take one of eight possible values in

{0, 1
8 , . . . ,

7
8 ,1}. Since the maximum probability of success of our protocol is about

0.85 in the less restricted unitary setting, we conclude that the maximum attainable

probability of CHSH* in the Clifford setting is 0.75.

We see that restricting the CHSH* game to the Clifford setting gives a success

probability equal to the reversible classical setting. This, again, resembles the CHSH
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game, where if states, operations and measurements are similarly limited, the Bell

inequality value of 0.75 cannot be surpassed. We now show that when diagonal non-

Clifford gates are available, one can always do better than this bound.

Proposition 5. For a quantum system with d = 2, in the Clifford setting but with the

addition of any pair of non-Clifford gates Rz(ε) and Rz(ε)
†, with ε ∈ (0, π

2 ), the value

of the CHSH* game is greater than 0.75.

The proof is via explicit construction. We adopt a strategy similar to the optimal

quantum strategy in the unitary setting, where replacing T with Rz(ε) and T † with

R†
z (ε), achieves a probability of success Psuc greater than 0.75:

Psuc =
1
4

[(
1
2
+

cos(ε)
2

)
+

(
1
2
+

cos(−ε)

2

)
+

(
1
2
+

cos(π

2 − ε)

2

)
+

(
1− 1

2
− cos(π

2 + ε)

2

)]
.

(4.8)

This probability is always greater than 0.75 when ε ∈ (0, π

2 ), and attains a maximum

of cos2(π

8 ) when ε = π

4 as expected. Figure 4.7 provides a geometrical comparison of

optimal strategies in the three reversible settings we have considered. This geometrical

representation provides an intuition on why the different settings give different values

ω(CHSH∗). Two bits are necessary to obtain the nonlinear function with probability

1. This can also be interpreted as one of the two bits being erased in accordance with

Landauer’s principle (i.e. the irreversible setting). In the unitary setting, the single

qubit in the optimal quantum strategy can be seen as two bits where the erasure is

just partial (the red square can be seen as a smaller version of the black square). The

Clifford setting does not allow more possibilities than the reversible classical setting –

it indeed provides a value of 0.75 – even if the stabilizer qubit can reach more states

than the single bit. Outputting a random bit would correspond to the origin (that can
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Figure 4.6: Success probability varying ε ∈ (0, π

2 ). Any pair of non-Clifford gates
Rz(ε) and Rz(ε)

†, with ε ∈ (0, π

2 ), allow us to win the CHSH* game with probability
greater than the classical value ωC(CHSH∗) = 0.75. Notice that the argument works
the same for ω outside the interval (0, π

2 ) by rotating the controlled gates accordingly.

be seen as an infinitesimally small square), which would always provide a success

probability of 0.5.

4.2.6 Qutrit

Having seen that the value of the CHSH* game allows us to distinguish between var-

ious settings with systems of dimension 2, we will now consider systems of higher

dimension, beginning with dimension 3.

Proposition 6. For d-dimensional quantum or classical systems, in the reversible set-

ting with d ≥ 3, there always exists a perfect strategy (i.e. the value of the game is

1).

We provide a qutrit strategy, and note that this can always be embedded into
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Figure 4.7: Geometrical analysis of the protocol The figure shows the state space of
two bits (vertices of the big black square), one qubit (XY plane of the Bloch sphere)
both in the optimal winning strategy (the vertices of the red square) and restricted to
Clifford computation (the vertices of the tilted green square), and one bit, (e.g. the
edges of the brown line). Notice that the measurement at the end of the protocol
corresponds to the collapse of a state to the x axis.

systems of dimension greater than 3. Without loss of generality we suppose that

the system is prepared in the state |0〉, and the strategy consists of the gates A0 =

I,A1 = X ,B0 = I,B1 = X . The generalised Pauli X acts as X |i〉 = |i+1〉 , where

i ∈ {0,1,2} and the sum is mod3. The measurement is given by the POVM

{|0〉〈0|+ |1〉〈1| , |2〉〈2|}. If we associate the outcome 0 to the first element of the

measurement and the outcome 1 to the second, we obtain a ·b mod 2 with probability

1. Notice that this strategy can equally be applied in the case of a classical trit, using

the obvious analogous state and reversible gates.

This shows that, if the operations on the system are restricted to reversible gates,
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the CHSH* game is a dimensional witness, as it can witness when the dimension of

the system is at least 3.

4.3 Connection to Landauer’s principle

We have seen that under the assumption that only reversible gates are employed, the

CHSH* game acts as a witness that distinguishes quantum and classical systems, and

systems of different dimension. How reasonable is it to restrict the operations to re-

versible transformations? It was first argued by Landauer that irreversible operations

are not fundamental. Landauer’s principle states that every irreversible classical opera-

tion on logical bits must be accompanied by a rise in the entropy of the non-information

bearing degrees of the system or its environment. This holds because in order to build

an irreversible gate out of fundamentally reversible operations, we need to discard or

erase information.

We have seen that erasure is a powerful tool that allows to win the CHSH* game

with certainty. Reversible classical and quantum settings lead to distinct lower values

for the game. This can be seen as a reflection of the non-classical nature of quantum

information storage and measurement.

We can interpret the success probability as how much the chosen setting allows

us to learn about the irreversible function a ·b. The quantum resource in this protocol

is the qubit’s ability to simulate two classical bits (one of which is going to be erased).

This is made even more explicit in Figure 4.7, which compares the state spaces of a pair

of bits, a single qubit and a single bit. In particular, in the optimal quantum strategy the

single-qubit state space (that mimics the two-bit state space) encodes the four possible

input combinations as four quantum states. The measurement then extracts one bit

of information. Since the four states are not all pairwise orthogonal, the system is not
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storing two independent bits prior to the measurement and can therefore perform better

than the reversible classical and Clifford settings.

4.4 Generalisation to higher dimensions.

We have introduced the CHSH* game as a modification of the CHSH game from two

players to one player. It is natural to consider a similar one-player modification of

the modq CHSHq game. We call such a game the CHSH∗q game. We leave the full

investigation of the CHSH∗q for future work, but make some preliminary observations

here.

An interesting question is whether Lemma 1 can be extended to a correspondence

between strategies for the single qudit and CHSHq games. The current proof of the

lemma does not directly generalise to systems of higher dimension since it utilises

some special properties of 2x2 unitary matrices.

Nevertheless, we conjecture that the correspondence between the Tsirelson bound

for the CHSH game and the quantum value for the CHSH∗q game in the unitary setting

holds for arbitrary dimensions. We here provide a support towards the validity of

the conjecture, by focusing on the case of q = 3. We show that a strategy in the

CHSH∗3 game mapped from a slight modification of an optimal quantum strategy in

the CHSH3 as provided by Ji et al.[68], obtains exactly the value of Tsirelson’s bound

for the CHSH3 game, which is known to be approximately 0.71 [31, 68, 81, 14]. We

also show that the Bell bound of 2
3 for the CHSH3 game holds equally for the CHSH∗3

game.

The CHSH∗3 game asks that the player’s final measurement output is c = a ·

b (mod 3), for inputs a,b,c ∈ {0,1,2}.

For a classical trit with reversible gates, the maximum probability of success (co-
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inciding with the known Bell bound [31, 68, 81, 14]) is 2
3 . This can be found by listing

all the possibilities for the different input values. One way to obtain it is to start with

the trit in the state 0 and apply the gates A0 = A1 = B0 = B2 = I,A2 = B1 = X .

Suppose now that we have a qutrit system prepared in state

T3|+〉= T3
|0〉+ |1〉+ |2〉√

3
, (4.9)

where the gate T3 = diag(1,w−1/3,w−2/3) is the dimension-3 equivalent of the non-

Clifford gate T , and w = exp(2πi
3 ).

Let us choose the following control gates:

A0 = B0 = I,A1 = B2 =V,A2 = B1 =W, (4.10)

where V = diag(1,w,w) and W = diag(1,1,w). Measuring the system in the X basis

gives a success probability Psuc ≈ 0.71. This strategy is inspired by the one used to

obtain the Tsirelson bound for the CHSH3 game in [68], thereby providing support for

the conjecture that there exists a mapping from the single system protocol to CHSH in

higher dimensions.

4.5 Conclusion

In this work we introduced the CHSH* game, a single player game inspired by the

CHSH game. We showed that the optimal success probability for CHSH*, called the

value of the game, depends on many properties of the system available to the players.

Defining these properties via settings, we showed that the value of the game depends

on the irreversibility, or otherwise, of the transformations available to the players, the

quantum or classical nature of the system and the system dimension.
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Furthermore, we saw that the values obtained are equal to the Bell and Tsirelson

bounds in the CHSH game (and the perfect strategies embodied by PR boxes). In

particular, for the unitary quantum setting, Lemma 1 shows that any unitary strategy

in CHSH* can be mapped to a quantum strategy in the CHSH game. This correspon-

dence gives a new perspective on Tsirelson’s bound, which arises due to the absence of

irreversible transformations and the limited ability of quantum strategies with unitary

gates and projective measurements to simulate erasure.

We saw that in the more restricted Clifford setting, the value obtained is no better

than the reversible classical setting, reflecting the crucial role of non-Clifford compu-

tation to obtain better than classical performance in quantum computation. We show

that, under the assumption of reversible transformations, the CHSH* game acts as a

dimensional witness, since any initial state of dimension d > 2 can in principle win the

game with certainty. However, the restriction to reversible operations is not a limita-

tion. In accordance with Landauer’s principle, implementing irreversible transforma-

tions at the microscopic level requires ancillary bits which must then be erased. The

presence of exactly these hidden ancillary bits is detected by our protocol.

We noted a similarity between the optimal unitary strategy for the CHSH* game

and quantum Random Access Codes (RAC). The latter have also been proposed as

dimensional witnesses [135]. It is therefore important to emphasise the differences

between RAC and the CHSH* game. The CHSH* game is able to detect the hidden

information needed to implement irreversible gates. However, irreversible gates pro-

vide no advantage for the implementation of Random Access Codes. This means that

a dimensional witness based on the RAC protocol will be blind to this kind of hid-

den information. Following Landauer’s approach, we assert that the ability to detect

irreversible dynamics should be an important desideratum for quantum dimensional
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witnesses. This has not been considered in prior work.

We conjecture our results to hold also for the generalisation of the protocol to

modq arithmetics. We support this by examining the q = 3 case in the single system

scenario, for which we show the validity of the Bell bound and we further provide a

strategy to achieve Tsirelson’s bound. The validity of this conjecture may open the way

to easier approaches for deriving Tsirelson’s bounds in mod q arithmetics, by using our

single-system protocol as a tool for proving tightness.

In light of Landauer’s principle, we further considered the entropic costs of the

erasure associated with the CHSH* game. The lack of such an erasure operation in

unitary quantum mechanics was a barrier to winning the game deterministically. Via

the correspondence with Tsirelson’s bound proven in Lemma 2, we demonstrate a link

between the reversibility in fundamental operations embodied by Landauer’s principle,

and the non-unity value of Tsirelson’s bound. This work shows that Tsirelson’s bound

can be seen as arising from the restricted physics of a unitarily evolving single qubit

system.

Finally, a recent paper [85] has introduced a new notion of transformation con-

textuality, where the contexts are sequences of transformations in a l2-TBQC protocol.

This work is relevant to the CHSH* game, since [85, Theorem 1] applies to the CHSH*

game too. Other forms of contextuality have been studied from the single-particle

perspective [120], but they do not apply here. Our work shows that assumptions of

reversibility in transformations can have a dramatic effect on the capabilities of the

system, motivating further study of the relationship between non-classicality and irre-

versible dynamics.
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Chapter 5

Summary and outlook

Different quantum technologies are already available and a universal quantum com-

puter is perhaps the one most sought for. In fact, quantum supremacy has recently

been achieved and it may boost the research field even more by giving new hope that

this goal can be achieved. Nevertheless, it is still not completely understood which

properties of quantum systems are responsible for the quantum computational speed-

up.

Quantum systems exhibit correlations that cannot be explained with a local hid-

den variable model. In quantum information, these correlations are useful resources

for information processing tasks, such as in Measurement-based Quantum Computa-

tion (MBQC). In MBQC, universality of quantum computation can be achieved via

adaptive measurements on a specific entangled resource state. There are proven con-

nections between this model of computation and the non-classicality of quantum corre-

lations. In chapter 3, we study a version of MBQC in which the adaptivity is removed

and aim to better understand the computational advantages which we can still obtain

from the resource. We have used a property that we already know to give us quantum

advantage, contextuality, to more efficiently compute functions which have important

applications in security. Contextuality emerges as an inherent non-classical feature
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from studies in quantum foundations.

Werner and Wolf [136] showed that GHZ states provide the optimal quantum

bounds for Bell inequalities. These states will therefore always be optimal in MBQC.

Thinking of Bell inequalities in an information theoretic framework has proven to be

very fruitful, and it seems that such approach will continue to provide useful insights

into quantum computation.

We demonstrate that we can deterministically compute a special type of boolean

functions with fewer resources than previously known protocols using GHZ states. We

exploited the relationship between quantum correlations and applications of boolean

functions theory to classical cryptography. By using bent functions, which are maxi-

mally nonlinear boolean functions, we also exploited the relationship between the non-

linearity of the function to be computed and the perfect correlations in the resource.

Those results use contextuality as a source of computational power in a particu-

lar scheme of computation. The question of whether contextuality provides the same

justification for other models is still open. In chapter 4, we have looked at more re-

stricted scheme which shows quantum advantages but does not show contextuality (in

its standard versions). It also does not show nonlocality, which is another form of

non-classicality used as a resource in information processing tasks [18].

We have studied a single-system protocol with fixed preparation and fixed mea-

surement, and subject to controlled gates, the CHSH* game. The protocol computes a

nonlinear boolean function with varying success probabilities that depend on the dif-

ferent settings considered. In a classical reversible setting, it achieves the Bell bound

and in the quantum unitary setting, it achieves the Tsirelson’s bound. When the quan-

tum unitary setting is restricted to Clifford computation, the protocol does not perform

better than in the classical reversible setting. The chance to use any non-Clifford gate

114



CHAPTER 5. SUMMARY AND OUTLOOK

increases the probability of computing the function beyond the Bell bound. When we

allow irreversible gates, the function can be deterministically computed. This crucial

role of irreversibility has suggested a connection with Landauer’s principle that asso-

ciates entropic costs to erasures of information.

An open question remains about the tightness of the Tsirelson bound in the

CHSHq for q ≥ 2 and we have conjectured that the mapping from the CHSHq to our

CHSH∗q also holds for d ≥ 2. We have done so by comparing the optimal quantum

strategy result for the CHSH3 with the one for the CHSH∗3 and checking that they

provide the same bound. Preliminary analyses seem to show that the optimal quantum

strategies in the CHSH∗q game exhibit similar patterns, in terms of the gates, when

varying q. This suggests a possible direction to achieve the tightness of Tsirelson’s

bounds in the CHSHq game for arbitrary q using the CHSH∗q game.

Considering the origins of the quantum computational speed-up, this work sug-

gests that the answer is not to be expected to come from a single feature (e.g. a given

notion of contextuality), but it depends on the scenario considered. We believe that

understanding what in quantum theory can explain the quantum computational power

is important not only to reveal the nature of quantum reality and solve open problems

in physics, but also to build new quantum technologies and new implementations for

quantum computation.
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