Has the time come to revisit our standard measures of disability progression in MS?

Authors & affiliations
Tomas Kalincik, MD, PhD; CORE, Department of Medicine, University of Melbourne, Melbourne, Australia; Melbourne MS Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Australia
Maria Pia Sormani, PhD; Department of Health Sciences (DISSAL), Biostatistics Unit, University of Genoa, and Ospedale Polyclinico San Martino-IRCCS, Genoa, Italy
Carmen Tur, MD, PhD; Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, UK; Multiple Sclerosis Centre of Catalonia, Neurology/Neuroimmunology Department, Vall d’Hebron University Hospital, Barcelona, Spain

Disclosures
Tomas Kalincik is the chair of the MSBase Scientific Leadership Group, served on scientific advisory boards for Roche, Celgene, Genzyme-Sanofi, Novartis, Merck and Biogen, steering committee for Brain Atrophy Initiative by Genzyme, received conference travel support and/or speaker honoraria from WebMD Global, Novartis, Biogen, Genzyme-Sanofi, Teva, BioCSL and Merck and received research support from Biogen.
Maria Pia Sormani received consulting fees from Biogen, Sanofi Genzyme, Roche, Novartis, Merck, GeNeuro, Celgene, TEVA and Medday.
Carmen Tur has received a post-doctoral research ECTRIMS fellowship. She has also received honoraria and support for travelling from Merck Serono, Sanofi, Roche, TEVA Pharmaceuticals, Novartis, Biogen, Bayer, Ismar Healthcare. She also provides consultancy services to Roche.

word count: 979

Editorial
For decades progression of disability in MS was assessed by a confirmed increase in Expanded Disability Status Scale (EDSS). It is the typical primary endpoint in phase 3 clinical trials in progressive MS, where the lack of effect of most immunotherapies on confirmed disability progression is usually interpreted as the lack of protection from cumulative damage to the CNS.

In this issue of Neurology, Koch and colleagues report results of a study that explored the ratios of disability worsening and improvement when detected by EDSS and by two other commonly assessed tests of neurological performance, timed 25-foot walk (T25FW) and nine-
hole peg test (9HPT). The study utilised data from two randomised clinical trials in SPMS: IMPACT (interferon β-1a vs. placebo) and ASCEND (natalizumab vs. placebo). It builds on the premise that most of disability accrued during the course of SPMS is irreversible and that improvement in disability mostly represents noise due to measurement error. In both datasets, the rates of improvement of T25FW and 9HPT were substantially lower than their rates of worsening. In contrast, the rates of disability improvement and worsening based on EDSS were very similar. The authors conclude that EDSS is more amenable to measurement error than the two other outcome measures and suggest that T25FW and 9HPT are more suitable measures to quantify disability outcomes in trials of SPMS than EDSS. Koch et al attribute this to their relatively higher inter- and intra-rater reliability and also the fact that T25FW and 9HPT are objective interval scales.

The most important ingredient of a successful trial is its primary outcome. Thus, the present study has considerable implications for the design of future clinical trials, since detecting a treatment effect on an outcome that is subject to large measurement error is difficult.

Measurement error is part of research reality. Despite this fact, its presence has been overlooked in most analytical designs. A random measurement error affects all measurements with equal probability and impact, irrespective of the value of the measured outcome and patients’ allocation to an intervention. Such error does not influence the mean estimated treatment effect, but it does increase the variability of that estimate, inflating type-II error. On the other hand, a differential measurement error influences the measurements of an outcome in patients from different groups and with different values of their measured outcome differently. Therefore, differential measurement error represents a significant problem, as it introduces bias, affecting the estimates of treatment effect and leading to inflation of both type-II and type-I errors. Koch and colleagues highlight the importance of measurement error...
associated with EDSS, which could potentially lead to either of the above scenarios. In both scenarios, quantification of measurement error and its incorporation into statistical design of clinical trials will increase the precision of their conclusions. In both scenarios, quantification of measurement error and its incorporation into statistical design of clinical trials will increase the precision of their conclusions.

A designer of a randomised trial should choose the primary outcome measure with the best signal-to-noise ratio. In relapsing-remitting MS, the signal for EDSS progression is large, as the effect of therapies on sudden, stepwise changes in disability is large. However, in MS phenotypes with gradual change in disability, the yield of confirmed EDSS worsening has been underwhelming, as evidenced by a number of clinical trials that showed borderline effects with a large variability. One therefore has to ask: Are we using the right instruments to measure the effect of therapies on disability in progressive MS?

In this study, the authors assume that improvement in disability measures in SPMS is due to measurement error. Even though this assumption may be valid in most cases, especially if
improvement is only detected by one of the scales, true recovery of neurological function in progressive MS is possible. An alternative interpretation of the presented results could be that recovery of neurological function is more common in SPMS than what we had previously thought, and that EDSS is more sensitive to its detection than the other two measures. This study does not provide a definitive answer to this question, as the 'ground truth' remains unknown.

A recovery may be driven by different biological mechanisms. First, spontaneous remyelination, present in relapsing as well as progressive MS, can restore the function and metabolic support of demyelinated axons. Second, acute localised inflammation in the CNS, which is common even in progressive MS forms, represents a therapeutic target for immunotherapies and its resolution can slow progression and even lead to clinical improvement. Third, functional reorganisation of the damaged nervous circuitry (neuroplasticity) has been linked to clinical recovery in all MS phenotypes.

The study by Koch and colleagues brings to our attention the error in measurement of disability outcomes through demonstrating an incongruence among three commonly used disability measures. At present, most clinical trials in progressive MS use confirmed change in EDSS as their primary or key secondary outcomes. However, as the authors elegantly show, other, more reliable clinical outcomes are needed. As we are revisiting our biological hypotheses for treatment of progressive MS, perhaps the time has come that we should also revisit the instruments that we use to examine their efficacy.

References