Biobanking corneal tissues for emergency procedures during COVID-19 era

Dear Editor,

COVID-19 pandemic has significantly affected the ophthalmic practice and the eye banking field.\(^1\,^2\) Hence, new guidelines are being developed to safeguard corneal transplantation. Recently, in a retrospective study, we reported a significant decline in the number of tissues procured (−41%) and distributed for transplantation (−62%) in 2020 compared with 2019 at the Veneto Eye Bank Foundation, Venice, Italy. However, one week after the lockdown was lifted, although the procurement did not improve significantly (−30%) the request for tissues had already inclined (+14%) as soon as the elective surgeries were partially resumed.\(^3\) A similar trend, in terms of tissue procurement is therefore expected in other centers that have been severely hit by COVID-19. For such reasons, it is not only important to procure the tissues, but also to store the previously collected tissues for a longer period until the surgeries are resumed.

In a recent laboratory investigation,\(^4\) we reported that dehydrating corneal tissue (after removing the endothelium) for up to 14 days by placing silica gel around the tissue can be a potential viable option for storing corneal tissues for emergency procedures. Once re-hydrated, this procedure has shown no impact on tissue transparency, but reduction in overall thickness by 147 μm (speculated to be due to epithelial cell loss) after rehydration. The stiffness profile (tensile stress-strain) did not show any significant difference before (27 mPa) or after rehydration (31 mPa). Periodic acid-Schiff showed presence of keratocytes and the protein (α-SMA) was expressed after rehydration. This means that the tissue maintained the characteristics required for anterior lamellar keratoplasty.

In a retrospective clinical study between May 2001 and June 2017, seventeen rehydrated tissues that were stored for 8.4 ± 2.9 [Range 4-12] months in dehydrated form were transplanted in a tertiary eye centre after obtaining full consent from the patient. The corneal tissue was cut into anterior and posterior lamellae [Fig. 1a]. The anterior lamella, after washing with sterile PBS, was placed in a sterile petri plate. Another petri plate was filled with silica gel. The tissue and the gel were stored in a container in the order shown in Fig. 1b and the entire unit [Fig. 1c] was preserved between 2-8°C. Simultaneously, the residual posterior lamella was stored in organ culture media supplemented with 6% dextran T-500 at 31°C [Fig. 1d]. The entire procedure was carried out in a laminar flow hood ensuring complete sterility. Before transplantation, the anterior lamella was rehydrated in sterile BSS for 15-30 minutes to regain the thickness and transparency. The storage media from the posterior lamella was collected for microbiological examination following the standard operating procedure [Note: If the posterior lamella was deemed suitable for transplantation during the storage tenure then the microbiological examination performed before shipping the posterior lamella was considered final for both, anterior and posterior lamella].

Only emergency procedures such as corneal perforation due to corneal infection or trauma, grafts for keratoconus, corneal surgery combined with vitrectomy and others were performed in case of unavailability of tissues. Microbiological examination

Figure 1: Dehydration process to store corneal grafts. (a) Representation of a corneal tissue divided into anterior and posterior lamellae. (b) Representation of the storage container containing petri plate with the anterior lamella (top), blank petri plate for holding (middle) and petri plate filled with silica gel (bottom). (c) Real-time storage container with anterior lamella and silica gel, which is preserved between 2-8°C. (d) Representation of storing the posterior lamella from the same corneal tissue in the storage medium, which is also used for post preservation microbiological examination.
There are no conflicts of interest.

Acknowledgements
The authors thank Mrs. Jainsi Parekh for the illustration of Fig. 1.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Mohit Parekh1,2, Stefano Ferrari2, Alessandro Ruzza2, Pia Leon2,3, Antonella Franch2,3, Davide Camposampiero2, Kunal A Gadhvi2, Diego Ponzin2, Sajjad Ahmad2,4, Vito Romano2
1Institute of Ophthalmology, University College London, 2Moorfields Eye Hospital NHS Foundation Trust, London, 3St. Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool, UK, 4International Center for Ocular Physiopathology, Fondazione Banca Degli Occhi del Veneto Onlus, 5Department of Ophthalmology, SS Giovanni and Paolo hospital, Venice, Italy

References

Access this article online
Quick Response Code:
Website:
DOI:
10.4103/ijo.IJO_2615_20


© 2020 Indian Journal of Ophthalmology | Published by Wolters Kluwer - Medknow
TIME IS OF THE ESSENCE

Keeler’s MIO – a revolution in Fundus Imaging Technology for adult and paediatric patients, helping Ophthalmologists worldwide conduct fast and affordable retinal examination!

- Non-contact & portable digital retinal exams
- Saves time with KineXis Imager for fundus auto-capture
- Share documentation securely for patient engagement, education and analysis

“In a busy out-patient environment, the visit led to quick diagnosis, clear explanation of the required treatment to the patient and urgent treatment. The diagnosis would have been difficult to explain to the patient without images of the eye, prolonging the appointment and potentially delaying treatment.”

Dr. N.R. Rangaraj
Premiere Eye Care, Chennai

Today patients across the world are avoiding essential eye treatment for fear of the on-going pandemic. Innovative telemedicine technology in the ophthalmic field, like MIO, helps ensure safety for both doctor and patient. Retinal treatment is important. #EyeCareCannotWait

Available in India
www.keelermio.com