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Within the framework of statistical learning theory it is possible to bound the minimum number of samples
required by a learner to reach a target accuracy. We show that if the bound on the accuracy is taken into
account, quantum machine learning algorithms for supervised learning—for which statistical guarantees are
available—cannot achieve polylogarithmic runtimes in the input dimension. We conclude that, when no further
assumptions on the problem are made, quantum machine learning algorithms for supervised learning can have
at most polynomial speedups over efficient classical algorithms, even in cases where quantum access to the data

is naturally available.
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Introduction.A wide class of quantum algorithms for su-
pervised learning problems (where the goal is to infer a
mapping given examples of an input-output relation) exploit
fast quantum linear algebra subroutines to achieve runtimes
that are exponentially faster than their classical counterparts
[1,2]. Examples of these algorithms are quantum support
vector machines [3], quantum linear regression [4,5], and
quantum least squares [6,7].

A careful analysis of these algorithms identified a number
of caveats that limit their practical applicability such as the
need for a strong form of quantum access to the input data,
restrictions on structural properties of the data matrix (such
as condition number or sparsity), and modes of access to the
output [8]. Furthermore, if one assumes that it is efficient to
(classically) sample elements of the training data in a way
proportional to their norm, then it is possible to show that
classical algorithms are only polynomially slower (albeit the
scaling of the quantum algorithms can be considerably better)
[9-13].

In this paper, we continue to investigate the limitations of
quantum algorithms for supervised learning problems. Our
analysis focuses on the dependency on the size of the data set
that is introduced when considering the statistical guarantees
of the estimators. The key elements of our work are a series
of well-known results in statistical learning theory that show
how the accuracy parameter of a supervised learning problem
scales inverse polynomially with the number of samples in
the training set. We leverage on these insights to show that
quantum learning algorithms must have at least a polynomial
runtime in the dimension of the training data and therefore
cannot achieve exponential speedups over classical polyno-
mial time machine learning algorithms. We remark that our
results do not rule out exponential advantages for the learning
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problem where no efficient classical algorithms are known.
In fact, in this regime, there exist learning problems for
which quantum algorithms have a superpolynomial advantage
[14,15].

Our results are independent of the modes of access to the
training data, that is, even if the data set is naturally stored
in a quantum structure, quantum machine learning algorithms
can have at most a polynomial advantage over their classical
variants.

Finally, we note that our results do not assume any prior
knowledge on the function to be learned. This allows us to
make statements on virtually every possible learning algo-
rithm, including neural networks. Using stronger assumptions
on the target function it is possible to improve the dependency
of the accuracy in the number of samples (consider the limit
case where the function is known; in this case, zero samples
can determine the function with maximum accuracy).

Statistical learning theory. The field of statistical learning
theory investigates how to quantify the statistical resources
required to solve a learning problem [16]. In this work, we
consider supervised learning settings where the goal is to find
a model that fits well a set of input-output training exam-
ples but that, more importantly, guarantees good prediction
performance on new observations. This latter property, also
known as the generalization capability of the learned model,
is a key aspect separating machine learning from the standard
optimization literature. Indeed, while data fitting is often ap-
proached as an optimization problem in practice, the focus of
machine learning is to design statistical estimators able to “fit”
well future examples.

More formally, let p be a distribution over X x Y, with X
a so-called domain (or input) set and Y a label (or output) set.
The goal of supervised learning is to produce a hypothesis
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f : X — Y such that the expected risk or expected error

E(f) == E, L@y, f(x))] D

is small with respect to a suitable loss function £ : Y x Y — R
measuring prediction errors. However, in practice, the target
distribution p is unknown and only accessible by means of a
finite training set S, = {(x;, y;), i = 1, ..., n} of independent
and identically distributed (i.i.d.) points sampled from it. De-
pending on whether the label set Y is dense or discrete the
task is called regression (dense) or classification (discrete).
Typical loss functions are the quadratic loss £4(f(x),y) =
(f(x)— y)? over Y =R for regression and the 0 — 1 loss
Lo—1(f(x),y) = 1y, over Y = {—1, 1} for classification.

Different machine learning frameworks have different pre-
scriptions on how to choose the hypothesis f. The empirical
risk minimization (ERM) framework prescribes to choose a
hypothesis that minimizes the empirical risk

o R 1
}25{80‘), 8(f)=; Z (i, (X)), (2

(xi,yi)€T

over a suitable hypotheses space H. Under weak assumptions
on H (for instance, a bounded subset of a Hilbert space [16]),
it is possible to guarantee the existence of a minimizer for
Eq. (2) that we denote f = arg min fewé( ).

The difference between risk and empirical risk is called
the generalization error and plays a central role in statistical
learning theory. Indeed, when Eq. (1) admits a minimizer in
H, we have

E(f) — inf &(f) < 2 sup |E(F) — E). 3)
feH feH

In other words, the excess risk incurred by the empirical risk
minimizer is controlled by the worse generalization error over
9H. A fundamental result in statistical learning theory [16-18],
often referred to in the literature as the fundamental theorem
of statistical learning, is that for every n € N, § € (0, 1),
and every distribution p, the following holds with probability
larger than 1 — 4,

n 1 1/6
sup [8(F) — E(f)| < ®<\/ M) @)

feH n

where ¢(H) is a measure of the complexity of H [such as the
Vapnik-Chervonenkis (VC) dimension, covering numbers, the
Rademacher complexity, to name a few [16,19]]. Intuitively,
the dependency on c¢(#) in Eq. (4) models the phenomenon
known as overfitting in which a large hypothesis space incurs
in low training (empirical) error but performs poorly on the
true risk. This problem can be addressed with so-called reg-
ularization techniques, which essentially limit the expressive
power of the learned estimator in order to avoid overfitting the
training data set.

Different regularization strategies have been proposed in
the literature (see Refs. [17,20,21] for an introduction to the
main ideas), and one of the well-established approaches which
directly imposes constraints on the hypotheses class of candi-
date predictors is the Tikhonov regularization. Regularization
ideas have led to popular machine learning approaches which
are widely used in practice, such as regularized least squares
[19], Gaussian process (GP) regression and classification [22],

logistic regression [20], and support vector machines (SVMs)
[17]. All these algorithms can be studied within the framework
of kernel methods [23].

From a computational perspective, these approaches com-
pute a solution for the learning problem by optimizing over the
constraint objective, which typically consists of a sequence of
standard linear algebra operations such as matrix multiplica-
tion and inversion. For most classical algorithms, such as GP
or SVM, the computational time is therefore O(n*), which is
similar to the time it requires to invert a square matrix that has
a size equal to the number n of examples in the training set.
Notably this can be improved depending on the sparsity and
the conditioning of the specific optimization problem.

To reduce the computational cost, instead of considering
the optimization problem as a separate process from the sta-
tistical one, more recent methods hinge on the intuition that
reducing the computational burden of the learning algorithm
can be interpreted as a form of regularization on its own. For
instance, early stopping approaches are now widely used in
practice, and perform only a limited number of steps of an iter-
ative optimization algorithm, to avoid overfitting the training
set. They thereby entail less operations, while provably main-
taining the same generalization error of approaches such as
Tikhonov regularization [21]. More specifically, prototypical
results (such as Ref. [21]) show that the number of iterations
required are of the order of 1/A where A is the ideal regu-
larization parameter that one would use for ERM. Therefore,
if in the worst-case scenario A = O(1/4/n), early stopping
would attain (up to constants) the same generalization error
of regularized ERM by performing only /7 iterations.

A different approach, also known as divide and conquer,
is based on the idea of distributing portions of the training
data onto separate machines, each solving a smaller learn-
ing problem, and then combining individual predictors into
a joint one. This computation hence benefits from both the
parallelization and the reduced dimension of distributed data
sets while similarly maintaining statistical guarantees [24].

A third approach that has recently received significant
attention from the machine learning community, along with
the quantum computing community, is based on random sub-
sampling, a form of dimensionality reduction. Depending on
how such sampling is performed, different methods have been
proposed, the most well known being random features [25]
and Nystrom approaches [26,27]. Here, the computational
advantage is clearly given by the smaller dimensionality of
the hypotheses space, and it has also recently been shown that
it is possible to obtain an equivalent generalization error to
classical methods in these settings [28].

For all these methods, training times can be typically
reduced from the O(N?) of standard approaches to O(N?)
or O(Nz), where z is the number of nonzero entries, while
keeping the statistical performance of the learned estimator
essentially unaltered.

Quantum learning algorithms. Linear algebra subroutines
are a central computational element of learning algorithms.
A large class of quantum algorithms for supervised learning
problems claims exponential speedups compared to classical
algorithms by making use of fast quantum linear algebra
subroutines [3—7,29,30]. One widely used algorithm is the
quantum linear system solver [31] (also known as HHL after
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the three authors Harrow, Hassidim, and Lloyd). The algo-
rithm takes as input a quantum encoding of the vector b € R”
and an s-sparse matrix A € R"*", with ||A|| < 1, and outputs
an approximation |i) of the solution |w = A~!'b) of the linear
system such that

o) — [w)ll <y ®)

for an error parameter y > 0. The current best implementa-
tion of the algorithm runs in time [7]

O(lAllF « polylog(x, n, 1/y)), (6)

where ||A||r is the Frobenius norm of A and « its condition
number. Note that the HHL algorithm requires us to access
the data matrix A € R™“ in O(polylog(nd)) time. All the
quantum learning algorithms we discuss in this paper inherit
this assumption. Recently, it was proven that such strong
oracular assumptions (when the data matrix is low rank) also
lead to exponentially faster classical algorithms [9,10,12,13].
We recommend Refs. [2,8] for more detailed discussions of
the limits of quantum learning algorithms based on fast linear
algebra subroutines.

Before proceeding to the statistical analysis of quantum
learning algorithms we review some quantum algorithms for
the least-squares problem. These will serve as the main exam-
ples in our analysis.

Quantum least squares. Least squares is an algorithm
for minimizing the empirical risk, with respect to the
squared loss, for the hypothesis class of linear func-
tions. More specifically, let X =R¢ and Y =R, and let
H:={f:X - Y|IweR?: f(x) = w’x} be the hypothe-
sis class of linear functions. The empirical risk is

A 1
E(f) =3 wx =y (7)
i=1

We can minimize the empirical risk by setting its gradient
to zero. Using X := Y, x;x/ and b:= Y, yix; one can write
a closed-form solution to the least-squares problem as w =
X 'p.

Several quantum algorithms for least squares (or, more
generally, linear regression problems) have been proposed
[4,6,7,29,30]. A common feature is that they use a fast quan-
tum linear system algorithm to find a quantum encoding |w)
of the solution vector w = X ~!b. The fastest known algorithm
in the class [7], which improves the dependency on the error
from polynomial to logarithmic, solves the (regularized) least
squares or linear regression problem in time,

O(HX“F K pOlleg(l’l, K, 1/)’))» (8)

where « is the condition number of X and y > 0 is an ap-
proximation parameter. As for every other quantum algorithm
discussed in this paper the quantum least-squares solver re-
quires a quantum-accessible data structure. The dependency
on the Frobenius norm implies that it is possible to obtain
a speedup only when X is low rank (but nonsparse). Due to
approximation errors, the output of the algorithm is not |w)
but a quantum state |@), such that |||®) — |w)|| < y.

It is possible to get rid of the dependency on the Frobe-
nius norm using the sample-based Hamiltonian simulation
method [32,33]. Leveraging this technique, Ref. [S] proposed

a least-squares algorithm whose scaling does not depend on
the Frobenius norm but requires a higher number of copies
(with respect to Ref. [7]) of the input density matrix. Note that,
because the algorithm in Ref. [5] is posed in the query model,
i.e., the computational complexity is given in the number of
calls to the oracle which returns the data already encoded in
the form of a quantum state, it is not possible to make a direct
comparison between the two algorithms. The computational
complexity of the algorithm given in Ref. [5] is

O(sz"%polylog(n)), 9)

and the dependency on the error is polynomial.

Quantum speedups and statistical bounds. In this section
we analyze the speedup claims of quantum machine learning
algorithms using the framework of statistical learning theory.
Our main point is that if one considers the ®(n~'/?) scaling
of the generalization error—see Eq. (4)—quantum learning
algorithms cannot achieve a polylogarithmic runtime in n.

The starting point of our discussion is the following stan-
dard error decomposition. Consider a hypothesis f. We want
to bound how far the generalization error of f is from the
best possible generalization error; this is known as the Bayes
risk and is indicated by &* := inf ;¢ E(f), where F denotes
the set of all measurable functions f : X — Y. We want to
decompose this general error into different components and
for this reason we introduce &g = inf gy E(f), that is, the
best risk attainable by a function in the hypothesis space H.
In order to simplify our discussion let us assume that Eg
always admits a minimizer fg; € H (it is possible to levy this
assumption using the theory of regularization). Recalling that
8( f ) i=inf ey S( f), we can decompose the total error as

Ef)—& =8&(f) - &N +Ef) - En+ En— &
IMM

(10)

Optimization error  Estimation error

=&+ 0(1/vn) + u. (1)

The first term in Eq. (10) is the optimization error and mea-
sures how good is the optimization that generated f with
respect to the ideal minimization of the empirical risk. This
error is related to the approximation error of the algorithm.
The second term is the estimation error and models the error
that we make by estimating the true risk using samples from
the distribution p. This is the generalization bound we dis-
cussed in Eq. (4). The third term is the irreducible error and
measures how well the hypothesis space models the problem.
It is an irreducible source of error that we indicate with the
letter w. If the irreducible error is zero, then we say that H is
universal. For simplicity, we assume throughout the paper that
u=0.

From the error decomposition in Eq. (10) we see that in
order to have an algorithm with optimal statistical perfor-
mance we must make sure that the optimization error is not
larger than the estimation error. Therefore the optimization
error must scale at most as the best estimation error. If it does,
we say that the optimization error matches the bound of the
estimation error.

In order to make the notion of matching the bound more
concrete, let us consider again the case of least squares. The

042414-3



CILIBERTO, ROCCHETTO, RUDI, AND WOSSNIG

PHYSICAL REVIEW A 102, 042414 (2020)

TABLE I. Summary of time complexities for training and testing
of different classical and quantum algorithms when statistical guar-
antees are taken into account. We omit polylog(n, d) dependencies
for the quantum algorithms. We assume that the generalization error
scales as ©(1/4/n) and count the effects of measurement errors. The
acronyms in the table refer to support vector machines (SVM), ker-
nel ridge regression (KRR), quantum kernel least squares (QKLS),
quantum kernel linear regression (QKLR), and quantum support
vector machines (QSVM). Note that for quantum algorithms the
state obtained after training cannot be maintained or copied and the
algorithm must be retrained after each test round. This brings a factor
proportional to the train time in the test time of quantum algorithms.
Because the condition number may also depend on  and for quantum
algorithms this dependency may be worse, the overall scaling of the
quantum algorithms may be slower than the classical.

Algorithm Train time Test time
Classical SVM/KRR n’ n
KRR [34-38] n? n
Divide and conquer [24] n? n
Nystrom [27,28] n? Jn
FALKON [39] nyn Jn
Quantum QKLS/QKLR [7] Jn nyn
QSVM [3] n/n n*Jn

closed-form solution w = X ~'b requires O(n’) time to be
computed and attains essentially zero optimization error. Be-
cause the total error is dominated by the 1/./n term of the
estimation error, one may wonder about the convenience of
paying a cost of order O(n?) to achieve zero optimization
error. A careful analysis shows that this is indeed not a con-
venient choice and it is possible to design algorithms that
are less accurate but converge faster to estimators that, albeit
not attaining zero optimization error, achieve an error that
matches the bound—this is the approach taken by early stop-
ping, divide and conquer, and random subsampling methods.
For many quantum algorithms, such as some of the quantum
linear regression and least-squares algorithms we discussed in
the previous section (e.g., Refs. [3,5]), the time complexity
depends inverse polynomially on the error and the matching
procedure has important consequences. In the next section we
discuss these implications and show that, in order to obtain an
optimization error that scales at most as the best estimation
error, one should expect to pay a computational price which is
polynomial in 7.

For quantum algorithms with polylogarithmic error depen-
dency, such as Ref. [7], the optimization error is lower than
the estimation error and therefore there are no bounds to be
matched. In this case, we show that the quantum algorithms
argument cannot achieve a polylogarithmic runtime in the
dimension of the training set based on an argument that ana-
lyzes the error dependency introduced via the finite sampling
process that is required to extract a classical output from the
algorithm. This will be discussed in a later section.

We begin by discussing the dependency on the error and
then proceed to discuss the dependency on the measurement
errors. We summarize the results of our analysis in Table I.

Error dependency of the quantum algorithms. In this sec-
tion we show that in order to have a total error [see Eq. (10)]

that scales as 1/,/n we must introduce a polynomial n depen-
dency in the quantum algorithm. For simplicity, we present
our argument by discussing the case of quantum least-squares
algorithms with inverse polynomial dependency on the error
[4,5,29]. Our results generalize easily for all kernel methods.

For a y error guarantee on the final output state, the quan-
tum algorithms we consider have a time complexity that scales
as O(k“y ~Ppolylog(n)) for some B, ¢ > 0. For example, 8 =
3 in Ref. [5] and B = 4 in Ref. [40].

Since for the quantum algorithm the data matrix needs
either to be Hermitian or encoded in a larger Hermitian matrix
such that the dimensionality of the matrix is n x d for n data
points in R?, we assume here for simplicity that the data are
given by an n x n Hermitian matrix, i.e., n points in R”.

In order give a precise bound to the optimization error term
in Eq. (10) in terms of the approximation error of the quantum
algorithm, we consider the following decomposition between
the ideal minimizer of the empirical risk 7 and the approxi-
mate minimizer fy, the output of the learning algorithm

&(fy) —&(f)
= &8(f,) — &)+ &) — &N + &) — &)
Generalization error

12)

Generalization error Algorithmic error

=0 )+ &) - &), (13)
————————

Algorithmic error

where the first and third contributions result from the general-
ization error bounds and the second is the approximation error
of the quantum algorithm. In order to achieve the best statis-
tical performance the algorithmic error must scale at worst as
the worst statistical error, that is, E(f,) — E(f) = O(n~1/2).

Let us analyze the algorithmic error term for the problem
of linear regression and least-squares problem. Assuming that
the output of the quantum algorithm is a state |@) while the ex-
act minimizer of the empirical risk is |w), with || |®) — |w)| <
y, we find that (assuming |X | and |Y| are bounded)

80F) — S0P < LS @ 5 — v — (T — )
(0= &I < - D 1@"x =y = T =)

i=1

(14)
l n
<= Ll —w)x 15
n; |(@ — w) x| (15)
1 n
< Do Llw—wl bl < k-, (16)
i=1

where k£ > 0 is a constant and the inequality comes from
Cauchy-Schwarz and the fact that, because |X| and |Y| are
bounded, we have that, for the square loss £y, the fol-
lowing inequality holds, [£s(f(x1),y1) — £sq(f(x2), ¥2)| <
LIGf (1) — y1) — (f(02) — y2)| for some L > 0.

In order to have an algorithm that achieves the best possible
statistical accuracy, we need the algorithmic error to scale at
worst as the statistical error—this can be obtained by setting
y = n~!/2_In this case, the time complexity of quantum least
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squares becomes
O(k°nP* log(n)), (17)

for some constant c.

Measurement errors in quantum algorithms. So far we
have ignored the error introduced by the measurement pro-
cess used to compute a classical estimate of the output of
the quantum algorithm. In practice, this corresponds to the
estimation of expected values of quantum operators. With a
classical statistical analysis of the errors—and assuming the
measurements are statistically independent—it is possible to
show, using the central limit theorem, that the estimation error
for a quantum expected value scales as 1/+/m, where m is the
number of measurements [41]. This is known as the standard
quantum limit or the shot-noise limit. Using techniques devel-
oped within the field of quantum metrology it is often possible
to overcome this limit—using the same physical resources and
the addition of quantum effects such as entanglement—and
obtain a precision that scales as 1 /m. It is possible to show that
this is the ultimate limit to measurement precision and follows
directly from the Heisenberg uncertainty principle [41,42].

In this section we analyze the contribution of the mea-
surement error to the time complexity of quantum learning
algorithms. Let us consider again the case of quantum least
squares. The (quantum) output of the algorithm is the state
|®), an approximation (due to algorithmic errors) of the ideal
output |w). Using techniques such as quantum state tomog-
raphy we can produce a classical estimate @ of the vector @
with accuracy,

o — ol <7 =2Q~1/m), (18)

where m is the number of measurements performed for the
estimation of the expected values on |®).

Let y be the ideal prediction. We have two sources of error,
the algorithmic error and the error coming from the estimation
process,

y =3l =lw'x - 2"x| 19)
< llw =@+ 7l [Ix]l (20)
< (v + ol 21

where we used Cauchy-Schwarz and ||w — @] < y.

By virtue of Eq. (12), we have that, if we want an algorithm
that attains the best statistical accuracy for the number of sam-
ples contained in the training set, we need to make sure that
the contribution coming from the measurement error scales
at most as the worst possible generalization error. Recalling
that the generalization error scales as ®(1/4/n) we have that
T = O(1/4/n), from which it follows that m = Q(/n). This
lower bound on the number of measurement required to ex-
tract a classical estimate of the output effectively sets a Q(/n)
lower bound on the time complexity of all supervised quantum
machine learning algorithms.

If we consider this lower bound, classical algorithms can
have time complexities matching those of the quantum al-
gorithms. For a more detailed comparison of the runtime
of popular classical and quantum algorithms for supervised
learning problems, see Table I.

Conclusions. Quantum machine algorithms promise to be
exponentially faster than classical methods. In this paper, we
use standard results from statistical learning theory to rule
out quantum machine algorithms with a polylogarithmic time
complexity in the input dimensions. Considering that almost
any current and practically used machine learning algorithm
has a polynomial runtime, our results warn against the possi-
bility of superpolynomial advantages for supervised quantum
machine learning. We remark two limitations of our analysis.
First, our results do not rule out exponential advantages over
classical algorithms with a superpolynomial runtime. Second,
we do not make assumptions on the hypothesis space; using
prior knowledge it is possible get error rates that converge
faster than 1/./n.

Our argument leverages the fact that the statistical error of
the algorithm has a provable polynomial dependence on the
number of samples in the training set. Since the statistical er-
ror and the approximation error of the algorithm are additive,
in order to achieve the best possible error rate, the asymp-
totic scaling of the statistical error must match that of the
approximation error. This matching forces the approximation
error of quantum algorithms to scale polynomially with the
number of samples. This effectively kills quantum speedups
for algorithms that have polynomial dependence on the error.

For algorithms where the dependency on the error is log-
arithmic, this argument does not apply. In this case, we show
that the sampling error coming from the measurement process
also adds up additively to the total error and this introduces
a polynomial dependency in the number of samples that kills
the superpolynomial speedup.

Notably, our results hold even assuming that quantum al-
gorithms can access a quantum data structure at no cost. In
this respect, we prove a stronger “no-go” result for quantum
learning than the one proved by Tang in Ref. [9]. Indeed, the
latter relies on a classical data structure that mimics a quantum
data structure but is unrealistic in practice.

As future directions, it is worth mentioning that it may be
possible strengthen our results by analyzing the n dependency
of the condition number. Previous results in this direction are
discussed in Refs. [19,43].
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