
Building Information Filtering
Networks with Topological

Constraints: Algorithms and
Applications

Guido Previde Massara

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

December 22, 2020

2

I, Guido Previde Massara, confirm that the work presented in this thesis is my

own. Where information has been derived from other sources, I confirm that this has

been indicated in the work.

Abstract

We propose a new methodology for learning the structure of sparse networks from data;

in doing so we adopt a dual perspective where we consider networks both as weighted

graphs and as simplicial complexes.

The proposed learning methodology belongs to the family of preferential attach-

ment algorithms, where a network is extended by iteratively adding new vertices. In the

conventional preferential attachment algorithm a new vertex is added to the network by

adding a single edge to another existing vertex; in our approach a new vertex is added

to a set of vertices by adding one or more new simplices to the simplicial complex. We

propose the use of a score function to quantify the strength of the association between

the new vertex and the attachment points. The methodology performs a greedy optimi-

sation of the total score by selecting, at each step, the new vertex and the attachment

points that maximise the gain in the score.

Sparsity is enforced by restricting the space of the feasible configurations through

the imposition of topological constraints on the candidate networks; the constraint is

fulfilled by allowing only topological operations that are invariant with respect to the

required property. For instance, if the topological constraint requires the constructed

network to be be planar, then only planarity-invariant operations are allowed; if the

constraint is that the network must be a clique forest, then only simplicial vertices can

be added. At each step of the algorithm, the vertex to be added and the attachment

points are those that provide the maximum increase in score while maintaining the

topological constraints.

As a concrete but general realisation we propose the clique forest as a possible

topological structure for the representation of sparse networks, and we allow to specify

further constraints such as the allowed range of clique sizes and the saturation of the

attachment points. In this thesis we originally introduce the Maximally Filtered Clique

Abstract 4

Forest (MFCF) algorithm: the MFCF builds a clique forest by repeated application of

a suitably invariant operation that we call Clique Expansion operator and adds vertices

according to a strategy that greedily maximises the gain in a local score function. The

gains produced by the Clique Expansion operator can be validated in a number of ways,

including statistical testing, cross-validation or value thresholding. The algorithm does

not prescribe a specific form for the gain function, but allows the use of any number of

gain functions as long as they are consistent with the Clique Expansion operator. We

describe several examples of gain functions suited to different problems.

As a specific practical realisation we study the extraction of planar networks with

the Triangulated Maximally Filtered Graph (TMFG). The TMFG, in its simplest form,

is a specialised version of the MFCF, but it can be made more powerful by allowing

the use of specialised planarity invariant operators that are not based on the Clique

Expansion operator.

We provide applications to two well known applied problems: the Maximum

Weight Planar Subgraph Problem (MWPSP) and the Covariance Selection problem.

With regards to the Covariance Selection problem we compare our results to the state

of the art solution (the Graphical Lasso) and we highlight the benefits of our methodol-

ogy.

Finally, we study the geometry of clique trees as simplicial complexes and note

how the statistics based on cliques and separators provides information equivalent to

the one that can be achieved by means of homological methods, such as the analysis

of Betti numbers, however with our approach being computationally more efficient and

intuitively simpler. Finally, we use the geometric tools developed to provide a possible

methodology for inferring the size of a dataset generated by a factor model. As an

example we show that our tools provide a solution for inferring the size of a dataset

generated by a factor model.

Impact Statement

Complex Networks and Big Data challenges

Complex networks are ubiquitous in complex systems modelling. The structure and

geometry of a network is sometimes an explicit, immediately observable, feature of

a system such as in technological and infrastructure networks, social networks, brain

Abstract 5

connectivity, food networks. More often, networks are used as a tool to understand and

model the dependencies and interactions between agents of highly connected systems

as in the case of economic and financial networks (e.g. financial contagion networks,

spillover networks), biological networks (e.g. gene co-expression, metabolic networks,

protein-protein interactions), psychometric networks (e.g. co-occurrence of person-

ality traits or psychopathological disorders) or in complex computational tasks (e.g.

image processing, multivariate statistical models, expert systems). Many networks are

characterised by a high, often growing, number of nodes and a relatively low number

of observations, often exhibiting spurious associations between agents: the Big Data

regime. Especially in the Big Data regime, it is necessary to be able to filter spurious

dependencies and to retain the dependencies that provide insight into the system, or

that allow for robust and parsimonious modelling.

Topologically Constrained Information Filtering Networks

Information Filtering Networks (IFN) are sparse networks aimed at capturing the most

significant interactions by removing spurious agent-agent dependencies. Topologically

Constrained Information Filtering Networks (TCIFNs) are IFNs that are built by impos-

ing constraints on the geometry of the network (e.g. planar networks, clique forests),

privileging few local interactions between selected subsets of the agents (cliques) and

penalising dependencies that give rise to overly complex topological structures. The

simplicity of the underlying geometry provides insight into the system and, most im-

portantly, the possibility to develop effective descriptive and predictive models that can

be tuned to real data. TCIFNs can be analysed as networks in their own right, as gen-

eral multivariate probabilistic systems, or as topological objects, providing the applied

researcher with a wide and ever expanding toolbox for the analysis of data.

Benefits of cross-collaboration

TCIFNs have already found interest and application in a number of applied fields, such

as combinatorial optimization (Maximum Weight Planar Subgraph Problem), financial

risk management (risk modelling, stress testing, systemic risk), analysis of macroeco-

nomic policies (spillover networks) and psychometric networks (theory of personality,

questionnaires), statistics (covariance selection and penalised regression). In return,

the interaction with applied researchers has proven invaluable in highlighting possibil-

Abstract 6

ities for further developments of the methodology. The generality of the methodology

makes it suitable for use in any context where the researcher uses tools from topology

or multivariate statistical analysis to analyse data.

An actionable tool for analysis and supervision

The industrial and commercial applications are potentially as wide ranging;: from psy-

chometrics networks to biological networks, from technological and infrastructure net-

works to social networks, and from financial risk management and portfolio manage-

ment to applied econometrics, especially in the analysis of sparse networks to estimate

systemic risk. We foresee this capability as of potential interest to regulators and macro-

prudential regulatory bodies, with enhanced analysis towards the possibility to identify

weak spots in financial networks.

Acknowledgements

Undertaking a research project at an age when one is well into, if not past, the mature

student age-bracket is an immensely rewarding challenge that, however, puts huge pres-

sure on personal and working life, with the continuous need to balance personal and

family commitments, job demands and research. That this project has proven possible

at all is an extraordinary testament to the incredible adaptability and support of family

members, friends, co-workers, collaborators, co-authors and, naturally, my supervisor

Prof. Tomaso Aste. In the full knowledge that words cannot make full justice, I will

nevertheless try to convey my heartfelt thanks.

Starting from work I would like to thank all my former colleagues of the Credit

Portfolio Modelling Team in KPMG for providing a great working environment and for

extremely helpful discussions that informed many views of mine; some are reflected in

this thesis. More specifically, I would like to thank my friend and former colleague

Alun Wyn-Jones for reading and giving suggestions on preliminary drafts on a paper

that constitutes the main inspiration for Chapter 4, and Dr. Etienne Hofstetter for some

helpful discussions on dependence modelling in risk management.

Moving to collaborations, I should start by thanking two students of my supervisor

Prof. Tomaso Aste. Yuqin Long studied and implemented in Python the algorithm

described in Chapter 4; Daniel Savu implemented the MFCF in Python and carried

out some original and promising experiments extending the MFCF with gain functions

based on kernel regression. I could hardly overstate the help of Dr. Alexander P.

Christensen for taking an early interest in our work and for introducing us to the world

of applications of network theory in psychology. That the TMFG and the MFCF are

now known and used in the field of network science in psychology is entirely due to

Alex and to his initiative in implementing both algorithms in his Network Toolbox, and

to his original applications in his papers. Alex has also kindly reviewed our work on

Acknowledgements 8

clique forests and provided many valuable insights, new problems and ideas that we

hope to develop in future collaborations.

Among the co-authors I would like to start by thanking Prof. Tiziana Di Matteo

for the collaboration on two papers and especially for providing practical, no-nonsense

approach to data modelling. Dr. Wolfram Barfuss is the first author of the paper that

provides a substantial part of the material for 5 and has been invaluable in clarifying

many points of the TMFG methodology through the application to multivariate Gaus-

sian distributions. Prof. Lorenzo Magnani sits squarely in the intersection between

friends, collaborators and co-authors and I will always be grateful to him for our long

past, but ever fruitful, collaboration; in my view his influence on methodological issues

is still very much present and of great value to me.

My second supervisor Dr. Simone Severini has been invaluable in reviewing and

improving our work in pointing out inaccuracies and also, in one case, a material mis-

take.

It is impossible to overstate the debt I owe to Prof. Tomaso Aste for providing

the inspiration for the work in this thesis, for giving me the opportunity to talk at the

UCL CS Financial Computing and Analytics Group, for being an extremely organised,

challenging and effective co-author in all of our papers, for keeping me honest through

my research activity and pointing out logical inconsistencies, for providing both deep

theoretical insight and good practical advice but, above all, for putting up with my ever

changing schedule and for his commitment and flexibility as witnessed by the highly

unusual number of week-end calls to discuss papers, thesis and other research topics.

In my view, that puts him in the set of friends, too.

Finally, I have to give infinite thanks to my wife Valeria for allowing me to begin

and see through this project in the face of the many challenges of an adult life, four

home moves in as many cities, all sorts of mishaps and for standing in my stead when I

was busy with work or study. I can only promise that I will try my best to make up for

those missed week-ends, holidays and all those errands that you carried out for me.

Contents

1 Information Filtering Networks 18

1.1 Motivation: Networks and Complex Systems 19

1.2 Information Filtering Networks: the Case for Sparse Modelling 22

1.3 Network Modelling: Approaches to Filtering and Applications 25

1.3.1 Planar Information Filtering Networks 27

1.4 Objective of the Research and our Approach 30

1.4.1 Fundamental requirements for a new IFN algorithm 30

1.4.2 Approach and Direction of Research 31

1.4.3 Applications . 32

2 Approaches to the Modelling of Sparse Networks 34

2.1 Graphical models and Markov Random Fields 34

2.1.1 Definitions . 34

2.1.2 Conditional Independence . 35

2.1.3 Markov Properties . 39

2.1.4 Clique Factorisation Property and Hammersley-Clifford Theorem 41

2.2 Review of Methodologies for building Information Filtering Networks . 43

2.2.1 Structure Learning in Graphical Models 44

2.2.1.1 Score based methods 44

2.2.1.2 Constraint based Algorithms 49

2.2.1.3 Bayesian Methods 49

2.2.2 Sparse graphical models through regularisation and covariance

selection (Lasso, Ridge, Elastic Net) 50

2.2.3 Information Filtering Networks 51

Contents 10

2.2.4 Triangulated Maximally Filtered Graphs 52

3 Learning Clique Forests 53

3.1 Graph Theory Prerequisites . 53

3.1.1 Definitions . 54

3.1.2 Chordal Graphs . 56

3.1.3 Perfect Elimination Order . 59

3.1.4 Perfect Sequences of Cliques 60

3.1.5 Clique Forest . 62

3.2 The Clique Expansion Operator . 64

3.3 The MFCF algorithm . 68

3.3.1 Relationship with Prim’s Minimum Spanning Tree Algorithm . 74

3.3.2 Relationship with the Maximum Cardinality Search algorithm . 75

3.3.3 Gain Functions . 77

3.3.3.1 Similarity Matrix 78

3.3.3.2 Gain function from log-likelihood 79

3.3.3.3 Multivariate Normal Distribution 80

3.3.3.4 Multivariate Normal Distribution statistically validated 81

3.3.3.5 Random Gain Function 82

3.3.3.6 Regression . 82

3.4 Other CF-Invariant Operations on Clique Forests 82

3.4.1 The Direct Join Operator . 83

3.4.1.1 Score Functions and generalisation of Kruskal algo-

rithm . 84

3.4.2 Pruning a Clique Forest . 84

4 TMFG and other approximate solutions for the Maximum Weight Planar

Subgraph Problem 90

4.1 The Maximum Weight Planar Subgraph Problem 91

4.1.1 Planar Maximally Filtered Graph 93

4.2 Triangulated Maximally Filtered Graph 94

4.2.1 TMFG and Deltahedron heuristic 94

4.2.2 TMFG construction . 97

Contents 11

4.3 Planarity invariant operators: T1, T2, A, & S 103

4.4 Variants of the TMFG algorithm . 107

4.4.1 TMFG-T1 . 107

4.4.2 TMFG-S . 110

4.4.3 TMFG-A . 113

4.5 Additional observations . 116

4.5.1 Dynamical adaptability . 116

4.5.2 Parallelization and big data . 117

4.5.3 Memory usage . 117

4.6 Comparison between TMFG and PMFG 118

4.6.1 Comparison between the performances of the various methods . 118

5 Probabilistic modelling with TMFG / MFCF and Financial Applications 123

5.1 Modeling with TMFG: information theoretic perspective 124

5.2 Financial Applications of the TMFG 127

5.2.1 Financial applications: Stress Testing 127

5.2.2 Risk Allocation . 128

5.3 Financial Applications of the MFCF 129

5.3.1 Learning with Mixed Frequency Time Series 130

6 Application to the Covariance Selection Problem 133

6.1 Covariance Selection . 133

6.1.1 Penalised Likelihood Maximisation 135

6.1.2 Graphical Lasso . 135

6.2 The MFCF approach to to covariance selection 136

6.2.1 Construction of the precision matrix in the multivariate Gaus-

sian case . 137

6.2.2 Shrinkage procedures . 137

6.2.2.1 Step 1 . 138

6.2.2.2 Step 2 . 138

6.2.2.3 Step 3 . 138

6.3 Testing Methodology . 138

6.3.1 Generation of Synthetic Data 139

Contents 12

6.3.1.1 Synthetic data: sparse decomposable precision matrix 140

6.3.1.2 Synthetic data: Full Positive Definite Matrix from

package “clusterGeneration” 140

6.3.1.3 Random Factor Model with noise 140

6.3.2 Usage and Treatment of Real Data 141

6.3.3 Algorithms used in the Testing 141

6.3.4 Performances indicators . 143

6.4 Results . 144

6.4.1 Synthetic data: sparse decomposable precision matrix 144

6.4.2 Synthetic data: Full Positive Definite Matrix from package

“clusterGeneration”. 151

6.4.3 Random Factor Model with noise 158

6.4.4 Real Data . 164

7 Topological Data Analysis with the MFCF 171

7.1 Applications to Topology of Data . 171

7.1.1 Abstract Simplicial Complexes 172

7.1.2 The Simplicial Complexes built by the MFCF 177

7.1.3 Examples and applications . 178

7.1.3.1 Identification of cliques 178

7.1.3.2 Identification of large dimensional blocks 182

7.1.3.3 Structure of factor models 186

8 Conclusions and further research 191

8.1 Conclusions . 191

8.2 Further research . 193

8.2.1 Non linear interactions and fat-tailed distributions 193

8.2.2 Financial applications . 194

8.2.3 Geometry of clique forests . 194

8.2.4 Confirmatory factor analysis 194

8.2.5 Geometry of factor models . 195

Appendices 196

Contents 13

9 Appendix A 196

9.1 Computer Codes . 196

9.1.1 TMFG . 196

9.1.2 TMFG-T1 . 198

9.1.3 TMFG-S . 201

9.1.4 TMFG-A . 204

Bibliography 212

List of Figures

2.1 Conditional independence relationship 37

2.2 Pairwise Markov property . 40

2.3 Global Markov property . 40

2.4 Local Markov property . 41

3.1 Cycle with chord . 54

3.2 The graph K4 . 57

3.3 A non-chordal graph . 58

3.4 Chordal graph with clique forest . 63

3.5 Chordal graph with clique forest . 64

3.6 The clique expansion operator . 66

3.7 The Maximally Filtered Clique Forest Algorithm 86

3.8 The Maximum Cardinality Search Algorithm 87

3.9 Direct join of clique forests . 88

3.10 The Direct Join Operator . 88

3.11 The edge pruning operator . 89

4.1 The T2 move . 95

4.2 TMFG: initialisation stage . 98

4.3 TMFG: gain selection stage . 99

4.4 TMFG: update stage . 99

4.5 Leung’s extension . 104

4.6 T1 move . 105

4.7 Leung’s extension as a combination of T2 and T1 105

4.8 A move . 105

4.9 S move . 106

List of Figures 15

4.10 TMFG: T1 variant . 108

4.11 TMFG: T2 and Swap . 111

4.12 TMFG-A variant . 114

4.13 TMFG scalability compared to the PMFG 119

5.1 Illustration of Equation 5.3 . 126

6.1 Sparse decomposable precision matrix: log-likelihood 146

6.2 Sparse decomposable precision matrix: performance 147

6.3 Sparse decomposable precision matrix: eigenvalue distance 148

6.4 Sparse decomposable precision matrix: inverse eigenvalue distance . . . 149

6.5 Sparse decomposable precision matrix: cliques composition 150

6.6 Random positive definite matrix: log-likelihood 153

6.7 Random positive definite matrix: performance 154

6.8 Random positive definite matrix: eigenvalue distance 155

6.9 Random positive definite matrix: inverse eigenvalue distance 156

6.10 Random positive definite matrix: cliques composition 157

6.11 Random factor model: log-likelihood 159

6.12 Random factor model: performance 160

6.13 Random factor model: eigenvalue distance 161

6.14 Random factor model: inverse eigenvalue distance 162

6.15 Random factor model: cliques composition 163

6.16 Real data: log-likelihood . 165

6.17 Real data: performance . 166

6.18 Real data: eigenvalue distance . 167

6.19 Real data: inverse eigenvalue distance 168

6.20 Real data: cliques composition . 170

7.1 A simplicial complex made of two simplices 174

7.2 Block Structured Matrix . 180

7.3 Convergence to real clique size . 181

7.4 Convergence to real Betti numbers . 182

7.5 Large connected components . 183

List of Figures 16

7.6 Convergence to real clique size . 184

7.7 Convergence to real clique size . 185

7.8 Clique sizes and eigenvalue analysis 189

7.9 Betti numbers for factor models . 190

List of Tables

4.1 Relative performance of TMFG variants compared to PMFG 122

4.2 TMFG: increase in relative performance with size 122

6.1 Sparse chordal precision matrix: penalty/shrinkage parameters 145

6.2 Sparse chordal precision matrix: number of non-zero coefficients 145

6.3 Random positive definite matrix: penalty/shrinkage parameters 151

6.4 Random positive definite matrix: number of non-zero coefficients . . . 152

6.5 Factor model: penalty/shrinkage parameters 158

6.6 Factor model: non-zero coefficients 163

6.7 Real data: penalty/shrinkage parameters 169

6.8 Real data: non-zero coefficients . 169

Chapter 1

Information Filtering Networks

We begin this introductory chapter with an overview of certain types of networks that

arise frequently in the study of complex systems in relation to a wide range of scientific

disciplines and fields of application. The purpose of the review is not completeness,

since it would take many works the size of the present one just to survey a single field

of research or application1, but rather to provide an indicative idea of the remarkably

diverse range of challenges that the analysis and modelling of complex networks of-

fers to the researcher and the modeller2; some of the challenges and specific issues

described in this chapter have been a source of inspiration for the approach that we

advocate in the present thesis. Some results of the work described in this thesis have

already been published and made available to the scientific community (Massara et al.,

2016; Barfuss et al., 2016; Massara and Aste, 2019) and therefore we have the benefit

of partial hindsight with regards to their use and applications; for this reason we de-

scribe in slightly greater detail studies where the methodologies described in Chapters

3-6 have already found application.

Next, we introduce the concept of Information Filtering Network (IFN) (Tum-

minello et al., 2005; Barfuss et al., 2016) as a tool to extract useful and relevant infor-

mation from complex networks. Real networks are often densely populated and char-

acterised by a huge number of interactions that can be spurious, redundant or simply

accidental. The objective of IFN is to eliminate noise and spurious interactions from

complex networks, revealing the overall structure of the underlying system and drawing

1A search for “complex networks” on Google Scholar returned 527,000 results on June the 29th 2019.
2The positive, bi-directional, interplay between practical approaches and theoretical constructs in

the process of scientific discovery is described in several works in the fields of cognitive science and
epistemology, see for instance Magnani (2004) and references therein.

https://scholar.google.co.uk

1.1. Motivation: Networks and Complex Systems 19

the attention to a few essential and defining characteristics. We examine three possible

approaches to IFNs that originate from the disciplines of Econophysics, Statistics and

Topological Data Analysis and which, in our opinion, provide unique and different in-

sights into complex systems and complement each other, providing a general and rich

toolset for the study of complex systems. We provide a slightly more detailed descrip-

tion of the extraction of planar graphs as a way to produce IFNs, as this is the branch

from which stems the research exposed in this thesis.

Finally, we set out our direction of research where we try to incorporate the three

approaches in a coherent methodology for the construction of IFN and we use it to pro-

duce a set of tools that can be brought to bear in various applied problems. Throughout,

we will keep constant attention to the issues of practical implementation, adequate per-

formance and scalability that are still a prerequisite for solving real world problems,

even in these days of ever increasing computing power.

1.1 Motivation: Networks and Complex Systems
Network science has experienced an explosive pace of development since the beginning

of the century, eventually occupying a central role in the study of complex systems

(Strogatz, 2001; Barabási, 2011). Networks seems to be a natural modelling approach

in all the disciplines where it is important to model the interactions among numerous

agents; the nodes represent agents3 and edges represent the interactions amongst them.

However, besides this simple and initially reassuring unifying concept, there are many

questions and complexities that enter into play and that may be addressed, emphasized,

approximated or ignored according to the domain of application (Strogatz, 2001).

• Structural complexity. The network can be more or less populated, more or less

sparse. This aspect is central to IFNs: how many of the interactions within agents

are inherently significant to understand the behaviour of the system? How many

are effectively redundant given the information that we have about a subset of

agents and their interactions? How many edges is it necessary to retain to char-

acterise a network faithfully or, at least, effectively?

3The meaning of “agent” obviously depends on the system being modelled. It could be economic
entities, assets, proteins, hardware resources, biological species, people, geographical places, and so on
(Newman, 2010).

1.1. Motivation: Networks and Complex Systems 20

• Network evolution. Does the wiring change over time (as it is the case with the

Internet) or is it stable over relatively long times (for instance, in gene expression

networks)? Does the structure change over time, and how?

• Connection diversity. Edges between nodes could have different weights (as it

is often the case with networks representing similarity, affinity, correlation) or

a preferred direction (in causal networks, in network that model the supply of

resources, in the modelling of knowledge).

• Dynamical complexity. Do nodes represent quantities that vary in time maybe

in a highly non-linear way (for instance metabolic networks, gene expression

networks)?

• Node diversity. Sometimes nodes represent similar entities, for instance pixels in

a picture or particles in a lattice, in other times nodes can represent completely

different entities, for instance corporations in a financial network or genes in a

gene expression network.

• Meta-complication. Where one level of complexity influences the other; for in-

stance when two neurons fire together (dynamic complexity) their connection is

strengthened (connection diversity).

In biology (Ideker and Nussinov, 2017; Mohammad, 2018; Barzel et al., 2013)

the set of networks traditionally studied (cell connectivity, immune system, food webs

and ecosystems) has recently and dramatically expanded with the inclusion of an in-

creasing set of experimental data produced by high-throughput techniques (including,

but not limited to, gene transcription, protein-protein interaction, metabolic and gene

expression networks). A problem that is particularly relevant to networks arising from

high-throughput measurements is that the number of experiments or samples can be

much lower than the number of variables measured (such as proteins or metabolites)4

posing new challenges in model selection (Kirpich et al., 2018; Wu et al., 2019) that

is often addressed with the use of regularisation techniques (Hoerl and Kennard, 1970;

Tibshirani, 1996; Zou and Hastie, 2005; Friedman et al., 2008). In bioinformatics,

4The “small n, large p” problem.

1.1. Motivation: Networks and Complex Systems 21

graphical models5 are increasingly adopted and are now a tool used for describing and

measuring the outcomes of experiments and measurements, as well as a modelling tool

and a language for formulating hypothesis about the interactions of the agents. The

study of brain connectivity has always been one of the motivations, and indeed one

of the inspirations, for the study of and modelling of networks (Bishop et al., 1995).

Recently the study of brain connectivity has seen very interesting developments in the

study of higher order topological structures in neuroscience with a significant focus on

homological methods (Petri et al., 2014; Giusti et al., 2015; Sizemore et al., 2018).

In psychology network science is now also used alongside, or instead of, the tra-

ditional statistical technique of factor analysis in several fields; for instance in person-

ality theory (Christensen et al., 2018b) or in psychopathology (symptoms interaction

networks, see Borsboom (2017); Christensen et al. (2018c)). In these field the ability

to recover sparse networks is crucial to understanding discrete facets of psychological

traits or to isolate meaningful interactions between clinical symptoms. In particular

Schmittmann et al. (2013); Kruis and Maris (2016) develop a network-based interpre-

tation in psychological measurements. In this novel interpretation the object measured

is the set of causal relationships observed among the observations: psychological at-

tributes are seen as the network underlying the observations. In Golino and Epskamp

(2017) network sparsification methods based on the Graphical Least Absolute Shrink-

age and Selection Operator (or GLASSO, see the seminal paper Friedman et al. (2008))

are used to formulate hypotheses about the dimensionality of psychological data.

Technological networks (Newman, 2010; Boutaba et al., 2018; Chen et al., 2013)

such as the Internet, transport, delivery and distribution networks, power grids, have

been among the first to motivate the study of networks, from the early attempts to op-

timise electric networks by Otakar Borůvka (Boruvka, 1926) to the last studies on the

technological infrastructure underneath social networks (Chen et al., 2013; Boutaba

et al., 2018). In particular the problem of extracting planar subnetworks has a long tra-

dition of study in operations research and facility layout (Foulds and Robinson, 1978)

and VLSI design (Gogoi and Kalita, 2012).

The main driver for the development and use of network algorithms in the last

5As we will see in the next chapter, graphical models are networks whose nodes are random variables
and whose edges represent probabilistic dependence, or more accurately, where missing edges represent
a relationship of conditional independence (Lauritzen, 1996).

1.2. Information Filtering Networks: the Case for Sparse Modelling 22

decade has been of course the expanding catalogue of social networks, including

the all-too-known web social networks, but also social and economic agent networks

(Easley and Kleinberg, 2010; Jackson, 2011; Livan et al., 2017), along with the similar

but distinct group of information networks (Newman, 2010), including the World Wide

Web (Barabási, 2002), citation networks (Li et al., 2018, 2019), patents and innovation

networks (Ozman, 2009), and recommender networks (Bobadilla et al., 2013) largely

used in media distribution and in virtually every aspect of retail marketing and sales.

In economics and finance networks are widely used in the study of systemic risk,

contagion and macro-prudential regulation (Hser, 2015; Pozzi et al., 2013; Chinazzi

and Fagiolo, 2015; Gai and Kapadia, 2010), in the study of the dependency structure of

financial assets (Bonanno et al., 2004; Fiedor, 2014; Tumminello et al., 2007; Musmeci

et al., 2015b), in portfolio management and stress testing (Rebonato and Denev, 2014;

Rebonato, 2010b), in credit risk modelling (Filiz et al., 2012), in the study of regime

changes in financial portfolios (Procacci and Aste, 2018), in the study of corporate

networks (de Jeude et al., 2019) and many other applications (Souma et al., 2003). A

field in economics where the methodology exposed in this thesis has been applied is

the field of policy evaluation using the tool of “spillover networks” (Castañeda Ramos

and Guerrero, 2018a; Castañeda Ramos et al., 2018; Castañeda Ramos and Guerrero,

2019, 2018b). In spillover networks every node represents a policy issue, and the edge

going from one node to the other represents a spillover effect of one policy on the other.

1.2 Information Filtering Networks: the Case for

Sparse Modelling

We have mentioned before that one of the challenges in analysing networks is the struc-

tural complexity. A large collection of edges could hide important information on the

structure of the network at large, hence it makes sense to devise a set of procedures to

filter out unnecessary or spurious links. In these first examples we could define a sparse

representation of a network as a representation where the edges are of the same order

of magnitude as the nodes (for instance, as in Jackson (2010)), and network filtering a

procedure that produces a sparse network starting from a dense network. While there

are different approaches to this problem, there is consensus on the idea that a sparse

1.2. Information Filtering Networks: the Case for Sparse Modelling 23

representation of a network would provide several benefits (Hastie et al., 2015):

• Reduce the “curse of dimensionality”. The number of parameters required to

model a network is at least as large as the number of edges. For example we

could identify the correlation matrix of a set of p variables with a network of p

nodes with weighted undirected edges equal to the sample correlation between

n realisations of the corresponding variables. This network contains p(p−1)/2

parameters. When p� n the sample correlation matrix is almost certainly not

positive definite and therefore it cannot be used for any significant analysis, but

sparse correlation matrices need much fewer data points to be almost certainly

positive definite, and the number of data points required depends on the geom-

etry of the network (Gross et al., 2018)6. This is an example of a topological

constraint, where imposing a requirement on the output network, such as the size

of the largest clique7, has a direct consequence with regards to the properties of

the model. It also shows that any filtering procedure must be designed bearing in

mind the type of the problem, and should warn against applying, without careful

consideration, some intuitively appealing, but ultimately inadequate, procedures

such as filtering based on value thresholding.

• Estimation error. Network parameters are affected by estimation error. Us-

ing again the example of a correlation matrix, it is known that some correlation

coefficients in a correlation matrix estimated from a noisy sample could even

have the wrong sign, and this is particularly serious in portfolio management as

it could cause incorrect asset allocation and hedging (Engle, 2009; Pafka and

Kondor, 2004) or induce noise in the spectral properties of correlation matrices

(Laloux et al., 1999). This case is particularly insidious, because it would induce

systematic errors in the use of the model. The more the parameters in the net-

work, the higher the chance that some model parameters are actually fitting noise,

rather than true dependency relationships. Besides, even if the spurious edges do

not introduce bias into the model, they can still affect the overall uncertainty

by unnecessarily inflating the volatility and further complicating the analysis of

6Interestingly for the topic of this thesis, it is the size of the treewidth, or the size of the largest clique
in the minimal chordal coverage of the network.

7A clique is a set of fully connected nodes.

1.2. Information Filtering Networks: the Case for Sparse Modelling 24

scenarios.

• Better understanding. By removing non-significant details, it is possible to

make sense of the overall structure of the data. This applies at the purely graph-

ical level, where subject matter experts could examine visually complex depen-

dencies without being distracted by spurious dependencies. For instance the

sparse junction tree representation of a graphical statistical model allows an intu-

itive knowledge representation in expert systems (Lauritzen and Spiegelhalter,

1988). In other cases a sparse representation allows to have an appreciation

for the overall structure of the data being analysed. For instance, the use of a

sparse representation allows using tools from Topological Data Analysis in Neu-

roscience (Giusti et al., 2015). Additionally, a sparse representation could be

easily modified by the researcher in order to formulate an hypothesis about the

dependence structure of a particular experiment and to perform confirmatory fac-

tor analysis.

• Modelling. Sparsity allows meaningful representations: for example decompos-

able graphical models have very useful explicit representations of joint distribu-

tions (Massara et al., 2016; Barfuss et al., 2016; Giudici and Green, 1999) and

closed form expressions for maximum likelihood estimates, and do not require

the calculation of the partition function, which is a distinct advantage in com-

putations. Again, not any sparse model will provide the same benefits. When

sparsity is associated with the concept of conditional independence and this con-

cept is linked to the geometry of the network a number of very powerful result

will be available. This aspect is strongly emphasized in the present thesis.

• Efficiency and potential parallelism in the use of computing resources. Sparse

representations have a smaller memory footprint, and many sparse algorithms

have lower computational resources, as showcased by decades of research, for

instance in sparse numerical linear algebra (see Bunch and Rose (2014)). With

regards to efficiency, we will see how some topological structures such as trees

and clique trees are much more expedient to efficient calculations, especially be-

cause they encode the idea of local interactions, and because they are in general

1.3. Network Modelling: Approaches to Filtering and Applications 25

more consistent with respect to calculations. In a decomposable graphical model8

the local consistency of the marginal distributions implies global consistency. In

non-decomposable models the presence of loops or hyperloops leads generally

to more complex and less stable algorithms, and always to approximate solu-

tions. Moreover, in many cases the geometry of the network suggests orderings

of the variables or of the cliques or clusters that are well suited to exact inference

(Lauritzen and Spiegelhalter, 1988).

1.3 Network Modelling: Approaches to Filtering and

Applications
We now look at how the problem of providing a sparse representation of a complex

network has been approached in the disciplines of Econophysics, Statistics and Topol-

ogy. While the problem is essentially stated in similar terms, the three approaches are

different in nature and provide unique insights into the properties of the network9. In

Section 1.3.1 we provide a more detailed overview of the subject of planarization of

dense networks, since this is the initial approach from which the main thrust of this

thesis has originated; besides, some early published results of our research have found

application in different fields and constitute, therefore, a good example of the interplay

between theory and application.

• Echonophysics: Information Filtering Networks. One approach to filter-

ing is achieved by imposing a topological constraint on the modelled network

(Lecoutre, 2013; Hleap and Blouin, 2014; Mantegna, 1999; Tumminello et al.,

2005). Mantegna (1999) models the correlation structure of a portfolio of traded

stocks by creating a tree that spans the components of the portfolio. The tree

induces a hierarchical order on the portfolio, which is used to analyse the struc-

ture of common factors and clusters of related stocks. Tumminello et al. (2005)

take the next logical step by imposing a constraint on the topological genus of

the graph and analyse in depth the planar case (genus 0); the planar graph has a

8We will see in 3 that a decomposable graphical model is a graphical model where the underlying
dependency structure is chordal.

9These approaches are those that have influenced the most our research, but they are by no means
exhaustive of the variety of methodologies adopted (Fan et al., 2011; Huang and Aviyente, 2007; Deng
et al., 2013; Carmi et al., 2014)

1.3. Network Modelling: Approaches to Filtering and Applications 26

richer structure than a tree but is still sparse. The analysis of the closed curves

on the planar graph allows to define a nested hierarchy of subgraphs (“bubbles”)

that is useful in the study of communities and their relationship. In further de-

velopments Aste et al. (2005a) show the importance of embeddings in hyper-

bolic surfaces with increasing topological genus. The availability of a topological

structure allows analysing the overall structure of the network: degree distribu-

tion, scaling properties, hubs, hierarchical structure, clustering, small worldness

(Newman, 2010). The road of looking at embeddings of increasing topological

genus is a way to generalise the concept of a tree. In the present thesis we ex-

plore another generalisation of the concept of a tree: if we look at a tree as a

graph with no cycles we might regards the next step as a graph with the smallest

possible cycles and this leads to the concept of a chordal graph, which is a graph

where the cycles are the smallest possible (Galinier et al., 1995), and where every

cycle longer than four must have a chord.

• Statistics: Graphical Models. A second way to look at the filtering problem is

to understand it as the task of “learning” the structure of the underlying graph-

ical model (Lauritzen, 1996; Koller and Friedman, 2009; Barber, 2012; Wain-

wright and Jordan, 2008)10. An (undirected) graphical model (or Markov Ran-

dom Field) is a collection of random variables X1,X2, . . . ,Xp associated to the

nodes of a graph. The edges represent a direct association between the variables

(Giudici and Spelta, 2016). A very effective and expanding field of research in

statistics is the regularisation method11: this method works by optimising a score

function (usually likelihood) penalised using some convex norm of the size of the

model parameters: the penalisation forces the model parameters to be small or

zero, depending on the norm used. In the field of graphical models the most im-

portant regularisation method is the graphical lasso (Friedman et al., 2008). The

ability to associate a statistical model to a network widens considerably the range

of analysis that can be performed, especially in the case of financial networks:

the many inference tools available in graphical models allow the calculation of

10As Lauritzen (1996) puts it, conditional independence can be described as formal theory of irrele-
vance.

11The idea of regularisation has been brought to bear in the mathematical sciences by Tikhonov
(Tikhonov, 1943).

1.3. Network Modelling: Approaches to Filtering and Applications 27

marginal and conditional probabilities. opening the door to scenario analysis,

stress testing and portfolio management.

• Topology: Computational Topology. When we look at some biological, brain-

structural and collaboration networks (Barzel et al., 2013; Courtney and Bian-

coni, 2016, 2017) we observe that some characteristics, such as clustering and

scaling, suggest the hypothesis that the underlying system may be governed by

interactions between more than two nodes, involving cliques (triangles, tetrahe-

dra and higher dimensional simplexes). If there is a need to emphasize this aspect

of a network, a standard and convenient representation is a simplicial complex

(Munkres, 1984). In the Topological Data Analysis community there are several

methodologies, mostly based on homology theory, to build simplicial complexes

from networks of potentially noisy data (Zomorodian and Carlsson, 2005; Carls-

son, 2009; Otter et al., 2017). The approach pursued is to study the topological

features of the simplicial complex while the homology scale parameter varies in

a range, so that it is possible to isolate persistent features from the transient ones.

Persistent features are good indicators of higher order structures in the data. This

approach is used for instance in neural data analysis (Giusti et al., 2015) and in

the use of correlation networks to study critical transitions in financial markets

(Gidea, 2017). In some cases previous experiments might suggest the existence

of “topological motifs” that should be taken as given and incorporated a priori

in the network being analysed and this requirement too, can be formulated as a

constraint on the network topology (Fiori et al., 2012; Milo et al., 2002). Finally,

a richer topological and geometrical structure is amenable also to tools from dis-

crete differential geometry and discrete Morse Theory (Wang and Wei, 2016) and

allows for instance a local analysis on the basis of intuitive geometric concepts

such as curvature (Knill, 2010, 2012) and critical points. Sandhu et al. (2016)

studies the properties of the discrete Ricci curvature in financial networks as an

indicator of market fragility and systemic risk.

1.3.1 Planar Information Filtering Networks

In the field of Econophysics a particularly important topic is the generation of IFNs by

planarization of dense networks. The motivation for building and using planar networks

1.3. Network Modelling: Approaches to Filtering and Applications 28

reaches across different disciplines:

• Analysis of financial data, where nodes generally represent financial assets (such

as stock prices, spreads, liabilities, risk or liquidity indicators etc.) and the edges

represent correlations or other measures of dependence between them (Aste et al.,

2005b; Tumminello et al., 2005; Pozzi et al., 2013; Fiedor, 2014);

• Facilities layout, where nodes represent the facilities and the edges the affinities

between them (Foulds and Robinson, 1976, 1978; Liebers, 2001);

• Integrated circuit design, where nodes are the electrical elements and connections

are the physical connections (Lengauer, 1990);

• Systems biology, where nodes can represent proteins and edges protein interac-

tions in a metabolic network (Song et al., 2007);

• Social systems, where nodes represent social agents (e.g. individuals, companies,

groups) and edges represent social interaction (see Easley and Kleinberg (2010)

and Jackson (2010) for a detailed overview).

In Chapter 4 we describe the TMFG methodology, originally developed with this

thesis, which is an alternative development to the Planar Maximally Filtered Graph

(PMFG) described in Tumminello et al. (2005) and that has been applied in a number

of different fields, such as:

1. Modelling of multivariate gaussian distributions with applications in Risk man-

agement (see Barfuss et al. (2016) and Section 5.2);

2. Studies on the structure of correlation in financial networks (Musmeci et al.,

2014a, 2015a,b, 2017);

3. Parallel algorithms for the approximate solution to the Maximum Weight Planar

Subgraph Problem (MWPSP) (Coelho et al., 2016);

4. Psychometric and network science in psychology, (Golino et al., 2018; Chris-

tensen et al., 2018c; Pelowski et al., 2019; Christensen et al., 2018b,a);

1.3. Network Modelling: Approaches to Filtering and Applications 29

5. Macroeconomics and policy assessment using spillover networks (Castañeda Ramos

and Guerrero, 2018a; Castañeda Ramos et al., 2018; Guerrero and Castañeda Ramos,

2018; Castañeda Ramos and Guerrero, 2019, 2018b);

6. Spatial networks methods in the study of fluid turbulence analysis (Iacobello

et al., 2017).

In some domains, such as facility layout or integrated circuit design, the constraint

of planarity is a direct consequence of the two-dimensional geometry of the problem,

while in other domains, network planarity is a way to constraint the complexity of the

graph reducing the degree of interwovenness (Aste et al., 2005b).

Planar filtered graphs are powerful tools to study the geometric structure of com-

plex datasets. It has been shown in Song et al. (2012a) that by making use of the

3-clique structure of the PMFG a clustering structure can be extracted, allowing di-

mensionality reduction that keeps both local information and global hierarchy in a

deterministic manner without the use of any prior information. Applications of pla-

nar filtered graphs to financial datasets can meaningfully identify industrial sectors and

structural market changes (Musmeci et al., 2014b, 2015b). Planar filtered graphs can be

used to diversify financial risk by building a well-diversified portfolio that effectively

reduces risk by investing in stocks that occupy peripheral regions of the graph (Pozzi

et al., 2013).

There are other areas of application where the planarity of a graph can be exploited

to obtain better performance or outcomes. These algorithms have many applications for

instance in scheduling or optimization (see Nishizeki and Chiba (1988)). Planarity en-

sures easy visualization of the network with the possibility to draw the network without

edge-crossing, thus allowing for exploratory data analysis of networks. Another appeal-

ing advantage of planar filtered networks concerns graphical modelling where planarity

(which limits the treewidth of the filtered graph) grants that some exact inference al-

gorithms can be performed in an efficient fashion. Jaakkola (2007) describes specific

inference algorithms for graphical models based on planar graphs, but we argue that

the MFCF, described in detail in Chapter 4, is a better choice for limiting the treewidth

of a graph and offers a more direct connection to inference algorithms.

1.4. Objective of the Research and our Approach 30

1.4 Objective of the Research and our Approach
The objective of our research is the design of effective and efficient algorithms for in-

formation filtering networks which subsume the three approaches described in Section

1.3, enabling therefore a researcher to build networks that can be analysed using a large

and complementary set of tools. We summarize in the next paragraphs the detailed

requirements for an IFN algorithm, we set out our approach to the research problem

and finally point to actual and possible applications that are described in the following

chapters.

1.4.1 Fundamental requirements for a new IFN algorithm

On the basis of the research problems and approaches described in the previous section

we assume a broad set of requirements for the IFN algorithm:

1. The information network filtering procedure should be specified in terms of topo-

logical constraints. Since we want to be able to enforce sparsity, the methodology

should allow to control the density of the network.

2. The information filtering network produced must allow the use of efficient in-

ference algorithms, in the sense of graphical models, whenever a multivariate

probability distribution can be defined for the network data; we want the network

to be such that the inference and simulation tasks can be performed efficiently.

3. The networks produced should be tractable with the tools of Topological Data

Analysis. In particular the output should be a simplicial complex, and the com-

plexity of the complex should be controlled by the topological constraints.

4. The algorithms used to produce and use the IFNs can be applied to large networks

with realistic performances, be parsimonious in the use of computing resources

and parallelizable.

5. The algorithms should be general and easily customized to different types of

data and networks. In particular, it should grant the researcher the possibility to

specify how to define the association between variables.

6. The algorithms should be able to incorporate hypothesis on the data structure and

expert judgement by including topological motifs.

1.4. Objective of the Research and our Approach 31

These requirements are in our view a deep generalisation of the characteristics of

the TMFG algorithm (Massara et al., 2016) which has been developed in the first part

of our research and that is described in full in Chapter 4.

1.4.2 Approach and Direction of Research

The general idea is to build networks by repeated addition of vertices using only oper-

ations that are invariant with respect to some topological property (planarity in the case

of the TMFG, chordality in the case of the MFCF). We have identified in the Clique

Forest12 the data structure that is most promising in addressing the research problem

due to the many expedient properties of its geometry. In particular:

• The maximum size of the cliques allowed in the forest is a natural topological

penalizer and the treewidth (= size of largest clique - 1) is related to the complex-

ity of probabilistic inference (Bach and Jordan, 2001) that can be performed on

the forest, as well as the minimum number of samples required to obtain positive

definite estimated of correlation matrices in the important case of multivariate

Gaussian distributions.

• The graphs underlying the clique forests are chordal, or triangulated graphs and

this means that:

1. Chordal graphs are a case of perfect graphs and they have polynomial time

solutions for a number of combinatorial problems that would otherwise be

intractable (for example: graph coloring, maximum clique, maximum inde-

pendent set), see Golumbic (2004).

2. Graphical models with underlying chordal graphs are decomposable, have

a number of convenient properties, such as a convenient factorisation of the

probability density in terms of the clique marginal, and do not require the

calculation of the partition function (Lauritzen, 1996).

3. Graphical models represented by clique forest are amenable to exact infer-

ence with the junction tree algorithm.

12The Clique Forest is better known in the Literature as the Clique Tree (Blair and Peyton, 1993), or
the junction tree (Lauritzen, 1996).

1.4. Objective of the Research and our Approach 32

4. Gaussian decomposable models are particularly suited to sampling from

large systems (Jones et al., 2005).

• The clique tree is a particular case of a simplicial complex, the clique complex of

a graph (Bandelt and Chepoi, 2008), which opens the possibility to analysis of

data based on tools from computational topology.

In Chapter 3 we develop an algorithm for learning the structure of clique forests

based on the idea of topological penalisation. Specifically, the algorithm allows to ef-

fectively control the l0 semi-norm of the model, a goal which is impossible to achieve

with regularisation methods based on the l1 and l2 norms. As a consequence it is pos-

sible to cleanly separate structure learning and parameters learning, while the other

regularisation approaches achieve sparsity by shrinking the model parameters too. The

algorithm is based on the geometry of a clique tree, the space of the allowed solutions

is explored by iterative application of one or more topological operators (e.g. clique

expansion operator). Any topological constraint (such as planarity, chordality) must

be an invariant of the top ological operators used. The algorithm is formulated in a

way that generalises the preferential attachment network construction method (Albert

and Barabási, 2002) whereby vertices are added one by one to a growing network. The

choice of the next vertex and the next attachment point is driven by a gain function,

which represents the gain in score resulting from the application of the clique expan-

sion operator. The algorithm can be seeded with an initial clique tree and therefore

topological motifs can be easily incorporated. We have made an effort to keep the dis-

tinction between the geometry of the network and the analytical forms of the scoring

functions used by using a generic programming approach, so that the algorithm can be

used, without change, with any scoring function compatible with the definition of the

clique expansion operator.

1.4.3 Applications

We provide four applications. Firstly, in Chapter 4 we provide an approximate solu-

tion to the Maximum Weight Planar Subgraph Problem (MWPSP) (Castonguay et al.,

2017); secondly, in Chapter 5 we show some applications to the risk management of fi-

nancial portfolio (Barfuss et al., 2016); thirdly, in Chapter 6 we use the algorithm to find

solutions to the Covariance Selection problem (Dempster, 1972); finally, in Chapter 8

1.4. Objective of the Research and our Approach 33

we discuss some applications in Topological Data Analysis.

Chapter 2

Approaches to the Modelling of Sparse

Networks

In this chapter we provide, initially, some background information on Undirected

Graphical Models, with a specific focus on the relationship between the conditional

independence of the random variables as specified by the Markov properties and the

factorisation of the underlying probability density. We also introduce the important

class of decomposable models.

Next, we proceed to define the problem of structure learning and we review the

main approaches in the fields of structure learning in graphical models and information

filtering networks. More technical details on decomposable models required by our

methodology will be provided in Chapter 3.

2.1 Graphical models and Markov Random Fields

2.1.1 Definitions

Definition 1 (Graphs and edges). A graph G = G(V,E) is defined by a collection of p

vertices (or nodes) V =
{

v1, . . . ,vp
}

and a collection of m edges E ⊂V ×V . A directed

edge is an ordered pair of vertices (vi,v j), and we say that the edge goes form vi to

v j; an undirected edge is an unordered pair of vertices, so that (vi,v j) is the same as

(v j,vi). If (v j,vi) ∈ E we say that vi and v j are adjacent. A graph that contains only

undirected (resp. directed) edges is called an undirected (resp. directed) graph. In this

thesis by graph we will mean, unless otherwise specified, an undirected graph.

Definition 2 (Neighbours and closure). The neighbours of a vertex vi ∈ V in an undi-

2.1. Graphical models and Markov Random Fields 35

rected graph G(V,E) are the vertices adjacent to vi, neib(vi) =
{

v j ∈V | (vi,v j) ∈ E
}

.

If A is a subset of V then the neighbours of A are defined as neib(A) =∪v∈A neib(v)\A.

The closure of a set of vertices a⊂V is defined as cl(A) = A∪neib(A).

Definition 3 (Cliques). A clique is a subset C ⊂V of vertices that are fully connected

or complete, that is ∀vi,v j ⊂ C,(vi,v j) ∈ E, and C is not a proper subset of any other

complete set. In some cases cliques are defined as the complete subsets of a graph,

relaxing the requirement of being maximal subsets. In this case what we call cliques are

called “maximal cliques”. For us it is convenient to use the work cliques for maximal

complete subgraphs. We will denote with C (G) the set of the cliques of the graph G.

Definition 4 (Undirected graphical models). An undirected graphical model (“UGM”),

or Markov Random Field (“MRF”) (Lauritzen, 1996; Wainwright and Jordan, 2008;

Koller and Friedman, 2009; Drton et al., 2018) H is composed of an undirected graph

G(V,E) and a collection X =
{

X1, . . . ,Xp
}

of random variables. Each vertex vi is asso-

ciated with a random variable Xi; an edge between two vertices vi and v j represents a

probabilistic relationship between the two associated variables Xi and X j. We indicate

the space where the variable Xi takes values as Xi. For instance Xi could be the real

number system R or a discrete set {x1, . . . ,xn}. Specific values in Xi are designated

using the corresponding lower case variable xi. The expression {Xi = xi} means the

event that the variable Xi assumes the value xi. If C is a subset of V we indicate with

XC ∈ X the sub-vector of the variables indexed by C, XC = (Xc)c∈C, and with XC the

subspace where XC takes values.

Definition 5 (Directed graphical models: Bayesian Networks). A Bayesian Network is

an example of a directed graphical model. In this example the edges are oriented from

a parent Xp to a child vertex Xc and it is only possible to condition the child upon the

parent (Xc | Xp). The edge represents therefore the conditional dependence relation.

2.1.2 Conditional Independence

Definition 6 (Conditional independence for random variables with positive density).

If X , Y , and Z are random variables with a joint density fXY Z(x,y,z) 1 with respect

to a product measure µ we say that X and Y are independent conditionally on Z, and

1And associated marginal densities fX (x), fXY (x,y), and so on.

2.1. Graphical models and Markov Random Fields 36

we write X ⊥⊥ Y | Z, when Equation 2.1 holds almost surely or, if the densities are

continuous, for all z such that fZ(z)> 0.

X ⊥⊥ Y | Z⇐⇒ fXY Z(x,y,z) fZ(z) = fXZ(x,z) fY Z(y,z) (2.1)

The intuition behind conditional independence is that, knowing Z, Y does not

provide any further information about X . This happens for example when both X and Y

are influenced by Z but do not interact directly with each other, as shown in Example 1.

An intuitive example is the case where X and Y describe the temperature measured by

two thermometers in the same room and Z is the temperature in the room; knowing Z

we can predict the values of X and Y without having to measure the correlation between

X and Y .

There is a large literature regarding the definition of conditional independence in

very general settings using probabilistic, algebraic and combinatorial tools (see Lau-

ritzen (1996, Par 3.1), Studeny (2006), and Drton et al. (2018, Ch. 1) and the literature

quoted therein), but since in this thesis we will always assume the existence of a pos-

itive joint probability density we will use Definition 6 in terms of marginal densities,

which has the benefit of being simple and intuitive.

Definition 6 can be specialised to the variables in a graphical model as in Defini-

tion 7

Definition 7 (Conditional Independence). Given three mutually disjoint subsets A ⊂

V,B ⊂ V,C ⊂ V of the vertices of a graphical model with associated variables XA, XB

and XC and associated densities fA, fB and fC, Equation 2.1 specialises as:

XA ⊥⊥ XB | XC⇐⇒ fABC(xA,xB,xC) fC(xC) = fAC(xA,xC) fBC(xB,xC) (2.2)

Provided that the marginal density fC is positive the joint density can be rewritten

in Equation 2.3 in a way that formally generalises Bayes’ formula2.

fABC(xA,xB,xC) =
fAC(xA,xC) fBC(xB,xC)

fC(xC)
(2.3)

2The original formula from Bayes involves only two random variables and the conditioning is per-
formed on one of the two random variables.

2.1. Graphical models and Markov Random Fields 37

XA

XC

fABC = fAC fBC
fC

XB

Figure 2.1: Graphical illustration of the conditional independence relationship XA ⊥⊥ XB | XC

or, using for instance the ansatz φAB = fAC(xA,xC) and φBC = fBC(xB,xC)
fC(xC)

:

fABC(xA,xB,xC) = φAC(xA,xC)φBC(xB,xC) (2.4)

Figure 2.1 illustrates, in the simple case where A, B, and C contain exactly one

element each, how the relationship of conditional independence is reflected in the graph

structure: since XA and XB are independent conditionally on XC, the graph does not

include the edge (XA,XB). There could be, in fact, significant correlation between XA

and XB, but it would be wholly explained by the effects of XC. We will see that in

Gaussian Markov Random Fields the measure linked to the presence or absence of an

edge is the partial correlation coefficient (Anderson, 1962).

Example 1 (Conditional independence of multivariate Gaussian variables). Let us

assume that XA,XB,XC are three random variables with a joint multivariate normal

distribution and where XC has unit variance and XA = αXC +
√

1−α2εA and XB =

βXC +
√

1−β 2εB, with εA and εB two univariate normal distributions with zero mean

and unit variance independent from each other and from XA,XB,XC. The correlation

matrix of the joint distribution is:

C =

XA XB XC

XA 1 αβ α

XB αβ 1 β

XC α β 1

while the inverse of the correlation matrix is:

2.1. Graphical models and Markov Random Fields 38

J =

XA XB XC

XA
1

1−α2 0 α

α2−1

XB 0 1
1−β 2

β

β 2−1

XC
α

α2−1
β

β 2−1
1−α2β 2

(α2−1)(β 2−1)

If α and β are close to 1 in absolute value then ρAB, the correlation between XA and

XB, will also be close to 1. The partial correlation ρAB.C is instead equal to 0 because

it is the correlation of εA, the residuals of the regression of XA against XC, and εB, the

residuals of the correlation of XB against XC. The partial correlation ρAB.C is zero since

εA and εB are independent by construction. In general for a multivariate Gaussian

the partial correlation is linked to the elements of the inverse covariance matrix J:

ρAB.C = − JAB√
JAAJBB

. For more details about the idea of partial correlation see Anderson

(1962); Baba et al. (2004).

This elementary case is very important for the understanding of the rôle played by

conditional independence, partial correlation and precision matrix in Gaussian graphi-

cal models. A network model based on the correlation matrix, maybe with some thresh-

olding, would probably have produced a system of (XA,XB,XC) with a full network,

instead of the representation in Figure 2.1. This would have not only “wasted” one

parameter, given that the correlation ρAB is fully determined by ρAC and ρBC, but also

would have introduced unnecessary noise in the system by trying to parametrise the

essentially spurious correlation between the residues εA and εB
3.

Example 2 (Conditional independence of multivariate Gaussian variables in relation to

the zeros of the precision matrix). When the variables Xv follow a multivariate Gaus-

sian distribution the conditional independence of two variables Xa and Xb is directly

reflected in the inverse of the covariance matrix (also called precision or concentration

matrix) J: Xa ⊥⊥ Xb | (Xr,r ∈ V \ {a,b})⇐⇒ Jab = 0. The pattern of missing edges

corresponds to conditionally independent variables and it is exactly the same as the

zero elements in the precision matrix. The problem of estimating a precision matrix

is called “Covariance selection” (Dempster (1972)) and the associated graphical mod-

els are called Gaussian Graphical Models (GGM) or Gaussian Markov Random Fields

3See also Giudici and Spelta (2016) for additional considerations on the effectiveness of graphical
models in providing parsimonious representations.

2.1. Graphical models and Markov Random Fields 39

(GMRF).

2.1.3 Markov Properties

We have seen in Example 1 how, in a simple case of three random variables, the struc-

ture of a Markov Random Field can encode a relationship of conditional independence.

In more complex cases there is a need to specify precisely how to read the conditional

independence statements encoded in the graph. Given a Markov Random Field H

with underlying graph G there are three possible choices of the set of variables that

can be used as a conditioning set, and each of the three choices leads to three different

definitions of conditional independence: the “Markov properties”.

• Global Markov property (GM): Any two set of variables are conditionally inde-

pendent given a separating subset:

XU ⊥⊥ XV | XS

where every path from an element of U to any element of V passes through S.

• Pairwise Markov property (PM): Any two variables Xi and X j are conditionally

independent given all the others:

Xi ⊥⊥ X j | XV\{i, j} if {i, j} /∈V

• Local Markov property (LM): Any variable is conditionally independent from all

the other given its neighbours:

Xi ⊥⊥ XV\cl(Vi) | Xneib(Vi) where cl(Vi) =Vi∪neib(Vi)

In general (Lauritzen, 1996, Prop. 3.4) the global Markov property implies the

local Markov property which in turn implies the pairwise Markov property.

Global Markov property⇒ Local Markov property⇒ Pairwise Markov property

(2.5)

2.1. Graphical models and Markov Random Fields 40

1

2

3

4

5

6

7

Figure 2.2: Pairwise Markov property. X1 and X4 are independent conditionally on
{X2,X3,X5,X6,X7}

1

2

3

4

5

6

7

Figure 2.3: Global Markov property. Any of {X1,X2,X3} is independent from any of
{X5,X6,X7} conditionally on X4.

2.1. Graphical models and Markov Random Fields 41

1

2

3

4

5

6

7

Figure 2.4: Local Markov property. X1 is independent from {X4,X5,X6,X7} given {X2,X3}

There are examples of discrete probabilities where the reverse implications do not

hold (Lauritzen, 1996, Example 3.5-3.6). However, under some additional assump-

tions, for instance when the probability has a continuous and positive density in the

product space, the opposite implications hold as well (Lauritzen, 1996, Th. 3.7).

Global Markov property⇔ Local Markov property⇔ Pairwise Markov property

(2.6)

2.1.4 Clique Factorisation Property and Hammersley-Clifford

Theorem

An MRF models the joint probability distribution of the random variables Xi. A factor4

is a function from a subset of the node variables to R+. For instance a factor of the

three variables X1, X2 and X3 is a function φ123(X1,X2,X3) with values in R+.

We say that a distribution factorizes over H if there are factors φi(Ci) over the

cliques of Ci ∈ C (G) such that

P(X = x) =
1
Z ∏

Ci∈C (H)

φi(xCi) (2.7)

4Factors are also called potentials or compatibility functions in the literature.

2.1. Graphical models and Markov Random Fields 42

where we have

Z = ∑
X1=x1,...,Xn=xn

∏
Ci∈C (H)

φi(xCi) discrete case (2.8)

Z =
∫

x1,...,xn
∏

Ci∈C (H)

φi(xCi)dx continuous case (2.9)

Z is called the partition function and is such that the function P(X) adds up to 1. Please

see Kindermann et al. (1980) for more details.

The Hammersley-Clifford theorem (Lauritzen, 1996) states that Equation 2.7 can

be fulfilled if the density P(x) is positive. In this case Equation 2.7 can be expressed

as a Gibbs measure:

P(X = x) =
1
Z

exp(−U(x)) (2.10)

where

U(x) = ∑
Ci∈C (H)

logφi(xCi) (2.11)

When the probability distribution P has a positive density in the product space the

three Markov properties and the factorisation property are equivalent.

Global Markov property⇔ Local Markov property⇔ (2.12)

Pairwise Markov property⇔ Factorisation property

Definition 8 (Graph decomposition). Let A ⊂ V , B ⊂ V , C ⊂ V be three mutually

disjoint subsets of vertices of a graph G. For a ∈ A, b ∈ B we say that C is an (a,b)-

separator if every path connecting a and b intersects C; C is a minimal (a,b)-separator

if it is the smallest subset with such a property. Similarly we say that C separates A and

B if C is an (a,b)-separator for every a ∈ A and b ∈ B. We say that the triple (A,B,C)

decomposes G(V,E) if V = A∪B∪C and the following conditions hold: 1. C separates

A and B and 2. C is a complete graph. As a side note, the requirement of completeness

for C might seem redundant, but it turns out to be fundamentally linked to the property

of chordality of a graph and to desirable properties in the variable elimination process.

Let us assume that the random variable in a MRF H belong to two non-

2.2. Review of Methodologies for building Information Filtering Networks 43

necessarily disjoint subsets A ⊂ V and B ⊂ V such that V = A∪ B. Then (A \ A∩

B,B \A∩B,A∩B) is a partition of V. If H enjoys the Global Markov property then

from Equation 2.2 follows that the probability density function factorises:

f (X) =
f (XA) f (XB)

f (XA∩B)
(2.13)

The decomposition of V can be associated with a tree of subsets of V that has two

vertices A and B joined by the edge C = A∩B.

In case A and B are in turn decomposable (or fully connected cliques) it can be

shown (Lauritzen, 1996, Chap. 3) that the joint probability distribution can be further

recursively factored into finer decomposable components until we get to the clique set

(C) and separator set (S) of G:

P(X) =
∏c∈C P(Xc)

∏s∈S P(Xs)
(2.14)

This property will be further explored in Chapter 3 in relation to the MFCF algo-

rithm.

Remark 9 (Empty set as a separator). Note that in case two sets of variables are disjoint

(unconditionally independent) the corresponding separator is the empty set and the tree

structure is a forest.

Remark 10 (Multiplicity of separators). It is possible that a separator appears more

than once in a clique forest, for example when it separates more than two cliques. In

such a case in our notation the separator set reports the separator more than once, so

that the separator multiplicity is automatically taken into account.

2.2 Review of Methodologies for building Information

Filtering Networks
We structure our review of methodologies to build information filtering networks from

data around four principal approaches: (i) Structure learning algorithms in graphical

models, (ii) Sparse graphical models through regularisation and covariance selection,

(iii) Information filtering networks, (iv) The Triangulated Maximally Filtered Graph

2.2. Review of Methodologies for building Information Filtering Networks 44

algorithm, which we will describe fully in Chapter 4 as a particular case of the MFCF

methodology.

2.2.1 Structure Learning in Graphical Models

Definition 11 (Structure learning). Structure learning in graphical models is the task

of inferring from realisations or experiments what is the structure of the conditional

independence relations of the vertices, which is represented by the graph underlying

the graphical model. This means ascertaining which edges are present in the graph and

how well they represent the dependencies in the data set.

The problem of finding the dependency structure underneath a data set is hard

in general since an undirected graph on p variables has a(n) = 2(p·(p−1)/2) possible

configurations5. Structure learning is very difficult also when we restrict the prob-

lem to more tractable cases: Karger and Srebro (2001) analyse the problem of learning

maximum-likelihoood graphical models in the particular case that the underlying struc-

ture is a clique tree of fixed size and show that it is equivalent to the NP-hard problem

of finding a maximum weight subgraph of bounded treewidth. Bogdanov et al. (2008)

provide NP-hardness results for the problem of reconstructing Random Markov Fields

with bounded degree trees and hidden nodes. Chickering (1996) and Chickering et al.

(1994) prove that learning bayesian networks (introduced with Definition 5) is NP-

complete6. It is therefore understandable that a large effort is gone into the development

of heuristic and approximate methods.

General approaches to structure learning in Graphical Models can be classified

into three main categories (Drton and Maathuis, 2017; Koski and Noble, 2012; Zhou,

2011; Lauritzen, 2012; Scutari and Strimmer, 2011; Koller and Friedman, 2009):

(i) score based, (ii) constraint based, and (iii) Bayesian methods. Let us here briefly

introduce and comment them one by one.

2.2.1.1 Score based methods

Score based algorithms perform structure learning by detecting edges or other struc-

tures that optimize some global function such as likelihood, Kullback-Leibler diver-

gence (Kullback and Leibler, 1951), Bayesian Information Criterion (BIC) (Schwarz
5The number of graphs on p labeled nodes (Harary and Palmer, 2014)
6Bayesian networks are, however, directed graphical models and structure learning is further compli-

cated by the check for acyclicity in the resulting network.

2.2. Review of Methodologies for building Information Filtering Networks 45

et al., 1978), Minimum Description Length (Rissanen, 1978) or the likelihood ratio

test statistics (Petitjean and Webb, 2015). In general, the identification of the structure

that optimises the score function results in a difficult combinatorial optimization prob-

lem (Koller and Friedman, 2009, Ch. 20) and some sort of greedy approach should be

implemented to produce a sequence of steps that optimize a limited space of solutions.

Chow and Liu Trees. One of the leading methods in the score based sparse repre-

sentation of joint probability distributions is based on Chow-Liu trees (CLT). In the

original paper, Chow and Liu (1968) proposed a factorisation of a probability distribu-

tion where a p-order discrete distribution is approximated by the product of a number

of second-order distributions.

There are p·(p−1)
2 second order marginal distributions available. The authors pro-

pose to approximate the joint probability density P with the product Q of n− 1 bi-

variate densities such that the underlying graph G(V,E) is an oriented tree. In this

approach there are in nuce several ideas that we will develop in this thesis: one idea

is the approximation of a complex probability distribution with the product of simpler

marginal distributions; a second idea is to force the sparsity of the representation by

enforcing a constraint of a topological nature. The particularly simple topology of the

proposed approximate solution and the formulation of the problem in terms of a rooted

and directed graph allows to deal with the dependency issues making use of simple

conditional probability, without the need for the full toolset of the theory of graphical

models. The probability P to be approximated is in general unknown and therefore the

marginal bivariate probabilities need to be estimated from the observations (the authors

use the empirical observed marginal distributions P̂).

Q(X) = P̂r ∏
v→w∈E

P̂(Xw|Xv) (2.15)

where P̂r(Xr) is the probability distribution of the root of the tree, and E is the edge set

of a tree spanning the nodes associated to the p variables XV .

Equation 2.15 is similar to how the probability density was written in the original

paper, but a different representation in terms of marginal densities of dimension 1 and

2 is more adequate for our purpose:

2.2. Review of Methodologies for building Information Filtering Networks 46

Q(X) = ∏
(v,w)∈E

P̂vw(Xv,Xw)

P̂v(Xv)P̂w(Xw)
∏
v∈V

P̂v(xv) (2.16)

Equation 2.16 is mathematically equivalent to Equation 2.15 in that it is repre-

sented by the same density function, but we observe that in the new formulation there

is not a “preferred” direction in the underlying graph and all the vertices play a similar

role, without the unwarranted need for a precise ordering, nor do we need to store and

manage the ordering of the vertices.

The paper proposes to find the approximate distribution Q(X), among all the pos-

sible distributions on the trees on the p variables, that minimises the Kullback-Leibler

divergence of Q relative to the P distribution DKL(P ‖ Q) = ∑x∈X P(x) log P(x)
Q(x)

DKL(P ‖ Q) = ∑
x∈X

P(x) log
P(x)
Q(x)

=− ∑
x∈X

P(x) logQ(x)+ ∑
x∈X

P(x) logP(x)

=− ∑
x∈X

P(x)

(
∑

(v,w)∈E
log

Pvw(xv,xw)

Pv(xv)Pw(xw)

)

− ∑
x∈X

P(x) logPv(xv)+ ∑
x∈X

P(x) logP(x)

=− ∑
(v,w)∈E

Pvw(xv,xw) log
Pvw(xv,xw)

Pv(xv)Pw(xw)

−∑
v∈V

Pv(xv) log(Pv(xv))+ ∑
x∈X

P(x) log(P(x))

=− ∑
(v,w)∈E

DKL(Pvw ‖ Pv ·Pw)−∑
v∈V

H(Pv)+H(P) (2.17)

The last two addends in Equation 2.17 are independent of the tree structure and

therefore if we want to minimise the distance DKL(P ‖ Q) we have to find the tree

for which ∑(v,w)∈E DKL(Pvw ‖ Pv ·Pw) is maximum7. It can also be shown (Drton and

Maathuis, 2017) that maximising the total empirical mutual information is equivalent

to maximising the empirical likelihood. This problem can be solved exactly and ef-

ficiently using an algorithm that solves the Maximum Spanning Tree problem for a

weighted graph whose edge weight is the Kullback-Leibler distance (or mutual infor-
7The Kullback-leibler distance is positive.

2.2. Review of Methodologies for building Information Filtering Networks 47

mation) of the variables associated with the vertices. Tarjan (1983, Chapter 6) provides

an excellent exposition of the classical algorithms available for solving the Minimum

Spanning Tree problem. At the time of writing the fastest non-randomized algorithm

available for solving the problem is due to Chazelle (2000).

Remark 12 (Extension of CLT to normally distributed variables). The paper by Chow

and Liu is limited to the approximation of discrete variables, but the theory holds for a

more general class of distributions, for which it is possible to calculate the Kullback-

Leibler distance. For instance when the marginals can be taken as bivariate normal,

then the Kullback-Leibler distance between two variables is DKL(Pvw ‖ Pv · Pw) =

−1
2 log(1− r2

vw), with rvw the empirical correlation of the two variables. Mantegna

(1999) uses a very similar distance function to build the Minimum Spanning Tree to

analyse a portfolio of stocks. Note also that the Kullback-Leibler distance in this sim-

ple case is proportional to the logarithms of the determinant of the correlation matrix

or, using a different interpretation of the minus sign, it is proportional to the logarithm

of the determinant of the inverse correlation matrix.

Remark 13 (Computational efficiency for Chow-Liu Trees). A natural development of

the CLT methodology is to consider the product of marginal probabilities of dimension

greater than two. In this case the already mentioned result of Karger and Srebro (2001)

shows that there is no tractable algorithm to solve the problem exactly. The case of

dimension 2 stands out for its tractability. The many further developments described

below are therefore based on heuristics.

Ku and Kullback (1969) extended the CLT for discrete probability distributions

by allowing the use of marginal probabilities of order greater than two. They used the

Kullback-Leibler divergence as a scoring function. They propose to approximate the

distribution by means of an iterative procedure of “adjusting the marginals” over a given

set of cliques. The Chow-Liu algorithm is recovered as one of the first approximations

when only some marginals are available. In this approach the topological constraint

described by Chow and Liu is discarded and the consequence is that there is no longer

a closed form for the approximate density.

Huang et al. (2002) propose an improvement of the CLT where the initial tree

is an approximation of the distribution and where frequent itemsets are successively

2.2. Review of Methodologies for building Information Filtering Networks 48

joined in a single node in the dependence tree structure (and the edges are adjusted

accordingly). The result is called Large Node Chow-Liu Tree (LNCLT), and includes

the idea of structuring closely associated nodes into a larger clique structure.

In further applications the Chow-Liu theory has been further developed in different

directions, including discrete time-series (Kirshner et al., 2004), clustering (Chan and

Liu, 2015), generalisation to non-discrete random variables using Minimum Descrip-

tion Length (Suzuki, 2010), feature selection (Schaffernicht et al., 2007), and kernel

density estimation (Liu et al., 2011). The statistical learning theory of Chow-Liu trees

is presented in detail in Koski (2010).

Decomposable graphical models. As already mentioned, decomposable graphical

models have desirable properties and therefore there are several score based algorithms

dedicated to learning their structure. In this case the methodology requires to to ex-

amine only the chodal configurations: in this area there are a number of methods that

efficiently explore the graphical structure (directed, in the case of Bayesian networks,

or undirected, in the case of log-linear or multivariate Gaussian models) with the help

of suitable graph algorithms based on the manipulation of data structures represent-

ing junction trees or clique graphs (Giudici and Green, 1999; Deshpande et al., 2001;

Petitjean and Webb, 2015). The structure of these algorithms is usually based on an op-

eration of edge addition: every candidate edge is assessed with regards to the increase

in score and to the compatibility with the chordal structure. To our knowledge there are

no methodologies for the learning of decomposable models that work as a preferential

attachment model, which is very common in other areas of network science (Barabási

and Albert, 1999; Dorogovtsev, 2010).

The theory about which edges can be removed from a decomposable model with-

out loosing the decomposability is well established (Lauritzen, 1996, Lemma 2.19) and

relatively easy and allows the design of backward selection algorithms (Mezzini and

Moscarini, 2010; Malvestuto, 2012). Along the same lines Kovács and Szántai (2013)

describe a “pruning” approach for multivariate discrete distributions which removes

links iteratively refining a junction-tree, optimising the total correlation (“information

content”).

Szántai and Kovács (2013) developed an algorithm specialised for a particular

clique tree (the “t-cherry” junction tree) and used it to approximate a multivariate dis-

2.2. Review of Methodologies for building Information Filtering Networks 49

crete distribution. A t-cherry junction tree is a clique tree with a regular structure where

all the cliques are of the same dimension.

To the best of our knowledge all structure learning methods8 for decomposable

models deal with the chordality constraint on an edge-by-edge basis and, differently

from the approach proposed in this thesis, do not model the clique forest as an aggre-

gation of cliques.

2.2.1.2 Constraint based Algorithms

Constraint based algorithms often start from a complete model and adopt a backward

selection approach by testing the independence of vertices conditioned on subsets of the

remaining vertices (e.g. in the Spirtes-Glymour-Scheines (SGS) and Peter-Clark (PC)

(Spirtes et al., 2000; Zhou, 2011) algorithms) and removing edges associated to vertices

that are conditionally independent; the algorithm stops when some criteria are met—

e.g. every vertex has less than a given number of neighbours. Conversely forward se-

lection algorithms start from a sparse model and add edges associated to vertices that

are discovered to be conditionally dependent. An hybrid model is the Grow-Shrinkage

(GS) algorithm where a number of candidate edges is added to the model (the “grow”

step) in a forward selection phase and subsequently reduced using a backward selection

step (the “shrinkage” step) (Margaritis and Thrun, 2000; Zhou, 2011). The complexity

of checking a large number of conditional independence statements makes these meth-

ods unsuitable for graphs with a large number of vertices. Furthermore, aside from

the complexity of measuring conditional independence, these methods do not gener-

ally optimize a global function, such as likelihood or the Akaike Information Criterion

(Akaike, 1974, 1998) but they rather try to exhaustively test all the conditional inde-

pendence properties of a set of data and therefore are difficult to use in a probabilistic

framework.

2.2.1.3 Bayesian Methods

Bayesian methods consider the presence or absence of an edge in the inference net-

work structure as a random variable. More precisely (Madigan et al., 1995) the like-

lihood of a model result from the product of a discrete probability distribution over

the space of all graphs (P(G) and a continuous distribution of the random variables

8With the exception of Szántai and Kovács (2013).

2.2. Review of Methodologies for building Information Filtering Networks 50

conditional on the graph structure P(X ,G) = P(G)P(X |G). Usually the probabil-

ity over the graph structure is taken as uniform, meaning that each graph is equally

probable. Applying Bayes rule the posterior probability of a graph can be taken as

P(G,X) ∝ P(X |G)P(G). If the probaility on all graphs is the same optimising the prob-

ability of the graph is equivalent to optimising the marginal likelihood P(X |G) (see for

instance Madigan et al. (1995); Eaton and Murphy (2012) and references therein).

2.2.2 Sparse graphical models through regularisation and covari-

ance selection (Lasso, Ridge, Elastic Net)

Regularisation approaches tend to optimise the penalised likelihood of a model. The

penalty term is the product of a regularisation parameter and a norm of the coefficients.

The idea of regularisation can be traced back to the seminal paper from Tikhonov

(Tikhonov, 1943). Specifically ridge regression uses a `2-norm penalty; instead the

lasso method (Tibshirani, 1996) uses an `1-norm penalty and the elastic-net approach

uses a convex combination of `2 and `1 penalties (Zou and Hastie, 2005). These ap-

proaches are among the best performing regularization methodologies presently avail-

able. The `1-norm penalty term favours solutions with parameters with zero value

leading to models with sparse parameters.

In the field of Gaussian Graphical Models the problem of learning the structure

exploits the link between edges and zero-elements of the precision matrix; the general

idea is to maximise the likelihood of the multivariate normal distribution (which can

be expressed in terms of the sparse inverse covariance matrix) penalised by a non-

decreasing function of the number and weight of the non-zero elements in the precision

matrix.

Given S, the sample covariance matrix of a number of observations, and J, an

estimate of the precision matrix the likelihood of the distribution over the data is given

by

L (X |J) = logdet(J)+Tr(SJ)+λ ‖ J ‖p (2.18)

Sparsity is controlled by regularization parameter λ > 09; the larger the value of

9The graphical lasso methodology allows to have a specific regularisation parameter for every entry
in the precision matrix λi j, but in most practical uses the same parameter is used for all the matrix

2.2. Review of Methodologies for building Information Filtering Networks 51

the parameter the more sparse the solution becomes.

The most successfull approach to the optimisation of penalised likelihood is the

popular graphical lasso (Glasso) (Friedman et al., 2008). This approach is extremely

popular and it has developed from a large body of literature with several novel al-

gorithmic techniques that are continuously advancing this method (Meinshausen and

Bühlmann, 2006; Banerjee et al., 2006, 2008; d’Aspremont et al., 2008; Ravikumar

et al., 2011; Hsieh et al., 2011; Oztoprak et al., 2012).

Remark 14 (Practical issues in model selection with the graphical lasso). In practical

applications there are two issues with the graphical lasso. There is not a statistical tests

that helps setting the value of the lasso penalty to a specific value. Usually this value is

set using cross-validation. If a cross-validation sample is not available the link between

the penalty parameter and the sparseness of the graph is not motivated by the data and

must be set by the researcher. A second aspect is that the method performs structure

and parameters learning at the same time, since the parameters are “shrunk” up to the

point where some reach zero. In many circumstances it would be more helpful to be

able to decouple the tasks of learning the structure of the graph and the weights of the

edges.

2.2.3 Information Filtering Networks

With Information Filtering Networks we refer to a set of approaches aimed at clean-

ing correlation matrices by simplifying the structure retaining a sparse network with

the most relevant correlations only. This methodology originated in the Econophysics

community where the interest in modelling dependence stems from studies on the spec-

tral properties of the correlation matrix of financial portfolios (Laloux et al., 1999),

focusing on cleaning methodologies inspired by Random Matrix Theory (RMT) (Bun

et al., 2017). An alternative approach has been to use tools from topology to investi-

gate the structure of financial markets. One seminal idea (Mantegna, 1999) was to use

the Minimum Spanning Tree algorithm to build a hierarchical tree structure that retains

the largest correlations. In further developments other topological constraints have

been investigated, notably imposing the planarity of the filtered network (Tumminello

et al., 2005) and studying hyperbolic embeddings (Aste et al., 2005a; Tumminello et al.,

elements.

2.2. Review of Methodologies for building Information Filtering Networks 52

2007). These methodologies have enabled the study of several properties of financial

portfolios with applications to portfolio diversification (Pozzi et al., 2013; Musmeci

et al., 2015b), clustering (Musmeci et al., 2015a; Song et al., 2012a) and dynamics of

correlation in markets (Aste et al., 2010b).

2.2.4 Triangulated Maximally Filtered Graphs

In Massara et al. (2016) we proposed a greedy algorithm that builds a Triangulated

Maximally Filtered Graph by recursively adding vertices to a k-width tree while min-

imising a given score function (which in a particular probabilistic application is the

Kullbak-Leibler divergence). In Barfuss et al. (2016) this general algorithm was applied

to the approximation of multivariate normal distributions by using the multivariate nor-

mal Kullback-Leibler divergence as a scoring function; in the same paper some basic

results on Gaussian Markov random fields are used to provide applications to financial

portfolio modelling. The TMFG produces planar and chordal networks by restricting

the size of the cliques and clique-intersections and by constraining the topology of the

clique tree. Christensen et al. (2018c) carry out a comparison of the graphical lasso and

information filtering networks based on TMFG from the point of view of psychomet-

ric networks showing that TMFG have better interpretability. The work in the present

paper is a radical generalisation of the TMFG algorithm where the size of the clique is

no longer a constraint but an adjustable parameter that can be tuned to the data, and the

size and use of separators is driven by the gain in score.

Chapter 3

Learning Clique Forests

We begin this chapter by outlining some fundamental results regarding chordal graphs

and clique forests. The topic is extensive and the applications are numerous and en-

compass various fields, therefore we introduce only the concepts required for a sound

understanding of the functioning and the outputs of the MFCF algorithm, directing to

the literature for more detailed and more general expositions.

After the exposition of the fundamental results we introduce the class of the CF-

invariant operations, the operations on graphs that preserve the property of having a

clique forest. A CF-invariant operation is a chordality-preserving operation, but with

this definition we stress the fact that we want to describe the transformation in terms of

changes to the structure of the clique forest and the consequent gain or loss defined by

changes to a score function.

Next, we define the building blocks of the MFCF algorithm by introducing a CF-

invariant operator, the clique expansion operator, and the concept of gain function. We

proceed to describe the MFCF algorithm and we prove the correctness of the algorithm.

We highlight certain analogies to the Minimum Spanning Tree algorithm of Prim (Prim,

1957a) and to the Maximum Cardinality Search algorithm of Tarjan (Tarjan, 1976).

Finally we explore two additional CF-invariant operators, the bridge operator and

the pruning operator, discussing possible applications to structure learning.

3.1 Graph Theory Prerequisites
In this chapter G=G(V,E) is, unless otherwise stated, an undirected graph as described

in Section 2.1.1. If A is a subset of V we will denote with GA the graph G(A,EA)

induced by A, where EA ⊂ E is the subset of edges with both endpoints in A.

3.1. Graph Theory Prerequisites 54

3.1.1 Definitions

Definition 15 (Path). A path of length n is a sequence of vertices of v0, . . . ,vn such that

∀i∈ {1, . . . ,n} ,(vi−1,vi)∈ E. If all the vertices are distinct, that is vi 6= v j whenever i 6=

j, the path is called simple. When the graph is directed every edge must be considered

oriented from vi−1 to vi.

Definition 16 (Cycle). If we have a path v0, . . . ,vn and we add an edge joining back vn

to v0 we obtain a cycle v0, . . . ,vn,v0. A cycle is simple if it is obtained by joining the

first and last vertices of a simple path.

Definition 17 (Directed Acyclic Graph). If a graph G is directed and it does not con-

tain any (directed) cycle, it is called a Directed Acyclic Graph (DAG). A topological

ordering of the vertices in a DAG is an ordering of the vertices v1 < · · ·< vi < · · ·< vp

such that if (vi,v j) ∈ E (that is there is an edge oriented from vi to v j), then vi < v j.

Definition 18 (Chord). A chord of a cycle is any edge joining two non consecutive

vertices. See Figure 3.1

●

●

●

●

1

2

3

4

Figure 3.1: The cycle (v1,v2,v3,v4) and its chord (v1,v3) (higlighted in red).

Definition 19 ((va,vb)-separator). A set S ⊂ V is called a (va,vb)-separator if every

path from va to vb intersects S. If, in addition, S is the minimal set with that property

(no proper subset of S separates va and vb) then it is called a minimal (va,vb)-separator.

With reference to Figure 3.1, the set {v1,v3} is a minimal (v2,v4)-separator. Note that

{v2,v4} is not a (v1,v3)-separator.

Definition 20 (Graph decomposition). A decomposition of a graph G = G(V,E) is a

triple (A,B,S) of pairwise disjoint subsets of V with V ⊂ A∪B∪S such that:

3.1. Graph Theory Prerequisites 55

1. S separates A and B: any path between any va ∈ A and any vb ∈ B must include at

least one element of S. We will refer to S as the separator of the decomposition.

2. S is a complete subset in G.

If both A and B are non empty the decomposition is called proper.

Definition 21 (Decomposable graph). A graph G = G(V,E) is decomposable if it is

complete, or if there is a proper decomposition (A,B,S) such that the graphs GA∪S and

GB∪S are decomposable. We can also say that (A,B,S) decomposes G.

Intuitively, a decomposable graph is a graph that can be iteratively broken down

into smaller components until the components left are complete (cliques). This defini-

tion gives also a first insight into the definition of a clique forest: the cliques are the

nodes of the forest, and the edges are the sets that decompose the graph. When a graph

has at least two connected components with vertex set A and B, then it naturally decom-

poses according to the decomposition (A,B,∅). Allowing the possibility of the empty

set as a separator allows to talk about decomposition of clique forests, as opposed to

the decomposition of clique trees, as is more common in the literature.

In graphical models a decomposition of the underlying graph has a very important

relationship to the factorisation of probability distributions as shown in Theorem 22

(Lauritzen, 1996, Prop. 3.16).

Theorem 22 (Factorisation of the probability distribution of a decomposable graphical

model). If (A,B,S) decomposes G, then a probability distribution P factorises with

respect to G if and only if both its marginal distributions PA∪S and PB∪S factorise with

respect to GA∪S and GB∪S respectively and the densities satisfy:

f (x) f (xS) = fA∪S(xA∪S) fB∪S(xB∪S) (3.1)

Theorem 22 is of fundamental importance because, when the graph is decompos-

able, the repeated application of Equation 3.1 can lead to the expression of the joint

probability density as a simple function of the marginal probabilities of the cliques and

the separators. This argument will be made completely rigorous once we define perfect

sequences of cliques in Section 3.1.4. Obviously, when the separator S is the empty set

3.1. Graph Theory Prerequisites 56

the factorisation of the probability density in Equation 3.1 implies that the variables in

the sets A and B are (unconditionally) independent.

3.1.2 Chordal Graphs

The description of a decomposable graph given in Definition 20 is based on a top-down

characterisation of decomposability that requires taking into account the whole graph

structure. Fortunately, there are alternative definitions that are local in nature and that

therefore lend themselves better to the implementation of iterative algorithms. In this

section we describe chordal graphs and we come to a construction of decomposable

systems through the sequential attachment of simplicial vertices.

Definition 23 (Chordal graphs). A graph is chordal (or triangulated, or rigid circuit

graph) when every cycle of length ≥ 4 has a chord.

Remark 24 (Chordal graphs as generalisation of topologically constrained networks).

There are some aspects to the definition of a chordal graph that makes it a feasible

generalisation of previous approaches used in IFNs.

1. All the cycles of minimal length have length of three. This is consistent with

maximal planar graphs where all the faces are delimited by a triangle, but it

should be noted that not all maximal planar graphs are chordal. We will discuss a

number of such cases in Chapter 4. In this respect chordal graphs can be regarded

as a generalisation of the PMFG (Tumminello et al., 2005).

2. Chordality is a topological constraint requiring that the length of any cycle is

kept to a minimum; as such it can be seen as a generalisation of the tree structure

where no cycle is allowed. In this respect chordality can be seen as a generalisa-

tion of a tree structure (Chow and Liu, 1968; Mantegna, 1999).

The following theorem (Lauritzen, 1996, Prop. 2.5) establishes an initial charac-

terisation of chordal graphs1.

Theorem 25. The following statements are equivalent for an undirected graph G =

G(V,E):

1Lauritzen (1996) develops a comprehensive theory of decomposability that covers also marked
graphs. In his textbook the term weakly decomposable is equivalent, for non-marked graphs, to our
definition of decomposable

3.1. Graph Theory Prerequisites 57

1. G is decomposable.

2. G is chordal.

3. Every minimal (va,vb)-separator is complete.

Graphical models whose underlying graph is chordal are decomposable models

(Lauritzen, 1996, chap. 2). It is easily established that every clique, being a complete

graph, is also a chordal graph (Fig. 3.2). It is also an easy consequence of the definition

that any induced graph GA of a chordal graph is chordal.

● ●

●

●

1 2

3

4

Figure 3.2: The graph K4 is an example of a chordal graph.

The next example shows the simplest non-chordal graph and it is a useful “coun-

terexample” to use when discussing the properties of chordal graphs. It shows that,

even in this simple case, the calculation of marginal and conditional probabilities intro-

duces spurious edges that were not present from the outset and that can lead to a denser

network (the so called fill in problem). This also provides an heuristic explanation as

to why it is necessary, differently from chordal graphs, to have the partition function

in the probability density, as it is needed to somehow account for the extra interactions

that cannot be read immediately from the factorised probability distribution.

Example 3 (Non-chordal graphs: the four cycle graph). The simplest example of a non-

chordal graph is the four-cycle (Fig. 3.3). According to the clique factorization prop-

erty, described in Section 2.1.4, a probability density over the four variables X1, . . . ,X4

would factorise as:

f1234(x1,x2,x3,x4) =
1
Z

φ12(x1,x2)φ23(x2,x3)φ34(x3,x4)φ14(x1,x4) (3.2)

3.1. Graph Theory Prerequisites 58

Having defined a probability, it is now possible to perform some of the most com-

mon inference tasks on a graphical model (Koller and Friedman, 2009, Ch. 9), such as

the calculation of the marginal probability density f123(x1,x2,x3).

In order to calculate the marginal distribution of X1,X2,X3 we need to “eliminate”

X4. Assuming for simplicity that the underlying probability distribution is discrete:

f (x1,x2,x3) =
1
Z

φ12(x1,x2)φ23(x2,x3) ∑
x4∈X4

φ34(x3,x4)φ14(x1,x4) (3.3)

=
1
Z

φ12(x1,x2)φ23(x2,x3)φ 1,3(x1,x3) (3.4)

The variable elimination process has introduced a new factor φ 1,3(x1,x3) corre-

sponding to a chord of the graph that did not exist before (see Figure 3.1). It is easy

to see that, if neib(x4) had been a complete set, no new chord would have been intro-

duced. Vertices of a graph that can be eliminated without introducing spurious edges

are called simplicial. A similar calculation shows that we would introduce a new fac-

tor also if we were to condition f1234(x1,x2,x3,x4) upon X4. This fact motivates the

abstract Definition 26 of variable elimination on graphs.

Definition 26 (Abstract variable elimination on graphs). The operation of elimination

of a variable v from the graph G is performed by joining all the vertices in neib(v) and

then removing v and all the incident edges (Drton et al., 2018, Def. 4.2.3).

●

●

●

●

1

2

3

4

Figure 3.3: The four cycle is the simplest non-chordal graph

A simplicial vertex is a particular case of a simplicial set:

3.1. Graph Theory Prerequisites 59

Definition 27 (Simplicial set). Let A be a subset of the vertex set of G(V,E). We say

that the subset A is simplicial if neib(A) is complete. In particular a vertex v ∈ V is

simplicial if its neighbours in G(V,E) constitute a complete set.

In a clique any vertex is simplicial. On the contrary in the four-cycle graph no

vertex is simplicial, as it can be shown working out all the possible cases similarly to

the case in Example 3. In general for chordal graphs the following theorem of Dirac

holds (see for instance Blair and Peyton (1993, Lemma 1) or Lauritzen (1996, Lemma

2.9)).

Theorem 28 (Dirac (1961)). Every chordal graph G has at least a simplicial vertex. If

G is not complete, then it has at least two nonadjacent simplicial vertexes.

Remark 29. Theorem 28 is used often in the description of recursive algorithms on

chordal graphs and in proofs based on the mathematical induction principle because

it readily provides the first case in an inductive proof and an initial state for recursive

algorithms to start the initial decomposition of a graph.

3.1.3 Perfect Elimination Order

We introduce in this Section the important concept of Perfect Elimination Order (PEO).

A graph is chordal if and only if it has a PEO (Theorem 31) and the MFCF methodol-

ogy that we propose in Section 3.3 can be interpreted as a network growth model where

vertices are added in a reverse PEO.

Let G(V,E) be an undirected graph. Let neib(vi,G) be the vertices that are adjacent

to vi in G. Let σ = [v1,v2, . . . ,vn] be an ordering of the vertices of G(V,E). We define

V[i,n] as the set of vertices {vi,vi+1, . . . ,vn} and Gi as the graph induced by V[i,n].

It helps the intuition to think of Gi as a sequence of graphs of decreasing order

where the index is linked to time and vertices are successively eliminated from the

graph until the graph is empty. If we reverse the direction of time the image is one of a

series of graphs that grow as new vertices are added.

Definition 30 (Perfect Elimination Order (PEO)). We say that the ordering σ is a per-

fect elimination order (PEO) if, for all i, neib(vi)∩Gi+1 is a clique in Gi+1.

This is equivalent to saying that vi is a simplicial vertex in Gi. If G has a perfect

elimination order, v1 (the first vertex in the PEO) is simplicial in G = G1 and can be

3.1. Graph Theory Prerequisites 60

eliminated without introducing any new edge, then v2 is simplicial in G2 (which is

G after the elimination of v1) and can be eliminated without the need to add a new

edge and so on until all of the vertices have been eliminated. This is a fundamental

property in recursive algorithms where variables are eliminated one at a time and allows

to maintain the sparsity of the graph. This property of limiting the fill-in is relevant in

many algorithms in numerical linear algebra, see for instance Golumbic (2004, Ch. 12)

for applications to Gaussian Elimination.

Chordal graphs are characterised by the property of having a perfect elimination

ordering (Blair and Peyton, 1993, Th. 2.2).

Theorem 31. A graph G is chordal if and only if G has a perfect elimination ordering.

The intuition behind Theorem 31 is that it is possible to eliminate one by one all of

the vertices from a chordal graph without introducing any new edge. One very useful

application of this fact is that is is possible to perform the Choleski decomposition of

a matrix that has a chordal underlying graph without introducing any fill-in, as long as

the rows and columns are permuted according to a perfect elimination ordering.

3.1.4 Perfect Sequences of Cliques

Definition 32. An ordering of the cliques of a graph is a bijective application σ from

the first m natural numbers (where m is the cardinality of C , the number of maximal

cliques) into C , σ : {1, . . . ,m}→C . The cliques of the graph Cl ∈C can be ordered by

the relation <σ induced by σ where we say that Ca <σ Cb if σ(a)<σ(b). Therefore we

can think the maximal cliques to be ordered according to <σ as Cσ(1) <σ · · ·<σ Cσ(m).

As a shorthand notation we will also write σ = [C1, . . . ,Cm] meaning that the cliques

are ordered according to σ .

The following will be shown to be an alternative characterisation of chordal

graphs, with the added benefit that it links the chordality to the structure of the cliques.

Definition 33 (Running Intersection Property (RIP)). Let G(V,E) be a graph, C the

set of cliques of G and σ = [C1,C2, . . . ,Cm] an ordering of C . We say that σ has the

running intersection property if for every clique Ci with 2≤ i≤ m there is a clique C j,

with j < i such that:

3.1. Graph Theory Prerequisites 61

Ci∩ (C1∪C2∪ . . .Ci−1)⊂C j (3.5)

It is entirely possible that there is more than one clique that satisfies Equation 3.5.

If we make the decision to always choose the one with the lowest index, then there is

only one clique C j that precedes Ci and we can call this unique predecessor the parent

of Ci.

Definition 34 (Perfect sequence of cliques). Let G(V,E) be a graph, C the set of cliques

of G and σ = [C1,C2, . . . ,Cm] an ordering of C .

Let us define the following sets:

1. Hi = (C1∪C2∪ . . .Ci) (the histories),

2. Si =Ci∩ (C1∪C2∪ . . .Ci−1) (the separators),

3. Ri =Ci \Hi−1 (the residuals).

We say that C1,C2, . . . ,Cm is a perfect sequence of cliques if

1. σ has the RIP, and

2. the separators are complete.

Remark 35. Definition 34 is not the most general definition of a perfect sequence of

sets in a decomposable graph but it is adequate for the description of the MFCF. Lau-

ritzen (1996, Par. 2.1.3) develops a general treatment of perfect sequences of sets, as

opposed to cliques, where the perfect sequences of cliques can be extracted by “thin-

ning”.

Remark 36. The RIP seems at first a very complicated definition but the geometric

meaning is in reality quite straightforward. The RIP means in practice that, as we

add cliques such as Ci following the ordering of a perfect sequence of subsets, the

intersection with the previous cliques is always contained in a clique (it is complete)

and therefore it cannot introduce chordless cycles longer than three. This fact prevents

the new clique to build a “bridge”, or close a loop, between two previous cliques. This

gives an heuristic illustration to the following result, formally proved in (Blair and

3.1. Graph Theory Prerequisites 62

Peyton, 1993, Th. 3.4): any connected graph has a clique tree if and only if the cliques

have the running intersection property2.

Remark 37. A second important consequence of the running intersection property is

that (Hi−1,Ci,Si) is a decomposition of Hi. If we imagine to add the cliques in a perfect

sequence of sets one by one we have that the repeated application of Eq. 3.1 gives a

complete characterisation of the joint density as a function of the marginal probabilities

of the cliques and separators as in Equation 3.6.

f (x) =
∏ci∈C φi(xi)

∏si∈S φi(xi)
(3.6)

We note that in Equation 3.3 the multivariate density function is fully specified

in terms of marginal densities, without the need to be normalised through the partition

function.

3.1.5 Clique Forest

We now formally describe a clique forest. Given a graph G(V,E) with set of cliques

C = {C1,C2, . . . ,Cm} of G, we say that there is an edge between Ci and C j if Si j =

Ci ∩C j is not empty: note that then Si j is necessarily complete. We denote the set of

edges with S = ∪Ci,C j∈C Si j, with the understanding that when Ci∩C j =∅ then Si j is

missing.

Definition 38 (Intersection graph). The graph K (C ,S) where the vertices are the

cliques of G and the edges are the not-empty intersections of the cliques is called the

clique graph or intersection graph of G(V,E).

Definition 39 (Clique intersection property and clique forest). A clique forest for

G(V,E) is a clique graph with no cycles that includes all the cliques of G and that

additionally fulfils the clique-intersection property (Blair and Peyton, 1993):

For any two cliques Ci,C j ∈ C the set Ci∩C j is contained in every clique on the

path between Ci and C j in the tree. We will denote a clique forest with F (C ,S).

When a graph G = G(V,E) has a clique forest we say that the graph has the CF-

property.
2For non connected graphs the same result applies to the connected components

3.1. Graph Theory Prerequisites 63

Example 4 (Clique forest). Figure 3.4 shows an example of a chordal graph with its

associated representation as a clique forest.

Example 5 (The four-cycle does not have the CF-property). The four cycle graph,

shown in Figure 3.5 is a negative example. Any tree spanning the nodes of the clique

graph does not enjoy the running intersection property.

1

2

3

4
5

6

7

8

9

(a) A graph with the maximal cliques high-
lighted.

[2,3]

[3][2,4]

[4,5]

1,2,3

2,3,4

4,5,7

2,4,5,6 3,8,9

(b) The same graph represented as a clique tree.
The edges of the tree are labelled with the el-
ements of the intersection.

Figure 3.4: Illustration of the relationship between a chordal graph and the associated clique
forest.

The following theorem is of fundamental importance in establishing the link be-

tween chordal graphs and clique forests.

Theorem 40. A graph G has the CF-property if and only if it is chordal.

Proof. See Blair and Peyton (1993, Th. 3.1) or Koller and Friedman (2009, Th. 4.12)

for a proof.

Given Theorem 40 ensures the equivalence between chordal graphs and clique

forests, it is reasonable to ask whether there is a procedure that, given a chordal graph

in input can produce a clique forest. The answer is yes, as the Maximum Cardinality

Search (MCS) algorithm (Tarjan, 1976) is an algorithm used to test the chordality of

a graph and that can be adapted to extract the cliques and separators of a clique tree

structure. We will discuss the MCS later in Section 3.3.2 and we will highlight the

similarities to the MFCF.

3.2. The Clique Expansion Operator 64

1

2

3
4

(a) The four cycle graph with the cliques high-
lightes

2

3

1 4

1,2

2,3

3,4

4,1

(b) The four cycle as a clique tree (grey edges
only). The edges of the tree are labelled
with the elements of the intersection. This
tree does not have the clique intersection
property: the intersection between {4,1} and
{3,4} (4, highlighted with the dotted red
edge) is not included in the path between the
two nodes along the tree.

Figure 3.5: Illustration of the relationship between a chordal graph and the associated clique
forest.

3.2 The Clique Expansion Operator
In this section we describe the main tool for building clique forests originally intro-

duced in Massara and Aste (2019), but we will introduce first the concept of CF-

invariance.

Definition 41 (CF-invariant operator). Let G = (V,E) be a graph and let G′ = T (G)

be the result of a transformation of the graph G through an operator T (for example

the addition or removal of certain combinations of vertices or edges, the swapping or

re-labelling of two or more vertices, etc.). We say that the operator T is CF-invariant

if, whenever G has the CF-property, so does G′. This definition is not different from the

definition of a chordality-invariant operator, but we want introduce a new definition to

stress the fact that the description of a CT-invariant operator should include the effect

on the cliques and edges of the clique forest.

Definition 42 (The clique expansion operator). The clique expansion operator takes as

input a clique Ca and a vertex v disjoint from Ca and produces a new clique Cb and a

separator S such that S = Cb ∩Ca ⊂ Ca and v ∈ Cb. The intuitive idea is that S ⊂ Ca

3.2. The Clique Expansion Operator 65

contains the vertices that have the strongest relationship with v and the new clique is

Cb = S∪ v.

Figure 3.6 describes the clique expansion operation. The inputs of the operation

are: the clique C1 = {1,2,3,4} and the isolated vertex {5}. Figure 3.6b shows the

output of the clique expansion in the general case: two cliques C1 and C2 = {1,2,5}

and the separator S =C1∩C2 = {1,2}. There are two special cases.

1. If none of the elements of Ca have a strong relationship with v, then vertex v is

not attached and Cb = {v} and S =∅ (see Figure 3.6d).

2. If, on the other side, all the elements in Ca have a strong relationship with the

isolated vertex then Ca is replaced by Cb←Ca∪ v and the separator S is empty

(see Figure 3.6f).

We note that S, being a subset of a complete graph, is complete, and also that it separates

Ca \S and Cb \S.

Remark 43 (The clique expansion operator adds simplicial vertices). It is worth noting

that the vertex v added by the clique expansion operator is simplicial by construction,

since it applies to a subset of a clique. However the vertex is simplicial only in relation

to the graph the operator is applied to; any subsequent modification to the graph will

change the underlying graph and could in general cause the vertex v to no longer be

simplicial.

The clique expansion operator is the major building block of the MFCF algorithm,

so we prove now some important properties that will be used in proving the correctness

of the algorithm.

Theorem 44 shows that the clique expansion operator is CF-invariant.

Theorem 44. Let G(V,E) be a chordal graph with |V | ≥ 2 and at least an isolated vertex

v. Let G′ be the graph transformed by expanding a maximal clique C of G with v. If G

has the CF-property then also G′ has the CF-property.

Proof. There are three cases.

Case 1. The vertex v is not added to any clique of F as in Figure 3.6d. Then

v on its own becomes a new clique and F ∪{vi} is a clique forest. No new edge is

introduced and the clique intersection property is trivially satisfied.

3.2. The Clique Expansion Operator 66

1

2

3

4

5

(a) Before clique expansion (general case)
P(X = x |Ga)= φ1234(X1,X2,X3,X4)φ5(X5)

1

2

3

4

5

(b) After clique expansion (general case),
P(X = x | Gb) =
φ1234(X1,X2,X3,X4)φ125(X1,X2,X5)

φ12(X1,X2)

S = {1,2}

1

2

3

4

5

(c) Before clique expansion (isolated vertex
case)
P(X = x |Ga) = φ1234(X1,X2,X3,X4)φ5(X5)

1

2

3

4

5

(d) After clique expansion (isolated vertex
case),
P(X = x | Gb) =
φ1234(X1,X2,X3,X4)φ5(X5)
S =∅

1

2

3

4

5

(e) Before clique expansion (full expansion)
P(X = x |Ga) = φ1234(X1,X2,X3,X4)φ5(X5)

1

2

3

4

5

(f) After clique expansion (full expansion),
P(X = x | Gb) = φ12345(X1,X2,X3,X4,X5)
S =∅

Figure 3.6: Illustration of the clique expansion operator.
If S is a proper subset of C1 the operation produces two cliques and a separator;
if S = ∅ the result produces two disconnected cliques C1 and C2 = {5} and the
separator is the empty set if S =C1 the operation purely expands the original clique
with the new vertex and does not introduce a new clique or separator.

3.2. The Clique Expansion Operator 67

Case 2. The vertex v is attached to a maximal clique C ∈F and all the vertices in

C are connected to v as in Figure 3.6f. Then we replace the clique C with CE = C∪ v

in F . v is not contained in any other clique other than CE and the clique intersection

property is satisfied trivially also in this case.

Case 3. The vertex v is attached to a maximal clique C ∈F but only a subset S of

the vertices in C are connected to v as in Figure 3.6b. In this case we introduce a new

clique CE = S∪ vi, we say that C is the parent of CE (or, if we do not wish to stress the

direction of F we add the edge Si j = (C,CE) to S) and we note that v does not belong

to any other clique than CE and any intersection of CE with another clique must contain

only elements of S ⊂ C, and therefore the clique intersection property is satisfied as

well, since it holds for C.

Given Theorem 40 we would be allowed to conclude that G′ in Theorem 44 is also

chordal, but it is easy to provide a direct proof with the next Theorem 45.

Theorem 45. Let G(V,E) be a chordal graph with |V | ≥ 2 and at least an isolated

vertex v. Then expanding one clique of G with v does not introduce a chordless cycle

of length ≥ 4.

Proof. Let us call Ca any clique of G. We choose any subset S ⊂ Ca as a separator

of the clique expansion. If S is not empty it S does not have any chordless cycle of

length ≥ 4 because S is a complete induced subgraph of Ca, and the clique expansion

adds all the edges between v and any vertex of S, resulting in a clique Cb = S∪ vi

which is complete and therefore free from chordless cycles of length≥ 4. If S = Ga the

expansion generates a larger clique Cb =Ca∪ vi which is complete. If S is empty then

the expansion trivially does not add any chordless cycle of length ≥ 4.

The clique expansion operator has also an interesting property with respect to

DAGs.

Theorem 46. Let G(V,E) be a chordal graph with |V | ≥ 2 and at least an isolated

vertex vi. Assuming that G can be oriented so that it is a DAG, then it is possible to

expand one clique of G with v and orient the edges so that the resulting graph is a DAG.

Additionally, if [v1,v2, . . . ,vi−1] is a topological ordering for G, then [v1,v2, . . . ,vi−1,v]

is a topological ordering for the expanded graph.

3.3. The MFCF algorithm 68

Proof. It is sufficient to orient all the new edges from the vertex in the separator towards

the new vertex. Any new cycle introduced will not be oriented because all the edges

point into v. Because v cannot reach any other vertex, it is the maximum vertex in the

topological ordering.

Remark 47. Theorem 46 allows in principle to use the clique expansion operator in

all those contests where directionality is important, for instance in econometric models

with lagged variables, causal reasoning, modelling of depeendencies and scheduling,

modelling of causal sets.

3.3 The MFCF algorithm
We introduce the Maximally Filtered Clique Forest (MFCF) algorithm and explain

the main ideas behind it before describing the algorithm more formally. Next we will

demonstrate some useful qualities of the algorithm and finally we will show in which

way it could be seen as a generalisation of two famous algorithms, namely Prim’s

minimum spanning tree algorithm (Prim, 1957b) and Tarjan’s Maximum Cardinality

Search (MCS) (Tarjan, 1976). The relationship with the Minimum Spanning Tree and

the Maximum Cardinality Search is explained in sections 3.3.1 and 3.3.2.

Probably the easiest way to understand the algorithm is to see it as a recursive pro-

cedure that adds simplicial vertices to a clique forest by means of the clique expansion

operator.

• The definition of the clique expansion operator ensures that the new vertex added

is always simplicial with respect to the forest built up to that point. Because all

the vertices are simplicial at the point of being added, it is an easy consequence

that the vertices are added in reverse PEO. Because the algorithm is guaranteed

to produce a PEO, the underlying graph is automatically chordal according to

Theorem 313.

• The clique expansion operator is CF-invariant, therefore the MFCF does not

require an onerous tests of chordality to be performed for every edge, unlike all

the methods that we are aware of.

3Or it could be seen by induction using Theorem 45

3.3. The MFCF algorithm 69

• Because of the same reason, it is also easy to prove that new cliques are formed

in such a way that their intersection with the graph is wholly contained in a clique

at least, that is the clique that achieves the maximum gain. Should there be more

than one such clique, ties are broken according to the order in which the cliques

have been introduced. It is possible to think of the clique for which the maximum

gain is achieved as the parent clique and the new clique created by the clique

expansion operator as the child clique. However, this ordering is meaningful

only to visualise the execution of the MFCF, because it is certainly possible to

reorient the forest in a different way by arbitrarily fixing the roots of the subtrees.

This is advisable for instance when calculating the conditional probability given a

clique, the clique becomes the root of the forest and the conditional probabilities

are updated from the root to the leaves. The cliques enjoy the running intersection

property and therefore constitute a perfect sequence of sets.

• With the meaning of parent given by the MFCF, the parent clique is always

produced by the algorithm before the child cliques. The cliques are produced in

topological order. This characteristic is extremely useful in applications, since is

allows to easily update the probability distribution in case of new evidence and

to limit the update only to the cliques that are effectively impacted by the update.

• The MFCF selects the next vertex to be added to the network by maximising a

gain function: that is by picking up the vertex that has the maximum affinity to

a clique in the forest. One way to look at this is as if the MFCF operates a sort

of generalised preferential attachment scheme: a vertex is attracted to the clique

with the highest affinity. The difference with respect to a preferential attachment

scheme (Albert and Barabási, 2002) is that the preference is expressed by the

gain function, and it is related to a clique, rather than a high-degree vertex.

• For performance reasons the gains between cliques and vertices should be calcu-

lated only once and then kept available in a gain table using a process of memoiza-

tion. The MFCF keeps the bookkeeping logic establishing when a gain becomes

invalid and needs to be discarded or updated.

• Since we specify the algorithm in a recursive way, it is conceivable, and in some

3.3. The MFCF algorithm 70

cases advisable, to seed the algorithm with an initial clique forest, to be com-

pleted by the MFCF with the remaining vertices.

All of the characteristics and the benefits of the MFCF listed above are a pure

consequence of adopting a purely geometric approach exploiting the characteristic of

chordal graphs and to specify the expected behaviour of the gain function, but abstract-

ing from a specific form. This approach is similar to the approach used in “generic

programming” (Musser and Stepanov, 1988), where the algorithms are specified using

a template that can be filled with different blocks, as long as the blocks fit into the tem-

plate. In the MFCF we abstract from the specific implementation of a gain function,

as long as the implementation fulfils the “contract” that defines the interaction with the

algorithm.

The complexity of the network built by the MFCF is controlled by means of three

mechanisms:

1. The minimum clique size and the maximum clique size are specified for a given

gain function and control how many edges can be introduced by the clique ex-

pansion operator. The use of a maximum clique size is an example of topological

regularisation, as it limits the number of edges in the network.

2. Some gain functions may have a validation mechanism built in. The separator

is expanded with elements from the clique as long as the marginal gain passes a

test. The test can be a small sample or asymptotic statistical test, it could be non-

parametric (cross-validation), or it could be based on a configurable threshold.

This test potentially limits the dimension of the cliques created by the MFCF

and produces a validated network.

3. The MFCF has a control on the saturation of the separators. A separator could

be reused, or it could be considered saturated and never reused. This is a very

effective way of controlling the topology of the network. For instance not reusing

separators and fixing the maximum clique size to 4 it is equivalent to imposing the

planarity constraint on the resulting network, as we will see in the next chapter

on the Weighted Maximum Planar Subgraph Problem.

The user of the algorithm can change any of the parameters that drive the be-

3.3. The MFCF algorithm 71

haviour and the sparsity of the algorithm. This feature allows for multiscale analysis.

For example one possibility would be to study networks of increasing size by progres-

sively growing the size of the maximum allowed clique, or to keep the clique size fixed

but studying the filtered networks as the significance level of the statistical test of the

gain function increases. The cliques produced by the MFCF constitute a simplicial

complex, the clique complex of the graph. With the clique complex it is possible to

use the tools made available by the discipline of Topological Data Analysis to study the

characteristics of he network at different scales. It should be noted though that the map-

ping between the MFCF parameters – such as clique size and statistical significance –

and the set of edges in the filtered graph is not necessarily monotone; for instance an

edge could disappear as a vertex moves from a clique to another. This is different from

most of the simplicial complexes based on the thresholding of the weights of an affinity

matrix, which provide a topological filtration.

Algorithm 1. MFCF: Builds a clique forest with given clique size range.

Description: Builds a clique forest by applying the clique expansion operator repeatedly until there

are no more outstanding vertices. For performance reasons, the algorithm maintains a gain table

that holds the possible scores for any combination of cliques already added to the forest and the

outstanding vertices.

Input:

W [mandatory]: Either a data matrix with n rows of p-variate observations (e.g. time series

of stock market returns) or a p-by-p similarity matrix (e.g. correlation matrix of returns).

gain function [mandatory]: a function that calculates the gain of a clique expansion based

on W.

max cl size [optional]: size of maximal clique (default value: 4, range = [2, p]).

min cl size [optional]: size of minimal clique (default value: 4, range = [1,max cl size]).

reuse separators [optional]: whether to use separators more than once (default value:

TRUE).

CI [optional]: Initial list of cliques

SI [optional]: List of separators associated with CI

Output:

cliques: list of cliques of the clique forest, ordered as a perfect sequence of sets.

separators: list of separators of the clique forest.

tree: topological description of the clique forest.

3.3. The MFCF algorithm 72

Algorithm:

S1. [Initialize]. p← number of variables. cliques←∅. separators←∅. outstanding vertices←

{1, . . . , p}

S2. [Initialize list of cliques]

- If CI is empty

- C1← FirstClique()

- cliques←C1

- outstanding vertices← outstanding vertices\{v,v ∈C1}.

- Else

- cliques←CI ,

- separators← SI ,

- outstanding vertices← outstanding vertices\{v,v ∈CI}.

S3. [Init Gain Table]. For every v ∈ oustanding vertices and every C ∈ cliques, calculate score

and optimal separator for C and v and add to gain table.

S4. [Check for termination]. If outstanding vertices =∅ then return cliques, separators, tree.

S5. [Get best possible expansion]. Select from gain table the clique Ca ∈ cliques, separator

S ⊂ Ca and vertex v ∈ outstanding vertices corresponding to the entry with the highest

score.

S6. [Create new clique / separator].

- If S is a proper subset of Ca then

Cb← S∪ v

cliques← cliques∪Cb

separators← separators∪S.

- If S =Ca (extension without new separators) then

Ca←Ca∪ v.

- If S =∅ (disconnected cliques) then

Cb← v

cliques← cliques∪Cb.

S7. [Update outstanding vertices, tree]. outstanding vertices = outstanding vertices\ v.

Set the edge between Ca and Cb to be the separator: tree(Ca,Cb)← S

S8. [Update gain table]. Delete from gain table all entries where the vertex is v.

Add to gain table entries with gains for Cb.

If reuse separators is false, delete from the gain table where the separator is S.

Update gains for Ca.

3.3. The MFCF algorithm 73

S9. [Close loop]. Return to [S4.].

Remark 48. The function FirstClique() provides an estimate of the best first clique.

It can be obtained by starting with a clique made of the two vertices with the strongest

association and growing it using the clique expansion operator until it reaches the min-

imum size required. It could also be used to initialise the algorithm with a list of

“known” cliques CI .

Example 6. Figure 3.7 exhibits an execution of the MFCF on a small sample network.

The MFCF algorithm is a radical extension of the TMFG algorithm proposed

in Massara et al. (2016) which build a planar graph applying a special case of clique

expansion operator (T2 in that paper) with the following constraints: (a) the maximum

clique size is 4, (b) the minimum clique size is also 4, and (c) the separators can be

used only once.

Theorem 49. The MFCF algorithm produces cliques in a perfect order, provided that

the initial cliques CI are arranged in a perfect order.

Proof. The demonstration can be performed by induction on the number of vertices

added. Let’s assume that the algorithm has added m− 1 vertices, and by definition

there are cliques C1, . . . ,C j that are perfectly ordered. When adding the next vm vertex

there are three possibilities:

a) The algorithm selects a clique Ci,1 ≤ i < j with a non empty separator Si and

therefore a new clique Ck = Si∪ vm is created. The separator is clearly complete

and by construction we have that Si ⊂Ci.

b) The algorithm selects a clique Ci,1≤ i< j and the separator Si =Ci (extension of

clique Ci). By hypothesis there is a clique Ch with 1≤ h < i such that Si ⊂Ch and

Si is complete. Since vm was disconnected from all the cliques it was in particular

disconnected from Ch and therefore it does not change the intersection Ch ∪ Si,

and therefore Ch still fulfils the requirements that Si ⊂Ch.

c) The algorithm does not select a clique and adds a new clique made only of the

vertex vm. The intersection with any clique is the empty set and the result follows

trivially.

3.3. The MFCF algorithm 74

Now we can use Theorem 49 to show that the MFCF builds a clique forest.

Corollary 50. The spanning forest build by the MFCF is a clique forest.

Proof. Note that in the MFCF algorithm the choice of the parent clique in the tree is

based on on the running intersection property, that is we set the parent of clique Ck as

the clique Ci that contains its separator. Since the intersection of cliques is a complete

set, the set of cliques enjoys the clique intersection property.

Theorem 51. The MFCF algorithm adds vertices in reverse perfect elimination order,

provided that the vertices in the initial cliques CI are arranged in a reverse perfect

elimination order.

Proof. By induction on the number of vertices, let us assume that the total number

of vertices is k and that j have been added by the MFCF and that they are ordered

in reverse perfect order
{

vk,vk−1, . . . ,v j
}

. When adding the next vertex vi it is by

construction added to a separator Si which is complete, and therefore ad j(i)∩G j = Si

is trivially complete.

We also have, in the next theorem, a result related to the case when the edges are

directed.

Theorem 52. If the initial cliques CI can be oriented so that they constitute a DAG, the

the MFCF can add the vertices so that the final graph is a DAG, and additionally, the

vertices are added in topological order.

Proof. If the initial cliques CI can be ordered so that the graph is a DAG, the clique

expansion operator can be applied as in Theorem 46 to that the expanded graph is a

DAG. Additionally, if the initial cliques CI are a DAG the vertices have a topological

order, and the MFCF adds vertices at the end of the topological order.

3.3.1 Relationship with Prim’s Minimum Spanning Tree Algo-

rithm

The MFCF algorithm that we introduce in this paper is a generalisation Prim’s min-

imum spanning tree algorithm (Prim (1957b)); Prim’s algorithm constructs the Mini-

mum Spanning Tree tree starting with an arbitrary vertex and adds the closest (i.e. with

3.3. The MFCF algorithm 75

minimal edge weight) unconnected vertex4. In case the graph is not connected, for

instance when some subsets are at infinite distance, the algorithm can be applied to the

distinct connected components to produce a minimum spanning forest.

The MFCF generalises Prim’s algorithm in the fact that it joins disconnected ver-

tices to a growing clique tree and adds hyper-edges, rather than edges. Besides, the

edge weight is replaced by the gain of the clique expansion operator. If we were to

constrain the size of the allowed cliques to exactly two and we were to use the negative

distance as the scoring function, the MFCF would behave exactly as Prim’s algorithm.

(Blair and Peyton, 1993, Ch. 4) illustrates the connection between Prim’s algorithm and

the maximum cardinality search algorithm (MCS, Tarjan (1976)), used to test graph

chordality.

In our generalisation the vertices are replaced by cliques and we optimise a scoring

function, rather than an edge weight; depending on the function we might look for the

minimum (e.g. minimum cost) or the maximum (e.g. maximum gain). The algorithm

starts by selecting one or more cliques and at each stage one of the unconnected vertices

is added to the clique forest by performing an edge expansion. The vertex is chosen

so as to optimise the scoring function. The initial clique(s) can be chosen with an

heuristic (as in the variant of the algorithm presented here) or they could be assumed as

given from previous knowledge or expert judgement. For instance in genetic regulatory

networks there is interest in incorporating certain topological motifs that are known to

appear frequently in this kind of networks (Fiori et al., 2012). In this case the cliques

provided must be a clique forest.

3.3.2 Relationship with the Maximum Cardinality Search algo-

rithm

The Maximum Cardinality Search (MCS) algorithm in its simplest form is an algorithm

to calculate the PEO of an undirected graph. Since by Theorem 31 a graph is chordal

if and only if it has a PEO, the algorithm is also naturally used to recognise chordal

graphs. Let us suppose the graph G has k vertices. The idea is to initialise the algorithm

with any node in the graph and to add the node to the end of the PEO, that is we assign

4To stay faithful to the original geometric meaning of the algorithm we keep referring to it as the
minimum spanning tree, while the MFCF usually optimises a gain, but it is easy to see that a sign
inversion would turn the problem into the minimisation of a cost or loss function.

3.3. The MFCF algorithm 76

the label k to the vertex. We then proceed inductively by choosing at any step the vertex

that has the most neighbours among the vertices that have already been labelled, with

ties broken arbitrarily. If the new vertex is simplicial we label the vertex and proceed

with the next one, if the new vertex is not simplicial, that is his neighbours already

labelled are not a complete set, the algorithm fails and the graph is not chordal. In

some variants of the algorithm used to calculate triangulations, the missing edges are

added so that the vertex is simplicial.

The version of the MCS shown in Algorithm 1 is taken from Blair and Peyton

(1993, Figure 4.2) and is adapted to extract a PEO as well as the clique tree, with

a loop which is similar to the MFCF, if the scoring function was the cardinality of

the edges. Naturally the main difference between the MCS and the MFCF is that the

MFCF does not fail but only selects the edges than make the vertex simplicial.

Blair and Peyton (1993) show that the MCS is also a generalisation of Prim’s

3.3. The MFCF algorithm 77

algorithm, where the edge weight is the cardinality of the separators in the clique tree.

prev card← 0 ; /* Cardinality of the previous clique */

Ln+1←∅ ; /* Set of labeled vertices */

s← 0 ; /* Clique identifier */

T ←∅;

for i← n to 1 step −1 do

Choose a vertex v ∈V \Ln+1 for which |neib(v)∩Ln+1| is maximum;

PEO(v)← i ; /* v becomes vi */

new card← |ad j(vi)∪Ln+1|;

if new card ≤ prev card then /* begin a new clique */

s← s+1;

Cs← neib(vi)∩Ln+1 ; /* = mad j(vi) */

if new card 6= 0 then /* get edge to parent */

k←min{ j|v j ∈ Cs};

p← clique(vk);

T ←T ∪{Cs,Cp};

end

end

clique(vi)← s;

Cs← Cs∪ vi;

Li←Li+1∪{vi};

prev card← new card;

end
Algorithm 1: The Maximum Cardinality Search algorithm.

Figure 3.8 shows a possible execution of the MCS on an example graph.

3.3.3 Gain Functions

In this section we provide some examples of gain functions that can be used in several

applications. Any gain function can be used with the MFCF as long as it returns a gain

value and a separator. In general the identification of the separator is a classical subset

selection problem, where it is required to find the subset S of the clique C that achieves

the best score over the new clique C′ = S∪ v, subject to size constraints for C′.

3.3. The MFCF algorithm 78

• If the score function is the sum of the pairwise scores between separator variables

and the external variable, there is a natural order in which the separator variables

must be added to the separator to maximise the gain and the gain function has

only to ensure that the new clique made up of the separator variables and the

external variable obeys the size constraints. For instance with a similarity matrix

(see Section 3.3.3.1) the score is the sum of the pairwise scores and it is logical

to add vertices to the separator in order of non decreasing similarity score.

• If the score is instead a general non-linear function of the variables, for example

the determinant as in the case of a multivariate normal distribution (see Section

3.3.3.3), there is no obvious ordering of the variables that would give the optimal

score. In such cases the choice is between applying an exhaustive search, which

is not practical in problems of any realistic size, or to rank the separator variables

according to some empirical measure of association (for instance correlation or

mutual information) and add them one by one, stopping as soon as the score

function decreases.

3.3.3.1 Similarity Matrix

As discussed in Massara et al. (2016) there are applications where it is required to

build a network that maximises the sum of the weights of a similarity matrix subject

to some constraint. Examples are the correlation networks mentioned in Section 2.2.3

(Mantegna, 1999; Di Matteo and Aste, 2002; Di Matteo et al., 2005; Tumminello et al.,

2005; Aste et al., 2005a; Tumminello et al., 2007; Aste et al., 2010a; Song et al., 2012a;

Pozzi et al., 2013; Musmeci et al., 2015b,a).

Let us define a symmetric matrix of weights W , where wi j quantifies the “sim-

ilarity” of elements i and j. If C is a subset of the row indices of W we define

Score(C) = ∑i∈C, j∈C Wi j.

The gain function returns the best available separator that, joined with a vertex,

gives the highest possible sum of the weights. In this case the total score is the sum

of the weights of the cliques minus the sum of the weights of the separators. The total

score is given by

Score = ∑
c∈C

∑
i∈c, j∈c

Wi j− ∑
s∈S

∑
i∈s, j∈s

Wi j (3.7)

3.3. The MFCF algorithm 79

When we perform a clique expansion and introduce a new clique c̃ and a new separator

s̃ the corresponding gain in score is:

G(c̃, s̃) = ∑
i∈c̃, j∈c̃

Wi j− ∑
i∈s̃, j∈s̃

Wi j (3.8)

In the special case when the clique expansion results in the extension of a previous

clique, such that C̃ = C∪ v, the gain is the difference in score between the new clique

and the old one (the separator is obviously zero):

G(c̃,c) = ∑
i∈c̃, j∈c̃

Wi j− ∑
i∈c, j∈c

Wi j = ∑
i∈c̃

Wiv (3.9)

One might also add a form of validation to this gain function and add only the edges

with weights that are significantly larger than zero or exceed a given threshold.

3.3.3.2 Gain function from log-likelihood

Equation 3.6 is a likelihood for a given realisation X = x̂:

L (X = x̂|{c ∈ C } ,{s ∈S }) = ∏c∈C P(Xc = x̂c)

∏s∈S P(Xs = x̂s)
(3.10)

and accordingly the log-likelihood is:

`(X = x̂|{c ∈ C } ,{s ∈S }) = ∑
c∈C

logP(Xc = x̂c)− ∑
s∈S

logP(Xs = x̂s) (3.11)

When we add a new clique c̃ and a new separator s̃ the gain in log-likelihood is:

G(c̃, s̃) = logP(Xc̃ = x̂c̃)− logP(Xs̃ = x̂s̃) . (3.12)

Instead, when we add a new clique c̃ by expanding an existing one c the gain in

log-likelihood is:

G(c̃,c) = logP(Xc̃ = x̂c̃)− logP(Xc = x̂c) . (3.13)

It is possible to add a significance test to this gain function since the model with

the additional clique and separator is nested in the previous model and the difference in

3.3. The MFCF algorithm 80

log-likelihood is one-half of the deviance (Wasserman, 2010). Under some relatively

mild assumptions the deviance is asymptotically distributed as a chi-squared variable

with k degrees of freedom, where k is the number of edges added to the model with the

clique expansion (Lauritzen, 1996, Ch. 5.2.2). Other possible significance tests could

be a cross-validation on a different set or an information criteria such as AIC or BIC

(Akaike (1973); Schwarz et al. (1978)).

When a test statistic is available it is conceivable to use the p-value as a gain func-

tion. The intuitive meaning is to build a network where the links of greatest significance

are added first.

3.3.3.3 Multivariate Normal Distribution

In the important specific case of a p-variate normal distribution the log-likelihood func-

tion for a given clique forest structure T can be written, using Equation 3.11:

`(X = x̂|{c ∈ C } ,{s ∈S }) = p ln(2π)

+ ∑
c∈C

(
1
2

ln |Jc|+(x̂c−µc)
tJc(x̂c−µc)

)
− ∑

s∈S

(
1
2

ln |Js|+(x̂s−µs)
tJs(x̂s−µs)

)
= p ln(2π)+ ∑

c∈C

(
1
2

ln |Jc|−Tr(Σ̂cJc)

)
− ∑

s∈S

(
1
2

ln |Js|−Tr(Σ̂sJs)

)
(3.14)

where

1. Σ̂c (resp. Σ̂s) is the sample covariance matrix of the variables Xc (resp. Xs) , and

2. Js (resp. Jc) is the inverse covariance matrix (precision matrix).

When we perform a clique expansion and introduce a new clique c̃ and a new

separator s̃ the corresponding gain in score is:

G(c̃, s̃) =
1
2
(ln |Jc̃|− ln |Js̃|) =

1
2
(− ln |Σc̃|+ ln |Σs̃|) (3.15)

Instead, when a clique is expanded (c̃ = c∪v) the corresponding gain in score can

be expressed as:

3.3. The MFCF algorithm 81

G(c̃,c) =
1
2
(ln |Jc̃|− ln |Jc|) =

1
2
(− ln |Σc̃|+ ln |Σc|) (3.16)

Note that this can be interpreted as an increase in likelihood or as a decrease in

entropy. In this case beside the asymptotic tests of the log-likelihood ratio, there are

also several small sample tests that work in the “big data” cases where p� n (with n

the number of realizations of X).

For a given clique forest structure the likelihood is maximised by Jc = Ĵc = Σ̂−1
c

and Js = Ĵs = Σ̂−1
s . In this case we have ∑c∈C Tr(Σ̂cĴc)−∑s∈S Tr(Σ̂sĴs) = p and do not

change with the application of the clique expansion operator and therefore Equation

3.14 can be simplified to:

`(X = x̂|{c ∈ C } ,{s ∈S }) = p ln(2π)+ ∑
c∈C

1
2

ln |Ĵc|− ∑
s∈S

1
2

ln |Ĵs|+ p (3.17)

where the maximum likelihood estimations of the matrices Ĵc and Ĵs depend on

the observations x̂ for both the structure and their values.

3.3.3.4 Multivariate Normal Distribution statistically validated

In the multivariate normal case it is possible to apply a significance test to the gain

expressed in Equations 3.15 and 3.16 by applying a variant of the likelihood ratio test

(Rencher, 2003, Par. 7.1). Indeed, if we have two alternative covariance matrices called

for instance Σ1 and Σ0 it is possible to test whether they are significantly different by

testing the following statistics:

u = ν
(
log |Σ0|− log |Σ1|+Tr

(
Σ
−1
1 Σ0

))
. (3.18)

Where ν is the number of degrees of freedom of the matrix Σ1 (and it is equal to the

length of the time series n for our purposes). It is also possible to apply a small sample

correction to the statistics u, see Rencher (2003, Eq. 7.2) for the details. If the two

matrices are nested then u is χ2 distributed with the degrees of freedom equal to the

difference of the number of non zero parameters in the two matrices.

3.4. Other CF-Invariant Operations on Clique Forests 82

3.3.3.5 Random Gain Function

A very simple gain function, that can be used to generate random clique forests, is a

function that returns a random number as a gain and a random subset of the input clique

as a separator, subject to the constraints related to the size of the clique.

3.3.3.6 Regression

If we have a clique of variables XC = (X1, . . . ,Xm) and a variable associated with an

external vertex Xi, it is possible to perform a linear regression of Xi against XC as in

Equation 3.19.

Xvi = XCβC + ε (3.19)

The R2 (or the adjusted R2) of the regression gives an indication of how much of

the variance of Xi is explained by XC and can be taken as an indication of the strength

of the association between the clique and the external vertex. In order to identify the

separator we propose to examine the t-statistic of the model parameters βC
5 and to

include only those vertices in C that are significant at a given confidence level, subject

to the usual size constraints.

In the case of any type of regression Xvi = f (XC)ε it is intuitive to associate a

direction from the explanatory variables towards the explained variables and this ori-

entation assures that the resulting graph is a DAG. This is maybe not so relevant in the

case of linear regression (unless one of the variables in XC is lagged) but it might be

important in other types of regression where the directionality is relevant: for instance

in non-linear regression, quantile regression or logistic regression.

3.4 Other CF-Invariant Operations on Clique Forests
The clique expansion operator is by no means the only operation that can be carried

out on a clique tree preserving the clique tree structure. We describe two additional

operations that are useful in several cases: 1. the direct join of clique trees is useful

to consolidate two disconnected trees in a single one, and 2. the edge removal can be

used to “prune” a model.

5As calculated by most statistical packages such as the command lm in the R (R Core Team, 2016)
language.

3.4. Other CF-Invariant Operations on Clique Forests 83

3.4.1 The Direct Join Operator

Definition 53 (Direct join of clique trees). Let F be a clique forest. We say that F is

the direct join of F1 and F2 if F =F1∪F2 and F1∩F2 is complete. In other words

the cliques and edges of F are contained in either F1 or F2 and their intersection is a

clique. Figure 3.9 shows an example. Note that the intersection does not need to be a

maximal clique in F , it just needs to be complete.

Remark 54 (Relationship between direct join and graph decomposition). We indicate

with GF (VF ,EF) the graph underlying a clique forest. The vertices are the members

of the cliques and we say that (vi,vi)∈EF if they belong at least to a common clique. It

is easy to show that if F is the direct join of F1 and F2, then (GF1,GF2,GF1∩F2) is a

decomposition of GF . Lauritzen (1996, Par. 2.2) develops the theory in full generality.

Our interest is in finding a way to use this property to build a clique-tree-invariant

operator, which we call the bridge operator.

Definition 55 (The bridge operator). Given two disconnected clique forests Fa,Fb and

two cliques Ca ∈Fa,Cb ∈Fb we define the bridge operator as the operator that joins

the two forests using a clique made of two subsets Sa ⊂Ca and Sb ⊂Cb, Cs = Sa∪Sb.

Example 7. Figure 3.10 shows an example where Ca = (2,3,4),Cb = (5,6,7),Sa =

(4),Sb = (5,6) and the new clique is Cd = (4,5,6).

Theorem 56 (The bridge operator preserves the CT property). If Fa and Fb are as in

Definition 55, the application of the bridge operator will result in a clique forest. Addi-

tionally if Ca1, . . . ,Cah is a perfect sequence of cliques for Fa and similarly Cb1, . . . ,Cbk,

then Ca1, . . . ,Cah,Cs,Cb1, . . . ,Cbk is a perfect sequence of cliques for the joined clique

forest.

Proof. Let us call Cs the clique introduced by the bridge operator. If we put F1 =

Fa∪Cs and F2 =Fb∪Cs, it is clear that F1 and F2 fulfil the conditions of Definition

53 and that (GF1 ,GF2,GF1∪F2) is a decomposition of GF . To conclude we need to

show that GF1 and GF1 are in turn decomposable. The cliques of F1 are the cliques

of Fa with the addition of Cs and they constitute a perfect sequence of cliques because

Fa is a clique forest; we can add Cs as the last clique to have again a perfect sequence

of cliques for GF1 . The same reasoning applies to F2.

3.4. Other CF-Invariant Operations on Clique Forests 84

Finally, since no clique in Fb has an intersection with any clique of F1 other than

Cs, and ordering with the cliques of F1 in their perfect sequence order, followed by

Cs, followed by the cliques of F2 in their perfect sequence order fulfils the running

intersection property and gives us a perfect sequence of cliques.

3.4.1.1 Score Functions and generalisation of Kruskal algorithm

We have seen from Definition 55 that the effect of the bridge operator is to add a new

clique Cs and two separators Sa =Cs∩GFa,Sb =Cs∩GFb . If we have a score function

S(X) the gain of the bridge operator could be the score of the new clique decreased

by the score of the two separators: Gain = S(XCs)− S(XSA)− S(XSb). If we look at

the analogy with the gain function for the clique expansion operator for the similarity

matrix in Section 3.3.3.1 we see that this would be the exact generalisation, consisting

in adding the weights of the new edges. If we look at the meaning of the gain function

in terms of likelihood, this would represent the log-likelihood ratio of the hypothesis

that the variables XCS are correlated as opposed to the hypothesis that are independent.

The bridge operator is an operator that allows building a clique forest by adding

cliques to sub-forests until there is a gain to be achieved or until the forest becomes

a tree. This would allow to develop a family of methods inspired by Kruskal, rather

than Prim’s, method. In this case the gain table would have to be indexed by pairs of

cliques belonging to different trees and whenever two subtrees are joined the relative

gains would have to be invalidated.

3.4.2 Pruning a Clique Forest

A further operation that might be useful and that is CT-invariant is the pruning of an

edge in the underlying graph. The theory on which edges can be deleted retaining the

chordality of the underlying graph is explained fully in Lauritzen (1996, Par. 2.1.4).

Theorem 57 (Laurizten, Lemma 2.19). Given a chordal graph G(V,E) the necessary

and sufficient condition for an edge e ∈ E to be deleted without introducing a chordless

cycle of length greater than 4 is for the edge e to belong to one clique only. Equivalently,

an edge belongs to a clique only if and only if it does not belong to any separator.

Proof. This is proven in Lauritzen (1996, Par. 2.1.4, Lemma 2.19).

3.4. Other CF-Invariant Operations on Clique Forests 85

Example 8. Figure 3.11 shows the effect of pruning on a clique tree. The clique

(2,3,4,5) has four edges, and in particular (3,5), that are contained in one clique

only. The pruning operator removes (2,3,4,5), introduces two new cliques (2,3,4)

and (2,4,5). The separators stay the same, but the edges are rewired between the new

cliques.

The pruning operator is also well behaved with respect to perfect sequences of

cliques. It is an easy check to perform that by pruning a clique C′ in correspondence

with the edge (vi,v j) we obtain two cliques Ci = C′ \ v j and C j = C′ \ vi. Let us sup-

pose we are pruning a clique forest F to obtain F ′. If F has a perfects sequence of

cliques C1, . . . ,C′, . . .Cn, then C1, . . . ,Ci,C j, . . .Cn is a perfect sequence of cliques for

F ′ (Lauritzen, 1996, Lemma 2.20).

3.4. Other CF-Invariant Operations on Clique Forests 86

●
●

●

●

●

●

●

●

●

1

2

3

4

5

6

7

8

9

(a) Initial clique (1,2,7),
PEO = . . . ,1,2,7

●
●

●

●

●

●

●

●

●

1

2

3

4

5

6

7

8

9

(b) New clique (2,3),
PEO = . . .3,1,2,7

.

●
●

●

●

●

●

●

●

●

1

2

3

4

5

6

7

8

9

(c) New clique (1,7,8),
PEO = . . .8,3,1,2,7

●
●

●

●

●

●

●

●

●

1

2

3

4

5

6

7

8

9

(d) New clique (8,9),
PEO = . . .9,8,3,1,2,7

.

●
●

●

●

●

●

●

●

●

1

2

3

4

5

6

7

8

9

(e) New clique (2,4,7),
PEO = . . .4,9,8,3,1,2,7

●
●

●

●

●

●

●

●

●

1

2

3

4

5

6

7

8

9

(f) New clique (4,5,7),
PEO = . . .5,4,9,8,3,1,2,7

.

●
●

●

●

●

●

●

●

●

1

2

3

4

5

6

7

8

9

(g) New clique (1,5,6),
PEO = 6,5,4,9,8,3,1,2,7

Figure 3.7: The Maximally Filtered Clique Forest Algorithm

3.4. Other CF-Invariant Operations on Clique Forests 87

●

●
●

●

●
●

●

1

2

3

4

5

6

7

(a) Start from arbitrary node 2.

●

●
●

●

●
●

●

1

2

3

4

5

6

7

(b) Nodes 1,3,4 are the nodes
with more vertices adjiacent to
the set {2}

.

●

●
●

●

●
●

●

1

2

3

4

5

6

7

(c) We break arbitrarily the tie for
1, PEO = {1,2}.

●

●
●

●

●
●

●

1

2

3

4

5

6

7

(d) 3 is the vertex whose neigh-
bourhood has the highest car-
dinality with {1,2}

.

●

●
●

●

●
●

●

1

2

3

4

5

6

7

(e) PEO = {3,1,2}

●

●
●

●

●
●

●

1

2

3

4

5

6

7

(f) The neighbourhood of 4 has
the maximum cardinality in-
tersection with the vertices al-
ready labelled.

.

●

●
●

●

●
●

●

1

2

3

4

5

6

7

(g) 4 is added, the new candi-
dates are 5 and 6. PEO =
{4,3,1,2}.

●

●
●

●

●
●

●

1

2

3

4

5

6

7

(h) The tie is broken arbitrar-
ily in favour of 6. PEO =
{6,4,3,1,2}

.

●

●
●

●

●
●

●

1

2

3

4

5

6

7

(i) 5 is the only vertex with
neib(5) having maximum inter-
section with the labelled ver-
tices.

●

●
●

●

●
●

●

1

2

3

4

5

6

7

(j) PEO = {5,6,4,3,1,2}
.

●

●
●

●

●
●

●

1

2

3

4

5

6

7

(k) 7 is the remaining candidate

●

●
●

●

●
●

●

1

2

3

4

5

6

7

(l) PEO = {7,5,6,4,3,1,2}
.

Figure 3.8: The Maximum Cardinality Search Algorithm

3.4. Other CF-Invariant Operations on Clique Forests 88

●

●●

●

●●

●

● ●

1

23

4

56

7

8 9

Figure 3.9: F1 = {(1,2,3),(2,3,4),(4,5,6)} ,F2 = {(5,6,7),(7,8,9)} and F1 ∩ F2 =
{(5,6)}.

●

●●

●

●●

●

● ●

1

23

4

56

7

8 9

(a) Before direct join, F1 =
{(1,2,3),(2,3,4)}, F2 =
{(5,6,7),(7,8,9)}.

●

●●

●

●●

●

● ●

1

23

4

56

7

8 9

(b) After direct join. The new clique (4,5,6) is
used to bridge F1 and F2

.

Figure 3.10: The Direct Join Operator

3.4. Other CF-Invariant Operations on Clique Forests 89

●

●●

●
●

●
●

●

●
●

1

23

4
5

6
7

8

9

10

(a) Before pruning, F =
{(1,2,3),(2,3,4,5),(4,5,6),(4,7,8)(6,9,10)}.

●

●●

●
●

●
●

●

●
●

1

23

4
5

6
7

8

9

10

(b) After prining. the clique (2,3,4,5) is split
into (2,3,4) and (2,4,5)

.

Figure 3.11: The edge pruning operator

Chapter 4

TMFG and other approximate

solutions for the Maximum Weight

Planar Subgraph Problem

In this chapter we describe a special version the MFCF that has been used to produce a

solution to the Maximum Weight Planar Subgraph Problem (MWPSP); we will discuss

the base algorithm (the Triangulated Maximally Filtered Graph, or TMFG henceforth)

and three variants of the base algorithm specialised for the construction of planar graphs

(in short “TMFG variants”). The approach is similar to the one described in chapter 3:

indeed, the TMFG can be recast to an instance of the MFCF algorithm. The TMFG

variants make use of an additional family of operators, which we call planarity in-

variant operators, that preserve planarity and are applied to further optimise the score

achieved by the TMFG algorithm. The TMFG and the TMFG variants build the filtered

networks subject to the topological constraint of planarity by adopting only planarity-

invariant operators, which therefore play a similar role to the CT-invariant operators

described in chapter 3 and used in the MFCF.

On a point of terminology, the basic specialised version of the MFCF, the TMFG,

has been developed by us (Massara et al., 2016) before the general MFCF algorithm

and is known in the literature with the original name of Triangulated Maximally Fil-

tered Graph. Additionally, the implementation of the TMFG exploits the more regular

structure of the clique forest produced and employs ad hoc data structures that allows

for faster execution. Moreover, the three TMFG variants do not produce in general a

4.1. The Maximum Weight Planar Subgraph Problem 91

clique forest because planarity invariant operators are not in general CT-invariant. In

such cases the geometric structure of cliques and separators loses its meaning and a

more natural data structure underlying the algorithms is the collection of the triangular

faces of the maximal planar graph. For all of these reasons we choose to keep the origi-

nal names for the base algorithm and its three variants and we specialise the exposition

to the problems arising in planar graphs.

This chapter is organized as follows: in section 4.1 we discuss some background

facts about Planar Maximally Filtered Graphs and describe two well known approxi-

mation algorithms used to generate such graphs; in section 4.2 we introduce the base

TMFG algorithm and show how it can be considered as a particular case of the MFCF;

in section 4.3 we introduce the planarity invariant operators used in section 4.4 to de-

scribe the three TMFG variants. In section 4.5 we offer some additional remarks on

the characteristics of the algorithms; finally in section 4.6 we apply the TMFG and its

variants to several weight distributions showing that it is computationally faster than

the PMFG while achieving comparable or better results on a wide range of synthetic

data.

4.1 The Maximum Weight Planar Subgraph Problem
Definition 58 (Planar and maximal planar graph). A planar graph is a graph that can

be drawn on the plane1 without any two edges crossing each other other than in an

endpoint (Bollobás, 2013; Nishizeki and Chiba, 1988). A graph is maximal planar if it

is planar and adding any edge would destroy the property of planarity.

There are many characterisations of planar graphs. The one that is quoted most

often, and also the first to appear in the literature, is the theorem from Kuratowsky

which links planarity to the absence of particular subgraphs.

Theorem 59 (Kuratowski (1930)). A graph is planar if and only if it does not contain

a subdivision of K5 or K3,3.

In the statement of Theorem 59, K5 is the complete graph on five vertices and K3,3

is the complete bipartite graph on six vertices. A subdivision of a graph is any graph

obtained by replacing an edge (vi,vk) with two edges (vi,v j) and (v j,vk). It is obvious

1Or on a sphere, as it can be verified considering the stereographic projection.

4.1. The Maximum Weight Planar Subgraph Problem 92

that the two graphs, one of which is a subdivision of the other, are homeomorphic. The

Kuratowsky theorem is therefore sometimes restated saying that a graph is planar if and

only if it does not contain a subgraph homeomorphic to either K5 or K3,3.

There are many more theorems describing the necessary conditions for a graph to

be planar. Wagner (1937) shows that a graph is planar if and only if it does not contain

K5 nor K3,3 as minors2. Whitney (1931) establishes that a necessary and sufficient

condition for a graph to be planar is to have an abstract dual3. Mac Lane (1937) shows

that a planar graph must have a basis for its cycles such that no edge appears more than

twice in the basis vectors. In some of the TMFG variants described in section 4.4 we

explicitly build a cycle basis for the planar graphs produced. Schnyder (1989) links the

planarity to the dimension of a partial order on the graph. de Verdiere (1990) associates

planarity with the value of the second eigenvalue of a symmetric matrix defined from

the edge set of the graph.

Definition 60 (MAXIMUM WEIGHT PLANAR SUBGRAPH PROBLEM (MWPSP)).

Given an edge-weighted graph G(V,E), with vertex set V , edge set E, and a non-

negative edge weight w(e) ≥ 0 for every E ∈ E, the MAXIMUM WEIGHT PLANAR

SUB GRAPH problem requires to build a planar subgraph G′(V,E ′), with E ′ ⊂ E such

that the sum of the weights ∑e∈E ′w(e) is maximum (Liebers (2001) and Osman et al.

(2003) provide a detailed description of the problem and a survey; see also (Dyer et al.,

1985; Castonguay et al., 2017)).

Remark 61. When the initial graph is complete and the weights are strictly positive, as

it is often the case in many applications, the Maximum Weight Planar Subgraph is also

maximal4 as it is evidently possible to add edges and increase the total weight until no

more edges can be added without breaking planarity.

As Giffin (1984) has shown, the MWPSP is NP-hard (see also Dyer et al. (1985);

Liebers (2001)), and therefore a vast amount of research has been focused on finding

approximate solutions. We briefly review two known algorithms that have been used
2A graph H is a minor of G if it can be obtained from G by removing edges or vertices, or by con-

tracting edges. Wagner’s theorem was the beginning of graph minor theory, a theory that characterises
minor-closed graphs in terms of excluded minors, (Lovász, 2006).

3A graph G′(V ′,E ′) is an abstract dual of G(V,E) if there is a bijective map φ between E ′ and E such
that T ⊂ E is a spanning tree in G⇔ φ(E \T) is a spanning tree in G′.

4With respect to edge inclusion

4.1. The Maximum Weight Planar Subgraph Problem 93

to construct planar filtered networks from a matrix of weights and that provide an ap-

proximate solution to the MWPSP:

• The PMFG (Tumminello et al., 2005), in section 4.1.1;

• The Deltahedron heuristics and subsequent improvements, including the base

version of the TMFG (Foulds and Robinson, 1978; Liebers, 2001; Osman et al.,

2003), in section 4.2.1.

4.1.1 Planar Maximally Filtered Graph

The PMFG algorithm (Aste et al., 2005b) searches for the maximum weighted planar

subgraph by adding edges one by one (see Aste (2014)). The resulting matrix is sparse,

with 3(p− 2) edges. The algorithm starts by sorting the edges of a dense matrix of

weights in non increasing order and attempts to insert every edge in the PMFG in that

order. Edges that violate the planarity constraint are discarded. The most computation-

ally intense part of the algorithm is the planarity test, which is performed every time an

edge insertion is attempted. It results that the PMFG construction performs an order of

p2 (O(p2)) planarity tests on any dense p× p matrix of weights W . Assuming that the

complexity for a planarity test in O(p) (Hopcroft and Tarjan, 1974; Boyer and Myrvold,

2001) the computational complexity of the whole algorithm results in a O(p3) (Song

et al., 2012a).

Algorithm 2. PMFG: Builds a Planar Maximally Filtered Graph.

Description: Builds a Planar Maximally Filtered Graph by adding edges in non decreasing order

of weight. Adds only edges that do not break planarity.

Input:

W [mandatory]: a p-by-p matrix of weights (e.g. matrix of squared correlation coefficients).

Output:

PMFG: filtered matrix representing a weighted planar graph.

Algorithm:

S1. [Initialize]. PMFG← Ip, the p−dimensional identity matrix.

S2. [Sort edges].

EdgeList← edges of W in non-increasing order of weight.

4.2. Triangulated Maximally Filtered Graph 94

EdgesAdded← 0

EdgeIndex← 0

S3. [Loop over edges] While (EdgesAdded ≤ 3(p−2))

S3.1 [Get next edge] e← EdgeList(EdgeIndex).

S3.2 [Check next edge] If PMFG∪ e is planar then

PMFG← PMFG∪ e;

EdgesAdded← EdgesAdded +1

S5. [End]

4.2 Triangulated Maximally Filtered Graph
In this section we introduce the base version of the TMFG, and in the next section we

introduce three variants.

The TMFG algorithm is not greedy with respect to edge insertion in the same way

as the PMFG in the sense that the PMFG chooses the best possible move from a subset

of all the feasible edge insertions that preserve planarity, while the TMFG optimises

the result of the T2 operator, which means that the optimisation is done over sets of

triples of edge insertions and could miss an optimal single insertion. Nonetheless, we

shall see that TMFG performs as well as – or better than – the PMFG for a large class

of weight matrices, including squared correlation coefficient matrices from empirical

time series which are relevant for modeling (Barfuss et al., 2016).

4.2.1 TMFG and Deltahedron heuristic

The deltahedron heuristic (Foulds and Robinson, 1978; Liebers, 2001) searches for ap-

proximate solutions of the MWPSP problem starting from a tetrahedron, K4, which is

planar and chordal. At each successive step a vertex is added into a triangular face and

three edges are added connecting the newly inserted vertex to the vertices of the trian-

gular face. This vertex insertion in a triangular face is called T2 move (see Fig.4.1 and

Aste and Sherrington (1999); Aste et al. (2012b,a); Dubertret et al. (1998); Andrade Jr.

et al. (2005)).

It is easily seen that the T2 operator is a special case of the clique expansion oper-

ator, with the additional constraint that the minimum and maximum clique size is 4 and

that separators can only be between two cliques. As such the output of the deltahedron

4.2. Triangulated Maximally Filtered Graph 95

v1

v2 v3

T2

T−1
2

v1

v2 v3

v4

Figure 4.1: T2 move: addition of one vertex within a triangular face (Aste and Sherrington,
1999; Aste et al., 2012b,a; Dubertret et al., 1998; Andrade Jr. et al., 2005). Its
inverse, T−1

2 , removes a vertex from inside a three-clique (in this case the clique
{v1,v2,v3}).

heuristic is a clique forest, since it begins with a complete graph and expands it with a

CF-invariant operator. Additionally since the dimension of the cliques is the same, the

output is also a pure (or homogeneous) simplicial complex5.

The T2 operator is also a planarity invariant operator, as it acts without breaking

planarity. Since the initial clique is planar the final filtered network is also planar. In the

deltahedron heuristic the triangular face is chosen in order to maximise the sum of the

newly inserted edges, while the vertices to be inserted are extracted from a pre-sorted

list. The newly inserted vertex is simplicial in the graph at the point of insertion, and

therefore the vertices are introduced in reverse PEO.

An example of the application of the T2 operator is shown in Fig.4.1, where vertex

v4 is inserted into the triangular face {v1,v2,v3} splitting it into three triangular faces

{v1,v2,v4}, {v1,v4,v3}, and {v4,v2,v3}. In the following we will call face a three-

clique that does not contain any vertex in the given embedding6, reserving the word

triangle for a generic 3-clique. We see that, after the T2 move, {v1,v2,v3} is no longer

a face but rather a triangle. A complementary way to see this is by using the concept

of a cycle basis. In a graph it is possible to define the addition of cycles as the (set-

theoretic) symmetric difference of the edges of the two cycles. With this definition

we can say that {v1,v2,v3} is a linear combination (the sum, in fact) of {v1,v2,v4},

{v1,v4,v3}, and {v4,v2,v3}. Thus the effect of the T2 move is to remove one cycle from

the basis and augment it with three more cycles. It can be shown that in a planar graph

5Pure simplicial complexes of dimension k are those where every face of dimension less than k is
contained in a face of dimension k

6An embedding is an actual drawing on the plane on a planar graph. It can be described by enumer-
ating, for every vertex, the list of all the adjacent vertices in the order in which they appear around the
vertex.

4.2. Triangulated Maximally Filtered Graph 96

(Bollobás, 2013) the faces constitute a cycle basis. In our algorithm when a face is

expanded it becomes a separator and disappears from the basis.

In the literature (Liebers, 2001) the vertex list is sorted according to two func-

tions7 of the edge weights incident to the vertex, yielding two possible variants of the

deltahedron heuristic: 1. the sum of the incident edge-weights; 2. the maximum inci-

dent edge-weight. Different weightings lead to different ordering for the vertices and

different results.

The deltahedron heuristic algorithm is not “greedy” (unlike the PMFG that

chooses the heaviest feasible edge at every step) since the choice of the ordering of the

vertices is done once at the beginning and there is no subsequent attempt at optimising

the order of the vertices taking into account the evolution of the local configuration.

However, the algorithm is considerably faster than the PMFG, since the T2 move

is planarity-invariant and therefore there is no need to test for planarity at each stage.

In Green and Al-Hakim (1985) and Osman et al. (2003) the deltahedron heuristic

is improved by maintaining a record of the most favourable vertex insertion moves

(Green and Al-Hakim heuristic – the GH-heuristic henceforth), essentially keeping a

cache of the best and next-to-best options for inserting any of the remaining vertices.

The cache is updated as the algorithm progresses. Optionally Osman et al. (2003) allow

for a parameter that governs the “greediness” of the algorithm.

The TMFG is an improved version of the GH-heuristic that records the gains of

the possible applications of the T2 operator to different triangular faces (or, with the

terminology of the clique expansion operator, the separators) and to the outstanding

vertices. Differently from the GH-heuristic the table is updated after every operation.

The main difference between the deltahedron heuristic and the base TMFG algorithm

is in the fact that the TMFG allows much greater flexibility in the choice of the scoring

function: in the deltahedron heuristic it is the sum of the weights for the newly inserted

vertices. In the TMFG the scoring function could be any scoring function as described

in section 3.3.3. In section 5.1 we provide an information-theoretical perspective on a

specific gain function.

Remark 62 (The Deltahedron heuristic as a special case of the MFCF). We have ob-

7Of course there are many more conceivable functions of the edge weights incident to a vertex, but
the two mentioned in the main body appear to have been studied in the literature.

4.2. Triangulated Maximally Filtered Graph 97

served that the T2 operator inserts a simplicial vertex. We also observe that every new

clique is a tetrahedron and this can be enforced in the MFCF by requiring that the

minimum clique size and the maximum clique size are both fixed at four8. The list of

cliques contains the initial K4 and all the subsequent cliques introduced by the clique

expansion operator. The list of separators is made up of the triangular faces where all

the vertices are inserted. Every separator can be used only once to keep the planarity:

this means that the separator is saturated after one use.

4.2.2 TMFG construction

The TMFG algorithm starts from a clique of order 4 (K4) and adds vertices by using the

local move T2. The novelty of this algorithm with respect to the Deltahedron heuristics

is that, at each step, the algorithm optimizes a score function (e.g. the sum of the

weights of the edges). Similarly to the GH-heuristics, the method does not rely on any

particular ordering of the vertices but, at every step, it calculates the score that would

be obtained by adding any of the remaining vertices inside any feasible face. T2 is

applied to the vertex and face pair that leads to the maximum increase in score. A naive

implementation would require to evaluate the gain function for every pair consisting of

a feasible vertex and a feasible face, thus resulting in an O(p2) calculations at every

step and therefore O(p3) overall computational complexity. However, it is possible to

maintain and update incrementally a cache9 with the information about the best possible

pairing, and update only the records affected by a move. This cache contains as many

elements as there are feasible faces (O(p)). Since the calculation of the maximum of a

vector of O(p) elements requires O(p) calculations, the overall number of calculations

for the score functions is O(p2). This results in much faster computational times with

respect to the PMFG. Differently from Osman et al. (2003) we use a slightly different

data structure to keep track of the vertices to insert into the feasible faces. We also keep

track of the triangles that are no longer faces because these are the separators of the

clique forest and are relevant for probabilistic modelling (see section 5.1). The stages

8Size 4 means the number of vertices allowed in a clique, and not the geometric dimension of the
clique.

9The cache is similar to the gain table in the MFCF. The difference is that the cache contains all the
possible separators for every clique and vertex, and not only the best possible separator. This is made
possible by the simpler geometric structure of a clique forest with fixed treewidth: every clique has three
possible separators for every vertex, and therefore it is easy to maintain the information in a table of fixed
size, but it is not practical when the cliques can have different or lage sizes.

4.2. Triangulated Maximally Filtered Graph 98

of the calculation are described graphically in Figures 4.2-4.4.

t1 t2 t3 t4
s0

Starting tetrahedron

Q1(X) = ps0(X) We start with a tetrahedron S0 and represent it as a series of
4 triangles along the columns of our “score matrix”. If the
network is assciated to a graphical model, Q1 is the first
approximation to the unknown joint probability distribution P
of the variables v1,v2, · · · ,vn. If the network is chordal
the potential or compatibility function of the cliques and
separators can be chosen to be the marginal probability
distribution.

The gain table is initialised with the scores corresponding
to the expansion of the faces in the cycle basis with all the
oustanding vertices.

v1

v2

v3

v4

Set of triangular faces (cycle basis)

Gain Table

v5

v6

v7

v8

s5,1 s5,2 s5,3 s5,4

s6,1 s6,2 s6,3 s6,4

s7,1 s7,2 s7,3 s7,4

s8,1 s8,2 s8,3 s8,4

Figure 4.2: Initialisation stage of the TMFG, see detailed description in Remark 63

Remark 63 (Initialisation stage of the TMFG). Figure 4.2 shows the initialisation of

the TMFG algorithm. The first tetrahedron is built using an heuristic where the four

vertices with the higher overall connectivity are joined together. The four triangles that

constitute the tetrahedron are put in the initial set of faces. Note that the set of faces is a

basis for the cycle space of the planar network built so far. The gain table is initialised

by calculating the scores corresponding to every pairing between the feasible faces

t1, t2, t3, t4 and the vertices not yet added to the network (i.e. v4, . . . ,v8 in this simplified

example). In the case that we are looking for an approximate solution to the MWPSP,

the gain is the sum of the weights of the edges introduced; in case we are building a

graphical model from empirical data, the gain function can be a measure of association

between the variables such as mutual information. In such case the first approximation

Q1(X) to the “true” probability distribution is the product of the marginal distribution

of X1,X2,X3,X4, and assumes that the remaining variables are independent from the

initial clique.

Remark 64 (Selection of the next vertex). Figure 4.3 shows the first part of the main

iterative loop in the TMFG, which is executed once for every outstanding vertex. By

looking up the highest value in the gain table we identify the best candidate vertex to

be added next to the network by means of a T2 operator. In this example the vertex is v6

4.2. Triangulated Maximally Filtered Graph 99

t1 t2 t3 t4

Q1(X) = ps0(X) In the case of a similarity matrix W the gain is
∑i∈t3 W (6, i), the sum of the weights of
the edges introduced.
Other choices of local score functions are possible.
For instance in Massara et al. (2016) we use the increase in mutual
information obtained by inserting e.g. v6 into t3:
S(v6, t3) = ∑X ps6,3(X) log

(
ps6,3(X)

)
−∑X pt3(X) log(pt3(X))
the algorithm tries to maximise this quantity at each step.
Maximising this quantity is equivalent to minimising the Kullback-Leibler
divergence between P and Q .

v1

v2

v3

v4 Gain Table

v5

v6

v7

v8

s5,1 s5,2 s5,3 s5,4

s6,1 s6,2 s6,3 s6,4

s7,1 s7,2 s7,3 s7,4

s8,5 s8,2 s8,3 s8,4

Figure 4.3: Selection stage of the TMFG, see detailed description in remarks 64

to be inserted in t3. This description is simplified for clarity: in reality the gain table is

not looked up every time, as it would be inefficient from a computational point of view.

The same information is, in the TMFG implementation, kept in two vectors with the

same cardinality as the triangular faces set: the vector MaxGain contains the best gains

for every triangle in the base, and the vector BestVertex contains the vertex for which

the maximum value for that triangle is achieved. An important part of the TMFG is in

the bookkeeping of this data structure as the network is updated.

t1 t2 t3 t4

Q2(X) = ps0(X) ·
ps6,3(X)

pt3(X)
The entries that are greyed out to the left are the ones that
are no longer admissible. t3 becomes a separator
and is removed from the list of triangular faces. All the entries in the
gain table that involve either t3 or v6 must be put to zero

t5 t6 t7

v1

v2

v3

v4 Gain Table

v5

v6

v7

v8

s5,1 s5,2 s5,3 s5,4 s5,5 s5,6 s5,7

s6,1 s6,2 s6,3 s6,4

s7,1 s7,2 s7,3 s7,4 s7,5 s7,6 s7,7

s8,5 s8,2 s8,3 s8,4 s8,5 s8,6 s8,7

Figure 4.4: Update stage of the TMFG, see detailed description in Remark 65

Remark 65 (Post-selection updates: cliques and separators, probability distributions,

gain table). Figure 4.4 shows the second part of the main iterative loop in the TMFG,

4.2. Triangulated Maximally Filtered Graph 100

and describes the updates required after the selection of the next vertex. The first step

is the assembly of a new clique from the chosen triangle and vertex. The clique and

triangle (separator) are added to the list of cliques and separators, which constitutes an

output of the algorithm. Next we need to update the gain table: the entries that involve

the vertex just inserted are no longer feasible and have to be removed by setting them to

zero, the set of triangular faces must be updated by removing the used triangle t3 and by

adding the new triangles introduced by the T2 operator (t5, t6, t7 in our example). Finally

we observe that in case we are building a graphical model we have a new approximation

to the probability P; Q2 is obtained from Q1 by multiplying it by the marginal density

of the new clique and dividing by the marginal density of the new separator.

Remark 66 (Performance improvements to the gain table cache). As explained in re-

mark 64 the TMFG does not use the gain table directly, as it would require an O(p2)

lookup operation for every vertex. The same result can be achieved more efficiently

by maintaining two vectors that contain the information needed by the TMFG. After

every application of T2 the cache is updated: some scores that were previously achiev-

able are no longer feasible, while others become feasible and the corresponding score

is calculated.

More formally, we define a score function S(vh,{va,vb,vc}) that quantifies the gain

achievable by adding vertex vh inside the triangle {va,vb,vc}.

For instance, for a given, dense, matrix of weights W , the gain function can be the

sum of the weights of the edges that will be added by inserting vh in face {va,vb,vc}:

S(vh,{va,vb,vc}) =W (vh,va)+W (vh,vb)+W (vh,vc)
10

The cache is a structure made up of two vectors (MaxGain and BestVertex) in-

dexed by the faces in the planar graph present up to that point. Let us consider a given

stage of the construction with m triangular faces ti, i ∈ {1,2, · · · ,m} and k remaining

uninserted vertices v ∈ {v1 · · ·vk}. The MaxGain vector contains the value of the max-

imum gain over all remaining vertices for all triangular faces:

MaxGain =

(
max

v∈{v1···vk}
S(v, t1), max

v∈{v1···vk}
S(v, t2), . . . max

v∈{v1···vk}
S(v, tm)

)
. (4.1)

10In the next chapter we discuss an information theoretic interpretation of the score function.

4.2. Triangulated Maximally Filtered Graph 101

The BestVertex vector contains inside the list of vertices that attains the maximum

gain for the specific triangular face:

BestVertex =

(
argmax

v∈{v1···vk}
S(v, t1), argmax

v∈{v1···vk}
S(v, t2), . . . , argmax

v∈{v1···vk}
S(v, tm)

)
. (4.2)

When a vertex (say vertex vh) is added to a certain triangular face (say face t j) the

two cache vectors must be updated by removing vertex vh from the list of remaining

vertices, removing face t j and adding three new faces.

The TMFG pseudocode is shown in Algorithm 3. We note that the algorithm

produces a highly regular structure where the size and number of cliques and separators

is known exactly in advance; this is very convenient from a computational point of view

because it allows to allocate directly the memory required and to access exactly by

position every clique and separator. Also, since the geometric structure is simplified,

the gain function does not have to calculate the optimal size of the separator as in

chapter 3. For these reasons the TMFG in its current implementation is more efficient

than the MFCF.

Algorithm 3. TMFG: Builds a planar Triangulated Maximally Filtered Graph.

Description: Builds a planar Triangulated Maximally Filtered Graph by successively adding ver-

tices with a T2 move.

Input:

W [mandatory]: A dense p× p square matrix W with positive weights (e.g. a matrix of

squared correlation coefficients). Alternatively, a data matrix of n observations and p vari-

ables and a gain function that operates on a triangle and a separator.

Output:

A sparse matrix, P, a filtered version of W fulfilling the planarity constraint. Or a matrix

built from the cliques and separators produced by the algorithm.

A list of cliques, C .

A list of separators, S .

A list of triangular faces T .

4.2. Triangulated Maximally Filtered Graph 102

Algorithm:

S1. [Initialize].

C ←∅; S ←∅; T ←∅;

C1←{v1,v2,v3,v4}. Assign to C1 the tetrahedron with highest score.

T ← {{v1,v2,v3} ,{v1,v2,v4} ,{v1,v3,v4} ,{v2,v3,v4}}. Assign the 4 triangular faces of

C1 to T .

C ← C1. Assign the first clique to the list of cliques.

V ←
{

v5, · · · ,vp
}

. Put the vertices not in C1 in the array of outstanding vertices.

P←W(C1,C1). Assign the weights of the full matrix, restricted to the first clique, to the

filtered matrix P. If the input is a data-matrix, then W(C1,C1) must be calculated from the

variables XC1

S2. [Build and update the gain table]. Calculate MaxGain and BestVertex for T and V as in

Equation 66.

S3. While V 6=∅ do:

S3.1 Find ti such that MaxGain is maximum.

S3.2 Find the corresponding vertex vi in BestVertex.

S3.3 Apply T2: insert vi into Ti. This creates three new triangular faces: ta, tb, tc.

S3.4 [Update cliques, faces, outstanding vertices, separators and P]

V ← V \ vi. Remove the vertex just added from outstanding vertices.

T ← (T \{ti})∪{ta, tb, tc}. Remove the triangular face from admissible triangular

faces and add the three new faces introduced by the T2 operator.

S ←S ∪ ti. Add separator.

Ci← Ci∪Clique(ti,vi). Add the new clique obtained from applying T2 to Ti and vi.

P ←P +W (Ci,Ci)−W (Si,Si)

S3.5 [Update gain table]

Remove from MaxGain and BestVertex where t = ti.

Update MaxGain and BestVertex where v = vi.

Calculate three new entries in MaxGain and BestVertex for ta, tb, tc.

Remark 67 (Use of a matrix of data observations). When the input is not a matrix of

weights, the score function must be calculated from the observations of the variables.

In these cases the meaning of the filtered matrix produced by the algorithm depends

on the type of the score function. For instance, if the data are multivariate normal,

then the natural filtered matrix to model is the inverse of the covariance matrix, as we

will see in chapter 6. In other cases there might not be a natural specific meaning to

the filtered matrix produced by the TMFG (for instance when the data is binomial or

multinomial), but what retains meaning and should be used in the applications is the

4.3. Planarity invariant operators: T1, T2, A, & S 103

structure of cliques and separators.

4.3 Planarity invariant operators: T1, T2, A, & S
In addition to the PMFG and the deltahedron heuristic algorithms, which have inspired

our approach, there have been other attempts along different lines. Jünger and Mutzel

(1993) propose an approximate solution based on branch and cut. Poranen (2004)

suggests a solution based on simulated annealing.

We now set out our approach to graph planarization in a way that is similar to the

one to the one used for CF-invariant operators. We define planarity invariant operators

and investigate some that will be used in section 4.4.

Definition 68 (Planarity invariant operators). Let G(V,E) a planar graph. A planarity

invariant operator is a transformation of a planar graph (obtained from the combina-

tion of elementary operations such as addition of new vertices, swapping of vertices,

addition of new edges, removal of existing edges etc.) such that the resulting graph is

still planar.

The use of planarity invariant operators allows to explore only the graph construc-

tion strategies that do not violate planarity and therefore it provides scope for large

performance improvements, as we do not need to test for the planarity of the graph at

each stage.

We have seen how the basic deltahedron heuristic algorithm is in essence an in-

stance of the MFCF algorithm where the size of the cliques is fixed to three (that is,

it includes four vertices) and the separators are saturated after one expansion. In order

to improve the performance of the algorithm we need to widen the set of topological

operators allowed and we focus on planarity preserving operators.

In order to do that we relax the requirement to maintain chordality as an invariant

and we move to analyse some further topological moves that maintain the planarity, but

not necessarily the chordality, of the underlying graph.

These topological moves are sketched in Figs. 4.1, 4.6, 4.8 and 4.9. The T1 op-

erator acts on two triangles which share an edge (we will call such a construct a “pla-

quette”) and replaces the shared edge with a new edge joining the (previously) opposite

vertices (see Fig. 4.6); the T2 move adds a vertex inside a triangle and connects this

4.3. Planarity invariant operators: T1, T2, A, & S 104

vertex to the triangle’s vertices with three new edges (see Fig. 4.1); the A move operates

on two triangles which share an edge by deleting the shared edge, adding a new ver-

tex inside the resulting rhombus and joining the added vertex to the rhombus’ vertices

(see Fig. 4.8); finally the S operator swaps two vertices of the graph keeping fixed the

neighbours (see Fig. 4.9). To complete the specification of the topological moves we

should also add a score function and a description of the gain in score achieved in by

every move. For the purposes of the MWPSP we will always use as a scoring function

the sum of the edge weights introduced by the operators.

In an extension of the deltahedron heuristic method, suggested by Leung (Le-

ung, 1992), vertex insertion can happen either one vertex at a time (the T2 move, as in

Fig.4.1) or three vertices at a time as in Fig.4.5. This corresponds to the insertion of an

octahedron within a triangular face (Song et al., 2012b); clearly this is different from

the T2 move that instead corresponds to the insertion of a tetrahedron. However, such

a move can be obtained by combining T2 with another local move, called T1 (Aste and

Sherrington, 1999; Aste et al., 2012b,a; Dubertret et al., 1998), consisting in switching

neighbours among two adjacent triangles, as shown in Fig.4.6. In general, any local

topological change of a surface triangulation that preserves embedding and results in a

triangulation can be realized through the combination of the two elementary moves T1

and T2 (Alexander, 1930). However it should be pointed out that the application of T1

could cause the graph to become no longer chordal. For instance, the Leung extension

(Fig.4.5) can be produced via two T2 and one T1, as demonstrated in Fig.4.7.

v1

v2 v3

v1

v2 v3

v4

v5v6

Figure 4.5: Addition of three vertices in Leung’s extension of the deltahedron heuristic.

4.3. Planarity invariant operators: T1, T2, A, & S 105

v1

v2

v3

v4

T1

v1

v2

v3

v4

Figure 4.6: T1 move: rewiring of a shared edge between neighbouring triangular faces.

v1

v2 v3

v4

T2

v1

v2 v3

v4
v5

T2 T1

v1

v2 v3

v4
v5

v6

v1

v2 v3

v4 v5

v6

Figure 4.7: Demonstration that the Leung’s extension in Fig.4.5 can be generated by using two
T2 and one T1 moves.

v1

v2

v3

v4

A

A−1

v1

v2

v3

v4v5

Figure 4.8: A move: insertion of a vertex inside a plaquette made of two neighbouring triangu-
lar faces.

4.3. Planarity invariant operators: T1, T2, A, & S 106

v1

v2 v3

v4

S

v1

v4 v2

v3

Figure 4.9: S move: relabelling of the vertices of a 4-simplex. Note that the topology of the
graph is unchanged.

Another move that we will use to build planar graphs is the A move as described

in Fig.4.8. Also in this case the move can be produced combining T1 and T2 and leads

to non-chordal graphs.

Finally, we will use the ‘swap’ operator, S, that re-labels sub sets of vertices of

a graph as shown in Fig.4.9, where it is acting on the vertices of a 4-simplex. This

operation is trivial when the weights are identical, but will in general affect aggregate

functions of the weights in a non-trivial way. The peculiarity of this operator is that it

does not, in general operate locally and it keeps the graph topology unchanged preserv-

ing therefore planarity and chordality.

The TMFG algorithm can be extended to include T1 and A moves as well (see

Section 4.4). In this case, the moves are local, internal to the plaquette made by two

joint triangles (i.e. {v1,v2,v3} and {v2,v3,v4} in Fig.4.6). The gain function for a T1

move is associated to the removal of an edge (i.e. (v1,v3) in Fig.4.6) and the simulta-

neous addition of another edge (i.e. (v2,v4) in Fig.4.6). Similarly the gain for a move

of type A (as shown in Fig.4.8) results from the removal of one edge and the insertion

of a new vertex and four new edges. The use of T1 and A moves generally improve

gain; however, we have verified that the algorithm with T2 only produces very similar

results. Furthermore, planar filtered graph with T1 or A moves are no longer clique trees

but rather bubble-trees (Song et al., 2012a) which are in general no longer chordal. For

instance see Fig.4.7, where the application of T1 creates a non-chordal graph: the cycle

v1− v2− v6− v5− v1 has length grater than 3 without internal chords. This has impli-

cations for dependency modeling, as we shall discuss in Section 5.1. In many cases the

application of the swap operator S results in higher overall gains. This operator has the

4.4. Variants of the TMFG algorithm 107

advantage of leaving the overall topology unchanged but its use should be regulated by

few local or heuristic criteria to avoid an increase in the complexity of the algorithm

due to the increasing number of possible combinations. The S operator is the only

operator that is not, in principle, local and therefore it could be applied to the whole

network with clear implications for the computational complexity of the algorithm. To

limit this issue we have chosen to use the S operator only locally (between adjacent

vertices). Specifically, after every T2 move we only execute the swaps that permute the

vertices in the new clique. This requires some further changes to the cache vectors, but

– being applied locally – it does not increase the overall computational complexity that

remains O(p2).

4.4 Variants of the TMFG algorithm

We have studied a number of variants of the basic TMFG algorithm. They all have

in common the fact that one or more planarity preserving operators are applied after

every execution of a T2 operator. Since these operators are not in general CT-invariants

the chordality of the filtered graph is not assured. Another consequence of this fact

is that the the representation as a clique tree with cliques and separators is no longer

valid. The TMFG variants exposed in this section must maintain the bookkeeping of

the triangular faces for which a T2 operator is feasible. The triangular faces constitute

a basis for the cycle space of the graph (Diestel, 2010, Par. 4.5).

4.4.1 TMFG-T1

The TMFG-T1 (described in Algorithm 4) is the first proposed variant of the basic

TMFG algorithm. The characteristic of this variant is a combination of a T2 move

followed by the evaluation of three T1 moves, as shown in Figure 4.10. Specifically

Figure 4.10a shows a triangular face (v1,v2,v3) before the T2 operator; in Figure 4.10b

the T2 is applied adding v4 to the triangular face; the result id to create three plaquettes

((v1,v4,v2,v5),(v2,v4,v3,v7),(v3,v4,v1,v6)) to which the T1 operator could be applied.

The TMFG-T1 calculates which of these edge flips would improve the total score and

if one such edge flip is found, the corresponding T1 operator is applied to the graph.

The result for an hypothetical edges flip is shown in Figure 4.10c. After the T1 the

cycle basis needs to be updated: with reference to figure 4.10 the two faces (v1,v2,v4)

4.4. Variants of the TMFG algorithm 108

and (v1,v2,v5) must be replaced by the two new faces (v1,v4,v5) and (v2,v4,v5). Ad-

ditionally the algorithm keeps track of the contact structure between adjacent triangles

to assess the possible edge flips. After every move the contact structure needs to be

updated.

v1

v2v3

v5v6

v7

(a) Graph before the T2 operator.

v1

v2v3

v4

v5v6

v7

(b) After the T2 operator. Three
plaquettes are introduced: the
dashed red lines show the
edges that could be introduced
by a T1 operator.

v1

v2v3

v4

v5v6

v7

(c) After the execution of the T1
operator on one of the plaque-
ttes.

Figure 4.10: Combination of T2 and T1 moves in the TMFG-T1 variant.

Remark 69. [Application of the T1 move after a T2 in the TMFG] Figure 4.10 shows

how the T1 operator is used in the TMFG-T1 variant to improve the total score after the

execution of a T2 move. Figure 4.10a shows a portion of a planar network before the T2

is executed. In figure 4.10b we see that the execution of the T2 creates the possibility

for three T1 swaps on three plaquettes: in (v1,v4,v3,v6) we could connect v4 and v6 and

disconnect v1 and v3, in (v1,v4,v2,v5) we could connect v1 and v2 and disconnect v4 and

v5, and in (v3,v4,v2,v7) we could connect v4 and v7 and disconnect v2 and v3. In each of

4.4. Variants of the TMFG algorithm 109

the three cases the gain from the swaps results from the weight of the edge that would

be connected minus the weight of the edge that would be disconnected by the move.

If there are more than one positive gain to be achieved, the move with the maximum

gain is carried out. In figure 4.10c we show the effect of applying the T1 operator to the

plaquette (v1,v4,v2,v5). As already observed, the result is not in general a clique tree,

therefore the structure of cliques and separators is not useful. From an implementation

point of view it is instead very useful to maintain in a data structure the composition of

all the plaquettes. We have achieved that maintaining a parallel adjacency matrix for

the triangles. We define that two traingles are adjacent only if they share an edge. In

this way the plaquettes are the non zero elements of the adjacency matrix.

Algorithm 4. TMFG-T1: Builds a planar Maximally Filtered Graph. The graph is built out of a

combination of T2 and T1 moves.

Description: Builds a planar Maximally Filtered Graph by successively adding vertices with a T2

move and a local optimisation based on T1.

Input:

W [mandatory]: A dense p× p square matrix W with positive weights (e.g. a matrix of

squared correlation coefficients).

Output:

A sparse matrix, P, a filtered version of W fulfilling the planarity constraint.

A list of cliques, C .

A list of triangular faces T .

A structure describing the adjacency relationship of the triangular faces, A.

Algorithm:

S1. [Initialize].

C ←∅. T ←∅.

A ← 0. Zero matrix.

C1←{v1,v2,v3,v4}. Assign to C1 the tetrahedron with highest score.

T ← {{v1,v2,v3} ,{v1,v2,v4} ,{v1,v3,v4} ,{v2,v3,v4}}. Assign the 4 triangular faces of

C1 to T .

C ← C1. Assign the first clique to the list of cliques.

V ←
{

v5, · · · ,vp
}

. Put the vertices not in C1 in the array of outstanding vertices.

P←W(C1,C1). Assign the weights of the full matrix, restricted to the first clique, to the

filtered matrix P.

4.4. Variants of the TMFG algorithm 110

S2. [Build and update the gain table]. Calculate MaxGain and BestVertex for T and V as in

Equation 66.

S3. While V 6=∅ do:

S3.1 Find ti such that MaxGain is maximum.

S3.2 Find the corresponding vertex vi in BestVertex.

S3.3 Apply T2: insert vi into Ti. This creates three new triangular faces: ta, tb, tc.

S3.4 [Update cliques, faces, outstanding vertices, triangles adjacency matrix and P]

V ← V \ vi. Remove the vertex just added from outstanding vertices.

T ← (T \{ti})∪{ta, tb, tc}. Remove the triangular face from admissible triangular

faces and add the three new faces introduced by the T2 operator.

Update A by setting ta, tb, tc adjacent.

TrianglesToUpdate←{ta, tb, tc}

Ci← Ci∪Clique(ti,vi). Add the new clique obtained from applying T2 to Ti and vi.

P ←P +W (Ci,Ci)−W (Si,Si)

S3.5 [Evaluate T1]

Get from A the neighbouring triangles of ti, because those are the ones that might be

altered by a T1 move.

For all triangles ta, tb, tc and their respective neighbouring triangles tna, tnb, tnc assess

the gain from a T1 move and execute it if there is a gain.

If T1 is executed for any of tna, tnb, tnc add the respective triangular face to the list

TrianglesToUpdate.

S3.6 [Update gain table]

Remove from MaxGain and BestVertex where t = ti.

Update MaxGain and BestVertex where v = vi.

Calculate the new entries in MaxGain and BestVertex for TrianglesToUpdate.

4.4.2 TMFG-S

The TMFG-S algorithm (described in Algorithm 5) is a variant of the TMFG that eval-

uates potential gains due to possible swaps of vertices after every application of the

T4 operator, as shown in Figure 4.11. As both the T2 and the S operators are CF-

invariant, the end result is still chordal. However, care must be taken because after

every swap the separator changes: for instance in Figure 4.11b the newly introduced

separator is (v1,v2,v3), but, after the swap, the separator is (v2,v3,v4). A similar update

must be performed for all the cliques and triangles containing the vertex that has been

swapped: taking again Figure 4.11 as a reference all the triangles, such as (v1,v6,v3)

and (v1,v2,v5) in Figure 4.11b that contain v1 before the swap need to be updated to

(v4,v6,v3) and (v4,v2,v5) as in Figure 4.11c.

4.4. Variants of the TMFG algorithm 111

v1

v2v3

v5v6

v7

(a) Graph before the T2 operator.

v1

v2v3

v4

v5v6

v7

(b) After the T2 operator.
v4

v2v3

v1

v5v6

v7

(c) After the swap of v1 and v4.

Figure 4.11: T2 and subsequent swap of vertices v1 and v4, see remark 70 for a full description.

Remark 70 (Application of the S move after a T2 in the TMFG). Figure 4.11 shows

how the S operator is used in the TMFG-S variant to improve the total score after the

execution of a T2 move. Since the S operator is non-local, we have restricted the scope

to swaps between adjacent vertices after the execution of a T2 operation. As the figure

shows, the new vertex introduced by the T2 is v4. In the TMFG-S, the only swaps that

are performed are those involving v4 and its neighbours. The calculation of the gain

involves the sum of the weights introduced by the swap minus the weights removed by

the swap.

Algorithm 5. TMFGS: Builds a planar Triangulated Maximally Filtered Graph using a T2 move

and a series of vertex swaps.

Description: Builds a planar Triangulated Maximally Filtered Graph by successively adding ver-

tices with a T2 move and executing swaps on the newly inserted clique..

Input:

W [mandatory]: A dense p× p square matrix W with positive weights (e.g. a matrix of

4.4. Variants of the TMFG algorithm 112

squared correlation coefficients).

Output:

A sparse matrix, P, a filtered version of W fulfilling the planarity constraint.

A list of cliques, C .

A list of separators, S .

A list of triangular faces T .

Algorithm:

S1. [Initialize].

C ←∅; S ←∅; T ←∅;

C1←{v1,v2,v3,v4}. Assign to C1 the tetrahedron with highest score.

T ← {{v1,v2,v3} ,{v1,v2,v4} ,{v1,v3,v4} ,{v2,v3,v4}}. Assign the 4 triangular faces of

C1 to T .

C ← C1. Assign the first clique to the list of cliques.

V ←
{

v5, · · · ,vp
}

. Put the vertices not in C1 in the array of outstanding vertices.

P←W(C1,C1). Assign the weights of the full matrix, restricted to the first clique, to the

filtered matrix P.

S2. [Build and update the gain table]. Calculate MaxGain and BestVertex for T and V as in

Equation 66.

S3. While V 6=∅ do:

S3.1 Find ti such that MaxGain is maximum.

S3.2 Find the corresponding vertex vi in BestVertex.

S3.3 Apply T2: insert vi into Ti. This creates three new triangular faces: ta, tb, tc.

S3.4 [Update cliques, faces, outstanding vertices, separators and P]

V ← V \ vi. Remove the vertex just added from outstanding vertices.

T ← (T \{ti})∪{ta, tb, tc}. Remove the triangular face from admissible triangular

faces and add the three new faces introduced by the T2 operator.

Ci← Ci∪Clique(ti,vi). Add the new clique obtained from applying T2 to Ti and vi.

P ←P +W (Ci,Ci)−W (Si,Si)

S3.5 [Evaluate gains for all possible swaps of the clique]

For all the possible permutations of the vertices of Ci assess the possible gain. This

might change the separator.

S3.6 [Add the separator] S ←S ∪ ti.

S3.7 [Identify triangular faces affected by the swap] Identify all triangles containing one

of the swapped vertices and update the triangular face.

S3.8 [Update gain table]

Remove from MaxGain and BestVertex where t = ti.

4.4. Variants of the TMFG algorithm 113

Update MaxGain and BestVertex where v = vi.

Calculate three new entries in MaxGain and BestVertex for ta, tb, tc.

Update the gain table for all triangular faces that have been changed by the swap.

4.4.3 TMFG-A

The TMFG-A variant of the TMFG is a specialised version of the algorithm that works

on plaquettes, as shown in 4.12 and algorithm 6. In this variant the gain table is a matrix

with the rows and the columns indexed by the triangular faces of the graph. The non-

zero entries of the matrix identify pair of adjacent triangles11. The gain is calculated

by evaluating the change in score for each of the five operations described pictorially

in Figure 4.12 in correspondence with every outstanding vertex. Differently from the

previous variants here we have an additional explicit degree of freedom, the operation

to be applied to the plaquette. The structure is initialised by building a 4-clique as in the

other cases, but any subsequent move could potentially break the planarity of the graph

and the end result will not be, in general, chordal. Every operation can potentially add

new triangular faces or delete some existing ones, and change the matrix that records

the adjacency of triangles. As a consequence of additions, removals or changes in

structure, the gains related to the faces affected must be calculated or updated. Since

the end result is not in general a clique forest, the TMFG-A does not return a list

of cliques and separators, but simply the list of triangular faces. After the execution

of one of the five operations, the TMFG-A can perform a further step where all the

plaquettes are evaluated and a T1 is executed if it improves the total score. This further

optimisation step can be repeated a configurable number of times. This algorithm is

rather more complex than the previous ones, and therefore we will sketch the high level

steps, please refer to the full code listing in Appendix 9.1.4.

Remark 71. Figure 4.12a shows a plaquette in a planar graph. The TMFG-A works at

the plaquette level because all the operations must be comparable and the operator A

can only be defined on a plaquette. By looking at Figure 4.12 we can see the net effect

of any operation is to add three edges: operations (1) and (2) add three new edges,

operations (3)-(5) remove one edge and adds four new edges. In this way the gains can

11As we have done in section 4.4.1, we consider two triangles adjacent if they share an edge.

4.4. Variants of the TMFG algorithm 114

v1

v3 v2

v4

(a) Plaquette before any operation

v1

v3 v2

v4

v5

(b) Operation (1): T2

v1

v3 v2

v4

v5

(c) Operation (2): T2

v1

v3 v2

v4

v5

(d) Operation (3): A
v1

v3 v2

v4

v5

(e) Operation (4): T2 ◦T1

v1

v3 v2

v4

v5

(f) Operation (5): T2 ◦T1

Figure 4.12: TMFG-A: a plaquette and the result of the five operations used by the algorithm,
see remark 71 for a full description.

4.4. Variants of the TMFG algorithm 115

be compared. Operations (1) and (2) are no more than the T2 applied to either triangle

of the plaquette. Operation (3) is the A operator. Operations (4) and (5) are the T2

operator preceded by a T1. As in the case of the TMFG-T1, an important part of the

algorithm is the maintenance of the triangle basis.

Algorithm 6. TMFG-A: Builds a planar Maximally Filtered Graph. The graph is built out of a

combination of T2, T1 and A moves that operate on plaquettes.

Description: Builds a planar Maximally Filtered Graph by successively adding vertices with a T2

move and a local optimisation based on T1.

Input:

W [mandatory]: A dense p× p square matrix W with positive weights (e.g. a matrix of

squared correlation coefficients).

NumFlips [mandatory]: the number of cycles of T1 edge flips that must be considered after

every main operation.

Output:

A sparse matrix, P, a filtered version of W fulfilling the planarity constraint.

A list of triangular faces T .

A structure describing the adjacency relationship of the triangular faces, At .

Algorithm:

S1. [Initialize].

T ←∅.

At ← 0. Zero matrix.

C1←{v1,v2,v3,v4}. Assign to C1 the tetrahedron with highest score.

T ← {{v1,v2,v3} ,{v1,v2,v4} ,{v1,v3,v4} ,{v2,v3,v4}}. Assign the 4 triangular faces of

C1 to T .

V ←
{

v5, · · · ,vp
}

. Put the vertices not in C1 in the array of outstanding vertices.

P←W(C1,C1). Assign the weights of the full matrix, restricted to the first clique, to the

filtered matrix P.

The triangles t1 = {v2,v3,v4} , t2 = {v1,v3,v4} , t3 = {v1,v2,v4} , t4 = {v1,v2,v3} are all ad-

jacent to each other, therefore they are marked as adjacent in At . At(t1, t2)← 1,At(t2, t3)←

1,At(t1, t3)← 1,At(t1, t4)← 1.

S2. [Build and update the gain table]. Calculate MaxGain, BestVertex, and BestOp for T and

V . In this algorithm these three entries in the gain table are indexed by pairs of adjacent

traingles, or plaquettes. The gain table in this case contains also the operation, described in

Figure 4.12.

4.5. Additional observations 116

S3. While V 6=∅ do:

S3.1 Find ti, t j such that MaxGain is maximum.

S3.2 Find the corresponding vertex vk in BestVertex.

S3.3 Find the corresponding operation ok in BestOp.

S3.4 Apply ok to vk and ti, t j. This creates three (for operations 1,2,4,5) or four (opera-

tion 3) new triangular faces (NewFaces) and removes one (operations 1,2,4,5) or two

(operation 3) of the existing triangular faces (OldFaces).

S3.5 [Update faces, outstanding vertices, triangles adjacency matrix and P]

V ← V \ vi. Remove the vertex just added from outstanding vertices.

Remove the triangular face(s) from admissible triangular faces and add the new tri-

angular faces introduced by the ok operator.

Update At by marking as adjacent the appropriate faces on NewFaces.

TrianglesToUpdate← NewFaces

Update P by adding the newly introduced edges and removing the edges from the

triangles that have been removed.

S3.6 [Update gain table]

Remove from MaxGain, BestVertex and BestOp where the plaquette is ti, t j.

Update MaxGain, BestVertex and BestOp where v = vk.

Perform NumSwaps iterations of T1 operations on all the triangles, updating Trian-

glesToUpdate. Calculate the new entries in MaxGain, BestVertex and BestOp for

TrianglesToUpdate.

4.5 Additional observations
In this section we collect some observation related to practical implementation issues or

to potential improvements to the algorithm. Some of these topics will be also mentioned

in chapter 8 since they concern future research.

4.5.1 Dynamical adaptability

Due to the local nature of the operators, T1, T2, T−1
2 , A, A−1 and (local) S, used to

construct the TMFG one can continuously modify the network allowing ‘online’ adapt-

ability while new data are generated. This is of practical importance because in real,

big data, applications information is changing dynamically with new data continuously

fed causing changes in the matrix of weights that require modifications of the filtered

graph. Further, creation of new nodes is required when new elements/variables become

relevant in the system. Conversely, elements/variables can eventually become irrelevant

and the corresponding vertices should be eliminated from the graph. The implemen-

4.5. Additional observations 117

tation of these moves requires keeping a cache matrix of gains continuously updated

and dynamically checking for moves that improve total gains. An interesting topic for

further research would be the development of effective criteria that indicate whether the

network structure is no longer adequate to the data under analysis and should therefore

be updated.

4.5.2 Parallelization and big data

The local nature of TMFG construction and dynamical adaptation through T1, T2, T−1
2 ,

A, A−1 and (local) S, moves make it suitable for parallelization. Coelho et al. (2016)

proposes several possibilities for parallelization based on the TMFG algorithm. Let us

however discuss briefly a possible parallel implementation of the TMFG. One of the

main features of planar triangulations is that three-cliques uniquely divide the network

into two ‘inside’ and ‘outside’ subgraphs within a nested hierarchical structure (Song

et al., 2011). This means that, given a seed structure of three-cliques, each clique can

develop its inside subgraph independently. A processor can be assigned to each seed

clique and calculations can be performed locally. Given that each separating clique

divides roughly the graph into two parts one can compute the TMFG in O(p) using

O(log p) processors. Another issue related to big data is the size of the score vec-

tors. It is clear from the construction that the size of the cache grows linearly with the

dimension of the problem and that triangles in the basis can be assigned to different

processors, allowing parallel updates of the cache.

4.5.3 Memory usage

In the case of pair-wise dependence (such as correlation) both the deltahedron heuristic

and the PMFG require to compute in advance the entire correlation matrix, while the

TMFG does not use the full information from the correlation matrix and could calculate

only the correlations necessary for the incremental update of the gain vectors. This is an

advantage already for correlation measures, in the (numerous) cases where the number

of observations (q) is less than the number of variables (p): in fact it could require

much less memory (approximately p× q) to store the time series of the observations

and calculate the correlations on-demand, rather than calculating and storing a large

correlation matrix (approximately p×(p−1)
2). This fact is even more relevant for multi-

point dependencies (e.g. partial correlation, mutual information, ...): in these cases the

4.6. Comparison between TMFG and PMFG 118

TMFG would still require only to store the time series in memory and would require

the calculation of the relevant gain functions only, while other methods would require

the storage of large amounts of data (e.g. order of p3 for a three-points dependency

measure).

4.6 Comparison between TMFG and PMFG
A vast literature has demonstrated that PMFG can be used to retrieve meaningful infor-

mation about the structure of interdependency in complex datasets (Tumminello et al.,

2005; Song et al., 2012a; Musmeci et al., 2015a,b; Pozzi et al., 2013), it is therefore

natural to compare the performances of the TMFG with the ones of the PMFG.

Let us first look at the scaling of execution times for TMFG and PMFG algo-

rithms as function of the size p of the weight matrix W ; results are reported in Fig.4.13

(seconds on a 2.6 GHz Intel Core i7®). We observe that TMFG execution times

scale with the matrix dimension size p approximately as O(p2) while PMFG scales

approximately as O(p3). The 2-parameters best polynomial fits give respectively:

TT MFG∼ 2 ·10−7 · p2+6 ·10−4 p and TPMFG∼ 2 ·10−6 · p3+3 ·10−5 p2. Overall we can

see that execution times are several orders of magnitude faster for TMFG than PMFG.

4.6.1 Comparison between the performances of the various meth-

ods

We have then compared the total retained edge weight for the following four variants

of the TMFG construction:

1. TMFG: the base version of the algorithm described in Section 4.2

2. TMFG-T1: the variant described in 4.4.1.

3. TMFG-S: the variant described in 4.4.2.

4. TMFG-A: the variant described in 4.4.3.

In choosing the matrices to use for the test we have tried to cover a number of

distributions: with limited or unlimited range, with or without fat tails, with very high

right or left skew. Besides, 5 of the matrices have been sampled element-wise, and

therefore there is no correlation between the edge weights. Three of the matrices have

4.6. Comparison between TMFG and PMFG 119

Size p
100 1000 10000

ex
ec

u
ti
on

ti
m

e
(s

ec
)

10-2

10-1

100

101

102

TMFG T2
PMFG

Figure 4.13: Demonstration that TMFG is faster and scalable with respect to the PMFG. Com-
parison between execution times for TMFG and PMFG for different values of p
ranging between 50 and 10000. Lines are the 2-parameters best polynomial fits
(see text).

been simulated using a factor model with an increasing number of factors; these ma-

trices should show how the algorithms behave when there is an underlying structure

in the matrix of weights. Finally we have included a matrix built from real data using

the correlation coefficients of the log-returns of a set of 342 US stocks (the dataset is

described in (Massara et al., 2016)). We will see in the discussion of the results that

this choice allows to highlight differences between the two algorithms.

In total we have tested 9 types of random weight matrices W with different weight

distributions:

1. Beta distribution with shape parameters α = 0.5 and β = 3. This distribution

is heavily skewed and is characterised by very low density on the right side of

the interval [0,1] and therefore very few elements should be close to one. In this

distribution the elements of the matrix are independent from one another.

2. Beta distribution with shape parameters α = 3 and β = 0.5. This distribution is

skewed in the opposite direction and has a high density near the right extreme

4.6. Comparison between TMFG and PMFG 120

of the interval [0,1], with many elements close to 1. The matrix elements are

independent.

3. Pareto distribution with power law exponent equal to 1. This distribution has a

fat tail, and this means that there are isolated cases with very high weights. Also

in this case the elements are independent.

4. Pareto distribution with power law exponent equal to 2. This distribution has still

a fat tail, but thinner than the previous one. The elements are independent.

5. Random matrix of correlations of 400 time series generated by simulating 20

normally distributed common factors. Differently from the previous distribu-

tions, where the edges are assigned weights independently from one another, we

have chosen this distribution because it is commonly used to model cases where

variables react similarly to common factors.

6. Random matrix of correlations of 400 time series generated by simulating 50

common factors. This matrix shows less structure than the one generated using

20 factors.

7. Random matrix of correlations of 400 time series generated by simulating 100

common factors. This matrix shows less structure than the two above and should

be more similar to a matrix with element-wise random elements, due to the very

high number of model parameters (400×100 factor loadings).

8. Uniform distribution over [0,1]. This distribution has independent elements but

a relatively high number of weights close to 1.

9. Square of a real correlation matrix coefficients computed from daily log-returns

of 342 US stocks, across a period of 15 years (form Jan 1997 to Jul 2012) (Mus-

meci et al., 2015a).

All matrices are symmetric and have size p = 400 except the real correlation data

that have sizes p = 342. For all the weight matrices (excepting for the real correlation

matrix) we have compared results for 100 samples. For the real correlation matrices

we generated matrices by random sampling the starting point of 100 time windows of

4.6. Comparison between TMFG and PMFG 121

length 1000 data points over a period of 4500 points in total. Table 4.1 reports the

average relative performance, defined as the ratio between the sum of the edge weight

in the four variants of TMFG with respect to the sum of the edge weight in the PMFG.

It shows that the PMFG is usually more effective when the density of high weights is

low, while the TMFG is more effective when the density of high weights is high or

the range of weights is limited. This result is to be expected since the PMFG is less

constrained than the TMFG in picking up isolated high-weight edges one at a time,

while the TMFG is more efficient in selecting subsets of edges with a high total sum.

For the random matrices of correlation we see that the TMFG performs better than

the PMFG in filtering the more structured matrix generated using 20 factors. In the

real case we see that the TMFG is marginally better than the PMFG. We conclude

that TMFG is in general performing comparably well, and sometimes better than the

PMFG. We observe that the TMFG tends to improve relative performance as the size

of the matrix increases (see Table 4.2). We observe that in this case, even with an

unfavourable distribution the TMFG variants will eventually outperform the PMFG. We

explain this by observing that the number of elements grows approximately as 0.5× p2,

while the number of edges in the filtered graphs grows as 3× p; this means that there are

relatively more edges with high weights in the right side of the distribution allowing

the TMFG to optimise better the sum by cliques. All the TMFG variants exhibit a

performance improvement with the best result obtained by the TMFG-A variant.

4.6. Comparison between TMFG and PMFG 122

Weight matrix
coefficients
distribution

TMFG/
PMFG

TMFG-T1/
PMFG

TMFG-S/
PMFG

TMFG-A/
PMFG

TMFG (Time)/
PMFG (Time)

Beta(0.5,3) 95.42% 96.24% 95.72% 99.89% 0.16%
Beta(3, 0.5) 104.70% 104.73% 104.77% 104.80% 0.14%
Pareto(1) 99.97% 99.97% 99.97% 99.97% 0.17%
Pareto(2) 97.94% 98.00% 98.02% 98.32% 0.17%
Random Matrix
(20 factors)

102.23% 102.63% 102.57% 103.77% 0.22%

Random Matrix
(50 factors)

100.30% 100.82% 100.64% 102.54% 0.21%

Random Matrix
(100 factors)

98.46% 99.14% 98.86% 101.42 % 0.21%

Uniform 116.27% 116.29% 116.34% 116.89% 0.15%
Real correlation
matrix

100.11% 100.17% 100.24% 100.42% 0.15%

Table 4.1: Average relative performances (ratio between sum of edge weights) of the TMFG
algorithm with respect to the PMFG. Four TMFG variants and nine different weight
distributions. Note that TMFG and TMFG-S are chordal graphs.

Weight matrix
size p

TMFG
/PMFG

TMFG-T1
/PMFG

TMFG-S
/PMFG

TMFG-A
/PMFG

50 88.68% 88.82% 89.35% 95.93%
100 90.49% 93.13% 92.31% 98.14%
150 92.14% 93.77% 90.44% 95.26%
300 93.73% 95.6% 94.63% 100.06%
500 96.36% 96.79% 96.6% 100.98%
700 98.83% 100.49% 98.92% 103.58%
850 98.93% 99.95% 99.99% 103.83%
1000 100.33% 100.56% 100.71% 105.39%
1200 101.34% 102.16% 101.16% 105.24%

Table 4.2: Example of relative increase in performance of the TMFG algorithm with respect to
PMFG when dimensionality p increases. The underlying distribution is a Beta(0.5,
3).

Chapter 5

Probabilistic modelling with TMFG /

MFCF and Financial Applications

In chapter 3 we have discussed in general terms the MFCF methodology and in chapter

4 we have discussed the TMFG and its variants with a view towards the solution of the

MWPSP.

In this chapter we show how probabilistic models can be built upon these network

structures and we will discuss some financial risk management applications.

We first describe in in Section 5.1 the use of Gaussian Markov Random Fields

(GMRF) in relation to the TMFG. The algorithms described in this chapter have been

initially discussed in Barfuss et al. (2016) using 4-dimensional cliques, but the the

theory holds for any clique forests and therefore these results can be applied to any

network generated by the MFCF. The methodology described in Barfuss et al. (2016),

which describes the use of the the TMFG to build a GMRF where all the cliques have

the same size of 4, goes under the name of LoGo (Local / Global optimisation). We

provide two applications to stress testing and risk allocation in Section 5.2.

We the describe in Section 5.3 the implementation of the MFCF with a gain func-

tion based on linear regression. We show how the local nature of the MFCF can be

used to reliably build a network of financial and macroeconomic variables when the

time series have mixed frequencies.

5.1. Modeling with TMFG: information theoretic perspective 124

5.1 Modeling with TMFG: information theoretic per-

spective
In complex systems, such as financial markets, a large number of interdependent vari-

ables are typically involved. The TMFG, as a particular case of the MFCF, is a way

of filtering the dependence structure between the variables reducing it to a network

consisting of the most relevant interactions.

This section is an extension of Section 3.3.3, where several gain functions have

been discussed in the general case of a clique tree. In this case the score function dis-

cussed is the mutual information, or the negative of the Kullback-Leibler divergence

of the joint probability distribution and the product of the marginals. We present the

results in the original setting of a four-dimensional clique tree1 since this can be di-

rectly compared with the simpler setting of the Chow-Liu tree (Chow and Liu, 1968)

and the more general setting of a general clique tree underlying a multivariate normal

distribution as previously described in Section 3.3.3.3.

Modeling the system statistically consists in identifying the joint probability dis-

tribution that best describes the observed collective behavior of the variables.

Specifically, given a set of observations {x1(1), ...,x1(q)}, {x2(1), ...,x2(q)}, ...

{xp(1), ...,xp(q)} of p random variables X = {X1,X2, ...,Xp}, one aims to estimate a

joint probability distribution function Q(X) that is the best representation of the ‘true’

multivariate probability distribution function P(X) from which the set of observations

are drawn. Clearly, P(X) is unknown and the only information available are the ob-

servations {x1(1), ...,x1(q)}, {x2(1), ...,x2(q)}, ... {xp(1), ...,xp(q)} from which Q(X)

must be estimated.

Information filtering graphs can be used to compute Q(X). The main advantage

is that these graphs are locally low dimensional (e.g. the largest clique is K4 when

planarity is enforced) which makes sampling tractable also with limited amount of data

(Barfuss et al., 2016). We have explained in Chapter 3 how the repeated operation of the

clique expansion operator creates a clique forest2 and thus Q(X) admits a representation

based on clique and separators potentials as per Equation 5.1:

1In this context “four-dimensional” refers to the maximum number of vertices allowed in the clique,
not to the dimension of the underlying simplicial complex, which is three.

2And the T2 operator as a particular case of the clique expansion operator is no exception.

5.1. Modeling with TMFG: information theoretic perspective 125

Q(X) =
∏c∈C Pc(Xc)

∏s∈S Ps(Xs)
. (5.1)

Where: C and S are respectively the set of cliques and separators of the graph

and Pc(Xc) and Ps(Xs) are the marginal probabilities of the sub sets of variables Xc and

Xs associated respectively with the 4-clique c and the triangular separator s.

Equation (5.1) reduces the p-dimensional problem of estimating the joint proba-

bility distribution function Q(X) to the estimation of a set of 3- and 4-dimensional local

marginal probabilities Ps(Xs) and Pc(Xc) (Barfuss et al., 2016)3. Such a reduction of

a global high-dimensional problem to a set of local low-dimensional problems helps

greatly in the estimation of the joint probability. The open question is now to measure

how well the, unknown, true joint distribution P(X) is represented by the model esti-

mation Q(X) factorized over the TMFG. To this end we can measure the dissimilarity

between the two probability density functions which is given by the Kullback-Leibler

divergence (Kullback and Leibler, 1951):

DKL(P ‖ Q) = ∑
X

P(X) log
(

P(X)

Q(X)

)
; (5.2)

By substituting Eq.5.1 into Eq.5.2 we write the Kullback-Leibler divergence as

follows:

DKL(P ‖ Q) = ∑
X

P(X) log(P(X)) (5.3)

− ∑
c∈C

∑
Xc

Pc(Xc) log(Pc(Xc))

+ ∑
s∈S

∑
Xs

Ps(Xs) log(Ps(Xs)) .

From a information theoretic perspective the first term in Eq.5.3 (with a minus sign),

H =−∑
X

P(X) log(P(X)) , (5.4)

3However, note that equation 5.1 is completely general and can accommodate any structure of cliques
and separators as long as they represent a clique forest. The problem of finding the best trade off between
the goodness of fit and the size of the cliques is rather subtle, and it is discussed in greater detail in chapter
6 in the context of the problem of covariance selection.

5.1. Modeling with TMFG: information theoretic perspective 126

quantifies the total amount of uncertainty in the system, measuring the number of bytes

(if base-2 logarithms are used) necessary to define a state. The other two remaining

terms in Eq.5.3:

Hm =− ∑
c∈C

∑
Xc

Pc(Xc) log(Pc(Xc))+ ∑
s∈S

∑
Xs

Ps(Xs) log(Ps(Xs)) (5.5)

also quantify an uncertainty, but in this case, associated with the model of the sys-

tem. In other words, by adopting the TMFG structure of interactions, Hm measures the

number of bytes necessary to define the state of the system when we consider only the

dependencies among variables associated with edges in the TMFG.

An algorithm to construct the TMFG with the aim of minimizing DKL(P ‖ Q)

can be implemented by choosing at every stage the move that minimally increases Hm

consistently with all other constraints.

v1

v2 v3

v

Figure 5.1: Illustration of Equation 5.3, here t = v1,v2,v3, the new vertex is v and u =
v1,v2,v3,v.

In particular, considering the TMFG construction via T2 moves (as in Figure 5.1, the

contribution to DKL(P ‖ Q) from the insertion of a vertex v added inside an existing

triangular face t generating a 4-clique u = t ∪ v is:

S(v, t) = ∑
Xu

Pu(Xu) log(Pu(Xu))−∑
Xt

Pt(Xt) log(Pt(Xt)) . (5.6)

From an information theoretic perspective −S is the amount of uncertainty introduced

in the model by including a variable v, the TMFG structure should be constructed in a

way to minimize such uncertainty. (Barfuss et al., 2016) discusses in detail the case for

normal multivariate distributions.

5.2. Financial Applications of the TMFG 127

Note that, in practice, to compute Eq.5.3 one must substitute the – unknown –

marginal distributions of the real probability Pc(Xc) and Pe(Xs) with the correspond-

ing empirical estimators P̂c(Xc) and P̂c(Xs) and the equality in Eq.5.3 would therefore

become an approximate estimate. This is consistent with our approach as far as the

empirical estimators are the MLE estimate of the real marginal distributions of cliques

and separators.

It is a known fact that GMRFs are completely defined by the mean and by the

inverse covariance matrix (Rue and Held, 2005). Following the theory of decomposable

graphical models it is possible to show that the inverse covariance matrix of a clique

forest can be estimated as4:

J = ∑
c∈C

[
(Σc)

−1
]V
− ∑

s∈S

[
(Σs)

−1
]V

(5.7)

The same equation is discussed in section 6.2.1 in the context of general clique forests.

We have, therefore, an easy way to estimate a sparse precision matrix given the struc-

ture of the clique forest. The estimation of the matrix allows to develop a number of

applications in financial risk management. We note how the estimation of the inverse

(Equation 5.8) can be performed by assembling the local clique estimates of the inverse

matrix.

J = ∑
c∈C

[
J̃c
]V − ∑

s∈S

[
J̃s
]V (5.8)

5.2 Financial Applications of the TMFG

5.2.1 Financial applications: Stress Testing

A typical stress test for financial institutions, required by regulatory bodies, consists

in forecasting the effect of severe financial and economic shocks on the balance sheet

of a financial institution. In this context let us reformulate the previous results by

considering X1 the set of economic and financial variables that can be shocked and

X2 the set of the securities held in an institution’s portfolio. Assuming that all the

changes in the economic and financial variables and in the assets of the portfolio can

be modelled as a GMRF, the distribution of the returns of the portfolio (X2) conditional

4 See Lauritzen (1996, Prop. 5.9), Barfuss et al. (2016) or section 6.2.1.

5.2. Financial Applications of the TMFG 128

on the realization of the economic and financial shocks (X1) can be written as5:

J2,2µ2|1 =−J2,1X1 , (5.9)

Where the conditional expectation values µ2|1 can be calculated from the con-

ditional joint distribution function, which, from the Bayes theorem, is f (X2|X1) =

f (X2,X1)/ f (X1).

An approach along similar lines was proposed in Rebonato (2010a); Rebonato

and Denev (2014); Denev (2015). We note that with the LoGo approach we have

a sparse relationship between the financial variables and the securities. This makes

calibration more robust and it can be insightful to identify mechanisms of impact and

vulnerabilities.

5.2.2 Risk Allocation

A second application is the calculation of conditional statistics in the presence of linear

constraints (see Rue and Held (2005)). In this case we indicate with X a set of p

random variables associated with the returns in a portfolio of p assets and with J the

associated sparse inverse covariance matrix. Let w ∈ Rp×1 be the vector of holdings

of the portfolio, then wT ·X is the return of the portfolio. An important question in

portfolio management is to allocate profits and losses to different assets conditional on

a given level of profit or loss, which is equivalent to knowing the distribution of returns

conditional on a given level of loss X|wT ·X = L. More generally we want to estimate

X|A ·X = z where A ∈ Rk×p is generally a low rank k (k = 1 in our example) matrix

that specifies k hard linear constraints. Using the Lagrange Multipliers method (see

Strang (1986) for an introduction) the conditional mean is calculated as (Rue and Held,

2005):

E(X|A ·X = z) = AJ−1
(

AJ−1AT
)−1

z (5.10)

and the conditional covariance is:

Cov(X|A ·X = z) = J−1−J−1AT
(

AJ−1AT
)−1

AJ−1 . (5.11)

5This is a standard result on multivariate normal distributions, for a proof see e.g. Lauritzen (1996,
Prop. C.5)

5.3. Financial Applications of the MFCF 129

In case J is estimated using decomposable Information Filtering Networks (MST

or TMFG) then it can be written as a sum of smaller matrices involving cliques and

separators:

J = ∑
C∈Cliques

JC − ∑
S∈Separators

JS (5.12)

This decomposition allows for a sparse and potentially parallel evaluation of the matrix

products in Eqs. 5.10 and 5.11.

This framework can therefore be used to build the Profit/Loss (P/L) distribution of

a portfolio, conditionally on a number of explanatory variables, and to allocate the P/L

to the different assets conditional on the realization of a given level of profit and loss.

The solution is analytical and therefore extremely quick. Besides, given the decom-

posability of the portfolio, Eq.5.12 allows to calculate important statistics in parallel,

by applying the calculations locally to the cliques and to the separators. For instance,

it is a simple exercise to show that the unconditional expected P/L and the uncondi-

tional volatility can be calculated in parallel by adding the contributions of the cliques

and subtracting the contributions of the separators. In summary LoGo provides the

possibility to build a basic risk management framework that allows risk aggregation,

allocation, stress testing and scenario analysis in a multivariate Gaussian framework in

a quick and potentially parallel fashion.

5.3 Financial Applications of the MFCF

One of the problems that affect LoGo, and indeed one of the main motivations for

the development of the MFCF, is that the dimension of the cliques is fixed and this

means that, while the performance is overall satisfactory, there are edges included in

the network that are not necessarily significant and, conversely, some significant edges

cannot be included in the network due to the constraint on the size of cliques. This issue

is more acute when the analysis must be performed on time series that have mixed

frequencies, as this affects the statistical significance of the regression or correlation

coefficients. On the other hand is a common feature of all regression packages to

provide the number of significant coefficients in a given regression. In the next section

we show how it is possible to combine time series with mixed frequencies, or different

5.3. Financial Applications of the MFCF 130

time spans, in a coherent framework using the MFCF and a particular choice of gain

function. This section is, in our view, of great practical importance because it fits

exactly with the requirements for stress testing in virtually all financial institutions.

5.3.1 Learning with Mixed Frequency Time Series

Quantitative Financial Risk Management requires to analyse the dependency between

time series of financial assets, such as the returns of stocks and commodities prices,

interest rates, credit spreads and macroeconomic time series such as Gross Domestic

Product (GDP), unemployment, inflation. The applications are numerous, for instance

credit modelling, stress testing, forecast, correlation modelling and many more. One

issue of these types of series is that they are characterised by different frequencies,

varying from daily to quarterly6.

The practitioner that need to build a correlation matrix of mixed time series usu-

ally resorts to two strategies: 1. Build a correlation matrix using the data points for

which all the observations are available, or 2. assemble a correlation matrix from all

the pairwise correlations calculated using the data points available for the pairs of time

series. In the first case there will be loss of accuracy and the correlation matrix might

not be positive definite7. In the second case the correlation matrix will include correla-

tion coefficients with different level of noise and significance level, and this will make

dubious any attempt of filtering the network using the correlation matrix; besides, there

is no guarantee that the matrix filtered in this way is positive definite.

Moreover, in many cases, and especially when regressing macroeconomic vari-

ables, there is a need to apply a lag to one or more of the regressors in order to build or

test a model where some macroeconomic indicators are leading or lagging. To build a

correlation matrix taking into account lagging as well would be prohibitive because it

would mean to add a new variable for every lag applied to a time series, so that every

variable would in effect become a block of lagged variables. The researcher or practi-

tioner would then need to perform their analysis bearing in mind that some correlations

are in reality autocorrelations between lagged versions of the same variable and any

filtering procedure should have to similarly work across the blocks.

In section 3.3.3.6 we have described a gain function that expresses the effective-

6We do not enter into the field of high frequency data for lack of personal knowledge
7In case the common observations are so few that they are less tahn the number of variables.

5.3. Financial Applications of the MFCF 131

ness of the regression of a variable against a set of other variables in a clique. The

gain function utilises concepts that are fairly common in regression and it is easy to

generalise, but for the sake of simplicity we will limit ourselves to the linear case.

In multiple linear regression the variation of a dependent variable is expressed in

terms of the variation of a number of explanatory, or independent, variables. The total

variance in the dependent variable explained by the independent variables is the R2 of

the regression. The higher the R2, the better the predictive value of the linear model.

Obviously, there is a risk of overfitting the data if too many independent variables are

used. The classical solution to this problem is to keep only the independent variables

whose coefficient in the linear combination modelling the dependent variable is signif-

icantly different from zero. This classical setting gives us an almost direct method to

build a gain function: the R2 of the regression is the gain, and the independent vari-

ables that have significant coefficients are the separator returned by the gain function,

so that the new clique is made of the dependent variable and the significant independent

variables.

The regression should be performed on transformed variables, for instance differ-

entiated or log-differentiated to make them stationary. The gain function should extract

therefore the complete observations in the clique and the new candidate vertex and per-

form the differentiation or the calculation of returns ahead of the linear regression. It

is worth noting that in this way one raw time series could be used as a series of daily

returns in one clique, and as a series of monthly returns in a different clique, depend-

ing on set of dependent and independent variables present in the clique. Finally the

gain function can perform the lagging of the independent variables. Due to the local

nature of the MFCF, each regression can have different frequencies and lags. Finally,

because the cliques are of limited size compared to the number of data points used, the

regression coefficients would be well determined and significant.

Should the researcher be interested purely in the shape of the network, there would

be no explicit need to store the lags, frequency and direction8 of the regressions; but if

the researcher wanted to simulate the evolution of the system it would be necessary to

take into account frequency, lags, and direction of the regression. Because the MFCF

8By “direction” we allude to the fact that the flow of information goes from the independent to the
dependent variable.

5.3. Financial Applications of the MFCF 132

produces a DAG, the evolution should always be well-behaved.

Chapter 6

Application to the Covariance

Selection Problem

Covariance selection is the problem of estimating a covariance matrix with a sparse

structure. In multivariate normal populations this means that the inverse of the covari-

ance matrix should be sparse. The benefits of a sparse covariance matrix are the same

as those found in any sparse model: less sensitivity to noise, simpler explanation and

analysis of the dependence relationships, computational benefits. While the applica-

tions are various (e.g. bioinformatics, speech processing, computer vision) the main

motive of interest for us is in finance and portfolio management, where a robust esti-

mation of correlation can prevent a portfolio manager from committing costly mistakes

in asset allocation (Engle and Colacito, 2012).

In this chapter we briefly introduce the problem of covariance selection in Section

6.1 and, after a brief introduction to the Graphical Lasso (GLASSO) approach (Section

6.1.2), we frame the problem in the MFCF framework and describe in detail the con-

struction of the estimators, including a shrinkage target based on the chordal structure

of the clique tree (Section 6.2). In Section 6.3 we describe the testing methodology and

in Section 6.4 we compare the performances of the various algorithms.

6.1 Covariance Selection
The study of the problem of covariance selection has been initiated in his seminal pa-

per by Dempster (1972). In the paper the author emphasises the principle of parsimony,

where the possibility to set to zero the number of parameters in a statistical model is

see as beneficial in terms of simplicity and reduction of estimation error due to noise.

6.1. Covariance Selection 134

The author tackles the problem of estimating of the covariance structure of a set of data

generated by a multivariate normal process by suggesting to set to zero the elements

of the inverse of the covariance matrix (which he calls concentration matrix) instead

of the elements of the covariance matrix itself. In the paper the theoretical motivation

for setting the elements of the concentration matrix, rather than the covariance matrix,

to zero comes from the analysis of the multivariate normal distribution as a member of

the exponential family, where the elements of the concentration matrix feature as the

natural parameters of the distribution. In this setting, therefore, setting the elements of

the concentration matrix to zero is the same as reducing the number of parameters of

the multivariate normal model. Within the framework of Gaussian graphical models,

we have seen that setting elements of the concentration matrix to zero (as shown in

Example 1) is equivalent to state the conditional independence of the pair of variables

associated with the matrix element. The set I of indices where the concentration coeffi-

cients should be zero can be decided a priori, considering the nature of the problem, or

estimated from the sample. Taking I as a given, and calling N the complementary list

of indices where the concentration coefficients are not zero1, Dempster (1972) defines

a solution to the covariance selection problem as the matrix that assumes the same val-

ues in the direct matriix as the sample correlation matrix (that is, on N), and such that

the the elements of the concentration matrix are zero in I; in other words the elements

of the proposed solution in N are the same as the sample, while the values in I are

adjusted in a way to make the corresponding elements of the inverse equal to zero. It is

then proved that the proposed solution has three desirable properties:

1. The solution to this problem exists and it is unique.

2. Among all normal models that agree with the sample covariance matrix in N

and that can assume any value in I, the proposed solution is the one with the

maximum entropy.

3. Among all the normal models that have the elements of the concentration matrix

equal to zero in I, the proposed solution is the one with the maximum likelihood.

1The paper by Dempster and a large part of the literature calls J what we have called N, that is the
list of indices where the concentration matrix is not zero. We have chosen to deviate from convention in
order not to confuse the reader, as we use the symbol J to indicate the concentration matrix.

6.1. Covariance Selection 135

If the set N is not chosen a priori, two options are to start with a minimal model

assuming complete independence (where the inverse of the covariance matrix has only

diagonal elements) and add off-diagonal elements as long as they are significant (for-

ward selection, used by the MFCF), or start with a saturated model and force the off-

diagonal elements to zero (backward selection, used by the Graphical Lasso).

We observe, however, that if the underlying pattern is non-chordal, most uses in

actual applications (such as QR-factorisation, Gaussian elimination, to name a few)

would result in significant fill-in. If the pattern is instead chordal and operations are

carried out respecting the PEO, no fill-in is introduced.

6.1.1 Penalised Likelihood Maximisation

The log likelihood of a multivariate normal model is:

`(X = x̂) = p ln(2π)+ ln |J|−Tr(Σ · J)' ln |Jc|−Tr(Σ · J) (6.1)

A way to find a trade-off between high likelihood and limited number of parame-

ters would be to optimise a penalised likelihood that could be (removing the constant

term in the likelihood):

`(X = x̂)ρ = ln |J|−Tr(Σ · J)−ρCard(J) (6.2)

where Card(J) is the number of non-zero elements in the concentration matrix

J. Using ρ = 2
p+1 yields the Akaike Information Criterion (AIC) (Akaike, 1973),

while ρ = ln(p+1)
p+1 would give the Bayesian Information Criterion (BIC) (Schwarz et al.,

1978).

6.1.2 Graphical Lasso

The optimisation of the quantity in Equation 6.2 is difficult because the function is not

convex and not amenable to standard optimization procedures. The MFCF, however,

tries to find a solution by limiting the maximum dimension of the cliques and tries to

solve the problem in equation 6.2 directly. A different approach is to apply a convex

relation to the problem and optimise instead the quantity:

˜̀(X = x̂)ρ = ln |J|−Tr(Σ · J)−λ ‖ J ‖1 (6.3)

6.2. The MFCF approach to to covariance selection 136

where ‖ J ‖1 is the L1 norm of the vector of parameters of the model, that is the sum

of the absolute values of the parameters. It is a well known fact that the use of the

L1 norm drives some coefficients to zero (see for instance Hastie et al. (2015)), while

other norms (such as L2) just shrink the coefficients without necessarily driving them

towards zero. This line of research has been initiated by the seminal work (Tikhonov,

1943) on regularisation.

The Graphical Lasso method (Friedman et al., 2008; Hastie et al., 2015) is a nu-

merical procedure to find the matrix Θ̂ that solves optimization problem:

Θ̂ ∈ argmax
Θ�0

{ln |Θ|−Tr(ΣΘ)−λ0 ‖ J ‖1} (6.4)

where Θ� 0 means that we restrict Θ to the set of positive definite matrices.

Remark 72. The Graphical Lasso finds a solution to the problem 6.4 for a given value

λ0 of the penalisation parameter λ . The choice of the appropriate value for λ is difficult

and it is usually set by cross-validation. The problem is a classic convex relaxation such

as those often found in other Lasso regressions, see Hastie et al. (2015, Par. 9.3.2) for

a description of the algorithm.

6.2 The MFCF approach to to covariance selection
In our proposed approach we build a clique forest using the MFCF algorithm and we

use two distinct gain functions. Since the Graphical Lasso optimises a penalised version

of Gaussian log-likelihood, we have used two score functions based on multivariate

Gaussian log-likelihood, so that the results are effectively comparable:

• Multivariate Gaussian log-likelihood, described in Section 3.3.3.3. In this case

the limitation of the number of coefficients is achieved by fixing the size of the

cliques to a given constant value. The clique size is a hyper-parameters we have

to fit. As with the GLASSO, this parameter can be estimated by cross-validation.

• Gaussian log-likelihood statistically validated, described in Section 3.3.3.4,where

we allow cliques of any size up to a maximum value. In this case the number of

parameters of the model is bound by two factors: the maximum allowed clique

size, and the significance level of the statistical test. As the clique size it is now

6.2. The MFCF approach to to covariance selection 137

only an upper bound, it is convenient to choose a relatively high clique size and

let the statistical test drive the selection of significant parameters.

It is important to note that the GLASSO optimisation has two effects, that cannot

be put in isolation: on the one hand it learns the structure of the concentration matrix by

putting some model parameters to zero, on the other hand it also shrinks towards zero

the remaining parameters, because the penalty is on the L1 norm. The MFCF, instead,

allows to separate the structure learning phase, where some parameters are set to zero,

to the parameters tuning phase, where the remaining parameters are tuned. Therefore,

with the MFCF, we have split the calibration of the model in a structure learning phase

and a parameter tuning phase. The tuning of the parameters has been achieved by

applying a shrinking procedure to the maximum likelihood estimate obtained from the

training data, using two different targets as described in Section 6.2.2 below.

6.2.1 Construction of the precision matrix in the multivariate

Gaussian case

In the Gaussian case, once the clique forest structure is known the maximum likelihood

estimate of the precision matrix is given in explicit form (see Lauritzen (1996, Prop.

5.9) or Barfuss et al. (2016)):

J = ∑
c∈C

[
(Σc)

−1
]V
− ∑

s∈S

[
(Σs)

−1
]V

(6.5)

where the notation [Mc]
V in Equation 6.5 means a matrix of dimension p = |V | where

all the elements are zero, excepting for the ones with the indices in the clique c; that is

[Mc]
V
i j = Mi j if i ∈ c and j ∈ c, [Mc]

V
i j = 0 otherwise.

6.2.2 Shrinkage procedures

In all the experiments we have applied some shrinkage2 to the maximum likelihood es-

timate obtained from the training data set. The shrinkage parameter has been calibrated

by performing a grid search and optimising the likelihood over the validation data set.

We have used two shrinkage targets: the commonly used identity matrix (Ledoit and

Wolf, 2003, Sec. 3.3), and a new shrinkage target we call “the clique tree target”. The

2We refer the reader to Ledoit and Wolf (2003) for a useful introduction to shrinkage in the context
of financial portolfio management.

6.3. Testing Methodology 138

clique tree target is a generalisation of the constant correlation target (Ledoit and Wolf,

2004). In the constant correlation target the target matrix is a matrix where the off-

diagonal elements are equal to the mean of the correlation coefficients, and the shrink-

age estimator is a convex combination of the original, un-shrunk, matrix and of the

constant correlation target. The “clique tree target” is created gluing together smaller

correlation target matrices that represent the cliques of a clique tree. Every correlation

coefficient is naturally associated with an edge in the network and its target value is the

average of the correlation coefficients of the cliques the edge belongs to.

The matrix is built in three steps, starting from the calculation of the average cor-

relation between elements in every clique c in the clique tree.

6.2.2.1 Step 1

ρ̂c =
∑i∈c, j∈c, j>i(Σc)i j

∑i∈c, j∈c, j>i 1
(6.6)

6.2.2.2 Step 2

Next we build a clique level correlation matrix for every clique c using the following

rules:

• If i ∈ c, j ∈ c, i = j then (ˆ̂
Σc)i j = 1

• If i ∈ c, j ∈ c, i 6= j then (ˆ̂
Σc)i j =

∑c′∈C ,i∈c′, j∈c′ ρ̂c′

∑c′∈C ,i∈c′, j∈c′ 1
, that is we calculate the target

correlation as the mean of the average correlations of all the cliques the element

belongs to.

6.2.2.3 Step 3

And finally we build the estimate for the inverse applying the “Lauritzen formula” (6.5)

Ĵ = ∑
c∈C

[(
(1−θ)Σ̂c +θ

ˆ̂
Σc

)−1
]V

− ∑
s∈S

[(
(1−θ)Σ̂s +θ

ˆ̂
Σs

)−1
]V

(6.7)

Remark 73. The constant correlation estimates ˆ̂
Σ are positive definite because every

ˆ̂
Σc (

ˆ̂
Σs) is the normalized sum of positive definite matrices.

6.3 Testing Methodology
We now report the result of the computational experiments where we have compared

the performances of the MFCF, the GLASSO, and a shrinkage estimator on a range of

6.3. Testing Methodology 139

data sets. The general approach is to use a training dataset to estimate the structure of

the models, to tune the model hyperparameters 3 on a validation data set and finally to

assess the performance of the models on a test dataset.

The process used to generate the synthetic data used in the tests is described in

Section 6.3.1. The treatment of real data is described in Section 6.3.2. The full spec-

ification of the algorithms used in the test is reported in Section 6.3.3. Finally, we

describe the performance measures in Section 6.3.4.

6.3.1 Generation of Synthetic Data

We test the performance of the algorithm on three types of synthetic data and on

a real dataset of stocks returns. The synthetic data are multivariate Gaussian gen-

erated using respectively: (1) a sparse chordal inverse matrix with known sparsity

pattern; (2) a factor model; (3) a random positive definite matrix generated from

random eigenvalues and a random rotation. The real example is generated from a

long-return series of stock prices. All the datasets used in the experiments have

been produced for 100 variables (p = 100) and varying time series lengths (n ∈

{25,50,75,100,200,300,400,500,750,1000,1500}). The details about the data gen-

eration process are described in the sub-Sections 6.3.1.1, 6.3.1.2, 6.3.1.3 and 6.3.2.

For every type of data we generate the following datasets:

1. The train data set which is used to learn the model parameters, such as the MFCF

network and the elements of the precision matrix. For every type of data we

generate 5 distinct training data sets to test reproducibility.

2. The validation data set is used to select the model hyper-parameters: these are

the L1 penalty for the graphical lasso, the shrinkage parameter for the shrinkage

method, and the maximum clique size and shrinkage parameter for the MFCF.

For all methods we perform a grid search over the hyper-parameters and select

the model that achieves the best likelihood on the validation dataset. In analogy

with the train data we generate 5 distinct validation data sets.

3. The test data set is used to assess the performance of the models. We use 10

distinct test datasets for every training/validation data set and therefore for every

3that is, the λ parameter of the GLASSO and the shrinkage parameters of the other models

6.3. Testing Methodology 140

data type we have 50 test datasets.

6.3.1.1 Synthetic data: sparse decomposable precision matrix

This data has been produced with a multivariate model from a sparse inverse covariance

matrix (the benchmark precision matrix) where the non-zero structure pattern is a clique

forest. The clique forest was generated by applying repeatedly the clique expansion

operator with a random choice of the vertices, cliques and separators that were available

at any steps (this is an application of the gain function described in Section 3.3.3.5).

For every clique c ∈ C we have defined a factor Fc distributed as N (1,1) and for

every Xi, i ∈ c we have defined Xi = Fc + εi,c, where εi,c ∼N (0,0.1) is a small noise

factor to avoid perfect correlation between the variables in the clique c. Finally for a

variable Xi that belongs to more than one clique we define Xi = ∑i∈c Fc +εi,c. The final

inverse correlation matrix is assembled using Equation 6.5.

The exact inverse of the precision matrix has been used to generate the training,

validation and test data sets, using the function mvrnorm of the package MASS (Ven-

ables and Ripley, 2002) developed for the R language (R Core Team, 2016).

6.3.1.2 Synthetic data: Full Positive Definite Matrix from package

“clusterGeneration”

This data has been generated using the R package “clusterGeneration” (Qiu and Joe.

(2015)). The methodology is to produce a vector of random eigenvalues (p = 100 val-

ues in the range [0.01,100] in this experiment) and to rotate the diagonal matrix of

eigenvalues with a random orthogonal matrix to produce a dense positive definite ma-

trix that is used as the benchmark reference covariance. As in the previous example the

generation of the data sets has been carried out using the package ‘MASS’ as described

in 6.3.1.1.

6.3.1.3 Random Factor Model with noise

This data set has been generated by building a factor model with 5 factors. For a review

of factor models, with particular regards to large factor models see Bai et al. (2008);

here we follow their conventions and model the variables X as X = ΛF+ ε where: F

is an f × n matrix, with f < p the number of factors, Λ is the p× f matrix of factor

loadings and ε is the p×n idiosyncratic term.

6.3. Testing Methodology 141

Accordingly the correlation matrix breaks down in two parts: Σ = ΛΛ′+Ω, where

ΛΛ′ is the systematic component and Ω is the idiosyncratic component .

The training, validation and test matrices have been generated using f = 5. The

factor loadings have been randomly generated from independent normal distribution

and the factors have been generated as independent normal variates. As the factor

loadings are in general different from zero, this model is dense.

6.3.2 Usage and Treatment of Real Data

This data set contains a set of stock returns for 342 companies over 4025 trading days,

as described in Barfuss et al. (2016). For every training, validation and test execution

we have sampled randomly without replacement p = 100 time series. The training,

validation and testing datasets have been sampled, with replacement, from the total

time series of 4025 trading days.

The estimate of the ’real’ reference covariance matrix has been produced using the

full dataset, and this has been used as a benchmark for the estimates produced by the

models.

6.3.3 Algorithms used in the Testing

We have generated sparse inverse covariance estimates with different implementations

of the MFCF algorithm and compared their performances with the GLASSO and

shrinkage estimators, the real benchmark and the null hypothesis. The description of

the methodology to generate the estimates for all algorithms is below.

1. GLASSO XVAL: the Graphical Lasso (Friedman et al., 2008); we use the im-

plementation provided by the R package huge (Zhao et al., 2015). The penalty

parameter is estimated through cross-validation using an adaptive grid search in

the interval [0.01,1] . The precision matrix is estimated, for a given penalty pa-

rameter, on the training data set; the penalty parameter selected is the one that

produces the estimate with the highest log-likelihood on the validation data set4.

Performances are assessed on the test data sets.

2. SHRINKAGE: a shrinkage estimator with target the identity matrix. We pro-

duce shrunk correlation matrices estimators from the training dataset using a
4The minimum penalty of 0.01 has been used because for smaller values we have encountered con-

vergence problems with some of the test cases.

6.3. Testing Methodology 142

grid search for the shrinkage parameter associated with the highest likelihood

on the validation data set. Performances are assessed on the test data sets. Recall

that this method does not produce sparse precision matrices, and it is therefore

used purely as a benchmark to assess the performance of the remaining models

in terms of likelihood.

3. MFCF FIX: the MFCF algorithm with fixed clique size, the shrinkage target

is the clique tree target described in 6.2.2, and the gain function described in

3.3.3.3. We proceed in two steps: initially the correlation matrix built from the

training set is shrunk by a small parameter ε = 0.05 using the identity matrix as

a target5. Then we produce a set of models with clique sizes between 2 and 20.6

The precision matrix estimates are produced using the training datasets and the

shrinkage procedure described in Section 6.2.2. The shrinkage parameter is the

one that achieves the best likelihood on the validation data set, estimated with a

grid search as we do for the graphical lasso and the shrinkage estimators.

4. MFCF FIX ID: same as MFCF FIX, excepting for the shrinkage target where

we use the identity matrix.

5. MFCF VAR: same as MFCF FIX (in particular using the clique tree target as

a shrinkage target) but with variable clique sizes between 2 and 20 and the gain

function described in 3.3.3.4. The p-value used for the likelihood ratio test (used

in 3.3.3.4) was 0.05.

6. MFCF VAR ID: same as MFCF VAR excepting the shrinkage target, where

we use the identity matrix.

7. REAL OR ML: the benchmark ‘real’ precision matrix. For synthetic data, when

the structure of the correlation matrix is known exactly, we use the exact inverse;

in the case of real data, for which we do not know the real correlation matrix,

we use the inverse of the sample correlation matrix computed on the entire time

series.
5This step is performed to stabilise numerically the algorithm; otherwise the matrices for some small

cliques might be near singular numerically and lead to problems in the calculation of the gains. The
parameter 0.05 has not been tuned but just used as a reasonably small number.

6Larger values would lead to essentially dense models.

6.3. Testing Methodology 143

8. NULL hypothesis: the identity matrix as the inverse precision matrix.

6.3.4 Performances indicators

For every test set we collect the following performance indicators: 7

1. Log likelihood, which is −1
2 p
(
− log |J|+Tr

(
Σ̂ · J

))
(consistently with the def-

inition of the objective function used in the R package glasso we omit the con-

stant). Please note that J is the precision matrix estimated using the training

dataset, while Σ̂ is the sample correlation estimated on the test dataset.

2. Accuracy = T P+T N
T P+T N+FP+FN , which is the fraction of entries in the precision ma-

trix J that are correctly predicted as zero or non-zero.

3. Sensitivity = T P
T P+FN , which is the fraction of non-zero entries in the precision

matrix J that are correctly predicted by the models.

4. Speci f icicty = T N
T N+FP , which is the fraction of zero entries in the precision ma-

trix J that are correctly predicted by the model.

5. The correlation of the estimated precision matrix with the true precision matrix

(which is known in the case of synthetic data) or with the maximum likelihood

estimate of the precision matrix computed on the longest possible data set (in

the case of real data). The correlation is calculated as if the two matrices were

vectors in Rp2
.

6. Eigenvalue distance is the R2 norm of the vector of differences of the eigenvalues

of the real or maximum-likelihood estimate precision matrix and the estimated

precision matrix
(

∑
p
i=1(λ̂i−λi)

2
) 1

2 .

7. Eigenvalue inverse distance is the R2 norm of the the vector of differences of the

reciprocal of the eigenvalues of the real or maximum-likelihood estimate preci-

sion matrix and the estimated precision matrix
(

∑
p
i=1(λ̂

−1
i −λ

−1
i)2

) 1
2 .

7We define: TP (True Positives) as the count of elements in the precision matrix that are correctly
predicted as different from zero, TN (True Negatives) as the count of elements in the precision matrix that
are correctly predicted as zero, and FP (False Positives) and FN (False Negatives) in analogous fashion.
This is possible only when the ‘true’ precision matrix is known (synthetic data) and these measures are
meaningful only when it is sparse.

6.4. Results 144

6.4 Results

6.4.1 Synthetic data: sparse decomposable precision matrix

Figure 6.1 provides a box plot representing the mean the confidence interval and the

extreme values of the log-likelihood achieved by the algorithms over the test data sets,

broken down by the length of the series8. We observe that, in all cases, the MFCF algo-

rithms outperform both the graphical lasso and the shrinkage estimator. The graphical

lasso improves performances as the length increases but does not exceeds MFCFs. The

dispersion around the mean is similar for all methods and it has been computed by re-

peating the experiments on 50 independent datasets (10 testing sets for each 5 training

and validating sets, as discussed in 6.3.1).

Table 6.1 reports the average value of the graphical lasso penalty parameter and

of the shrinkage parameter as selected by the grid search. As expected, the parameters

become smaller as the series length grows, with MFCFs requiring less shrinkage/pe-

nalisation than the other methodologies9, especially with short time series. We believe

that this is a desirable feature of the MFCF algorithm: the topological constraint al-

lows to estimate with good accuracy the cliques with high likelihood, and excludes

edges with low likelihood with the end effect of requiring less shrinking.

Table 6.2 reports the number of non zero elements in the precision matrix for every

length of the time series. One can observe that the MFCF algorithms are much more

parsimonious than the graphical lasso (the shrinkage method produces always a full

precision matrix).

Figure 6.2 shows a summary of the performance measures. We observe that that

the MFCF family is overall more accurate than the graphical lasso especially for what

concerns accuracy and specificity. While the graphical lasso is more sensitive picking

up more true positives. However, it is also less selective and produces denser precision

matrices with a much higher number of false negatives. We observe that the perfor-

8The boxplots in this paper have been produced with the R (R Core Team, 2016) package GGPLOT2
(Wickham, 2009). According to the package documentation the first lower and upper hinges correspond
to the first and third quantile, the upper whisker covers the values form the third quartile hinge to 1.5
times the inter-quartile range away from the hinge, and similarly the lower whisker covers the values
between the first quartile hinge and 1.5 times the interquartile range below the hinge. The remaining
points are considered outliers and plotted individually.

9The comparison of penalty and shrinkage parameter is purely indicative, as the two parameters are
not directly comparable.

6.4. Results 145

Series
length

GLASSO
XVAL

MFCF
FIX

MFCF
FIX ID

MFCF
VAR

MFCF
VAR ID

SHRINKAGE

25 0.150 0.005 0.005 0.005 0.005 0.726
50 0.120 0.002 0.002 0.002 0.001 0.522
75 0.102 0.002 0.001 0.002 0.001 0.374

100 0.056 0.001 0.001 0.001 0.001 0.257
200 0.014 0.001 0.001 0.001 0.001 0.074
300 0.011 0.001 0.000 0.001 0.000 0.022
400 0.010 0.000 0.000 0.000 0.000 0.020
500 0.010 0.000 0.000 0.000 0.000 0.004
750 0.010 0.000 0.000 0.000 0.000 0.000

1000 0.010 0.000 0.000 0.000 0.000 0.000
1500 0.010 0.000 0.000 0.000 0.000 0.000

Table 6.1: Mean penalty (GLASSO XVAL) or shrinkage parameters by length of time series.
The statistics is based on 5 different calibrations (one per each training / validation
set) of the shrinkage parameters per each length of the time series.

Series
length

GLASSO
XVAL

MFCF
FIX

MFCF
FIX ID

MFCF
VAR

MFCF
VAR ID

SHRINKAGE

25 1194 99 99 98 98 4950
50 1118 99 99 135 135 4950
75 1161 138 138 136 136 4950

100 1730 158 158 191 191 4950
200 2586 216 216 195 176 4950
300 2632 216 216 231 231 4950
400 2549 216 216 231 231 4950
500 2451 216 236 213 231 4950
750 2254 255 255 246 246 4950

1000 2108 255 255 244 244 4950
1500 1867 294 294 281 281 4950

Table 6.2: Mean number of non-zero coefficient in the precision matrix by length of time series.
The statistics is based on 5 different calibrations (one per each training / validation
set) per each length of the time series.

mance of the graphical lasso improves in all measures for time series of length greater

than 200, when the penalty parameter is essentially fixed at 0.01. The MFCF exhibit

better log-likelihood, as already observed, and also larger correlations with the true

precision matrix.

Figure 6.3 shows the distance between the spectra of the precision matrix pro-

duced by the models and the true precision matrix. The measure is normalised so that

the identity matrix has distance one. We observe that the MFCF algorithms always

perform better and the performance improves for all methods as the time series length

increases, with the exception of the graphical lasso in the region where the penalty

parameter is floored at 0.01.

Figure 6.4 shows the distance between the inverse spectra of the precision matrix

6.4. Results 146

●

●

●

●

●

●

●

●

●

●

n = 750 n = 1000 n = 1500

n = 200 n = 300 n = 400 n = 500

n = 25 n = 50 n = 75 n = 100

G
LA

S
S

O
_X

V
A

L

M
F

C
F

_F
IX

M
F

C
F

_F
IX

_I
D

M
F

C
F

_V
A

R

M
F

C
F

_V
A

R
_I

D

R
E

A
L_

O
R

_M
L

S
H

R
IN

K
A

G
E

G
LA

S
S

O
_X

V
A

L

M
F

C
F

_F
IX

M
F

C
F

_F
IX

_I
D

M
F

C
F

_V
A

R

M
F

C
F

_V
A

R
_I

D

R
E

A
L_

O
R

_M
L

S
H

R
IN

K
A

G
E

G
LA

S
S

O
_X

V
A

L

M
F

C
F

_F
IX

M
F

C
F

_F
IX

_I
D

M
F

C
F

_V
A

R

M
F

C
F

_V
A

R
_I

D

R
E

A
L_

O
R

_M
L

S
H

R
IN

K
A

G
E

G
LA

S
S

O
_X

V
A

L

M
F

C
F

_F
IX

M
F

C
F

_F
IX

_I
D

M
F

C
F

_V
A

R

M
F

C
F

_V
A

R
_I

D

R
E

A
L_

O
R

_M
L

S
H

R
IN

K
A

G
E

−2500

0

2500

−2500

0

2500

−2500

0

2500

Algorithm

Lo
g−

lik
el

ih
oo

d

Algorithm
GLASSO_XVAL

MFCF_FIX

MFCF_FIX_ID

MFCF_VAR

MFCF_VAR_ID

REAL_OR_ML

SHRINKAGE

Figure 6.1: Box plot for the log-likelihood of the algorithms on synthetic data (sparse decom-
posable precision matrix) for different lengths of the series. The statistics is based
on a total of 50 test sets (10 test sets for each of 5 different training / validation
sets).

(λ−1
i) produced by the models and the ones for the true precision matrix. We observe

that the MFCF algorithms perform slightly better than the graphical lasso and shrink-

age but performance is very similar. Interestingly, in this case, the distance decreases

with the time series length for all algorithms and there is no apparent effect due to the

flooring of the graphical lasso penalty parameter.

Figure 6.5 shows the number of cliques of different size produced by the

MFCF VAR algorithm as a function of the maximum allowed clique size and of the

time series length. We note that as the time series length increases the test becomes less

stringent with a higher number of large cliques in the model; conversely, when the time

series is shorter (n < p), the models produced are more parsimonious. The number

6.4. Results 147

● ● ●

●

● ● ● ●
● ●

●

● ● ●

●

● ● ● ●
● ●

●

●

● ●
●

● ● ● ● ● ● ●

●

●
●

●

●
● ● ● ● ● ●

●

●
●

●

● ● ● ● ● ● ●

Correlation

Likelihood

Sensitivity

Specificity

Accuracy

25 50 75 100 200 300 400 500 750 1000 1500

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.4

0.6

0.8

1.0

−4000

−3000

−2000

−1000

0

0.5

0.6

0.7

0.8

0.9

1.0

Series Length

V
al

ue

Algorithm
● GLASSO_XVAL

MFCF_FIX

MFCF_FIX_ID

MFCF_VAR

MFCF_VAR_ID

SHRINKAGE

Figure 6.2: Performance measures of the algorithms on synthetic data (sparse decomposable
precision matrix) for different lengths of the series. The statistics is based on a
total of 50 test sets (10 test sets for each of 5 different training / validation sets).

of cliques of size smaller than the maximum is linked to the degree of sparsity of the

model. We will see in Section 6.4.3 that in the case of systems that are inherently dense

the vast majority of the cliques will have the maximum allowed clique size.

6.4. Results 148

● ● ● ●

●

●

● ● ● ● ●

● ● ●

●

● ● ● ● ● ● ●

● ● ●

●

● ● ● ● ● ● ●

● ● ● ●

●

● ● ● ● ● ●

● ●

●

●

● ● ● ● ● ● ●

4 5

1 2 3

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00 25 50 75 10

0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Series Length

E
ig

en
va

lu
e

di
st

an
ce

Algorithm
● GLASSO_XVAL

MFCF_FIX

MFCF_FIX_ID

MFCF_VAR

MFCF_VAR_ID

SHRINKAGE

Figure 6.3: Eigenvalue distance for synthetic data (sparse decomposable precision matrix). The
five panels show the values at different time series lengths for 5 training / validation
datasets.

6.4. Results 149

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●
●

●

●

●
● ●

● ●

●

●

●
● ●

●

●

●
● ● ●

●

●
●

●

●

●

●

● ●

● ●

4 5

1 2 3

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00 25 50 75 10

0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Series Length

E
ig

en
va

lu
e

in
ve

rs
e

di
st

an
ce

Algorithm
● GLASSO_XVAL

MFCF_FIX

MFCF_FIX_ID

MFCF_VAR

MFCF_VAR_ID

SHRINKAGE

Figure 6.4: Inverse eigenvalue distance for synthetic data (sparse decomposable precision ma-
trix). The five panels show the values at different time series lengths for 5 training
/ validation datasets.

6.4. Results 150

Max. clique size = 17 Max. clique size = 18 Max. clique size = 19 Max. clique size = 20

Max. clique size = 12 Max. clique size = 13 Max. clique size = 14 Max. clique size = 15 Max. clique size = 16

Max. clique size = 7 Max. clique size = 8 Max. clique size = 9 Max. clique size = 10 Max. clique size = 11

Max. clique size = 2 Max. clique size = 3 Max. clique size = 4 Max. clique size = 5 Max. clique size = 6

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00 25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00 25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00 25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

0

100

200

300

400

500

0

100

200

300

400

500

0

100

200

300

400

500

0

100

200

300

400

500

Series Lenght

N
um

be
r

of
 c

liq
ue

s

Clique Size

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Figure 6.5: Composition of cliques for synthetic data (sparse decomposable precision matrix).
The statistics is based on a total of 5 different training / validation sets.

6.4. Results 151

6.4.2 Synthetic data: Full Positive Definite Matrix from package

“clusterGeneration”.

In this sub-section and in the next two we repeat on different datasets all the analy-

ses described in the previous subsection 6.4.1. Figure 6.6 displays the log-likelihood

of the models. We observe that MFCF algorithms perform overall better than either

GLASSO or SHRINKAGE, but is worth noting the overall low level of the log-

likelihood for all models. In particular the GLASSO performs worse than the null

hypothesis (which has log-likelihood of 5000) for short time series. From Table 6.3 we

observe that the penalty or shrinkage parameters decrease but they retain higher overall

values than in the other examples.

Series
length

GLASSO
XVAL

MFCF
FIX

MFCF
FIX ID

MFCF
VAR

MFCF
VAR ID

SHRINKAGE

25 0.33 0.97 0.95 0.99 0.99 0.99
50 0.24 0.97 0.89 0.97 0.91 0.99
75 0.22 0.94 0.88 0.95 0.87 0.95

100 0.17 0.88 0.83 0.90 0.83 0.93
200 0.12 0.85 0.75 0.86 0.77 0.89
300 0.12 0.73 0.64 0.72 0.62 0.86
400 0.12 0.63 0.55 0.63 0.54 0.84
500 0.12 0.56 0.48 0.54 0.46 0.80
750 0.10 0.40 0.36 0.39 0.38 0.76

1000 0.08 0.34 0.31 0.32 0.28 0.71
1500 0.05 0.20 0.18 0.20 0.18 0.62

Table 6.3: Mean penalty/shrinkage parameter by length of time series. The statistics is based
on a total of 5 different training / validation sets per length of the time series.

Table 6.4 shows the number of non zero elements in the precision matrix for every

length of the time series. We note that the statistically validated methods MFCF VAR

and MFCF VAR ID produce consistently sparser models, without significant deterio-

ration on the performance in terms of log-likelihood or correlation.

The measures of performance are reported in Figures 6.7-6.10. IWe note that the

MFCF FIX and MFCF FIX ID are more accurate for short time series as they pick

up many more matrix elements than the validated methods, but this does not translate

in improvements for the other measures of performance. The MFCF methods seem to

perform better than GLASSO and SHRINKAGE also when it comes to distance of

the eigenvalues, especially with short time series. Interestingly, the composition of the

clique structure produced by the MFCF VAR shown in Figure 6.10suggests that even

for medium and long time series the algorithm produces a mostly small or large cliques

6.4. Results 152

Series
length

GLASSO
XVAL

MFCF
FIX

MFCF
FIX ID

MFCF
VAR

MFCF
VAR ID

SHRINKAGE

25 484 1062 1164 234 36 4950
50 459 465 679 250 276 4950
75 343 592 1129 255 353 4950

100 472 555 757 247 308 4950
200 472 351 687 238 301 4950
300 260 352 466 272 382 4950
400 155 331 369 272 343 4950
500 108 294 351 297 364 4950
750 165 370 408 330 428 4950

1000 171 313 427 292 336 4950
1500 922 313 313 282 349 4950

Table 6.4: Mean number of non-zero coefficient in the precision matrix by length of time series.
The statistics is based on a total of 5 different training / validation sets per length of
the time series.

with only a small fraction of cliques with intermediate sizes.

6.4. Results 153

●

●

●
●

●

● ●
●

●
● ● ●

●

●

●

●
●

●

●

●

●
● ● ●

●

●
●

●

●

●
● ●

●

●
●

●

● ● ●

●

●
●

n = 750 n = 1000 n = 1500

n = 200 n = 300 n = 400 n = 500

n = 25 n = 50 n = 75 n = 100

G
LA

S
S

O
_X

V
A

L

M
F

C
F

_F
IX

M
F

C
F

_F
IX

_I
D

M
F

C
F

_V
A

R

M
F

C
F

_V
A

R
_I

D

R
E

A
L_

O
R

_M
L

S
H

R
IN

K
A

G
E

G
LA

S
S

O
_X

V
A

L

M
F

C
F

_F
IX

M
F

C
F

_F
IX

_I
D

M
F

C
F

_V
A

R

M
F

C
F

_V
A

R
_I

D

R
E

A
L_

O
R

_M
L

S
H

R
IN

K
A

G
E

G
LA

S
S

O
_X

V
A

L

M
F

C
F

_F
IX

M
F

C
F

_F
IX

_I
D

M
F

C
F

_V
A

R

M
F

C
F

_V
A

R
_I

D

R
E

A
L_

O
R

_M
L

S
H

R
IN

K
A

G
E

G
LA

S
S

O
_X

V
A

L

M
F

C
F

_F
IX

M
F

C
F

_F
IX

_I
D

M
F

C
F

_V
A

R

M
F

C
F

_V
A

R
_I

D

R
E

A
L_

O
R

_M
L

S
H

R
IN

K
A

G
E

−5200

−5000

−4800

−5200

−5000

−4800

−5200

−5000

−4800

Algorithm

Lo
g−

lik
el

ih
oo

d

Algorithm
GLASSO_XVAL

MFCF_FIX

MFCF_FIX_ID

MFCF_VAR

MFCF_VAR_ID

REAL_OR_ML

SHRINKAGE

Figure 6.6: Box plot for the likelihood of the algorithms on synthetic data (random positive
definite matrix generated by ClusterGen) for different lengths of the series. The
statistics is based on a total of 50 test sets (10 test sets for each of 5 different
training / validation sets) per length of the time series.

6.4. Results 154

● ●

●

● ●

●

●
●

● ●

●

● ●

●

● ●

●

●
●

● ●

●

●

●

●

●

●
● ● ●

●
●

●

●

●
● ●

● ● ● ●
● ●

●

Correlation

Likelihood

Sensitivity

Accuracy

25 50 75 100 200 300 400 500 750 1000 1500

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

−5200

−5100

−5000

−4900

0.70

0.75

0.80

0.85

0.90

Series Length

V
al

ue

Algorithm ● GLASSO_XVAL MFCF_FIX MFCF_FIX_ID MFCF_VAR MFCF_VAR_ID

Figure 6.7: Performance of the algorithms on synthetic data (random positive definite matrix
generated by ClusterGen) for different lengths of the series. The statistics is based
on a total of 50 test sets (10 test sets for each of 5 different training / validation
sets).

6.4. Results 155

●

●

● ●

●

●
●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

●

●

● ●

●

● ●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

● ●

●

●

4 5

1 2 3

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00 25 50 75 10

0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

0.7

0.8

0.9

1.0

0.875

0.900

0.925

0.950

0.975

1.000

0.8

0.9

1.0

1.1

0.6

0.7

0.8

0.9

1.0

0.80

0.85

0.90

0.95

1.00

Series Length

E
ig

en
va

lu
e

di
st

an
ce

Algorithm
● GLASSO_XVAL

MFCF_FIX

MFCF_FIX_ID

MFCF_VAR

MFCF_VAR_ID

SHRINKAGE

Figure 6.8: Eigenvalue distance for synthetic data (random positive definite matrix generated
by ClusterGen). The five panels show the values at different time series lengths for
5 training / validation datasets.

6.4. Results 156

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

4 5

1 2 3

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00 25 50 75 10

0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

0.5

1.0

1.5

0.5

1.0

0.5

1.0

1.5

2.0

0.25

0.50

0.75

1.00

0.5

1.0

1.5

2.0

Series Length

E
ig

en
va

lu
e

in
ve

rs
e

di
st

an
ce

Algorithm
● GLASSO_XVAL

MFCF_FIX

MFCF_FIX_ID

MFCF_VAR

MFCF_VAR_ID

SHRINKAGE

Figure 6.9: Inverse eigenvalue distance for synthetic data (random positive definite matrix gen-
erated by ClusterGen). The five panels show the values at different time series
lengths for 5 training / validation datasets.

6.4. Results 157

Max. clique size = 17 Max. clique size = 18 Max. clique size = 19 Max. clique size = 20

Max. clique size = 12 Max. clique size = 13 Max. clique size = 14 Max. clique size = 15 Max. clique size = 16

Max. clique size = 7 Max. clique size = 8 Max. clique size = 9 Max. clique size = 10 Max. clique size = 11

Max. clique size = 2 Max. clique size = 3 Max. clique size = 4 Max. clique size = 5 Max. clique size = 6

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00 25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00 25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00 25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

0

100

200

300

400

500

0

100

200

300

400

500

0

100

200

300

400

500

0

100

200

300

400

500

Series Lenght

N
um

be
r

of
 c

liq
ue

s

Clique Size

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Figure 6.10: Composition of cliques for synthetic data (random positive definite matrix gen-
erated by ClusterGen). The statistics is based on a total of 5 different training /
validation sets per length of the time series.

6.4. Results 158

6.4.3 Random Factor Model with noise

Performance measures are reported in Figures 6.11-6.15. As discussed in Section 6.3.1,

the loadings to the 5 factors are different from zero for every time series, and therefore

the model is not suitable for local algorithms such as the MFCF; this would probably

explain why in this instance the GLASSO performs better in terms of almost all mea-

sures. Table 6.5 shows that the behaviour of the shrinkage or penalty parameters are

decreasing with series length as expected. Table 6.6 highlights how all the models tend

to use as many parameters as possible, consistently with the constraints imposed on

penalty and clique size. Figure 6.15 supports the idea that the underlying model is non

local, since the validated methods tend to use exclusively the largest cliques allowed by

the constraints. This suggests that the analysis of the clique sizes might provide insight

into the sparsity of the data set, when the data generation process in not known.

Series
length

GLASSO
XVAL

MFCF
FIX

MFCF
FIX ID

MFCF
VAR

MFCF
VAR ID

SHRINKAGE

25 0.12 0.27 0.26 0.25 0.25 0.30
50 0.12 0.19 0.18 0.18 0.18 0.23
75 0.09 0.15 0.14 0.15 0.15 0.20

100 0.06 0.13 0.13 0.12 0.12 0.18
200 0.02 0.08 0.08 0.08 0.08 0.14
300 0.01 0.06 0.06 0.06 0.06 0.11
400 0.01 0.05 0.05 0.05 0.05 0.09
500 0.01 0.04 0.04 0.04 0.04 0.08
750 0.01 0.03 0.03 0.03 0.03 0.06

1000 0.01 0.02 0.02 0.02 0.02 0.04
1500 0.01 0.01 0.01 0.01 0.01 0.04

Table 6.5: Mean penalty/shrinkage parameter by length of time series. The statistics is based
on a total of 5 different training / validation sets per length of the time series.

6.4. Results 159

●
●

●
●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

n = 750 n = 1000 n = 1500

n = 200 n = 300 n = 400 n = 500

n = 25 n = 50 n = 75 n = 100

G
LA

S
S

O
_X

V
A

L

M
F

C
F

_F
IX

M
F

C
F

_F
IX

_I
D

M
F

C
F

_V
A

R

M
F

C
F

_V
A

R
_I

D

R
E

A
L_

O
R

_M
L

S
H

R
IN

K
A

G
E

G
LA

S
S

O
_X

V
A

L

M
F

C
F

_F
IX

M
F

C
F

_F
IX

_I
D

M
F

C
F

_V
A

R

M
F

C
F

_V
A

R
_I

D

R
E

A
L_

O
R

_M
L

S
H

R
IN

K
A

G
E

G
LA

S
S

O
_X

V
A

L

M
F

C
F

_F
IX

M
F

C
F

_F
IX

_I
D

M
F

C
F

_V
A

R

M
F

C
F

_V
A

R
_I

D

R
E

A
L_

O
R

_M
L

S
H

R
IN

K
A

G
E

G
LA

S
S

O
_X

V
A

L

M
F

C
F

_F
IX

M
F

C
F

_F
IX

_I
D

M
F

C
F

_V
A

R

M
F

C
F

_V
A

R
_I

D

R
E

A
L_

O
R

_M
L

S
H

R
IN

K
A

G
E

0

1000

0

1000

0

1000

Algorithm

Lo
g−

lik
el

ih
oo

d

Algorithm
GLASSO_XVAL

MFCF_FIX

MFCF_FIX_ID

MFCF_VAR

MFCF_VAR_ID

REAL_OR_ML

SHRINKAGE

Figure 6.11: Box plot for the likelihood of the algorithms on synthetic data (factor model) for
different lengths of the series. The statistics is based on a total of 50 test sets (10
test sets for each of 5 different training / validation sets) per length of the time
series.

6.4. Results 160

● ● ●

●

●

●
●

● ● ● ●

● ● ●

●

●

●
●

● ● ● ●

● ●

●

●

●

● ● ● ●
● ●

●
● ● ●

●
●

●
●

● ● ●

Correlation

Likelihood

Sensitivity

Accuracy

25 50 75 100 200 300 400 500 750 1000 1500

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0

500

1000

1500

0.85

0.90

0.95

Series Length

V
al

ue

Algorithm
● GLASSO_XVAL

MFCF_FIX

MFCF_FIX_ID

MFCF_VAR

MFCF_VAR_ID

SHRINKAGE

Figure 6.12: Performance of the algorithms on synthetic data (factor model) for different
lengths of the series. The statistics is based on a total of 50 test sets (10 test
sets for each of 5 different training / validation sets) per length of the time series.

6.4. Results 161

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

4 5

1 2 3

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00 25 50 75 10

0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

Series Length

E
ig

en
va

lu
e

di
st

an
ce

Algorithm
● GLASSO_XVAL

MFCF_FIX

MFCF_FIX_ID

MFCF_VAR

MFCF_VAR_ID

SHRINKAGE

Figure 6.13: Eigenvalue distance for synthetic data (factor model). The five panels show the
values at different time series lengths for 5 training / validation datasets.

6.4. Results 162

●

●

●

●

●
● ●

● ● ● ●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●
●

● ●
● ● ● ●

●

●

●

●

● ● ● ●
● ● ●

●

●

●

●

● ● ●
● ● ● ●

4 5

1 2 3

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00 25 50 75 10

0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

0.25

0.30

0.35

0.40

0.45

0.3

0.4

0.5

0.3

0.4

0.5

0.3

0.4

0.5

0.3

0.4

0.5

Series Length

E
ig

en
va

lu
e

in
ve

rs
e

di
st

an
ce

Algorithm
● GLASSO_XVAL

MFCF_FIX

MFCF_FIX_ID

MFCF_VAR

MFCF_VAR_ID

SHRINKAGE

Figure 6.14: Inverse eigenvalue distance for synthetic data (factor model). The five panels
show the values at different time series lengths for 5 training / validation datasets.

6.4. Results 163

Series
length

GLASSO
XVAL

MFCF
FIX

MFCF
FIX ID

MFCF
VAR

MFCF
VAR ID

SHRINKAGE

25 1168 1694 1661 1582 1597 4950
50 1206 1677 1661 1694 1694 4950
75 1308 1661 1661 1678 1678 4950

100 1648 1710 1710 1645 1645 4950
200 2143 1710 1710 1678 1694 4950
300 2426 1710 1694 1694 1694 4950
400 2568 1710 1710 1710 1710 4950
500 2814 1694 1694 1694 1694 4950
750 2760 1694 1694 1694 1694 4950

1000 2755 1710 1710 1678 1678 4950
1500 2761 1694 1694 1710 1710 4950

Table 6.6: Mean number of non-zero coefficient in the precision matrix by length of time series.
The statistics is based on a total of 5 different training / validation sets per length of
the time series.

Max. clique size = 17 Max. clique size = 18 Max. clique size = 19 Max. clique size = 20

Max. clique size = 12 Max. clique size = 13 Max. clique size = 14 Max. clique size = 15 Max. clique size = 16

Max. clique size = 7 Max. clique size = 8 Max. clique size = 9 Max. clique size = 10 Max. clique size = 11

Max. clique size = 2 Max. clique size = 3 Max. clique size = 4 Max. clique size = 5 Max. clique size = 6

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00 25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00 25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00 25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

0

100

200

300

400

500

0

100

200

300

400

500

0

100

200

300

400

500

0

100

200

300

400

500

Series Lenght

N
um

be
r

of
 c

liq
ue

s

Clique Size

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Figure 6.15: Composition of cliques for synthetic data (factor model). The statistics is based
on a total of 5 different training / validation sets per length of the time series.

6.4. Results 164

6.4.4 Real Data

Performance measures are reported in Figures 6.16-6.20. We see from the inspec-

tion these Figures 6.16 and 6.17 that with real data the log-likelihood is compara-

ble across all models, with slight better values for MFCF FIX and MFCF VAR

for shorter time series. It is worth noting that, in the family of the MFCF algo-

rithms, the two that use the clique tree shrinkage target described in Equation 6.7

(MFCF FIX and MFCF VAR) perform significantly better, for short time series, than

the models with the same structure but the simpler identity matrix (MFCF FIX ID and

MFCF VAR ID) as a shrinkage target. Table 6.7 shows that the penalty and shrinkage

parameters decrease, as expected, with the length of the time series. Table 6.8 shows

that from time series lengths above 500 the GLASSO produces matrices with a sig-

nificantly higher number of parameters different from zero, including almost 50% of

the total number of elements. The growth in performance for MFCF family of algo-

rithms is in this case constrained by the maximum clique size. As Figure 6.18 shows

the MFCF algorithms performs better in the approximation of the eigenvalues of the

precision matrix, and slightly worse (Figure 6.19 in the representation of the eigen-

values of the inverse precision matrix. In this experiment, since we don’t know the

“true” correlation matrix we have used the maximum likelihood estimate of the corre-

lation matrix over the full time series. Overall the results for this dataset demonstrate

that MFCF FIX and MFCF VAR are the best performer. The analysis in Figure 6.20

showing the composition of the cliques of different sizes shows that the synthetic model

closest to the real data is the factor model (see 6.4.3). This seems to justify the mod-

elling of portfolios of stocks reacting to a set of external factors.

Figure 6.20 shows that, excepting for the shortest time series, the MFCF VAR

algorithms almost always use the largest allowed clique size.

6.4. Results 165

● ● ● ● ●

●

●

●

●

●

n = 750 n = 1000 n = 1500

n = 200 n = 300 n = 400 n = 500

n = 25 n = 50 n = 75 n = 100

G
LA

S
S

O
_X

V
A

L

M
F

C
F

_F
IX

M
F

C
F

_F
IX

_I
D

M
F

C
F

_V
A

R

M
F

C
F

_V
A

R
_I

D

R
E

A
L_

O
R

_M
L

S
H

R
IN

K
A

G
E

G
LA

S
S

O
_X

V
A

L

M
F

C
F

_F
IX

M
F

C
F

_F
IX

_I
D

M
F

C
F

_V
A

R

M
F

C
F

_V
A

R
_I

D

R
E

A
L_

O
R

_M
L

S
H

R
IN

K
A

G
E

G
LA

S
S

O
_X

V
A

L

M
F

C
F

_F
IX

M
F

C
F

_F
IX

_I
D

M
F

C
F

_V
A

R

M
F

C
F

_V
A

R
_I

D

R
E

A
L_

O
R

_M
L

S
H

R
IN

K
A

G
E

G
LA

S
S

O
_X

V
A

L

M
F

C
F

_F
IX

M
F

C
F

_F
IX

_I
D

M
F

C
F

_V
A

R

M
F

C
F

_V
A

R
_I

D

R
E

A
L_

O
R

_M
L

S
H

R
IN

K
A

G
E

−3000

−2000

−1000

−3000

−2000

−1000

−3000

−2000

−1000

Algorithm

Lo
g−

lik
el

ih
oo

d

Algorithm
GLASSO_XVAL

MFCF_FIX

MFCF_FIX_ID

MFCF_VAR

MFCF_VAR_ID

REAL_OR_ML

SHRINKAGE

Figure 6.16: Log-likelihood of the algorithms on real data (stock returns) for different length
of the series. The statistics is based on a total of 50 test sets (10 test sets for each
of 5 different training / validation sets) per length of the time series.

6.4. Results 166

● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ●
●

●

●

●

●

●

● ● ● ● ●
●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

Correlation

Likelihood

Sensitivity

Accuracy

25 50 75 100 200 300 400 500 750 1000 1500

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

−2800

−2600

−2400

−2200

0.87

0.90

0.93

0.96

Series Length

V
al

ue

Algorithm
● GLASSO_XVAL

MFCF_FIX

MFCF_FIX_ID

MFCF_VAR

MFCF_VAR_ID

SHRINKAGE

Figure 6.17: Performance of the algorithms on real data (stock returns) for different lengths of
the series. The statistics is based on a total of 50 test sets (10 test sets for each of
5 different training / validation sets) per length of the time series.

6.4. Results 167

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

4 5

1 2 3

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00 25 50 75 10

0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

0.2

0.4

0.6

0.4

0.5

0.6

0.7

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.3

0.4

0.5

0.6

Series Length

E
ig

en
va

lu
e

di
st

an
ce

Algorithm
● GLASSO_XVAL

MFCF_FIX

MFCF_FIX_ID

MFCF_VAR

MFCF_VAR_ID

SHRINKAGE

Figure 6.18: Eigenvalue distance for real data (stock returns) for 5 training sets. The five panels
show the values at different time series lengths for 5 training / validation datasets.

6.4. Results 168

●

●

●

●
●

●
●

●

●
● ●

●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

4 5

1 2 3

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00 25 50 75 10

0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

0.1

0.2

0.3

0.4

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.1

0.2

0.3

0.4

Series Length

E
ig

en
va

lu
e

in
ve

rs
e

di
st

an
ce

Algorithm
● GLASSO_XVAL

MFCF_FIX

MFCF_FIX_ID

MFCF_VAR

MFCF_VAR_ID

SHRINKAGE

Figure 6.19: Inverse eigenvalue distance for real data (stock returns) for 5 training sets. The five
panels show the values at different time series lengths for 5 training / validation
datasets.

6.4. Results 169

Series
length

GLASSO
XVAL

MFCF
FIX

MFCF
FIX ID

MFCF
VAR

MFCF
VAR ID

SHRINKAGE

25 0.21 0.81 0.57 0.80 0.54 0.67
50 0.15 0.73 0.47 0.70 0.47 0.63
75 0.12 0.62 0.35 0.61 0.36 0.55

100 0.12 0.56 0.31 0.54 0.33 0.54
200 0.12 0.43 0.26 0.44 0.26 0.44
300 0.10 0.32 0.20 0.34 0.18 0.39
400 0.08 0.28 0.17 0.28 0.17 0.34
500 0.07 0.25 0.15 0.24 0.15 0.30
750 0.03 0.18 0.12 0.19 0.13 0.24

1000 0.02 0.13 0.08 0.13 0.08 0.17
1500 0.01 0.11 0.07 0.11 0.07 0.14

Table 6.7: Mean penalty/shrinkage parameter by length of time series. The statistics is based
on a total of 5 different training / validation sets per length of the time series.

Series
length

GLASSO
XVAL

MFCF
FIX

MFCF
FIX ID

MFCF
VAR

MFCF
VAR ID

SHRINKAGE

25 950 1561 1478 1206 1055 4950
50 1039 1512 1010 1286 1018 4950
75 1099 1628 798 1416 850 4950

100 1063 1545 1053 1310 1060 4950
200 1057 1363 1152 1443 1094 4950
300 1170 1202 1049 1375 888 4950
400 1191 1359 1154 1325 1255 4950
500 1464 1578 1358 1477 1360 4950
750 1994 1495 1495 1562 1562 4950

1000 2404 1595 1595 1645 1645 4950
1500 2752 1710 1677 1645 1629 4950

Table 6.8: Mean number of non-zero coefficient in the precision matrix by length of time series.
The statistics is based on a total of 5 different training / validation sets per length of
the time series.

6.4. Results 170

Max. clique size = 17 Max. clique size = 18 Max. clique size = 19 Max. clique size = 20

Max. clique size = 12 Max. clique size = 13 Max. clique size = 14 Max. clique size = 15 Max. clique size = 16

Max. clique size = 7 Max. clique size = 8 Max. clique size = 9 Max. clique size = 10 Max. clique size = 11

Max. clique size = 2 Max. clique size = 3 Max. clique size = 4 Max. clique size = 5 Max. clique size = 6

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00 25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00 25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00 25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

25 50 75 10
0

20
0

30
0

40
0

50
0

75
0

10
00

15
00

0

100

200

300

400

500

0

100

200

300

400

500

0

100

200

300

400

500

0

100

200

300

400

500

Series Lenght

N
um

be
r

of
 c

liq
ue

s

Clique Size

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Figure 6.20: Composition of cliques for real data (stock returns). The statistics is based on a
total of 5 different training / validation sets per length of the time series.

Chapter 7

Topological Data Analysis with the

MFCF

In this chapter we describe some applications of the MFCF in relation to the fast grow-

ing field of Topological Data Analysis (TDA). In particular we show that it is possible

and useful to analyse the clique trees produced by the MFCF as a simplicial complex

and that the calculation of Betti numbers allows in some circumstances to draw interest-

ing conclusions on the distribution that generated the data. Our examples show that the

analysis of the structure of the cliques and separators provides information equivalent

to the Betti numbers. Finally, we illustrate a new gain function that allows to formulate

hypotheses about the dimensionality of the data and the number of independent factors

in a factor model.

7.1 Applications to Topology of Data
In chapter 6 we have already shown how the MFCF allows to perform data analysis at

different levels of resolution, or multiscale analysis, by changing the maximum allowed

clique size or the level of confidence of the tests such as in the gain function for the

multivariate likelihood statistically validated (described in Section 3.3.3.4). From the

analysis of the clique sizes we have been able to highlight differences between sparse

models and factor models, which are in general non sparse. The count of the clique

sizes achieved with the gain functions used in Chapter 6 is a rather crude description of

the geometry of the data; therefore, a legitimate question would be whether it is possible

to use more sophisticated tools to understand better the nature of the data. One common

tool used in TDA is the persistent homology, where for every data set one builds a

7.1. Applications to Topology of Data 172

filtration of simplicial complexes. In Sections 7.1.1 and 7.1.2 we propose a way to

build (quasi-)filtrations that can be analysed using homological tools. In Section 7.1.3.3

we propose a new gain function to study the dimensionality of a dataset generated

by a factor model. Topological Data Analysis is a well-developed, mathematically

sophisticated field and, in order to keep the size of this chapter to an acceptable level,

the preliminary definitions and theorems will be necessarily succinct, and we invite the

reader to consult the literature cited to achieve a better understanding of the techniques

and the context of this rapidly expanding field.

7.1.1 Abstract Simplicial Complexes

This basic introduction is based on Dumas et al. (2003), more detailed information can

be found in standard algebraic topology textbooks such as Munkres (1984) or, for a

computational perspective, Zomorodian (2009). Good introductions to the topological

analysis of data are Ghrist (2008) and Carlsson (2009).

Definition 74 (Finite simplicial complex). A finite simplicial complex ∆ over the

ground set Ω1 is a set of finite subsets of Ω with the property of being closed with

respect to set inclusion: that is if B ∈ Ω and A ⊆ B, then A ∈ Ω. An element of Ω is

called a face. A face which is maximal with respect to inclusion is called a facet. The

dimension of a face A is the cardinality of the face (as a set) minus one. The dimension

of a simplicial complex is the dimension of its largest facet. It is usual to denote with the

symbol fi the number of i-dimensional faces of ∆ and to call the vector (f0, f1, . . . , fd)

the f -vector of ∆2.

An abstract simplicial complex is the counterpart of a geometric simplicial com-

plex, where the sets are real, geometric, simplices that meet each other along lower-

dimensional faces. For instance a simple graph is a 2-dimensional simplicial complex

where the facets can be edges (that is 1-dimensional simplices) or isolated vertices (that

is 0-dimensional simplices). Edges can only meet at one common vertex. Similarly a

triangulation of a geometric object is a 2-dimensional simplicial complex made of tri-

angular faces, segments and isolated points; simplexes can only meet in isolated points

or along a common segment. The idea is to represent a complex space as the union of

1In the case of clique trees the ground set is the set of vertices V .
2The points of Ω are conventionally taken to have dimension 0.

7.1. Applications to Topology of Data 173

simpler building blocks of varying dimension.

Example 9 (The clique simplex of a graph). The set of all complete subsets of a graph

is a simplicial complex. It is immediate to verify that the induced subset A of a complete

set is also complete, and therefore it enjoys the property of Definition 74. Any clique

is a face and the maximal cliques are the facets. A clique tree, being a particular case

of a graph, is naturally endowed with a simplicial complex structure.

It is possible to consider formal linear combinations of simplices, or chains. For

instance if we have a triangle 1,2,3 we can represent the boundary of the triangle as

the formal sum of its segments 1 · {1,2}+1 · {2,3}+1 · {3,1}. Note that a full generic

treatment of the simplicial homology should take into account also the orientation of

the simplices, such that the orientation of the segments is important: 1 · {1,2}+ 1 ·

{2,3}+ 1 · {3,1} = 1 · {1,2}+ 1 · {2,3}− 1 · {1,3}. A path can be represented as a

formal linear combination of the edges, possibly taking into account their orientation if

the graph is directed. This motivates the following definition.

Definition 75 (Chain group of a simplicial complex). Given a commutative ring with

unity R (for instance the integers Z or the Galois field F2) and the set ∆i of all

i−dimensional faces of a simplex ∆, we can build the set of formal sums ∑e∈∆i ree

and observe that it can be given the structure of a commutative group which we will

call the i−th chain group and will denote with Ci(∆,R).

Example 10 (Simplicial complex example). In Figure 7.1 we see a simplicial complex

with the two 2-dimensional simplices {1,2,3} and {2,4,3}. It could be seen as a

formal linear combination 1 · {1,2,3}+ 1 · {2,4,3}. We have given an orientation to

the simplices by ordering the vertices in a counter-clockwise fashion.

Definition 76 (The i− th differential ∂i (boundary operator)). Given a face E =

{e0, . . . ,ei} we define the i−th differential ∂i : Ci(∆,R)→Ci−1(∆,R) as the ring homo-

morphism defined on the element E as ∂iE = ∑
i
j=0(−1) j(E \e j). This homomorphism

can be extended linearly to all the formal sums in the chain group Ci(∆,R).

Example 11 (Boundary operator). With reference to Figure 7.1 we can identify two

2-dimensional faces E1 = {1,2,3} and E2 = {2,4,3}. The application of the boundary

7.1. Applications to Topology of Data 174

1

2 3

4

Figure 7.1: A simplicial complex made of the two simplices {1,2,3} and {2,4,3}. Note that
we have given an orientation to the simplices by ordering the vertices counter-
clockwise.

operator to E1 produces the chain ∂2(E1) = 1 · {2,3}−1 · {1,3}+1 · {1,2}, and simi-

larly the boundary of E2 is ∂2(E2) = 1 · {4,3}− 1 · {2,3}+ 1 · {2,4}. Let us consider

the chain C made of the sum of E1 and E2: C = E1 +E2 = 1 · {1,2,3}+ 1 · {2,3,4}.

According to Definition 76 we can extend by linearity the operator ∂2 to the chain C:

∂2(C) = ∂2(1 · {1,2,3}+1 · {2,4,3}) (7.1)

= 1 ·∂2({1,2,3})+1 ·∂2({2,4,3}) (7.2)

= 1 · {2,3}−1 · {1,3}+1 · {1,2}+1 · {4,3}−1 · {2,3}+1 · {2,4} (7.3)

=−1 · {1,3}+1 · {1,2}+1 · {4,3}+1 · {2,4} (7.4)

= 1 · {1,2}+1 · {2,4}+1 · {4,3}−1 · {1,3} (7.5)

= 1 · {1,2}+1 · {2,4}+1 · {4,3}+1 · {3,1} (7.6)

Note that with the counter-clockwise ordering of the two simplices the boundary

operator applied to the formal combination produces the boundary of the whole sim-

plicial complex (the “sum” of E1 and E2), the edge in common “cancels out”. In our

calculations we will use F2 as the underlying ring, so we will not have to define a

specific orientation for the simplices produced by the MFCF.

Remark 77 (Meaning of ∂i). With the help of Example 11 we see that the intuitive

meaning of the i− th differential is to produce the chain of the i−1-dimensional faces.

7.1. Applications to Topology of Data 175

The alternating sign takes into account the orientation of the faces so that common

faces, lying in the internal of the simplicial complex, can be cancelled out so that only

the external faces can be included in the boundary. This meaning justifies the term

“boundary”: it takes the faces that delimit higher dimensional chains. Elements that

“cancel out” are in reality internal, since are the boundary of neighbouring simplices.

The boundary operator has the important characteristic that successive applica-

tions produce the empty set. Intuitively “the boundary of a boundary is empty”. This

fact is made more formal in the following Theorem 78.

Theorem 78 (Munkres (1984)). Let ∂i : Ci(∆,R)→Ci−1(∆,R) and ∂i−1 : Ci−1(∆,R)→

Ci−2(∆,R), then ∂i−1 ◦∂i = 0.

Example 12 (Boundary of a boundary). Let us carry on from Example 11. The calcu-

lation of the boundary of the boundary of the chain C is as follows:

∂1 ◦∂2(C) = ∂1(1 · {1,2}+1 · {2,4}+1 · {4,3}+1 · {3,1}) (7.7)

= 1 ·∂1({1,2})+1 ·∂1({2,4})+1 ·∂1({4,3})+1 ·∂1({3,1}) (7.8)

= {2}−{1}+{4}−{2}+{3}−{4}+{1}−{3} (7.9)

= /0 (7.10)

Definition 79 (i-th homology group (Munkres, 1984)). The kernel of ∂i is called the

group of i-cycles (often denoted with Zi(∆)) and the image of ∂i+1 is called the group

of i-boundaries (and is denoted by Bi(∆)). By Theorem 78 every i-boundary is also an

i-cycle and therefore Bi(∆) ⊂ Zi(∆). The quotient group Hi(∆) = Zi(R)/Bi(R) is the

i-th homology group of the simplicial complex ∆.

The intuitive meaning of the i-th homology group is to evidence the cycles that

are not the boundaries of a simplicial complex. For instance, if we take a simplicial

complex generated by the three segments {1,2},{2,3},{3,1} we see that the three

segments generate the only cycle, but since they are not the boundary of another higher

dimensional simplicial complex (that is, the group of the 1-boundaries is empty) the

dimension of the group H1 is 1.

7.1. Applications to Topology of Data 176

Now let us assume that the underlying ring R is a field F . It can be shown that

the dimension of Hi(∆) as an F-vector space is β F
i = DimKer(∂i)−DimIm(∂i+1).

Since the boundary operators are linear operators between vector spaces they can be

represented by matrices with values in F . The calculation of β F
i therefore is reduced to

a problem in linear algebra which is generally solved by reducing the boundary operator

matrices to the so-called Smith normal form (Dumas et al., 2003). β F
i is called the i-th

Betti number and roughly represents the number of i-dimensional holes present in the

simplicial complex ∆. The analysis of the Betti numbers is important because it allows

to draw conclusions on the shape of the complex. Recently this idea has been coupled

with the idea of a filtered complex to analyse which feature of a given geometrical

object persist at different scales.

Definition 80 (Filtered complex (Zomorodian, 2009)). A filtration of complex K is a

sequence of sub-complexes ∅= K0 ⊆ K1 ⊆ ·· · ⊆ Kn ⊆ K. A complex with a filtration

is called a filtered complex.

The idea of persistent homology is to study the homology groups of a filtered

complex to see if there are topological features that persist over a reasonable span of the

filtration parameter. Features of interest could be the number of connected components,

the number of cycles (or one dimensional holes) or the number of two-dimensional

holes. These attributes are roughly measured by the first three Betti numbers. If the

dataset is multidimensional, then the higher dimensional Betti numbers might be of

interest.

We have already seen that the calculation of the Betti numbers, especially for

higher dimension, involves linear algebra calculations in spaces with a very high num-

ber of objects in many dimensions (Dumas et al., 2003). If we want to analyse the

shape of data under the assumption that the data generating process is low-dimensional

we need to build simplicial complexes that are amenable to linear algebra routines, and

this means in practice that they need to be relatively sparse. Is is therefore necessary

to be able to build a simplicial complex that is sparse and with a configurable, but

controllable, dimension. From this consideration our proposal to use the clique forest

produced by the MFCF.

7.1. Applications to Topology of Data 177

7.1.2 The Simplicial Complexes built by the MFCF

In our proposed approach we build a family of clique forests (and, therefore, simplicial

complexes) by filtering a data set with the MFCF using a statistically validated gain

function3. Every value of the validation parameter (e.g. the p-value) will produce

a clique forest. For instance, in the case of the p-value, the value of 0 would then

correspond to the null hypothesis where all the variables underlying the data set are

independent, and the value 1 would correspond to the case where all the variables are

fully correlated. Strictly speaking, this family of simplicial complexes is not a filtration,

since the inclusion relationship of Definition 80 do not necessarily hold and we will

therefore use the term of quasi-filtration of clique forests.

In this approach we study the boundaries of the clique forests produced by the

MFCF and not the clique forests themselves. This choice is explained in the Remark

below, which shows that the topology of a clique forest is somewhat trivial.

Remark 81 (Clique forest as a simplicial complex). Since the clique forests produced

by the MFCF are made by gluing “full” simplexes together, it is easy to show that

all the connected components can be collapsed to a single point. In this case the only

Betti number of interest would be the first one (the 0-th Betti number), that counts the

number of connected components, with all the subsequent ones being trivially zero.

Besides, if one wanted to calculated the connected components, this calculation

could be performed much more easily from the counts of cliques and separators.

Remark 82 (Calculation of the connected components for clique forest). From the

iterative construction of the MFCF described in Chapter 3, it easy to see how the cal-

culation of the connected components of a clique forest results from the number of

cliques minus the number of separators; the separators need to be counted with their

multiplicity, that is, if a separator appears more than once, it needs to be counted for

as many times. It is easy to show this by taking into account the three cases of the

clique expansion operator: if a new clique is purely expanded, the number of cliques

and separators does not change and the number of connected components is unchanged

as expected. If a new clique is created by attaching to a parent clique then the number

of cliques grows by one, the number of separators grows by one and the difference
3To fix the ideas we can think of the one described in Section 3.3.3.4.

7.1. Applications to Topology of Data 178

between number of cliques and number of separators does not change; also in this case

the number of connected components is unchanged. Finally, if the new vertex is added

by creating a new clique disconnected from any tree, the number of cliques grows by

one but the number of separators does not grow since there is no new separator; the

number of connected components grows by one.

Because of the two remarks above we observe how it is not advisable to study

the clique forests as they are, but it is useful to study the boundary of the clique forest.

This object is made by gluing together “empty” simplices and it is therefore much more

amenable to topological analysis.

In the next sections we show some results where we prove that the boundaries sim-

plicial complexes produces by the MFCF are amenable to Topological Data Analysis,

that there is a significant overlap between the information provided by the Betti num-

bers and the statistics of cliques and separators and finally, we design a gain function

that allows to estimate the number of factors in a factor model.

7.1.3 Examples and applications

In the next three sections we show some applications of TDA to the simplicial com-

plexes produced by the MFCF. The conclusions are less developed than the results

of the previous chapters, and the discussion concerns some examples, rather than a

theoretical framework developed in full generality; most of the topics discussed here

should be considered as a programme for further research. A summary of the findings

of Section 7.1.3.1 and 7.1.3.2 is that, when it comes to the identification of geometrical

features, the counts of cliques and separators provide essentially the same informa-

tion as the Betti numbers. The advantage of the analysis of cliques and separators is

mainly in the better performance, since the calculation of Betti numbers requires the

calculation of many boundary operators and Smith normal forms.

In Section 7.1.3.3 we suggest an approach to the estimation of the number of

factors underlying a factor model partially inspired by Independent Factor Analysis

(ICA) (Comon, 1994; Hyvärinen and Oja, 2000; Bach and Jordan, 2002).

7.1.3.1 Identification of cliques

In the first application we show how both the Betti numbers and the statistics of the

clique sizes can be analysed at different scales and how they can provide useful infor-

7.1. Applications to Topology of Data 179

mation on the number and size of the cliques underlying a model.

In this example the “sliding” factor is the p-value of the model. The size of the

cliques is limited by the significance level of the hypothesis that the variables are cor-

related.

Example 13 (Identification of clique sizes and connected components). We start by

studying a matrix built out of cliques of a known structure and precisely build from 8

cliques of size ranging from 3 to 12 ([1-3], [4-7], [8-12], [13-18], [19-25], [26-33], [34-

42], [43-52]). A pictorial representation of such a matrix is in Figure 7.2. We run the

MFCF with the gain function based on the multivariate normal likelihood statistically

validated as in chapter 6 and we study the size of the cliques and the Betti numbers for

a set of p-values. We perform 20 simulations by creating 20 instances of the matrix

with the prescribed structure and collect the average statistics. We allow the maximum

clique size to be 10. We observe that as the p-values become more and more significant

the clique sizes and the Betti numbers stabilise to a persistent value and are in very

good accord. There are two observations to bear in mind in this comparison: 1. the

Betti numbers are one dimension lower than the clique sizes, as they are created from

the boundary of the simplicial complex, 2. the 0-th Betti number correctly counts the

number of connected components, and that correspond to the eight cliques that are

statistically independent. The progression from high p-values to low p-values shows

that effective filtering is crucial to capture the dependency structure of the matrix.

Figure 7.3 shows the results. We see that, in accord with the clique sizes of the

example, the cliques of size one and two (which are not present in the block structured

matrix) converge to zero, the cliques of size 3 to 9 achieve a value close to the theo-

retical exact value of one (as there is exactly one clique of size 3 to 10 in the example

matrix), and also the number of cliques of size 10 decreases from very high average

numbers to one (note that the y-axis for the clique size of 10 has a different range).

Figure 7.4 shows a consistent picture for the Betti numbers. Also in this case the

Betti numbers exhibit convergence to their theoretical value as the p-values become

significant. Note that the 0-th Betti number correctly converges to the number of con-

nected components.

Remark 83 (Connected components). Example 13 shows that the use of topological

7.1. Applications to Topology of Data 180

a)�Inverse�of�real�matrix

10 20 30 40 50

10

20

30

40

50

b)�Real�matrix

10 20 30 40 50

10

20

30

40

50

c)�Sparse�inverse

10 20 30 40 50

10

20

30

40

50

d)�Direct�from�sparse�inverse

10 20 30 40 50

10

20

30

40

50

Figure 7.2: A block structured matrix composed of 8 cliques of increasing size (3 to 10). Vari-
ables in different cliques are independent, but exhibit small spurious correlation
due to noise in figures a) and b). Figures c) and d) show the filtered version of the
same matrix using MFCF with a very high p-value for validation (0.0005). The
filtering removes the spurious noise and fully reveals the geometric structure of the
matrix.

tools such as homology can give more insight into the structure of the variables than

the study of the clique structure alone. However, in the specific case of a clique forest,

the number of connected components can be calculated as the number of cliques minus

the number of separators. On the whole, we can say that the structure of the clique

forest (cliques and separators) contains as much information as the simplicial structure

produced by the MFCF.

Remark 84 (Computational considerations). In performing the tests described in this

Chapter, we have been mostly constrained by the performance of the algorithm for the

calculations of the Betti numbers. Not only this algorithm accounts for most of the

computation time, but is also the most demanding in terms of memory usage, thus lim-

iting our study to matrices of size 60 or less. While there is space for future research

in optimising the calculation of the homology groups for simplicial complexes associ-

ated with clique forests, it appears that the MFCF allows much more flexibility in the

7.1. Applications to Topology of Data 181

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2
Size�1

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2
Size�2

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2
Size�3

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2
Size�4

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2
Size�5

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2
Size�6

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2
Size�7

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2
Size�8

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2
Size�9

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

20

40

Size�10

Student�Version�of�MATLAB

Figure 7.3: Results of the simulation of 20 different matrices with similar clique structure. We
show one panel for each clique size between 1 and 10. On the x-axis we report
the p-value used for the validation, on the y-axis we report the average number
of cliques of the given size across the 20 simulations. We expect that the average
number of cliques goes to zero for cliques of size 1 and 2 and that it converges to 1
for all the clique sizes between 3 and 10.

analysis and is less limited.

7.1. Applications to Topology of Data 182

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

2

4

6

Size�0

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2

Size�1

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2

Size�2

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2

Size�3

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2

Size�4

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2

Size�5

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2

Size�6

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2

Size�7

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

10

20

Size�8

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2

Size�9

Figure 7.4: Results of the simulation of 20 different matrices with similar clique structure. We
show one panel for every Betti number between 0 and 9. On the x-axis we report
the p-value used for the validation, on the y-axis we report the average Betti number
across the 20 simulations.

7.1.3.2 Identification of large dimensional blocks

In the next example we show an interesting consequence of the geometry of clique

forests. Specifically, we limit the maximum size of the cliques to 10, but we show how

it is possible to identify geometric features that have a larger dimensionality. In this

example we are able to identify three clusters of correlated variables that have a higher

dimensionality than the maximum allowed clique size.

Example 14 (Large connected components). In this example we discuss a correlation

matrix built out of three relatively large cliques ([1-20], [21-40]; [41-60]); the matrix

is shown in Figure 7.5. Specifically, the cliques are larger than the maximum allowed

clique size. We run the MFCF with the same settings as in Example 13. Also in this

case we observe that, as the p-values become more and more significant, the average

values of the clique sizes (Figure 7.6 and of the Betti numbers (Figure 7.7) converges to

the theoretically correct values. Similarly to Section 7.1.3.1, we have built 20 matrices

7.1. Applications to Topology of Data 183

with the same structure and performed the analysis for a range of p-values.

a)�Inverse�of�real�matrix

20 40 60

20

40

60

b)�Real�matrix

20 40 60

20

40

60

c)�Sparse�inverse

20 40 60

20

40

60

d)�Direct�from�sparse�inverse

20 40 60

20

40

60

Figure 7.5: A block structured matrix composed of 3 cliques of size larger than the maximum
allowed clique size. Variables in different cliques are independent, but exhibit small
spurious correlation due to noise in figures a) and b). Figures c) and d) show
the filtered version of the same matrix using MFCF with a very high p-value for
validation (0.0005).

Remark 85 (Identification of large connected components). The analysis of Figures

7.6 and 7.7 shows a similar feature: the persistence, even at high significance level,

of high-dimensional cliques (or Betti numbers), in fact, of the maximum size allowed

by the algorithm. This suggests that the variables underneath the matrix are correlated

in cliques that are of a higher dimension than the MFCF would be able to detect, due

to the constraint on the clique size; however, interestingly, the Betti numbers show the

correct number of connected components even if they are of a higher size than the reach

of the algorithm.

7.1. Applications to Topology of Data 184

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

20

40

Size�1

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

20

40

Size�2

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

10

20

Size�3

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

10

20

Size�4

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2

Size�5

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

10

20

Size�6

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2

Size�7

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2

Size�8

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2

Size�9

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2
x�10

4 Size�10

Figure 7.6: On the x-axis we have the p-values (from less significant to more significant) and
on the y-axis we have the average clique sizes across 20 simulations of the matrix.
Note how the cliques of size less than 10 go quickly to zero as the p-values become
significant and how the cliques of maximum allowed size stabilise at a relatively
high level. This is the same phenomenon discussed in Chapter 6, where a model
that is denser than the maximum clique size leads to an exclusive representation
made of cliques of maximum size.

7.1. Applications to Topology of Data 185

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2

Size�0

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2

Size�1

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2

Size�2

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2

Size�3

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2

Size�4

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2

Size�5

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2

Size�6

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2

Size�7

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

10

20

Size�8

���0.2 ���0.1 ��0.05 ��0.01 �0.005 �0.004 �0.003 �0.002
0

1

2

Size�9

Figure 7.7: On the x-axis we have the p-values (from less significant to more significant) and on
the y-axis we have the average Betti numbers across 20 simulations of the matrix.
Note how the 0-th Betti number goes to three (the number of independent cliques)
while all the others, excluding the one of maximum allowed size, go to zero.

7.1. Applications to Topology of Data 186

7.1.3.3 Structure of factor models

In our study of the factor models in Chapter 6 we have observed that there is not a sig-

nificant difference between the clique structure of the clique forests built by the MFCF

when the underlying factor is a factor model, irrespective of the number of factors.

This has been confirmed also in Examples 13 and 14. In this section we introduce a

new gain function that allows to perform an analysis of the number of factors in a factor

model. The key change is a shift in focus from the study of dependence to the study of

independence. This approach is somewhat reminiscent of some of the techniques used

in Independent Factor Analysis (Comon, 1994; Bach and Jordan, 2002; Hyvärinen and

Oja, 2000) where the identification of independent factors requires the minimisation of

mutual information (or of other related quantities such as negentropy as described for

example in Hyvärinen and Oja (2000)).

In all of the examples and applications discussed so far we have built cliques of

variables that are highly dependent; in this section we invert the perspective and try to

build cliques of variables that are as independent as possible.

In the linear case it is easy as we can analyse the correlation matrix of a clique of

variables and state that they are reasonably independent if the determinant, restricted to

the clique, is close to one. Similarly, we can assess whether a new variable can be added

to a clique by examining the relative change of the determinant after the addition of the

variable: if the determinant reduces below a given relative threshold we argue that the

variable is dependent from the variables in the clique, otherwise we conclude that the

new variable is independent from the remaining variables in the clique and we can add

the variable to the clique. The reasoning behind this approach is that the MFCF will

try to expand the clique in a direction that is orthogonal to the subspace spanned by

the other variables in the cliques; when this expansion is no longer possible the clique

is considered to be complete and the algorithm will move to a different clique. If the

data is not sparse, that is all the variables have non-zero loadings on every factor, the

next clique will also tend to expand to the maximum size allowed by the underlying

factors. We investigate, therefore, whether the maximum dimension of a clique in a

clique forest is a good indicator of the dimensionality of the underlying factor model.

Further to that, the more cliques in the clique forest achieve the maximum dimension,

the higher the possibility that the underlying factor model contains exactly as many

7.1. Applications to Topology of Data 187

factors as the maximum size of the cliques.

Example 15 (Maximum determinant gain function). This gain function tries to max-

imise the minor (determinant of a minor matrix) of the correlation matrix made of the

new vertex and the separators in a given clique. This is the opposite of what we have

done so far: by maximising the direct determinant (as opposed to the determinant of

the inverse) the function tries to pick up variables that are as independent as possible.

As a validation we use a threshold and we stipulate that adding a new vertex should not

cause the determinant to shrink more than a given quantity: for instance adding a vertex

to the separator should not allow the determinant to decrease by more than a factor of

0.2. This validation is aimed at preventing the inclusion of a variable that is close to a

linear combination of the others added so far.

In this case we reverse what we have done in Chapter 3 (Equation 3.16). and define

the gain function with the opposite signs. We look for the variable with the maximum

KL-divergence (minimal mutual information) from the separators4.

G(c̃,c) =
1
2
(− ln |Jc̃|+ ln |Jc|) =

1
2
(+ ln |Σc̃|− ln |Σc|) (7.11)

Remark 86 (Role of separators). In this example not all the information related to

the geometry of the clique forest is readily interpretable; for instance the separators

do not seem to carry a particular meaning, but the study of the underlying probability

distribution, defined by the Lauritzen formula, could be a topic for future research.

Remark 87 (Application of ICA estimations). One question that is clearly open is

whether a clique of maximal size can provide a representation of the latent factors.

It is certainly possible to apply known ICA estimation methods (Hyvärinen and Oja,

2000) to the space spanned by a maximal clique to see if it is possible to reproduce the

latent factors. It is a known result (Hyvärinen and Oja, 2000) that when the factors are

normally distributed the result is known up to a rotation of the factors. Interestingly,

when the factors are not normally distributed, the results can be identified much better.

We have tested this idea by generating 20 factor models of 50 variables and 25 fac-

tors. The factors are normally distributed and the factor loading are randomly assigned

4As in Chapter 3, c̃ is the clique after the expansion of the clique c.

7.1. Applications to Topology of Data 188

to the variables. Initially we have generated time series with 500 data points: this set-

ting allows to compare the results of our algorithm with with commonly used heuristics

such as the analysis of the eigenvalues of the correlation matrix. For every simulation

we generate a clique forest for a range of parameters (relative decrease int determinant

value) and we collect the statistic of the cliques. In this Section we have limited our

analysis to the statistic of clique sizes because the calculation of Betti numbers for sim-

plices of dimension 25 would have been prohibitive. The results are shown in Figure

7.8: both our method and the heuristic based on the eigenvalues indicate that 25 is the

most likely number of factors. This is shown by the brightest spot in the heatmap in the

top panel, and by the sharp drop in the bottom panel.

As a next experiment, and to show how our method is preferable in some cases,

we have generated 20 factor models with the same parameters, excepting for the length

of the time series, which we have set to 50. The results are shown in Figure 7.9. In

this case it is impossible to use the correlation matrix for eigenvalue analysis, as it is

almost surely not positive definite and poorly conditioned, but our method still shows

the brightest spot in the region of 24 and 23 factors, with a rather sharp distribution,

which is a very good approximation to the correct value 25.

Remark 88 (Extension to other distributions). We have just demonstrated a possible

benefit of the use of the MFCF in the individuation of the number of factors. As

the idea is based on the notion of “independence” of random variables, it is almost

immediate to generalise our proposed methodology to other distributions, whenever

a statistical test of multivariate independence is available. For instance in the case

of multivariate distributions a χ2 could be used, instead of testing the determinant,

to identify the cliques of independent variables. This would open the possibility of

testing the number of factors for multivariate discrete distributions. We observe, as an

hint to further research, that the extension of kernel-based methods to ICA is already

established (Bach and Jordan, 2002).

7.1. Applications to Topology of Data 189

Clique�sizes

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

5

10

15

20

25

30

0 10 20 30 40 50
0

5

10

15
x�10

4

Figure 7.8: The top panel shows in the x-axis the relative decrease in the value of the clique
determinant as described in Example 15; this value is used as an adjustable pa-
rameters to produce a quasi-filtration. In the y-axis we show the dimension of the
cliques produced in the simulation. The color is a heatmap where white id the
hottest spot (many cliques) and black is the coldest. The bottom panel shows the
ordered eigenvalues of the correlation matrix of one of the 20 factor models. It is
plain to see that the eigenvalues drop almost to zero between 25 and 26.

7.1. Applications to Topology of Data 190

Clique�sizes

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

5

10

15

20

25

30

Figure 7.9: The highest Betti number for a single factor model is higher than the highest Betti
number for a multifactor model. This figure shows the statistics of 20 simulations,
where every simulation consists of the generation and analysis of factor models of
dimension 1 to p, the number of variables (in this case p = 50).

Chapter 8

Conclusions and further research

8.1 Conclusions
In this thesis we have presented the case for building sparse networks using topological

operators. In the approach we have presented, sparsity is enforced in the network by

means of a topological penalisation, whereby the allowed configurations of the network

are limited by constraints on the topology of the connections. In this thesis we have

mainly examined a variant of the preferential attachment scheme; vertices are added

one by one and are connected to the network through a subset of the existing nodes, the

attachment points. We have shown how it is possible to associate a score function, and

the related gain function, to the interaction between the new vertices and the attachment

points so that it is possible to apply a greedy approach to the optimisation of the total

score. We have argued for the use of well defined topological operators that preserve

the desired topological properties so that said properties are invariant with respect to

the attachment process. We have described in detail two families of topologically in-

variant operators: CT-invariant operators and planarity-invariant operators. A second

mean to introduce sparsity in the networks produced is to add a validation step in the

gain functions: only the operations that pass the validation are considered for network

expansion.

Motivated by the theory of decomposable graphical models and by the convenient

computational properties of chordal graphs, we have designed a generic algorithm, the

MFCF, that uses our preferential attachment scheme in building clique forests by using

CT-invariant operators. We have shown how the MFCF can be considered as a general-

isation of two well-known algorithms: the Minimum Spanning Tree and the Maximum

8.1. Conclusions 192

Cardinality Search. The MFCF has been designed with flexibility in mind; the user

can specify an initial clique forest to seed the algorithm, the topological constraints are

enforced by defining the maximum and minimum size of the cliques, and the gain func-

tions can be fully tailored to the problem at hand. Following an approach inspired by

generic programming, we have specified the contract that any gain function must fulfil

in order to be used with the MFCF; this provides a clear separation of concerns be-

tween the learning algorithm and the modelling of the gains, and allows a researcher to

design new gain functions without any need to change the MFCF algorithm. The main

application is the sparsification of networks from the point of view of structure learn-

ing. As a lead into further research, we have briefly studied some extensions that do

not fit into the preferential attachment scheme, such as the direct join and the pruning

of clique forests.

As a further contribution to the existing line of research into the planarization of

networks, we have applied the MFCF to the Maximum Weight Planar Subgraph prob-

lem. We have studied variants of the algorithm that use planarity-invariant operators

that are not necessarily CT-invariant and we have compared the result with the Planar

Maximally Filtered Graph. We have studied a number of different cases and we have

demonstrated a range of improvements with respect to the Planar Maximally Filtered

Graph. While much of the geometric intuition behind the PMFG is still available, or

even improved, in the networks produced by our proposed methodology, the probabilis-

tic perspective brought to bear by the MFCF is a definite element of novelty.

We have applied the MFCF to the problem of Covariance Selection and we have

compared our results with the state-of-the-art algorithm for such problem: the Graph-

ical Lasso. We have shown that is many cases we obtain results that are comparable,

or better, than the Graphical Lasso. We highlight how the purely geometrical approach

adopted in the MFCF allows to decouple the inference of the structure and the estima-

tion of the model parameters. We point out that the MFCF approach can be adopted

in settings that are more general than the multivariate Gaussian setting which is the

original environment where the Graphical Lasso was initially formulated. In particular

we want to single out for future research the application of the methodology to general

exponential family distributions, such as discrete and extreme values distributions.

We have found that the rich probabilistic structure allowed for by the language

8.2. Further research 193

of graphical models, and in particular the tool-set of inference algorithms available

for Gaussian Markov Random Fields lends itself very well to the modelling of sets of

random variables such as the ones found in financial risk management and economet-

rics modelling. We have provided example applications to the conditional allocation

of financial risk and to the extraction of networks with heterogeneous financial and

econometrics time series.

Finally, we have looked at some examples where we show that the clique forests

produced by the MFCF can be analysed with the tools developed by the Topological

Data Analysis community and we have proposed a multi-scale analysis procedure for

clique forests analogous to Persistent Homology. We highlight how much of informa-

tion obtained by means of computational homology can be obtained more easily form

the statistics of cliques and separators of the associated clique forest. We have designed

a specific gain function to be applied to the study of the dimensionality of factor models

and we have shown that it works well in the case of datasets with more variables than

observations, where most classical methods do not work.

8.2 Further research
We have, hopefully, exposed the results of our research in a way that is logical and

linear, but that does not reflect in the least the real historical development of the ideas

contained in this work: many topics of great personal interest have been left behind

because in some cases it would not have been possible to include all the material in a

single organic exposition, lest it dilutes the exposition of the main subject. We would

like, however, to go back ideally to the notes of these last few years to at least provide

an idea of the developments that we had to set aside and that, in our view, constitute

valid ideas for further research.

8.2.1 Non linear interactions and fat-tailed distributions

We would like to study the modelling of non-linear interactions by using new gain func-

tions based on the MFCF. Some preliminary work has been done on kernels (Gretton

et al., 2005; Shawe-Taylor and Cristianini, 2004; Bach and Jordan, 2003). We would

also like to extend the study to distance-correlation (Székely and Rizzo, 2013) and

to fat tailed distibutions such as the Student-t and in general to elliptically distribu-

8.2. Further research 194

tionsAnderson (1962). The main challenge in this field is to develop a coherent prob-

abilistic theory which reuses as much as possible the theory of graphical models for

exponential families. Especially for the student-t distributions, this might be possible

through the use of non-extensive entropy theories.

8.2.2 Financial applications

The inclusion of non-linear and fat-tailed interactions would prove extremely useful in

the development of financial risk management applications. If the formulation in terms

of decomposable graphical models were to be successful, the use of the junction tree

algorithm would become the work horse for all sorts of financial applications, allowing

to extend and generalise the modern portfolio theory of Markowitz beyond multivariate

normal interactions in a coherent and computationally practical way. In our working

experience we have witnessed the effectiveness of saddle-point approximations in risk

allocation and importance sampling: the dependence setting for this development is

still based on multi-factor models: we would like to extend the theory to general de-

composable models.

8.2.3 Geometry of clique forests

With the last chapter we have barely scratched the surface of the wealth of tools that

are available in the fields of computational topology and discrete differential geometry.

We believe that there are at least two paths worth investigating: one is the study of

the differential geometry of clique forests to see if the discrete extensions of concepts

like curvature and differential forms can help in understanding the structure of the data.

A second path is the application of discrete Morse theory to the study of changes in

correlation regimes though the changes over time of critical points.

8.2.4 Confirmatory factor analysis

An important feature of the MFCF is the possibility to specify an initial clique forest,

maybe generated from previous experiments or from expert judgement, that can be

grown by adding further vertices. This feature can be used to test hypotheses, such as

in the psychological theory of personality, that can be formulated in terms of clique

forest reflecting the assumed closed associations between factors.

8.2. Further research 195

8.2.5 Geometry of factor models

The study of the geometry of independent cliques carried out in the last chapter opens

the possibility to the study of the dimensionality of factor models and, possibly, to the

identification of latent factors. The use of ICA methodology on subspaces identified by

the cliques seems to be a promising field of research.

Chapter 9

Appendix A

9.1 Computer Codes

9.1.1 TMFG
function [P, cliques, separators, rev_peo] = TMFG(W)
% Basic TMFG Algorithm, uses only T2, builds a clique tree (chordal graph).
% The gain function is simply the sum of the new edges introduced by the T2
%
% INPUT:
% - W: a weighted network
%
% OUTPUT:
% - P: the filtered TMFG graph
% - cliques: the list of 4-cliques
% - separators: the list of 3-cliques that are clique separators
% - rev peo: reverse of perfect elimination ordering

n = size(W,1); % n = |V |
P = sparse(n,n); % sparse matrix
max_clique_gains = zeros(3*n - 6, 1);
best_vertex = zeros(3*n - 6, 1);

% cliques contains the K4 cliques of the clique forest,
% separators contains the triangles that are \glcf{\textbf{not}} triangular faces,
% triangles contains the triangular faces of the planar graph.
% At any given time triangles constitutes a basis for the cycle
% space of the planar graph.
cliques = []; % cliques←∅
separators = []; % separators←∅
triangles = []; % triangles←∅

% Get first simplex using max clique
% cliques← max clique
% vertex list← vertex list \ vertices(max clique)
% t1, t2, t3, t4 = f aces(max clique)
% triangles← t1 ∪ t2 ∪ t3 ∪ t4
cliques(1, :) = max_clique(W);
vertex_list = setdiff(1:n, cliques(1,:));
triangles(1,:) = cliques(1, [1 2 3]);
triangles(2,:) = cliques(1, [1 2 4]);
triangles(3,:) = cliques(1, [1 3 4]);
triangles(4,:) = cliques(1, [2 3 4]);

% rev peo← vertices(max clique)
rev_peo = cliques(1, :);

W(1:(n+1):nˆ2) = 0; % diagW = 0

% add the edges between the vertices to the filtered matrix

9.1. Computer Codes 197

P(rev_peo, rev_peo) = W(rev_peo, rev_peo);

% ∀t ∈ {t1, t2, t3, t4} :
% choose v ∈ vertex list with best gain for t and corresponding gain
for t = 1:4

[max_clique_gains(t) best_vertex(t)] = ...
get_best_gain(vertex_list, triangles(t,:), W);

end

% there are n−4 outstanding vertices to be added
for i = 1:(n-4)

% get maximum local gain and corresponding triangular face nt and vertex nv
[˜, nt] = max(max_clique_gains);
nv = best_vertex(nt);

% rev peo← concatenate(rev peo,nv)
rev_peo(end + 1) = nv;

% new clique← nt ∪nv
% cliques← cliques∪new clique
cliques(end+1, :) = [nv triangles(nt,:)];

% nt becomes a separator
newsep = triangles(nt, :);

% add edges in new clique to P
P([nv newsep], [nv newsep]) = W([nv newsep], [nv newsep]);

% separators← separators∪nt
separators(end+1, :) = newsep;

% here we are applying the T2 operator
% ta, tb, tc← T2(nt,nv)
% nt disappears from the triangular basis, replaced by one
% of the three new triangles ...
% triangles← triangles\nt
% triangles← triangles∪ ta ∪ tb ∪ tc
triangles(nt, :) = [newsep(1) newsep(2) nv];
triangles(end+1, :) = [newsep(1) newsep(3) nv];
triangles(end+1, :) = [newsep(2) newsep(3) nv];

% vertex list← vertex list \ vertices(new clique)
vertex_list = setdiff(vertex_list, nv);

% update the gain table by updating the gains corresponding to the now
% unfeasible vertex nv
if length(vertex_list) > 0

for t = find(best_vertex == nv).’
[max_clique_gains(t) best_vertex(t)] = ...

get_best_gain(vertex_list, triangles(t,:), W);
end

end

% update the gain table by calculating the gains for ta, tb, tc
max_clique_gains(nt) = 0;
ct = size(triangles, 1);
if length(vertex_list) > 0

for t = [nt (ct-1) ct]
[max_clique_gains(t) best_vertex(t)] = ...

get_best_gain(vertex_list, triangles(t,:), W);
end

end
end

end

function [gain vertex] = get_best_gain(vertex_list, triangle, W)
% the gain function in this case is the sum of the edges introduced by
% the T2.
% it cas also be seen as the sum of the edges of the new clique minus the
% sum of edges of the separator..

9.1. Computer Codes 198

gvec(vertex_list) = W(vertex_list, triangle(1)) + W(vertex_list, triangle(2)) + W(
vertex_list, triangle(3));
[gain vertex] = max(gvec);

end

function cl = max_clique(W)
% return the first four vertices in order of sum where the weights
% exceed the mean of the weight matrix.

v = sum(W.*(W>mean(W(:))),2);
[˜, sortindex] = sort(v, ’descend’);
cl = sortindex(1:4);

end

./Code/TMFG matlab/TMFG.m

9.1.2 TMFG-T1
function [P, cliques, triangles, tc] = TMFGT1(W)
% TMFG variant with use of T2 and T1.
% It first evaluates the best T2 move, and after that examines
% any possible additional gain to be achieved using the T1
% operator on the newly introduced triangular faces.
% The output is not chordal, hence the algorithm returns the
% triangular faces, instead of the separators, and does not return a PEO.
% It also returns a sparse matrix tc containing the triangular
% faces contact structure, recording the triangles that share an edge.
% The list of cliques only reflects the cliques created with the T2
% operator, but since the graph is not chordal, it does not represent the
% clique structure of the filtered matrix after the T1 operator
% is applied.
%
% INPUT:
% - W: a weighted network
%
% OUTPUT:
% - P: the filtered TMFG graph
% - cliques: the list of 4-cliques produced by the T2
% - triangles: the list of triangular faces
% - tc: triangles contact structure

n = size(W,1); % n = |V |
P = sparse(n,n); % sparse matrix
max_clique_gains = zeros(3*n - 6, 1);
best_vertex = zeros(3*n - 6, 1);
tc = sparse(n,n); % holds the contact structure between triangular faces

% cliques contains the K4 cliques of the clique forest,
% triangles contains the triangular faces of the planar graph.
% At any given time triangles constitutes a basis for the cycle
% space of the planar graph.
cliques = []; % cliques←∅
triangles = []; %v*\color{mygreen}$triangles \leftarrow \varnothing$*)

% Get first simplex using max clique
% cliques← max clique
% vertex list← vertex list \ vertices(max clique)
% t1, t2, t3, t4 = f aces(max clique)
% triangles← t1 ∪ t2 ∪ t3 ∪ t4
cliques(1, :) = max_clique(W);
vertex_list = setdiff(1:n, cliques(1,:));
triangles(1,:) = cliques(1, [1 2 3]);
triangles(2,:) = cliques(1, [1 2 4]);
triangles(3,:) = cliques(1, [1 3 4]);
triangles(4,:) = cliques(1, [2 3 4]);

% Populate the contact structure. Since they are part of a 4-clique all the
% triangles share an edge. The tc structure is indexed by the
% identifiers of the triangles.
% tc12, tc13, tc1,4, tc23, tc34← 1
tc([1 2 3 4], [1 2 3 4]) = 1;

9.1. Computer Codes 199

tc(1:(n+1):nˆ2) = 0;

% startv← vertices(max clique)
startv = cliques(1, :);
W(1:(n+1):nˆ2) = 0; % diagW = 0

% add the edges between the vertices to the filtered matrix
P(startv, startv) = W(startv, startv);

% ∀t ∈ {t1, t2, t3, t4} :
% choose v ∈ vertex list with best gain for t and corresponding gain
for t = 1:4

[max_clique_gains(t) best_vertex(t)] = get_best_gain(vertex_list, triangles(t,:),
W);

end

% there are n−4 outstanding vertices to be added
for i = 1:(n-4)

% get maximum local gain and corresponding triangular face nt and vertex nv
[˜, nt] = max(max_clique_gains);
nv = best_vertex(nt);

% new clique← nt ∪nv
% cliques← cliques∪new clique
cliques(end+1, :) = [nv triangles(nt,:)];

% Use the triangular face as a temporary separator to build the new
% triangular faces.
newsep = triangles(nt, :);

% add edges in new clique to P
P([nv newsep], [nv newsep]) = W([nv newsep], [nv newsep]);

% here we are applying the T2 operator
% ta, tb, tc← T2(nt,nv)
% nt disappears from the triangular basis, replaced by one
% of the three new triangles ...
% triangles← triangles\nt
% triangles← triangles∪ ta ∪ tb ∪ tc
triangles(nt, :) = [newsep(1) newsep(2) nv];
triangles(end+1, :) = [newsep(1) newsep(3) nv];
triangles(end+1, :) = [newsep(2) newsep(3) nv];

% vertex list← vertex list \ vertices(new clique)
vertex_list = setdiff(vertex_list, nv);

% update the gain table by updating the gains corresponding to the now
% unfeasible vertex nv
if length(vertex_list) > 0

for t = find(best_vertex == nv).’
[max_clique_gains(t) best_vertex(t)] = ...

get_best_gain(vertex_list, triangles(t,:), W);
end

end

% start assessing if there are possible gains from T1
max_clique_gains(nt) = 0;

% find in tc any neighbour of nt
possible_neighbours = find(tc(nt,:));

% since nt goes out of the basis (it is no longer a
% triangular face) we have to remove it from the contact structure.
tc(nt, :) = 0; tc(:,nt) = 0;
ct = size(triangles, 1);

% update the gain table by calculating the gains for ta, tb, tc
if length(vertex_list) > 0

for t = [nt (ct-1) ct]
[max_clique_gains(t) best_vertex(t)] = ...

get_best_gain(vertex_list, triangles(t,:), W);

9.1. Computer Codes 200

end
end

% ta, tb, tc share an edge and hence they need to be
% marked as adiacent in the contact structure.
% tcab, tcac, tcbc← 1
new_triangles = [nt (ct-1) ct];
tc(new_triangles, new_triangles) = 1;
tc(new_triangles(1), new_triangles(1)) = 0;
tc(new_triangles(2), new_triangles(2)) = 0;
tc(new_triangles(3), new_triangles(3)) = 0;

triangles_to_update = new_triangles;

% for all the new triangles and all the possible neighbours of the new
% triangles, check if a T1 is convenient and perform it.
% the function% f lip is the implem,entation of the T1
% and updates the filtered matrix and the set of triangular faces.
for t1 = possible_neighbours

for t2 = new_triangles
tc(t1, t2) = is_neighbour(triangles, t1, t2);
tc(t2, t1) = tc(t1, t2);
if tc(t1, t2)

[triangles P flipped] = flip(t1, t2, triangles, W, P);
% if T1 executed add the triangles to the set
% to be updated
if flipped

triangles_to_update = unique([triangles_to_update, t1]);
end

end
end

end

% update the gain table by calculating the gains for ta, tb, tc
if ˜isempty(vertex_list)

for t = triangles_to_update
[max_clique_gains(t) best_vertex(t)] = get_best_gain(vertex_list,

triangles(t,:), W);
end

end

end

end

function [gain vertex] = get_best_gain(vertex_list, triangle, W)
gvec(vertex_list) = W(vertex_list, triangle(1)) + W(vertex_list, triangle(2)) + W(
vertex_list, triangle(3));
[gain vertex] = max(gvec);

end

function cl = max_clique(W)
% return the first four vertices in order of sum where the weights
% exceed the mean of the weight matrix.

v = sum(W.*(W>mean(W(:))),2);
[˜, sortindex] = sort(v, ’descend’);
cl = sortindex(1:4);

end

function [triangles_out P_out flipped] = flip(t1, t2, triangles, W, P)
flipped = false;
C = intersect(triangles(t1, :), triangles(t2, :));
v1 = C(1); v3 = C(2);
v2 = setdiff(triangles(t1, :), [v1 v3]);
v4 = setdiff(triangles(t2, :), [v1 v3]);
if (˜isempty(v2) && ˜isempty(v4) && ...

˜isempty(v1) && ˜isempty(v3) && ...
(P(v2, v4) + 0) == 0 && (W(v2, v4) > W(v1, v3)))
triangles_out = triangles;
triangles_out(t1, :) = [v1 v2 v4];
triangles_out(t2, :) = [v2 v3 v4];
P_out = P;

9.1. Computer Codes 201

P_out(v2, v4) = W(v2, v4);
P_out(v4, v2) = W(v4, v2);
P_out(v1, v3) = 0;
P_out(v3, v1) = 0;
flipped = true;

else
P_out = P;
triangles_out = triangles;

end
end

% support function returns true is two triangles are neighbours, i.e. share
% an edge.
function isn = is_neighbour(triangles, t1, t2)

cnt = length(intersect(triangles(t1, :), triangles(t2, :)));
if cnt == 2 ; isn = true; else isn = 0 ;end

end

./Code/TMFG matlab/TMFGT1.m

9.1.3 TMFG-S
function [P, cliques, separators, rev_peo] = TMFGS(W)
% Optimised TMFG Algorithm, uses T2 and S.
% builds a clique tree (chordal graph). Initially builds a clique tree by
% introducing simplicial vertices using T2 and then examinse
% the most convenient swap (S) operator among the vertices of
% the new clique.
% The gain function is simply the sum of the new edges introduced by the T2
%
% INPUT:
% - W: a weighted network
%
% OUTPUT:
% - P: the filtered TMFG graph
% - cliques: the list of 4-cliques
% - separators: the list of 3-cliques that are clique separators
% - rev peo: reverse of perfect elimination ordering
%

INITIAL_TRIANGLES = 4;

n = size(W,1); % n = |V |
P = sparse(n,n); % sparse output matrix
max_clique_gains = zeros(3*n - 6, 1);
best_vertex = zeros(3*n - 6, 1);

% cliques contains the K4 cliques of the clique forest,
% separators contains the triangles that are \glcf{\textbf{not}} triangular faces,
% triangles contains the triangular faces of the planar graph.
% At any given time triangles constitutes a basis for the cycle
% space of the planar graph.
cliques = []; % cliques←∅
separators = []; % separators←∅
triangles = []; % triangles←∅

% Get first simplex using max clique
% cliques← max clique
% vertex list← vertex list \ vertices(max clique)
% t1, t2, t3, t4 = f aces(max clique)
% triangles← t1 ∪ t2 ∪ t3 ∪ t4
cliques(1, :) = max_clique(W);
vertex_list = setdiff(1:n, cliques(1,:));
triangles(1,:) = cliques(1, [1 2 3]);
triangles(2,:) = cliques(1, [1 2 4]);
triangles(3,:) = cliques(1, [1 3 4]);
triangles(4,:) = cliques(1, [2 3 4]);

% rev peo← vertices(max clique)
rev_peo = cliques(1, :);

9.1. Computer Codes 202

W(1:(n+1):nˆ2) = 0; % diagW = 0

% add the edges between the vertices to the filtered matrix
P(rev_peo, rev_peo) = W(rev_peo, rev_peo);

% ∀t ∈ {t1, t2, t3, t4} :
% choose v ∈ vertex list with best gain for t and corresponding gain
for t = 1:INITIAL_TRIANGLES

[max_clique_gains(t) best_vertex(t)] = get_best_gain(vertex_list, triangles(t,:),
W);

end

% there are n−4 outstanding vertices to be added
for i = (INITIAL_TRIANGLES+1):n

% get maximum local gain and corresponding triangular face nt and vertex nv
[˜, nt] = max(max_clique_gains);
nv = best_vertex(nt);

% rev peo← concatenate(rev peo,nv)
rev_peo(end + 1) = nv;

% new clique← nt ∪nv
% cliques← cliques∪new clique
this_clique = [triangles(nt,:) nv];

% Find locally optimal orientation of the new clique
% First of all let’s find the vertices in P that are connected to the
% clique, excluding the vertices belonging to the triangle being
% extended.
tmp = find(P(triangles(nt,1), :) ˜= 0);
tmp = tmp(tmp ˜= triangles(nt,1) & tmp ˜= triangles(nt,2) & tmp ˜= triangles(nt,3)
);
neighbours_1 = tmp; % neighbours of vertex 1
tmp = find(P(triangles(nt,2), :) ˜= 0);
tmp = tmp(tmp ˜= triangles(nt,1) & tmp ˜= triangles(nt,2) & tmp ˜= triangles(nt,3)
);
neighbours_2 = tmp; % neighbours of vertex 2
tmp = find(P(triangles(nt,3), :) ˜= 0);
tmp = tmp(tmp ˜= triangles(nt,1) & tmp ˜= triangles(nt,2) & tmp ˜= triangles(nt,3)
);
neighbours_3 = tmp; % neighbours of vertex 3

% Now let’s set to zero the values in the filtered matrix, next we
% identify the best combination and restore the links.
P(neighbours_1, triangles(nt,1)) = 0;
P(neighbours_2, triangles(nt,2)) = 0;
P(neighbours_3, triangles(nt,3)) = 0;
P(triangles(nt,1), neighbours_1) = 0;
P(triangles(nt,2), neighbours_2) = 0;
P(triangles(nt,3), neighbours_3) = 0;
P(triangles(nt,:), triangles(nt,:)) = 0;

local_max = 0.0;
newsep = triangles(nt,:).’;
last_added_v = nv;

% evaluate the gain function for every swap of the veritices of the
% clique.
for perm_clique = perms(this_clique).’

% Assume that the last vertex is the internal one and the external
% triangle vertices are the first three.
int_vertex = perm_clique(4);
ext_triangle = perm_clique(1:3);
running_max = sum(W(neighbours_1, ext_triangle(1))) + ...

sum(W(neighbours_2, ext_triangle(2))) + ...
sum(W(neighbours_3, ext_triangle(3)));

if running_max > local_max
local_max = running_max;
nv = int_vertex;
newsep = ext_triangle;

9.1. Computer Codes 203

end
end

% new clique← nt ∪nv
% cliques← cliques∪new clique
cliques(end + 1, :) = [newsep’ nv];

% Update the filtered matrix
P(neighbours_1, newsep(1)) = W(neighbours_1, newsep(1));
P(newsep(1), neighbours_1) = W(newsep(1), neighbours_1);
P(neighbours_2, newsep(2)) = W(neighbours_2, newsep(2));
P(newsep(2), neighbours_2) = W(newsep(2), neighbours_2);
P(neighbours_3, newsep(3)) = W(neighbours_3, newsep(3));
P(newsep(3), neighbours_3) = W(newsep(3), neighbours_3);
P([nv; newsep], [nv; newsep]) = W([nv; newsep], [nv; newsep]);

% separators← separators∪nt
separators(end+1, :) = newsep;

% replace triangles where some of the vertices were changed
new_clique = [newsep’ nv];
triangles_updated = triangles;
changed_triangles = [];
for iv = 1:length(new_clique)

if (new_clique(iv) ˜= this_clique(iv))
idx_t = find(triangles == this_clique(iv));
triangles_updated(idx_t) = new_clique(iv);
[tt ˜] = ind2sub(size(triangles), idx_t);
changed_triangles = unique([changed_triangles’ tt’].’);

end
end

triangles = triangles_updated;

% here we are applying the T2 operator
% ta, tb, tc← T2(nt,nv)
% nt disappears from the triangular basis, replaced by one
% of the three new triangles ...
% triangles← triangles\nt
% triangles← triangles∪ ta ∪ tb ∪ tc
triangles(nt, :) = [newsep(1) newsep(2) nv];
triangles(end+1, :) = [newsep(1) newsep(3) nv];
triangles(end+1, :) = [newsep(2) newsep(3) nv];

% vertex list← vertex list \ vertices(new clique)
vertex_list = setdiff(vertex_list, last_added_v);

% update the gain table by updating the gains corresponding to the now
% unfeasible vertex nv
if ˜isempty(vertex_list)

for t = find(best_vertex == last_added_v).’
[max_clique_gains(t) best_vertex(t)] = get_best_gain(vertex_list,

triangles(t,:), W);
end

end

% update the gain table by calculating the gains for ta, tb, tc
max_clique_gains(nt) = 0.0;
best_vertex(nt) = 0;
ct = size(triangles, 1);
if ˜isempty(vertex_list)

for t = [nt (ct-1) ct]
[max_clique_gains(t) best_vertex(t)] = get_best_gain(vertex_list,

triangles(t,:), W);
end

end

% update the gain table by calculating the gains for the traingles that
% have been changed
if ˜isempty(vertex_list)

9.1. Computer Codes 204

for t = changed_triangles’
if max_clique_gains(t) ˜= 0

[max_clique_gains(t) best_vertex(t)] = get_best_gain(vertex_list,
triangles(t,:), W);

end
end

end
end
end

function [gain vertex] = get_best_gain(vertex_list, triangle, W)
% the gain function in this case is the sum of the edges introduced by
% the T2.
% it cas also be seen as the sum of the edges of the new clique minus the
% sum of edges of the separator.

gvec(vertex_list) = W(vertex_list, triangle(1)) + W(vertex_list, triangle(2)) + W(
vertex_list, triangle(3));
[gain vertex] = max(gvec);

end

function cl = max_clique(W)
% return the first four vertices in order of sum where the weights
% exceed the mean of the weight matrix.

v = sum(W.*(W>mean(W(:))),2);
[˜, sortindex] = sort(v, ’descend’);
cl = sortindex(1:4);

end

./Code/TMFG matlab/TMFGS.m

9.1.4 TMFG-A
function [P, triangles, tc] = TMFGA(w, num_swaps)
% A variant of the TMFG algorithm, characterised by two features:
% - uses three operators: T2, T1 and A.
% - It works on pairs of triangles (t1, t2), rather than a single triangle
% according to 5 possible operations:
% 1) T2 on t1
% 2) T2 on t2
% 3) A on t1 and t2
% 4) T2 on t1 followed by T1
% 5) T2 on t2 followed by T1
% It does not build a chordal graph and therefore does not return cliques
% nor separators.
% Uses a sparse matrix to track the pairs of adjacent triangles
% upon which the operators act.
% The gain function is simply the sum of the new edges introduced by the
% chosen operation. The gain table in this case, differently from the
% traditional TMFG implementation has the cardinality of the pairs of
% adjacent triangles.
%
% INPUT:
% - W: a weighted network
% - num swaps: how many T1 optimisation steps can
% be done
%
% OUTPUT:
% - P: the filtered TMFG graph
% - triangles: the list of triangular faces
% - tc: triangles contact structure

n = size(w,1); % n = |V |
P = sparse(n,n); % sparse matrix

% the gain table now is indexed by the ids of two triangles. The entry is
% not empty only if the triangles are adjacent. Differently from the TMFG
% we have three structures: the conatiner of the gains, the container of
% the vertices that attain the best gains, and -new- the operation that
% attains the best gain.
max_tc_gains = sparse(3*n,3*n); % gains

9.1. Computer Codes 205

best_vertex = sparse(3*n,3*n); % best vertices
best_op = sparse(3*n,3*n); % best operation (1 to 5)

tc = sparse(false(3*n,3*n)); % holds the contact structure between triangular faces
triangles = sparse(false(3*n, n)); % triangular faces
triangles_changed = []; % triangles that have been changed and require an update

% Get first simplex using max clique
% cliques← max clique
% vertex list← vertex list \ vertices(max clique)
% t1, t2, t3, t4 = f aces(max clique)
% triangles← t1 ∪ t2 ∪ t3 ∪ t4
K_4 = max_clique(w);
vertex_list = setdiff(1:n, K_4);
triangles(K_4([1 2 3]), 1) = true;
triangles(K_4([1 2 4]), 2) = true;
triangles(K_4([1 3 4]), 3) = true;
triangles(K_4([2 3 4]), 4) = true;
% Flag triangles changed so that the gain is calculated for them
triangles_changed([1 2 3 4]) = 1;

% Populate the contact structure, all triangles share an edge
tc([1 2 3 4], [1 2 3 4]) = 1;
tc = tril(tc, -1);
w(1:(n+1):nˆ2) = 0;

P(K_4, K_4) = w(K_4, K_4);

% init gain matrix
% Lower triangular
% Loop over adjacent triangles and find best operation and best gain
% ∀(ta, tb), ta, tb ∈ {t1, t2, t3, t4} ta 6= tb :
% choose v ∈ vertex list with best gain for (ta, tb) and corresponding gain and operation
[row, col, ˜] = find(tril(tc));
for idx = 1:numel(row)

[max_tc_gains(row(idx), col(idx)) best_vertex(row(idx), col(idx)) best_op(row(idx)
, col(idx))] = ...

get_loz_gains(w, triangles, row(idx), col(idx), vertex_list, P);
end

% there are n−4 outstanding vertices to be added
for i = 1:(n-4)

% get maximum local gain and corresponding plaquette nt and vertex nv
[˜, nt] = max(max_tc_gains(:)); % this is a matrix maximum
nv = best_vertex(nt); % nv is the vertex to insert
op = best_op(nt); % op is the operation to apply

% get triangles nt = (ta, tb) that make up the plaquette
[t1 t2] = ind2sub(size(max_tc_gains), nt);

% apply the operation to the plaquette
% this can change the structure of triangles and plaquettes
[P triangles tc triangles_changed] = apply_op(op, w, nv, P, t1, t2, triangles, tc)
;

% vertex list← vertex list \ vertices(new clique)
vertex_list = setdiff(vertex_list, nv);

% delete gains where a plaquette was deleted
max_tc_gains = max_tc_gains .* (tc ˜= 0);
best_vertex = best_vertex .* (tc ˜= 0);
best_op = best_op .* (tc ˜= 0);

% update max gains where the vertex nv was involved
if ˜isempty(vertex_list)

[row col val] = find(best_vertex == nv);
for idx = 1:numel(row)

max_tc_gains(row(idx), col(idx))= 0;
best_vertex(row(idx), col(idx))= 0;
best_op(row(idx), col(idx))= 0;
if tc(row(idx), col(idx)) == true

9.1. Computer Codes 206

[max_tc_gains(row(idx), col(idx)) best_vertex(row(idx), col(idx))
best_op(row(idx), col(idx))] = ...

get_loz_gains(w, triangles, row(idx), col(idx), vertex_list, P);
end

end
for it = 1:num_swaps

[P triangles tc triangles_changed] = apply_swaps(w, P, triangles, tc);
end

% recalculate gains for plaquettes where triangles were changed
[row col val] = find(tril(tc));
for idx = 1:numel(row)

if triangles_changed(row(idx)) || triangles_changed(col(idx)) ||
max_tc_gains(row(idx), col(idx)) == 0

[max_tc_gains(row(idx), col(idx)) best_vertex(row(idx), col(idx))
best_op(row(idx), col(idx))] = ...

get_loz_gains(w, triangles, row(idx), col(idx), vertex_list, P);
triangles_changed(row(idx)) = 0;
triangles_changed(col(idx)) = 0;

end
end

end
end

end

function cl = max_clique(W)
% return the first four vertices in order of sum where the weights
% exceed the mean of the weight matrix.

v = sum(W.*(W>mean(W(:))),2);
% v = sum(W .* W);
[˜, sortindex] = sort(v, ’descend’);
cl = sortindex(1:4);

end

% support function returns true is two triangles are neighbours, i.e. share
% an edge.
function isn = is_neighbour(triangles, t1, t2)

cnt = length(find(triangles(:, t1) & triangles(:, t2)));
if cnt == 2 ; isn = true; else isn = 0 ;end

end

function [loz_gain vertex op] = get_loz_gains(w, triangles, t1, t2, vertex_list, P)
gvec = zeros(numel(vertex_list), 6);

N = tsetdiff(triangles, t1, t2);
S = tsetdiff(triangles, t2, t1);

tmp = tintersect(triangles, t1, t2);
if (numel(tmp) ˜= 2)

fprintf(’numel %d\n’, numel(tmp));
end
W = tmp(1);
E = tmp(2);
% Different gain functions for the different operations. Below the
% layout for the plaquette with N(orth), S(outh), W(est), E(ast) nodes.
% N
% / \
% / \
% W --- E
% \ /
% \ /
% S
% operation 1
gvec(vertex_list, 1) = w(vertex_list, N) + w(vertex_list, W) + w(vertex_list, E);
% operation 2
gvec(vertex_list, 2) = w(vertex_list, N) + w(vertex_list, S) + w(vertex_list, E) +
w(vertex_list, W) - w(W,E);

% operation 3
gvec(vertex_list, 3) = w(vertex_list, S) + w(vertex_list, W) + w(vertex_list, E);
if (P(N,S) == 0)

% operation 4

9.1. Computer Codes 207

gvec(vertex_list, 4) = w(vertex_list, N) + w(vertex_list, S) + w(vertex_list,
W) + w(N,S) - w(W,E);

% operation 5
gvec(vertex_list, 5) = w(vertex_list, N) + w(vertex_list, S) + w(vertex_list,

E) + w(N,S) - w(W,E);
else

% operation 4
gvec(vertex_list, 4) = 0;
% operation 5
gvec(vertex_list, 5) = 0;

end

idx = find(gvec == max(max(gvec)));
loz_gain = gvec(idx);
[vertex op] = ind2sub(size(gvec), idx);

end

function [P triangles tc triangles_changed] = apply_op(op, w, nv, P, t1, t2, triangles
, tc)
triangles_changed = [];
N = tsetdiff(triangles, t1, t2);
S = tsetdiff(triangles, t2, t1);
tmp = tintersect(triangles, t1, t2);
if (numel(tmp) <2)

fprintf(’hhh\n’)
end
W = tmp(1);
E = tmp(2);
C = nv;
switch op

case 1
% adjust triangles
triangles(:, t1) = false;
triangles([W E C], t1) = true;
triangles_changed(t1) = 1;
[˜, y] = find(triangles) ; t3 = max(y) +1;
t4 = t3 + 1;
triangles(:, t3) = false;
triangles([W C N], t3) = true;
triangles_changed(t3) = 1;
triangles(:, t4) = false;
triangles([E C N], t4) = true;
triangles_changed(t4) = 1;
% adjust tc externally
% find triangles bordering with t1
for tn = find_neib(tc, t1)

if tn == t2
% do nothing because t1 and t2 are neighbours anyway by
% construction

end
if is_neighbour(triangles, tn, t3)

tc = connecttril(tc, tn, t3);
tc(max(tn, t1), min(tn,t1)) = 0;
triangles_changed(tn) = 1;

end
if is_neighbour(triangles, tn, t4)

tc = connecttril(tc, tn, t4);
tc(max(tn, t1), min(tn,t1)) = 0;
triangles_changed(tn) = 1;

end
end
% adjust tc internally
tc(t1,:) =0; tc(:,t1)= 0;
tc = connecttril(tc, t1, t2);
tc = connecttril(tc, t1, t3);
tc = connecttril(tc, t1, t4);
tc = connecttril(tc, t3, t4);
% adjust P
P(W, C) = w(W, C); P(C, W) = w(C, W);
P(E, C) = w(E, C); P(C, E) = w(C, E);
P(N, C) = w(N, C); P(C, N) = w(C, N);

case 2

9.1. Computer Codes 208

triangles(:, t1) = false;
triangles([W C N], t1) = true;
triangles_changed(t1) = 1;
triangles(:, t2) = false;
triangles([W C S], t2) = true;
triangles_changed(t2) = 1;
[˜, y] = find(triangles) ; t3 = max(y) +1;
t4 = t3 + 1;
triangles(:, t3) = false;
triangles([N C E], t3) = true;
triangles_changed(t3) = 1;
triangles(:, t4) = false;
triangles([S C E], t4) = true;
triangles_changed(t4) = 1;
% adjust tc externally
% boundary triangles
tb1 = find_neib(tc, t1);
tb2 = find_neib(tc, t2);
tb = union(tb1, tb2);
tc(t1, :) = 0; tc(:, t1) = 0;
tc(t2, :) = 0; tc(:, t2) = 0;
for tn = tb

if is_neighbour(triangles, tn, t1)
tc(max(tn, t1), min(tn,t1)) = 1;
triangles_changed(tn) = 1;

end
if is_neighbour(triangles, tn, t2)

tc(max(tn, t2), min(tn,t2)) = 1;
triangles_changed(tn) = 1;

end
if is_neighbour(triangles, tn, t3)

tc(max(tn, t3), min(tn,t3)) = 1;
triangles_changed(tn) = 1;

end
if is_neighbour(triangles, tn, t4)

tc(max(tn, t4), min(tn,t4)) = 1;
triangles_changed(tn) = 1;

end
end
% adjust tc internally
tc = connecttril(tc, t1, t3);
tc = connecttril(tc, t1, t2);
tc = connecttril(tc, t2, t4);
tc = connecttril(tc, t3, t4);
% adjust P
P(W, E) = 0; P(E, W) = 0;
P(W, C) = w(W, C); P(C, W) = w(C, W);
P(E, C) = w(E, C); P(C, E) = w(C, E);
P(S, C) = w(S, C); P(C, S) = w(C, S);
P(N, C) = w(N, C); P(C, N) = w(C, N);

case 3
% adjust triangles
triangles(:, t2) = false;
triangles([W E C], t2) = true;
triangles_changed(t2) = 1;
[˜, y] = find(triangles) ; t3 = max(y) +1;
t4 = t3 + 1;
triangles(:, t3) = false;
triangles([W C S], t3) = true;
triangles_changed(t3) = 1;
triangles(:, t4) = false;
triangles([E C S], t4) = true;
triangles_changed(t4) = 1;
% adjust tc externally
% find triangles bordering with t1
for tn = find_neib(tc, t2)

if tn == t1
% do nothing

end
if is_neighbour(triangles, tn, t3)

tc(max(tn, t3), min(tn,t3)) = 1;
tc(max(tn, t2), min(tn,t2)) = 0;

9.1. Computer Codes 209

triangles_changed(tn) = 1;
end
if is_neighbour(triangles, tn, t4)

tc(max(tn, t4), min(tn,t4)) = 1;
tc(max(tn, t2), min(tn,t2)) = 0;
triangles_changed(tn) = 1;

end
end
% adjust tc internally
tc(t2,:) =0; tc(:,t2)= 0;
tc = connecttril(tc, t1, t2);
tc = connecttril(tc, t2, t3);
tc = connecttril(tc, t2, t4);
tc = connecttril(tc, t3, t4);
% adjust P
P(W, C) = w(W, C);
P(C, W) = w(C, W);
P(E, C) = w(E, C);
P(C, E) = w(C, E);
P(S, C) = w(S, C);
P(C, S) = w(C, S);

case 4
% t1
triangles(:, t1) = false;
triangles([W C N], t1) = true;
triangles_changed(t1) = 1;
% t2
triangles(:, t2) = false;
triangles([W C S], t2) = true;
triangles_changed(t2) = 1;
% increment triangles count
[˜, y] = find(triangles) ; t3 = max(y) +1;
t4 = t3 + 1;
% t3
triangles(:, t3) = false;
triangles([N S C], t3) = true;
triangles_changed(t3) = 1;
% t4
triangles(:, t4) = false;
triangles([N S E], t4) = true;
triangles_changed(t4) = 1;
% process neighboring triangles
tb1 = find_neib(tc, t1);
tb2 = find_neib(tc, t2);
tb = union(tb1, tb2);
% disconnect neighboring triangles
tc(t1, :) = 0; tc(:, t1) = 0;
tc(t2, :) = 0; tc(:, t2) = 0;
% reconnect external triangles
for tn = tb

if is_neighbour(triangles, tn, t1)
tc = connecttril(tc, tn, t1);
triangles_changed(tn) = 1;

end
if is_neighbour(triangles, tn, t2)

tc = connecttril(tc, tn, t2);
triangles_changed(tn) = 1;

end
if is_neighbour(triangles, tn, t3)

tc = connecttril(tc, tn, t3);
triangles_changed(tn) = 1;

end
if is_neighbour(triangles, tn, t4)

tc = connecttril(tc, tn, t4);
triangles_changed(tn) = 1;

end
end
% adjust tc internally
tc = connecttril(tc, t1, t2);
tc = connecttril(tc, t1, t3);
tc = connecttril(tc, t2, t3);
tc = connecttril(tc, t3, t4);

9.1. Computer Codes 210

% adjust P
P(W, E) = 0; P(E, W) = 0;
P(N, S) = w(N, S); P(S, N) = w(S, N);
P(S, C) = w(S, C); P(C, S) = w(C, S);
P(N, C) = w(N, C); P(C, N) = w(C, N);
P(W, C) = w(W, C); P(C, W) = w(C, W);

case 5
% t1
triangles(:, t1) = false;
triangles([N E C], t1) = true;
triangles_changed(t1) = 1;
% t2
triangles(:, t2) = false;
triangles([E C S], t2) = true;
triangles_changed(t2) = 1;
% increment triangles count
[˜, y] = find(triangles) ; t3 = max(y) +1;
t4 = t3 + 1;
% t3
triangles(:, t3) = false;
triangles([N S C], t3) = true;
triangles_changed(t3) = 1;
% t4
triangles(:, t4) = false;
triangles([N S W], t4) = true;
triangles_changed(t4) = 1;
% process neighboring triangles
tb1 = find_neib(tc, t1);
tb2 = find_neib(tc, t2);
tb = union(tb1, tb2);
% disconnect neighboring triangles
tc(t1, :) = 0; tc(:, t1) = 0;
tc(t2, :) = 0; tc(:, t2) = 0;
% reconnect external triangles
for tn = tb

if is_neighbour(triangles, tn, t1)
tc = connecttril(tc, tn, t1);
triangles_changed(tn) = 1;

end
if is_neighbour(triangles, tn, t2)

tc = connecttril(tc, tn, t2);
triangles_changed(tn) = 1;

end
if is_neighbour(triangles, tn, t3)

tc = connecttril(tc, tn, t3);
triangles_changed(tn) = 1;

end
if is_neighbour(triangles, tn, t4)

tc = connecttril(tc, tn, t4);
triangles_changed(tn) = 1;

end
end
% adjust tc internally
tc = connecttril(tc, t1, t2);
tc = connecttril(tc, t1, t3);
tc = connecttril(tc, t2, t3);
tc = connecttril(tc, t3, t4);
% adjust P
P(W, E) = 0; P(E, W) = 0;
P(N, S) = w(N, S); P(S, N) = w(S, N);
P(S, C) = w(S, C); P(C, S) = w(C, S);
P(N, C) = w(N, C); P(C, N) = w(C, N);
P(E, C) = w(E, C); P(C, E) = w(C, E);

otherwise
fprintf(’some serious error here’);
return;

end
end

function [P triangles tc triangles_changed] = apply_swaps(w, P, triangles, tc)
[row col] = find(tril(tc));
for idx = 1:numel(row)

9.1. Computer Codes 211

t1 = row(idx); t2 = col(idx);
if ˜tc(t1, t2) % the contact might have changed in the loop

continue;
end
N = tsetdiff(triangles, t1, t2);
S = tsetdiff(triangles, t2, t1);
tmp = tintersect(triangles, t1, t2);
W = tmp(1);
E = tmp(2);
triangles_changed(t1) = 0; triangles_changed(t2) = 0;
if w(N, S) > w(W, E) && P(N, S) == 0

P(W, E) = 0; P(E, W) = 0;
P(N, S) = w(N, S); P(S, N) = w(S, N);
triangles(:, t1) = false;
triangles([N W S], t1) = true;
triangles_changed(t1) = true;
triangles(:, t2) = false;
triangles([N S E], t2) = true;
triangles_changed(t2) = true;

tb1 = find_neib(tc, t1);
tb2 = find_neib(tc, t2);
tb = union(tb1, tb2);
% disconnect neighboring triangles
tc(t1, :) = 0; tc(:, t1) = 0;
tc(t2, :) = 0; tc(:, t2) = 0;
% reconnect external triangles
for tn = tb

if is_neighbour(triangles, tn, t1)
tc = connecttril(tc, tn, t1);
triangles_changed(tn) = 1;

end
if is_neighbour(triangles, tn, t2)

tc = connecttril(tc, tn, t2);
triangles_changed(tn) = 1;

end
end
tc = connecttril(tc, t1, t2);

end
end

end

function tsd = tsetdiff(triangles, t1, t2)
tsd = find(triangles(:,t1) & ˜triangles(:, t2));

end

function tc = connecttril(tc, u,v)
tc(max(u, v), min(u, v)) = 1;

end

function ti = tintersect(triangles, t1, t2)
ti = find(triangles(:, t1) & triangles(:, t2));

end

function ti = txor(triangles, t1, t2)
ti = find(xor(triangles(:, t1),triangles(:, t2)));

end

function tn = find_neib(tc, t1)
tn = union(find(tc(t1,:)), find(tc(:,t1)));
if size(tn, 1) ˜= 1, tn = tn’; end

end

./Code/TMFG matlab/TMFGA.m

Bibliography

H. Akaike. Information theory and an extension of the maximum likelihood principle.

In B. N. Petrov and F. Csaki, editors, Second International Symposium on Informa-

tion Theory, pages 267–281, Budapest, 1973. Akadémiai Kiado.

Hirotogu Akaike. Information theory and an extension of the maximum likelihood

principle. In Selected Papers of Hirotugu Akaike, pages 199–213. Springer, 1998.

Hirotugu Akaike. A new look at the statistical model identification. Automatic Control,

IEEE Transactions on, 19(6):716–723, 1974.

Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks.

Reviews of Modern Physics, 74(1):47, 2002.

J. W. Alexander. The combinatorial theory of complexes. Ann. of Math., 31:294–322,

1930.

Theodore Wilbur Anderson. An introduction to multivariate statistical analysis. 1962.

J. S. Andrade Jr., H. J. Herrmann, R. F. S. Andrade, and L. R. da Silva. Apollonian

networks: Simultaneously scale-free, small world, euclidean, space-filling and with

matching graphs. Phys. Rev. Lett., 94:018702, 2005. e-print: cond-mat/0406295.

T. Aste. An algorithm to compute maximally filtered planar graphs.

http://www.mathworks.com/ matlabcentral/fileexchange/27360, 2014. URL http:

//www.mathworks.com/matlabcentral/fileexchange/27360.

T. Aste and D. Sherrington. Glass transition in self organizing cellular patterns. J. Phys.

A: Math. Gen., 32:7049–56, 1999.

http://www.mathworks.com/matlabcentral/fileexchange/27360
http://www.mathworks.com/matlabcentral/fileexchange/27360

BIBLIOGRAPHY 213

T. Aste, T. Di Matteo, and S.T. Hyde. Complex networks on hyperbolic surfaces.

Physica A, 346:20–26, 2005a.

T Aste, T Di Matteo, and ST Hyde. Complex networks on hyperbolic surfaces. Physica

A: Statistical Mechanics and its Applications, 346(1):20–26, 2005b.

T Aste, W Shaw, and T Di Matteo. Correlation structure and dynamics in volatile

markets. New Journal of Physics, 12(8):085009, 2010a. URL http://stacks.

iop.org/1367-2630/12/i=8/a=085009.

Tomaso Aste, W Shaw, and T Di Matteo. Correlation structure and dynamics in volatile

markets. New Journal of Physics, 12(8):085009, 2010b.

Tomaso Aste, Ruggero Gramatica, and T. Di Matteo. Random and frozen states in

complex triangulations. Philosophical Magazine, 92:246–254, 2012a. doi: 10.1080/

14786435.2011.613861. URL http://www.tandfonline.com/doi/abs/

10.1080/14786435.2011.613861.

Tomaso Aste, Ruggero Gramatica, and T Di Matteo. Exploring complex networks via

topological embedding on surfaces. Phys. Rev. E, 86(3):036109, 2012b.

Kunihiro Baba, Ritei Shibata, and Masaaki Sibuya. Partial correlation and condi-

tional correlation as measures of conditional independence. Australian & New

Zealand Journal of Statistics, 46(4):657–664, 2004. ISSN 1467-842X. doi:

10.1111/j.1467-842X.2004.00360.x. URL http://dx.doi.org/10.1111/

j.1467-842X.2004.00360.x.

Francis R Bach and Michael I Jordan. Thin junction trees. In Advances in Neural

Information Processing Systems, pages 569–576, 2001.

Francis R Bach and Michael I Jordan. Kernel independent component analysis. Journal

of machine learning research, 3(Jul):1–48, 2002.

Francis R Bach and Michael I Jordan. Learning graphical models with mercer kernels.

In Advances in Neural Information Processing Systems, pages 1033–1040, 2003.

Jushan Bai, Serena Ng, et al. Large dimensional factor analysis. Foundations and

Trends® in Econometrics, 3(2):89–163, 2008.

http://stacks.iop.org/1367-2630/12/i=8/a=085009
http://stacks.iop.org/1367-2630/12/i=8/a=085009
http://www.tandfonline.com/doi/abs/10.1080/14786435.2011.613861
http://www.tandfonline.com/doi/abs/10.1080/14786435.2011.613861
http://dx.doi.org/10.1111/j.1467-842X.2004.00360.x
http://dx.doi.org/10.1111/j.1467-842X.2004.00360.x

BIBLIOGRAPHY 214

Hans-Jurgen Bandelt and Victor Chepoi. Metric graph theory and geometry: a survey.

Contemporary Mathematics, 453:49–86, 2008.

Onureena Banerjee, Laurent El Ghaoui, Alexandre d’Aspremont, and Georges Nat-

soulis. Convex optimization techniques for fitting sparse gaussian graphical models.

In Proceedings of the 23rd international conference on Machine learning, pages 89–

96. ACM, 2006.

Onureena Banerjee, Laurent El Ghaoui, and Alexandre d’Aspremont. Model selection

through sparse maximum likelihood estimation for multivariate gaussian or binary

data. The Journal of Machine Learning Research, 9:485–516, 2008.

Albert-László Barabási. Emergence of scaling in complex networks. Handbook of

graphs and networks: from the genome to the internet, pages 69–84, 2002.

Albert-László Barabási. The network takeover. Nature Physics, 8(1):14, 2011.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks.

science, 286(5439):509–512, 1999.

David Barber. Bayesian reasoning and machine learning. Cambridge University Press,

2012.

Wolfram Barfuss, Guido Previde Massara, Tiziana Di Matteo, and Tomaso Aste. Par-

simonious modeling with information filtering networks. Physical Review E, 94(6):

062306, 2016.

Baruch Barzel, Amitabh Sharma, and Albert-Lszl Barabsi. Graph theory properties of

cellular networks, 2013.

Christopher M Bishop et al. Neural networks for pattern recognition. Oxford university

press, 1995.

Jean RS Blair and Barry Peyton. An introduction to chordal graphs and clique trees. In

Graph theory and sparse matrix computation, pages 1–29. Springer, 1993.

Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez. Rec-

ommender systems survey. Knowledge-based systems, 46:109–132, 2013.

BIBLIOGRAPHY 215

Andrej Bogdanov, Elchanan Mossel, and Salil Vadhan. The complexity of distinguish-

ing markov random fields. In Approximation, Randomization and Combinatorial

Optimization. Algorithms and Techniques, pages 331–342. Springer, 2008.

Béla Bollobás. Modern graph theory, volume 184. Springer Science & Business Me-

dia, 2013.

Giovanni Bonanno, Guido Caldarelli, Fabrizio Lillo, Salvatore Micciche, Nicolas Van-

dewalle, and Rosario Nunzio Mantegna. Networks of equities in financial markets.

The European Physical Journal B, 38(2):363–371, 2004.

Denny Borsboom. A network theory of mental disorders. 16:5–13, 2017. ISSN 1723-

8617. doi: 10.1002/wps.20375.

Otakar Boruvka. O jistém problému minimálnı́m. Práce Mor. Prırodved. Spol. v Brne

(Acta Societ. Scienc. Natur. Moravicae), 3(3):37–58, 1926.

Raouf Boutaba, Mohammad A. Salahuddin, Noura Limam, Sara Ayoubi, Nashid

Shahriar, Felipe Estrada-Solano, and Oscar M. Caicedo. A comprehensive survey

on machine learning for networking: evolution, applications and research oppor-

tunities. Journal of Internet Services and Applications, 9(1):16, Jun 2018. ISSN

1869-0238. doi: 10.1186/s13174-018-0087-2. URL https://doi.org/10.

1186/s13174-018-0087-2.

John M Boyer and Wendy Myrvold. Simplified o(n) planarity algorithms. 2001.

Jol Bun, Jean-Philippe Bouchaud, and Marc Potters. Cleaning large correla-

tion matrices: Tools from random matrix theory. Physics Reports, 666:1 –

109, 2017. ISSN 0370-1573. doi: https://doi.org/10.1016/j.physrep.2016.10.

005. URL http://www.sciencedirect.com/science/article/pii/

S0370157316303337.

James R Bunch and Donald J Rose. Sparse matrix computations. Academic Press,

2014.

Gunnar Carlsson. Topology and data. Bulletin of the American Mathematical Society,

46(2):255–308, 2009.

https://doi.org/10.1186/s13174-018-0087-2
https://doi.org/10.1186/s13174-018-0087-2
http://www.sciencedirect.com/science/article/pii/S0370157316303337
http://www.sciencedirect.com/science/article/pii/S0370157316303337

BIBLIOGRAPHY 216

Avishy Y Carmi, Lyudmila Mihaylova, and Simon J Godsill. Compressed sensing &

sparse filtering. Springer, 2014.

Gonzalo Castañeda Ramos and Omar A Guerrero. Evaluating policy priorities under

social learning and endogenous government behavior. Available at SSRN 3257917,

2018a.

Gonzalo Castañeda Ramos and Omar A Guerrero. The resilience of public policies in

economic development. 2018b.

Gonzalo Castañeda Ramos and Omar A Guerrero. The importance of social and gov-

ernment learning in ex ante policy evaluation. Journal of Policy Modeling, 41(2):

273–293, 2019.

Gonzalo Castañeda Ramos, Florian Chávez-Juárez, and Omar A Guerrero. How do

governments determine policy priorities? studying development strategies through

spillover networks. Studying Development Strategies Through Spillover Networks

(January 20, 2018), 2018.

Diane Castonguay, Elisângela Silva Dias, and Leslie Richard Foulds. Results for the

maximum weight planar subgraph problem. arXiv preprint arXiv:1712.05711, 2017.

Chung Chan and Tie Liu. Clustering by multivariate mutual information under chow-liu

tree approximation. In 2015 53rd Annual Allerton Conference on Communication,

Control, and Computing (Allerton), pages 993–999. IEEE, 2015.

Bernard Chazelle. A minimum spanning tree algorithm with inverse-ackermann type

complexity. 47:1028–1047, 2000. ISSN 0004-5411. doi: 10.1145/355541.355562.

Kwang-Cheng Chen, Mung Chiang, and H Vincent Poor. From technological networks

to social networks. IEEE Journal on Selected Areas in Communications, 31(9):548–

572, 2013.

David M Chickering, Dan Geiger, David Heckerman, et al. Learning bayesian networks

is np-hard. Technical report, Citeseer, 1994.

David Maxwell Chickering. Learning bayesian networks is np-complete. In Learning

from data, pages 121–130. Springer, 1996.

BIBLIOGRAPHY 217

Matteo Chinazzi and Giorgio Fagiolo. Systemic risk, contagion, and financial net-

works: A survey. Institute of Economics, Scuola Superiore SantAnna, Laboratory of

Economics and Management (LEM) Working Paper Series, (2013/08), 2015.

C. Chow and C. Liu. Approximating discrete probability distributions with dependence

trees. IEEE Transactions on Information Theory, 14(3):462–467, May 1968. ISSN

0018-9448. doi: 10.1109/TIT.1968.1054142.

Alexander P Christensen, Katherine Cotter, Paul Silvia, and Mathias Benedek. Scale

development via network analysis: A comprehensive and concise measure of open-

ness to experience. 2018a.

Alexander P Christensen, Katherine N Cotter, and Paul J Silvia. Reopening openness to

experience: A network analysis of four openness to experience inventories. Journal

of Personality Assessment, pages 1–15, 2018b.

Alexander P Christensen, Yoed N Kenett, Tomaso Aste, Paul J Silvia, and Thomas R

Kwapil. Network structure of the wisconsin schizotypy scales–short forms: Exam-

ining psychometric network filtering approaches. Behavior research methods, 50(6):

2531–2550, 2018c.

Vinı́cius de S Coelho, Wellington S Martins, Leslie R Foulds, Elisângela S Dias, Diane

Castonguay, and Humberto J Longo. Uma proposta de solução aproximada para o

problema do subgrafo planar de peso máximo. XVII Simpósio em Sistemas Com-

putacionais de Alto Desempenho (WSCAD 2016), pages 16–27, 2016.

Pierre Comon. Independent component analysis, a new concept? Signal processing,

36(3):287–314, 1994.

Owen T Courtney and Ginestra Bianconi. Generalized network structures: The config-

uration model and the canonical ensemble of simplicial complexes. Physical Review

E, 93(6):062311, 2016.

Owen T Courtney and Ginestra Bianconi. Weighted growing simplicial complexes.

Physical Review E, 95(6):062301, 2017.

BIBLIOGRAPHY 218

Alexandre d’Aspremont, Onureena Banerjee, and Laurent El Ghaoui. First-order meth-

ods for sparse covariance selection. SIAM Journal on Matrix Analysis and Applica-

tions, 30(1):56–66, 2008.

JA van Lidth de Jeude, Tomaso Aste, and Guido Caldarelli. The multilayer structure of

corporate networks. New Journal of Physics, 21(2):025002, 2019.

Yves Colin de Verdiere. Sur un nouvel invariant des graphes et un critere de planarité.

Journal of Combinatorial Theory, Series B, 50(1):11–21, 1990.

A. P. Dempster. Covariance selection. Biometrics, 28(1):157–175, 1972.

Alexander Denev. Probabilistic Graphical Models: A New Way of Thinking in Finan-

cial Modelling. Risk Books, 2015.

Yue Deng, Qionghai Dai, and Zengke Zhang. An overview of computational sparse

models and their applications in artificial intelligence. In Artificial Intelligence, Evo-

lutionary Computing and Metaheuristics, pages 345–369. Springer, 2013.

Amol Deshpande, Minos Garofalakis, and Michael I Jordan. Efficient stepwise se-

lection in decomposable models. In Proceedings of the Seventeenth conference on

Uncertainty in artificial intelligence, pages 128–135. Morgan Kaufmann Publishers

Inc., 2001.

T Di Matteo, T Aste, ST Hyde, and S Ramsden. Interest rates hierarchical structure.

Physica A: Statistical Mechanics and its Applications, 355(1):21–33, 2005.

Tiziana Di Matteo and Tomaso Aste. How does the eurodollar interest rate behave?

International Journal of Theoretical and Applied Finance, 5(01):107–122, 2002.

Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics.

Springer, Heidelberg, 2010.

Gabriel Andrew Dirac. On rigid circuit graphs. In Abhandlungen aus dem Mathema-

tischen Seminar der Universität Hamburg, volume 25, pages 71–76. Springer, 1961.

Sergei N Dorogovtsev. Lectures on complex networks, volume 24. Oxford University

Press Oxford, 2010.

BIBLIOGRAPHY 219

M. Drton and M. H. Maathuis. Structure Learning in Graphical Modeling. Annual

Review of Statistics and Its Application, 4:365–393, March 2017. doi: 10.1146/

annurev-statistics-060116-053803.

Mathias Drton, Steffen Lilholt Lauritzen, Marloes Maathuis, and Martin Wainwright.

Handbook of Graphical Models. CRC Press, 2018.

B. Dubertret, T. Aste, H. M. Ohlenbusch, and N. Rivier. Two-dimensional froths and

the dynamics of biological tissues. Phys. Rev. E, 58(5):6368–6378, Nov 1998. doi:

10.1103/PhysRevE.58.6368.

Jean-Guillaume Dumas, Frank Heckenbach, David Saunders, and Volkmar Welker.

Computing simplicial homology based on efficient smith normal form algorithms.

In Algebra, Geometry and Software Systems, pages 177–206. Springer, 2003.

ME Dyer, Leslie Richard Foulds, and AM Frieze. Analysis of heuristics for finding a

maximum weight planar subgraph. European Journal of Operational Research, 20

(1):102–114, 1985.

David Easley and Jon Kleinberg. Networks, crowds, and markets: Reasoning about a

highly connected world. Cambridge University Press, 2010.

Daniel Eaton and Kevin Murphy. Bayesian structure learning using dynamic program-

ming and mcmc. arXiv preprint arXiv:1206.5247, 2012.

Robert Engle. Anticipating correlations: a new paradigm for risk management. Prince-

ton University Press, 2009.

Robert Engle and Riccardo Colacito. Testing and valuing dynamic correlations for

asset allocation. Journal of Business & Economic Statistics, 2012.

Jianqing Fan, Jinchi Lv, and Lei Qi. Sparse high-dimensional models in economics.

Annu. Rev. Econ., 3(1):291–317, 2011.

Paweł Fiedor. Networks in financial markets based on the mutual information rate.

Physical Review E, 89(5):052801, 2014.

BIBLIOGRAPHY 220

Ismail Onur Filiz, Xin Guo, Jason Morton, and Bernd Sturmfels. Graphical models for

correlated defaults. 22:621–644, 2012. ISSN 0960-1627. doi: 10.1111/j.1467-9965.

2011.00499.x.

Marcelo Fiori, Pablo Musé, and Guillermo Sapiro. Topology constraints in graphical

models. In Advances in Neural Information Processing Systems, pages 791–799,

2012.

LR Foulds and David F Robinson. Graph theoretic heuristics for the plant layout prob-

lem. THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 16(1):

27–37, 1978.

LR Foulds and DF Robinson. A strategy for solving the plant layout problem. Opera-

tional Research Quarterly, pages 845–855, 1976.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance

estimation with the graphical lasso. Biostatistics (Oxford, England), 9(3):432–441,

2008.

Prasanna Gai and Sujit Kapadia. Contagion in financial networks. 466:2401–2423,

2010. ISSN 1364-5021. doi: 10.1098/rspa.2009.0410.

Philippe Galinier, Michel Habib, and Christophe Paul. Chordal graphs and their clique

graphs. In International Workshop on Graph-Theoretic Concepts in Computer Sci-

ence, pages 358–371. Springer, 1995.

Robert Ghrist. Barcodes: the persistent topology of data. Bulletin of the American

Mathematical Society, 45(1):61–75, 2008.

Marian Gidea. Topological data analysis of critical transitions in financial networks.

In International Conference and School on Network Science, pages 47–59. Springer,

2017.

John Winston Giffin. Graph theoretic techniques for facilities layout. PhD thesis,

University of Canterbury, 1984.

BIBLIOGRAPHY 221

P Giudici and PJ Green. Decomposable graphical gaussian model determination.

Biometrika, 86(4):785–801, 1999. doi: 10.1093/biomet/86.4.785. URL +http:

//dx.doi.org/10.1093/biomet/86.4.785.

Paolo Giudici and Alessandro Spelta. Graphical network models for international fi-

nancial flows. Journal of Business & Economic Statistics, 34(1):128–138, 2016.

Chad Giusti, Eva Pastalkova, Carina Curto, and Vladimir Itskov. Clique topology re-

veals intrinsic geometric structure in neural correlations. Proceedings of the National

Academy of Sciences, 112(44):13455–13460, 2015.

Bornali Gogoi and Bichitra Kalita. Algorithm for designing vlsi floorplan using pla-

nar triangulated graph. International Journal of Information and Communication

Technology Research, 2(7), 2012.

Hudson Golino, Dingjing Shi, Luis Eduardo Garrido, AP Christensen, Marı́a Dolores

Nieto, Ritu Sadana, and Jotheeswaran Amuthavalli Thiyagarajan. Investigating the

performance of exploratory graph analysis and traditional techniques to identify the

number of latent factors: A simulation and tutorial, 2018.

Hudson F Golino and Sacha Epskamp. Exploratory graph analysis: A new approach

for estimating the number of dimensions in psychological research. PloS one, 12(6):

e0174035, 2017.

Martin Charles Golumbic. Algorithmic graph theory and perfect graphs, volume 57.

Elsevier, 2004.

RH Green and LAR Al-Hakim. A heuristic for facilities layout planning. Omega, 13

(5):469–474, 1985.

Arthur Gretton, Ralf Herbrich, Alexander Smola, Olivier Bousquet, and Bernhard

Schölkopf. Kernel methods for measuring independence. Journal of Machine Learn-

ing Research, 6(Dec):2075–2129, 2005.

Elizabeth Gross, Seth Sullivant, et al. The maximum likelihood threshold of a graph.

Bernoulli, 24(1):386–407, 2018.

+ http://dx.doi.org/10.1093/biomet/86.4.785
+ http://dx.doi.org/10.1093/biomet/86.4.785

BIBLIOGRAPHY 222

Omar A Guerrero and Gonzalo Castañeda Ramos. Quantifying the coherence of devel-

opment policy priorities. Available at SSRN 3264005, 2018.

Frank Harary and Edgar M Palmer. Graphical enumeration. Elsevier, 2014.

Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with

sparsity: the lasso and generalizations. CRC press, 2015.

Jose Sergio Hleap and Christian Blouin. Inferring meaningful communities from

topology-constrained correlation networks. PLOS ONE, 9(11):1–9, 11 2014. doi: 10.

1371/journal.pone.0113438. URL https://doi.org/10.1371/journal.

pone.0113438.

Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for

nonorthogonal problems. Technometrics, 12(1):55–67, 1970.

John Hopcroft and Robert Tarjan. Efficient planarity testing. Journal of the ACM

(JACM), 21(4):549–568, 1974.

Anne-Caroline Hser. Too interconnected to fail: A survey of the interbank net-

works literature. SAFE Working Paper Series 91, Research Center SAFE - Sustain-

able Architecture for Finance in Europe, Goethe University Frankfurt, 2015. URL

https://ideas.repec.org/p/zbw/safewp/91.html.

Cho-jui Hsieh, Inderjit S. Dhillon, Pradeep K. Ravikumar, and Mátyás A. Sustik.

Sparse inverse covariance matrix estimation using quadratic approximation. In

J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira, and K.Q. Weinberger,

editors, Advances in Neural Information Processing Systems 24, pages 2330–2338.

Curran Associates, Inc., 2011. URL http://papers.nips.cc/paper/

4266-sparse-inverse-covariance-matrix-estimation-using-quadratic-approximation.

pdf.

Kaizhu Huang, Irwin King, and Michael R Lyu. Constructing a large node chow-liu tree

based on frequent itemsets. In Neural Information Processing, 2002. ICONIP’02.

Proceedings of the 9th International Conference on, volume 1, pages 498–502.

IEEE, 2002.

https://doi.org/10.1371/journal.pone.0113438
https://doi.org/10.1371/journal.pone.0113438
https://ideas.repec.org/p/zbw/safewp/91.html
http://papers.nips.cc/paper/4266-sparse-inverse-covariance-matrix-estimation-using-quadratic-approximation.pdf
http://papers.nips.cc/paper/4266-sparse-inverse-covariance-matrix-estimation-using-quadratic-approximation.pdf
http://papers.nips.cc/paper/4266-sparse-inverse-covariance-matrix-estimation-using-quadratic-approximation.pdf

BIBLIOGRAPHY 223

Ke Huang and Selin Aviyente. Sparse representation for signal classification. In Ad-

vances in neural information processing systems, pages 609–616, 2007.

Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms and

applications. Neural networks, 13(4-5):411–430, 2000.

Giovanni Iacobello, Stefania Scarsoglio, Hans Kuerten, and Luca Ridolfi. Spatial net-

work investigation of wall turbulence. In BOOK OF ABSTRACTS, page 300, 2017.

Trey Ideker and Ruth Nussinov. Network approaches and applications in biology. PLOS

Computational Biology, 13(10):1–3, 10 2017. doi: 10.1371/journal.pcbi.1005771.

URL https://doi.org/10.1371/journal.pcbi.1005771.

Amir Globerson Tommi Jaakkola. Approximate inference using planar graph decom-

position. In Advances in Neural Information Processing Systems 19: Proceedings of

the 2006 Conference, volume 19, page 473. MIT Press, 2007.

Matthew O Jackson. Social and economic networks. Princeton university press, 2010.

Matthew O. Jackson. An overview of social networks and economic applications. In

Handbook of social economics, volume 1, pages 511–585. Elsevier, 2011. doi: 10.

1016/b978-0-444-53187-2.00012-7.

Beatrix Jones, Carlos Carvalho, Adrian Dobra, Chris Hans, Chris Carter, Mike West,

et al. Experiments in stochastic computation for high-dimensional graphical models.

Statistical Science, 20(4):388–400, 2005.

Michael Jünger and Petra Mutzel. Solving the maximum weight planar subgraph prob-

lem by branch-and-cut. 1993.

David Karger and Nathan Srebro. Learning markov networks: Maximum bounded

tree-width graphs. In Proceedings of the twelfth annual ACM-SIAM symposium on

Discrete algorithms, pages 392–401. Society for Industrial and Applied Mathemat-

ics, 2001.

Ross Kindermann, James Laurie Snell, et al. Markov random fields and their applica-

tions, volume 1. American Mathematical Society Providence, RI, 1980.

https://doi.org/10.1371/journal.pcbi.1005771

BIBLIOGRAPHY 224

Alexander Kirpich, Elizabeth A Ainsworth, Jessica M Wedow, Jeremy RB Newman,

George Michailidis, and Lauren M McIntyre. Variable selection in omics data: A

practical evaluation of small sample sizes. PloS one, 13(6):e0197910, 2018.

Sergey Kirshner, Padhraic Smyth, and Andrew W Robertson. Conditional chow-liu

tree structures for modeling discrete-valued vector time series. In Proceedings of

the 20th conference on Uncertainty in artificial intelligence, pages 317–324. AUAI

Press, 2004.

Oliver Knill. A discrete gauss-bonnet type theorem. arXiv preprint arXiv:1009.2292,

2010.

Oliver Knill. On index expectation and curvature for networks. arXiv preprint

arXiv:1202.4514, 2012.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and tech-

niques. MIT press, 2009.

Timo Koski. Lectures on statistical learning theory for chow-liu trees. The 32nd Finnish

Summer School on Probability Theory, 2010.

Timo JT Koski and John Noble. A review of bayesian networks and structure learning.

Mathematica Applicanda, 40(1):51–103, 2012.

Edith Kovács and Tamás Szántai. Discovering the markov network structure. CoRR,

abs/1307.0643, 2013. URL http://arxiv.org/abs/1307.0643.

Joost Kruis and Gunter Maris. Three representations of the ising model. 6, 2016. ISSN

2045-2322. doi: 10.1038/srep34175.

H Ku and Solomon Kullback. Approximating discrete probability distributions. IEEE

Transactions on Information Theory, 15(4):444–447, 1969.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals

of mathematical statistics, 22(1):79–86, 03 1951. doi: 10.1214/aoms/1177729694.

URL http://dx.doi.org/10.1214/aoms/1177729694.

http://arxiv.org/abs/1307.0643
http://dx.doi.org/10.1214/aoms/1177729694

BIBLIOGRAPHY 225

Casimir Kuratowski. Sur le probleme des courbes gauches en topologie. Fundamenta

mathematicae, 15(1):271–283, 1930.

Laurent Laloux, Pierre Cizeau, Jean-Philippe Bouchaud, and Marc Potters. Noise

dressing of financial correlation matrices. Physical review letters, 83(7):1467, 1999.

Steffen Lauritzen. Structure estimation in graphical models. Wald Lecture, World

Meeting on Probability and Statistics, 2012.

Steffen L Lauritzen. Graphical models. Oxford University Press, 1996.

Steffen L Lauritzen and David J Spiegelhalter. Local computations with probabilities

on graphical structures and their application to expert systems. Journal of the Royal

Statistical Society. Series B (Methodological), pages 157–224, 1988.

Christophe Lecoutre. Constraint Networks: Targeting Simplicity for Techniques and

Algorithms. John Wiley & Sons, 2013.

Olivier Ledoit and Michael Wolf. Improved estimation of the covariance matrix of

stock returns with an application to portfolio selection. Journal of empirical finance,

10(5):603–621, 2003.

Olivier Ledoit and Michael Wolf. Honey, i shrunk the sample covariance ma-

trix. The Journal of Portfolio Management, 30(4):110–119, 2004. ISSN 0095-

4918. doi: 10.3905/jpm.2004.110. URL http://jpm.iijournals.com/

content/30/4/110.

Thomas Lengauer. Combinatorial algorithms for integrated circuit layout. John Wiley

& Sons, Inc., New York, NY, USA, 1990. ISBN 0-471-92838-0.

Janny Leung. A new graph-theoretic heuristic for facility layout. Management Science,

38(4):594–605, 1992.

Weihua Li, Tomaso Aste, Fabio Caccioli, and Giacomo Livan. Reciprocity and success

in academic careers. arXiv preprint arXiv:1808.03781, 2018.

Weihua Li, Tomaso Aste, Fabio Caccioli, and Giacomo Livan. Early coauthorship with

top scientists predicts success in academic careers. Nature communications, 10(1):

1–9, 2019.

http://jpm.iijournals.com/content/30/4/110
http://jpm.iijournals.com/content/30/4/110

BIBLIOGRAPHY 226

Annegret Liebers. Planarizing graphs—a survey and annotated bibliography. Journal

of Graph Algorithms and Applications, 5(1):74 p.–74 p., 2001. URL http://

eudml.org/doc/48836.

Han Liu, Min Xu, Haijie Gu, Anupam Gupta, John Lafferty, and Larry Wasserman.

Forest density estimation. Journal of Machine Learning Research, 12(Mar):907–

951, 2011.

Giacomo Livan, Fabio Caccioli, and Tomaso Aste. Excess reciprocity distorts reputa-

tion in online social networks. Scientific reports, 7(1):3551, 2017.

László Lovász. Graph minor theory. Bulletin of the American Mathematical Society,

43(1):75–86, 2006.

Saunders Mac Lane. A combinatorial condition for planar graphs. Fundamenta Math-

ematicae, 28(1):22–32, 1937. URL http://eudml.org/doc/212919.

David Madigan, Jeremy York, and Denis Allard. Bayesian graphical models for

discrete data. International Statistical Review/Revue Internationale de Statistique,

pages 215–232, 1995.

Lorenzo Magnani. Reasoning through doing. epistemic mediators in scientific discov-

ery. Journal of Applied Logic, 2(4):439–450, 2004.

Francesco M Malvestuto. A backward selection procedure for approximating a dis-

crete probability distribution by decomposable models. Kybernetika, 48(5):825–844,

2012.

R. N. Mantegna. Hierarchical structure in financial markets. Eur. Phys. J. B, 11

(1):193–197, 1999. URL http://EconPapers.repec.org/RePEc:spr:

eurphb:v:11:y:1999:i:1:p:193-197.

Dimitris Margaritis and Sebastian Thrun. Bayesian network induction via local neigh-

borhoods. In Advances in neural information processing systems, pages 505–511,

2000.

Guido Previde Massara and Tomaso Aste. Learning clique forests. arXiv preprint

arXiv:1905.02266, 2019.

http://eudml.org/doc/48836
http://eudml.org/doc/48836
http://eudml.org/doc/212919
http://EconPapers.repec.org/RePEc:spr:eurphb:v:11:y:1999:i:1:p:193-197
http://EconPapers.repec.org/RePEc:spr:eurphb:v:11:y:1999:i:1:p:193-197

BIBLIOGRAPHY 227

Guido Previde Massara, Tiziana Di Matteo, and Tomaso Aste. Network filtering for

big data: triangulated maximally filtered graph. Journal of complex Networks, 5(2):

161–178, 2016.

Nicolai Meinshausen and Peter Bühlmann. High dimensional graphs and variable se-

lection with the lasso. Annals of Statistics, 34(3):1436–1462, 2006.

Mauro Mezzini and Marina Moscarini. Simple algorithms for minimal triangulation

of a graph and backward selection of a decomposable markov network. Theoretical

Computer Science, 411(7-9):958–966, 2010.

Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri

Alon. Network motifs: simple building blocks of complex networks. Science, 298

(5594):824–827, 2002.

Saad Zaghloul Salem Mohammad. Biological networks: An introductory review. Jour-

nal Of Proteomics And Genomics Research, 2(1):41 – 111, 2018. ISSN 2326-

0793. doi: https://doi.org/10.14302/issn.2326-0793.jpgr-18-2312. URL https:

//openaccesspub.org/jpgr/article/869.

J.R. Munkres. Elements of Algebraic Topology. Advanced book classics. Perseus

Books, 1984. ISBN 9780201627282. URL http://books.google.co.uk/

books?id=Qw6m_xGryPoC.

N Musmeci, T Aste, and T Di Matteo. Relation between financial market structure

and the real economy: Comparison between clustering methods. PLoS ONE, 10(3):

e0116201, 2015a.

Nicolo Musmeci, Tomaso Aste, and Tiziana Di Matteo. Clustering and hierarchy of

financial markets data: advantages of the dbht. arXiv preprint arXiv:1406.0496,

2014a.

Nicolo Musmeci, Tomaso Aste, and Tiziana Di Matteo. Clustering and hierarchy of

financial markets data: advantages of the dbht. arXiv preprint arXiv:1406.0496,

2014b.

https://openaccesspub.org/jpgr/article/869
https://openaccesspub.org/jpgr/article/869
http://books.google.co.uk/books?id=Qw6m_xGryPoC
http://books.google.co.uk/books?id=Qw6m_xGryPoC

BIBLIOGRAPHY 228

Nicoló Musmeci, Tomaso Aste, and T Di Matteo. Risk diversification: a study of

persistence with a filtered correlation-network approach. Network Theory in Finance,

1(1):77–98, 2015b.

Nicolò Musmeci, Vincenzo Nicosia, Tomaso Aste, Tiziana Di Matteo, and Vito Latora.

The multiplex dependency structure of financial markets. Complexity, 2017, 2017.

David R Musser and Alexander A Stepanov. Generic programming. In International

Symposium on Symbolic and Algebraic Computation, pages 13–25. Springer, 1988.

Mark Newman. Networks: An Introduction. Oxford University Press, Inc., New York,

NY, USA, 2010. ISBN 0199206651, 9780199206650.

Takao Nishizeki and Norishige Chiba. Planar graphs: Theory and algorithms, vol-

ume 32. Elsevier, 1988.

Ibrahim H. Osman, Baydaa Al-Ayoubi, and Musbah Barake. A greedy random adaptive

search procedure for the weighted maximal planar graph problem. Computers and

Industrial Engineering, 45(4):635–651, 2003. ISSN 03608352. doi: 10.1016/j.cie.

2003.09.005.

Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod, and Heather A Harring-

ton. A roadmap for the computation of persistent homology. EPJ Data Science, 6

(1):17, 2017.

Muge Ozman. Inter-firm networks and innovation: a survey of literature. Economic of

Innovation and New Technology, 18(1):39–67, 2009.

Figen Oztoprak, Jorge Nocedal, Steven Rennie, and Peder A. Olsen. Newton-like meth-

ods for sparse inverse covariance estimation. In P. Bartlett, F.c.n. Pereira, C.j.c.

Burges, L. Bottou, and K.q. Weinberger, editors, Advances in Neural Information

Processing Systems 25, pages 755–763, 2012. URL http://books.nips.cc/

papers/files/nips25/NIPS2012_0344.pdf.

Szilard Pafka and Imre Kondor. Estimated correlation matrices and portfolio optimiza-

tion. Physica A: Statistical Mechanics and Its Applications, 343:623–634, 2004.

http://books.nips.cc/papers/files/nips25/NIPS2012_0344.pdf
http://books.nips.cc/papers/files/nips25/NIPS2012_0344.pdf

BIBLIOGRAPHY 229

Matthew Pelowski, Young-Jin Hur, Katherine N Cotter, Tomohiro Ishizu, Alexander P

Christensen, Helmut Leder, and IC McManus. Quantifying the if, the when, and

the what of the sublime: A survey and latent class analysis of incidence, emotions,

and distinct varieties of personal sublime experiences. Psychology of Aesthetics,

Creativity, and the Arts, 2019.

Franois Petitjean and Geoffrey I. Webb. Scaling log-linear analysis to datasets

with thousands of variables, pages 469–477. 2015. doi: 10.1137/1.

9781611974010.53. URL http://epubs.siam.org/doi/abs/10.1137/

1.9781611974010.53.

G. Petri, P. Expert, F. Turkheimer, R. Carhart-Harris, D. Nutt, P. J. Hellyer, and

F. Vaccarino. Homological scaffolds of brain functional networks. Journal of

The Royal Society Interface, 11(101):20140873, 2014. ISSN 1742-5689. doi:

10.1098/rsif.2014.0873.

Timo Poranen. A simulated annealing algorithm for the maximum planar subgraph

problem. International Journal of Computer Mathematics, 81(5):555–568, 2004.

F Pozzi, T Di Matteo, and T Aste. Spread of risk across financial markets: better to

invest in the peripheries. Scientific Reports, 3:1665, 2013.

R. C. Prim. Shortest connection networks and some generalizations. BellSystem Tech-

nical Journal, 36:1389–1401, 1957a.

R.C. Prim. Shortest connection networks and some generalizations. Bell System

Technical Journal, The, 36(6):1389–1401, Nov 1957b. ISSN 0005-8580. doi:

10.1002/j.1538-7305.1957.tb01515.x.

Pier Francesco Procacci and Tomaso Aste. Forecasting market states. 2018. ISSN

1556-5068. doi: 10.2139/ssrn.3215945.

Weiliang Qiu and Harry Joe. clusterGeneration: Random Cluster Generation (with

Specified Degree of Separation), 2015. URL https://CRAN.R-project.

org/package=clusterGeneration. R package version 1.3.4.

http://epubs.siam.org/doi/abs/10.1137/1.9781611974010.53
http://epubs.siam.org/doi/abs/10.1137/1.9781611974010.53
https://CRAN.R-project.org/package=clusterGeneration
https://CRAN.R-project.org/package=clusterGeneration

BIBLIOGRAPHY 230

R Core Team. R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria, 2016. URL https://www.

R-project.org/.

Pradeep Ravikumar, Martin J. Wainwright, Garvesh Raskutti, and Bin Yu. High-

dimensional covariance estimation by minimizing `1-penalized log-determinant di-

vergence. Electronic Journal of Statistics, 5:935–980, 2011. doi: 10.1214/

11-EJS631. URL http://dx.doi.org/10.1214/11-EJS631.

Riccardo Rebonato. Coherent stress testing, 2010a.

Riccardo Rebonato. Coherent Stress Testing: a Bayesian approach to the analysis of

financial stress. John Wiley & Sons, 2010b.

Riccardo Rebonato and Alexander Denev. Portfolio Management Under Stress: A

Bayesian-net Approach to Coherent Asset Allocation. Cambridge University Press,

2014.

Alvin C Rencher. Methods of multivariate analysis, volume 492. John Wiley & Sons,

2003.

Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471,

1978.

H. Rue and L. Held. Gaussian Markov Random Fields: Theory and Applications,

volume 104 of Monographs on Statistics and Applied Probability. Chapman & Hall,

London, 2005.

Romeil S. Sandhu, Tryphon T. Georgiou, and Allen R. Tannenbaum. Ricci curvature:

An economic indicator for market fragility and systemic risk. 2:e1501495, 2016.

ISSN 2375-2548. doi: 10.1126/sciadv.1501495.

Erik Schaffernicht, Volker Stephan, and Horst-Michael Groß. An efficient search strat-

egy for feature selection using chow-liu trees. In International Conference on Artifi-

cial Neural Networks, pages 190–199. Springer, 2007.

Verena D. Schmittmann, Anglique O. J. Cramer, Lourens J. Waldorp, Sacha Epskamp,

Rogier A. Kievit, and Denny Borsboom. Deconstructing the construct: A network

https://www.R-project.org/
https://www.R-project.org/
http://dx.doi.org/10.1214/11-EJS631

BIBLIOGRAPHY 231

perspective on psychological phenomena. 31:43–53, 2013. ISSN 0732-118X. doi:

10.1016/j.newideapsych.2011.02.007.

Walter Schnyder. Planar graphs and poset dimension. Order, 5(4):323–343, Dec 1989.

ISSN 1572-9273. doi: 10.1007/BF00353652. URL https://doi.org/10.

1007/BF00353652.

Gideon Schwarz et al. Estimating the dimension of a model. The annals of statistics, 6

(2):461–464, 1978.

Marco Scutari and Korbinian Strimmer. Introduction to Graphical Modelling, chap-

ter 11, pages 235–254. Wiley-Blackwell, 2011. ISBN 9781119970606. doi: 10.

1002/9781119970606.ch11. URL https://onlinelibrary.wiley.com/

doi/abs/10.1002/9781119970606.ch11.

John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern analysis. Cam-

bridge university press, 2004.

Ann E Sizemore, Chad Giusti, Ari Kahn, Jean M Vettel, Richard F Betzel, and

Danielle S Bassett. Cliques and cavities in the human connectome. Journal of com-

putational neuroscience, 44(1):115–145, 2018.

W.-M. Song, T. Di Matteo, and T. Aste. Nested hierarchies in planar graphs. Discrete

Applied Mathematics, 159:2135–2146, 2011.

W.-M. Song, T. Di Matteo, and T. Aste. Hierarchical information clustering by means

of topologically embedded graphs. PLoS ONE, 7:e31929, 2012a.

Won-Min Song, Tomaso Aste, and T Di Matteo. Correlation-based biological net-

works. In Microelectronics, MEMS, and Nanotechnology, pages 680212–680212.

International Society for Optics and Photonics, 2007.

Won-Min Song, T Di Matteo, and T Aste. Building complex networks with platonic

solids. Phys. Rev. E, 85(4):046115, 2012b.

Wataru Souma, Yoshi Fujiwara, and Hideaki Aoyama. Complex networks and eco-

nomics. Physica A: Statistical Mechanics and its Applications, 324(1-2):396–401,

2003.

https://doi.org/10.1007/BF00353652
https://doi.org/10.1007/BF00353652
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119970606.ch11
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119970606.ch11

BIBLIOGRAPHY 232

Peter Spirtes, Clark N Glymour, Richard Scheines, David Heckerman, Christopher

Meek, Gregory Cooper, and Thomas Richardson. Causation, prediction, and search.

MIT press, 2000.

G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press, 1986.

ISBN 9780961408800. URL https://books.google.co.uk/books?id=

Lr9YKrCANWwC.

Steven H Strogatz. Exploring complex networks. nature, 410(6825):268, 2001.

Milan Studeny. Probabilistic conditional independence structures. Springer Science &

Business Media, 2006.

Joe Suzuki. A generalization of the chow-liu algorithm and its application to statistical

learning. arXiv preprint arXiv:1002.2240, 2010.

Tamás Szántai and Edith Kovács. Discovering a junction tree behind a markov network

by a greedy algorithm. Optimization and Engineering, 14(4):503–518, 2013.

Gábor J Székely and Maria L Rizzo. The distance correlation t-test of independence in

high dimension. Journal of Multivariate Analysis, 117:193–213, 2013.

Robert Endre Tarjan. Maximum cardinality search and chordal graphs. Unpublished

Lecture Notes CS, 259, 1976.

Robert Endre Tarjan. Data structures and network algorithms, 1983.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society, Series B, 58(1):267–288, 1996.

Andrey Nikolayevich Tikhonov. On the stability of inverse problems. 39, 1943.

M. Tumminello, T. Aste, T. Di Matteo, and R. N. Mantegna. A tool for filtering

information in complex systems. Proceedings of the National Academy of Sci-

ences of the United States of America, 102(30):10421–10426, 2005. doi: 10.

1073/pnas.0500298102. URL http://www.pnas.org/content/102/30/

10421.abstract.

https://books.google.co.uk/books?id=Lr9YKrCANWwC
https://books.google.co.uk/books?id=Lr9YKrCANWwC
http://www.pnas.org/content/102/30/10421.abstract
http://www.pnas.org/content/102/30/10421.abstract

BIBLIOGRAPHY 233

MICHELE Tumminello, T Di Matteo, T Aste, and Rosario Nunzio Mantegna. Cor-

relation based networks of equity returns sampled at different time horizons. The

European Physical Journal B-Condensed Matter and Complex Systems, 55(2):209–

217, 2007.

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer,

New York, fourth edition, 2002. URL http://www.stats.ox.ac.uk/pub/

MASS4. ISBN 0-387-95457-0.

Klaus Wagner. Über eine eigenschaft der ebenen komplexe. Mathematische Annalen,

114(1):570–590, 1937.

Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families,

and variational inference. Foundations and Trends® in Machine Learning, 1(1–2):

1–305, 2008. ISSN 1935-8237. doi: 10.1561/2200000001. URL http://dx.

doi.org/10.1561/2200000001.

Bao Wang and Guo-Wei Wei. Object-oriented persistent homology. Journal of compu-

tational physics, 305:276–299, 2016.

Larry Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer

Publishing Company, Incorporated, 2010. ISBN 1441923225, 9781441923226.

Hassler Whitney. Non-separable and planar graphs. Proc. Nat. Acad. Sci. U.S.A.,

17(2):125–127, February 1931. ISSN 0027-8424. doi: 10.1073/pnas.17.2.125.

JFM:57.0727.05.

Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New

York, 2009. ISBN 978-0-387-98140-6. URL http://ggplot2.org.

Cen Wu, Fei Zhou, Jie Ren, Xiaoxi Li, Yu Jiang, and Shuangge Ma. A selective review

of multi-level omics data integration using variable selection. High-throughput, 8

(1):4, 2019.

Tuo Zhao, Xingguo Li, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman.

huge: High-Dimensional Undirected Graph Estimation, 2015. URL https://

CRAN.R-project.org/package=huge. R package version 1.2.7.

http://www.stats.ox.ac.uk/pub/MASS4
http://www.stats.ox.ac.uk/pub/MASS4
http://dx.doi.org/10.1561/2200000001
http://dx.doi.org/10.1561/2200000001
http://ggplot2.org
https://CRAN.R-project.org/package=huge
https://CRAN.R-project.org/package=huge

BIBLIOGRAPHY 234

Yang Zhou. Structure learning of probabilistic graphical models: a comprehensive

survey. arXiv preprint arXiv:1111.6925, 2011.

Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete &

Computational Geometry, 33(2):249–274, 2005.

Afra J. Zomorodian. Topology for Computing. Cambridge University Press, 2009.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):

301–320, 2005.

	Information Filtering Networks
	Motivation: Networks and Complex Systems
	Information Filtering Networks: the Case for Sparse Modelling
	Network Modelling: Approaches to Filtering and Applications
	Planar Information Filtering Networks

	Objective of the Research and our Approach
	Fundamental requirements for a new IFN algorithm
	Approach and Direction of Research
	Applications

	Approaches to the Modelling of Sparse Networks
	Graphical models and Markov Random Fields
	Definitions
	Conditional Independence
	Markov Properties
	Clique Factorisation Property and Hammersley-Clifford Theorem

	Review of Methodologies for building Information Filtering Networks
	Structure Learning in Graphical Models
	Score based methods
	Constraint based Algorithms
	Bayesian Methods

	Sparse graphical models through regularisation and covariance selection (Lasso, Ridge, Elastic Net)
	Information Filtering Networks
	Triangulated Maximally Filtered Graphs

	Learning Clique Forests
	Graph Theory Prerequisites
	Definitions
	Chordal Graphs
	Perfect Elimination Order
	Perfect Sequences of Cliques
	Clique Forest

	The Clique Expansion Operator
	The MFCF algorithm
	Relationship with Prim's Minimum Spanning Tree Algorithm
	Relationship with the Maximum Cardinality Search algorithm
	Gain Functions
	Similarity Matrix
	Gain function from log-likelihood
	Multivariate Normal Distribution
	Multivariate Normal Distribution statistically validated
	Random Gain Function
	Regression

	Other CF-Invariant Operations on Clique Forests
	The Direct Join Operator
	Score Functions and generalisation of Kruskal algorithm

	Pruning a Clique Forest

	TMFG and other approximate solutions for the Maximum Weight Planar Subgraph Problem
	The Maximum Weight Planar Subgraph Problem
	Planar Maximally Filtered Graph

	Triangulated Maximally Filtered Graph
	TMFG and Deltahedron heuristic
	TMFG construction

	Planarity invariant operators: T1, T2, A, & S
	Variants of the TMFG algorithm
	TMFG-T1
	TMFG-S
	TMFG-A

	Additional observations
	Dynamical adaptability
	Parallelization and big data
	Memory usage

	Comparison between TMFG and PMFG
	Comparison between the performances of the various methods

	Probabilistic modelling with TMFG / MFCF and Financial Applications
	Modeling with TMFG: information theoretic perspective
	Financial Applications of the TMFG
	Financial applications: Stress Testing
	Risk Allocation

	Financial Applications of the MFCF
	Learning with Mixed Frequency Time Series

	Application to the Covariance Selection Problem
	Covariance Selection
	Penalised Likelihood Maximisation
	Graphical Lasso

	The MFCF approach to to covariance selection
	Construction of the precision matrix in the multivariate Gaussian case
	Shrinkage procedures
	Step 1
	Step 2
	Step 3

	Testing Methodology
	Generation of Synthetic Data
	Synthetic data: sparse decomposable precision matrix
	Synthetic data: Full Positive Definite Matrix from package ``clusterGeneration''
	Random Factor Model with noise

	Usage and Treatment of Real Data
	Algorithms used in the Testing
	Performances indicators

	Results
	Synthetic data: sparse decomposable precision matrix
	Synthetic data: Full Positive Definite Matrix from package ``clusterGeneration''.
	Random Factor Model with noise
	Real Data

	Topological Data Analysis with the MFCF
	Applications to Topology of Data
	Abstract Simplicial Complexes
	The Simplicial Complexes built by the MFCF
	Examples and applications
	Identification of cliques
	Identification of large dimensional blocks
	Structure of factor models

	Conclusions and further research
	Conclusions
	Further research
	Non linear interactions and fat-tailed distributions
	Financial applications
	Geometry of clique forests
	Confirmatory factor analysis
	Geometry of factor models

	Appendices
	Appendix A
	Computer Codes
	TMFG
	TMFG-T1
	TMFG-S
	TMFG-A

	Bibliography

