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Cognitive niche construction is the process whereby

organisms create and maintain cause–effect models of

their niche as guides for fitness influencing behavior.

Extended mind theory claims that cognitive processes

extend beyond the brain to include predictable states of

the world. Active inference and predictive processing in

cognitive science assume that organisms embody pre-

dictive (i.e., generative) models of the world optimized

by standard cognitive functions (e.g., perception, action,

learning). This paper presents an active inference for-

mulation that views cognitive niche construction as a

cognitive function aimed at optimizing organisms' gen-

erative models. We call that process of optimization

extended active inference.
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1 | INTRODUCTION

This paper reviews generic predictive approaches to niche construction to propose a specific
model of cognitive niche construction under active inference. We clarify the mechanics of some
important components of the cognitive niche that have yet to be addressed under active infer-
ence, namely, the functional and psychological components. We then argue for a view of
extended active inference (henceforth, extended active inference [EAI]) based on our model of
cognitive niche construction. This introduction provides a definition of the key concepts we
refer to in this paper and outline of the proposed argument.

1.1 | Concepts

1.1.1 | The cognitive niche

In cognitive science, cognitive niche construction can be viewed as a form of instrumental intel-
ligence whereby organisms “create and maintain cause–effect models of the world as guides for
prejudging which courses of action will lead to which results” (Tooby & DeVore, 1987, p. 2010).
For instance, juvenile Capuchin monkeys zero in on stones proper to nutcracking activity by
relying on traces left behind by experienced Capuchins. Residues are left on sites where success-
ful nutcracking activity took place, which indicates to newcomers that stones found on those
sites are suitable for nutcracking (Fragaszy, 2011). Traces, stones, and dispositions to social
learning here form the ingredients of the cognitive niche as a cause–effect model.

The concept of the cognitive niche employed in cognitive science refers to the concept of the
developmental, “ontogenetic niche” (West & King, 1987). The concept of the developmental
niche asks a set of questions different from that of the selective niche (Stotz, 2017); it asks ques-
tion about “not what's inside the genes you inherited, but what the genes you inherited are
inside of” (Stotz, 2010, p. 1). This set of questions is especially interesting to study the epigenetic
and behavioral sources of variations upon which selection can act. In turn, the concept of the
selective niche is well suited to study the manner in which selection pressures are transformed
by organisms. In evolutionary biology, the cognitive aspect of the cognitive niche refers to the
effects of the developmental niche on variations that relate to cognitive functions (Stotz, 2010).

The concept of the cognitive niche we refer to here is a sort of hybrid between the concepts
of the selective, developmental, and cognitive niches. However, even though we rely on these
parallels to make our argument, a detailed analysis of these is beyond the scope of this paper.
The set of questions that fall within our scope relates to the computational function of cognitive
extensions and the (developmental and intergenerational) process whereby this computational
function emerges. For instance, from an evolutionary point of view, the concept of the cognitive
niche that interests us will focus on the evolution of cognitive extensions per se (in a manner
akin to cumulative cultural evolution [Mesoudi & Thornton, 2018]).

The niche we consider here is made of niche construction outcomes directly relevant to an
organism's activity—for example, extended phenotypes having fitness enhancing impacts
(Dawkins, 1982) and “external niche inheritance” such as energetic and informational
resources (Odling-Smee, 2007). External inheritance can secure the reproduction of organisms'
life cycle over developmental time—for example, for beaver kits—while causing ecological cas-
cades for other species receiving that inheritance (e.g., through modified communities). We do
not include in the cognitive niche outcomes and ecoevolutionary feedbacks that drive evolution
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by either negatively impacting development (e.g., “negative” niche construction outcomes like
feces) or by being “ecological cascades” that can force the exploration of the adaptive landscape
(Odling-Smee, Laland & Feldman, 2003).

The cognitive niche is sometimes studied as a psychological habitat and sometimes as a
functional habitat (cf., Bertolotti & Magnani, 2017). The psychological habitat refers to the set
of organisms–niche relations that offer organisms relevant action (and perception) possibilities,
also known as affordances (Gibson, 1979). The functional habitat is the set of resources that
support species specific tasks (e.g., foraging or language and communication in humans
[Clark, 2006; Whiten & Erdal, 2012]). This means that one must define the functional habitat
on the background of the organism's phenotypic dispositions; for example, books are part of the
functional habitats of humans because of humans' ability to read, but they are not part of the
beavers' functional habitat. The psychological and functional habitats can be part of the same
overall physical habitat. They simply differ in terms of their explanatory scope. The former
explains psychological aspects of the organism's experience, such as perception, whereas the lat-
ter explains how the organism will rely on the niche to perform some task (e.g., foraging).

1.1.2 | Active inference

Contemporary “predictive” theories of cognition include well-known theories such as predictive
coding (Rao & Ballard, 1999), the Bayesian brain (Knill & Pouget, 2004), predictive processing
(Clark, 2013) and the predictive mind (Hohwy, 2013), ecological enactivism (Bruineberg,
Kiverstein & Rietveld, 2016), and active inference. Active inference, in particular, is commonly
used to account for cognitive phenomena such as action, decision-making, and environmental
navigation (Kaplan & Friston, 2018).

Active inference assumes that an organism must entertain minimally uncertain “causal”
models—that can generate effects from their causes—of the probabilistic relation between rele-
vant types of events. Uncertainty is an information theoretic notion that relates to Shannon
information. Shannon or self-information can be quantified by measures such as surprisal and
entropy. Surprisal ℑ(x) is a measure of unlikeliness that a random variable X takes a value x,
given a model m of how X was generated, that is, ℑ = − lnP(xjm). In turn, entropy S = E[ℑ
(x)] is the expected or weighted average of surprisal over time. Crucially, the negative of sur-
prisal is also known as log model evidence or marginal likelihood lnP(xjm). This means that
minimizing surprisal (i.e., self-information) corresponds to maximizing model evidence, which
has been referred to as self-evidencing (Hohwy, 2016). Self-evidencing over time also means
minimizing uncertainty or entropy. For instance, an equal probability such as .5 and .5 of
observing an outcome (e.g., X = {head; tail}) before any observation (e.g., before flipping a coin)
entails a state of full uncertainty (or maximum entropy). The observation of an occurrence
(e.g., after having flipped the coin) entails a full disambiguation or maximum information gain.
Put another way, one defines the information gained after observing an outcome in terms of
the amount of uncertainty that is resolved. Hence, a shorthand for the notion of self-evidencing
is uncertainty reduction. From the standpoint of a physicist, the resolution of uncertainty corre-
sponds to the tendency of lifelike systems to resist the second law of thermodynamics—or
strictly speaking, the fluctuation theorems that apply to open systems—by placing an upper
bound on their entropy or disorder.

According to active inference, to survive and reproduce when facing environmental
stressors, organisms must entertain minimally uncertain models of the relation between
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sensory inputs they receive (e.g., “scent”) and the possible environmental causes having gener-
ated these inputs (e.g., “predator” or “mating partner”). Organisms must also model the proba-
bility of transitions among causes in the world (e.g., “predator approaching”) relative to
possible actions their physiology permits (e.g., “I can fly” and “I can't swim”). In line with
models of Bayes optimal foraging (Okasha, 2013), minimizing uncertainty in such causal,
predictive, or generative models involves updating probabilistic mappings or Bayesian beliefs
(a.k.a., learning and perceptual inference) and selectively sampling sensory inputs expected
under these beliefs (a.k.a., action).

1.1.3 | The extended mind

The extended mind approach to cognition (Clark & Chalmers, 1998) claims that cognitive pro-
cesses can be offloaded to (i.e., reallocated to), or extended through (i.e., transformed into),
components that reach beyond the system's internal states (e.g., brain states). The notion of
offloading refers to the use of physical action and artefacts to manage the cognitive demand of
information processing (for a review, see Risko & Gilbert, 2016). Extended mind theorists sug-
gest that the realization base of some cognitive processes (i.e., states that realize a given cogni-
tive process) come to include reliable, accessible external states of the niche (e.g., the cellphone
that functions as extended memory for recalling phone numbers (for a review, see Kirchhoff &
Kiverstein, 2019).

1.2 | Outline

1.2.1 | Current limitations

Some have drawn links between the cognitive niche construction perspective and the notion of
uncertainty minimization in active inference and implicit self-evidencing. For instance, simula-
tion studies have shown that by changing the material layout of the niche in a way that mirrors
the causal models of the organism, organisms shape their sensory array in a way that is congru-
ent with learned generative models, which entail more efficient reduction of uncertainty over
development (Bruineberg, Rietveld, Parr, van Maanen & Friston, 2018).

The mirroring or synchronization that obtains between organisms and their niche has vari-
ous feedback consequences over evolutionary time. For instance, some proposed that organisms
can install in the niche cues that invite action with high epistemic value. Epistemic value relates
to the ability of an action to resolve uncertainty—through the selection of actions that solicit
the right sort of sensations for resolving ambiguity (e.g., looking under the streetlight or reading
an instruction manual, Friston et al., 2015). Through external niche inheritance, salient cues
with high epistemic value can be passed on as ecological legacies to guide the epistemic forag-
ing of future generations (Constant, Bervoets, Hens & Van de Cruys, 2020).

The process whereby organisms install epistemic cues in their environment provides a suit-
able mechanistic account of the notion of instrumental intelligence in cognitive niche theory.
However, the mechanics of the functional and psychological dimensions of the cognitive niche
remain unexplored in the literature on predictive processing approaches to cognitive niche con-
struction (for interesting discussions of related functions see Bruineberg & Rietveld, 2014;
Clark, 2013; Fabry, 2017; Ramstead, Veissière & Kirmayer, 2016).
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1.2.2 | The argument

In Section 2, we unpack the functional and psychological dimensions of the cognitive niche
under active inference. We argue that the cognitive niche—understood as an externally realized
cause–effects model—can be modeled as a form of externally realized “shared” generative
model that is leveraged and optimized by organisms to perform action-related adaptive cogni-
tive functions (e.g., decision-making, navigation, foraging). The optimization and leveraging of
this shared generative model, through action and perception, are what we call extended active
inference (henceforth, EAI).

We argue that one can study cognitive niche construction under EAI as a bona fide cogni-
tive function in the game of uncertainty minimization, alongside standard functions studied by
active inference, such as active sensing and learning. Formally, cognitive niche construction
thus construed is geared toward uncertainty minimization, thereby qualifying as a cognitive
function under active inference. The functional and psychological aspects of the cognitive niche
directly follow from our formalization of EAI (see Figure 2). We conclude Section 2 by pre-
senting two case studies that illustrate the view of cognitive niche construction as a cognitive
function.

In Section 3, we explain the relation between EAI, the original approach to the extended
mind (Clark & Chalmers, 1998) and the diachronic approach (Kirchhoff, 2012, 2015). When
viewed as a cognitive function, cognitive niche construction under active inference allows an
epistemological extension of the boundaries of cognition (cf., Kirchhoff & Kiverstein, 2019).
Building on Section 2, we argue that the coalition between brain(s) and world that obtains
through cognitive niche construction operates through a process of cognitive uploading
(Constant, Ramstead, Veissière, Campbell & Friston, 2018).

Cognitive uploading is akin to cognitive offloading in the original theory of the extended
mind (Clark & Chalmers, 1998).

However, in contrast to the traditional notion of offloading, the notion of uploading refers
to the creation of novel cognitive functions that are taken on board by the cognitive niche per
se, instead of being merely managed by the cognitive niche. A function is “offloaded” when
individual agents restructure their worlds so as to minimize internal processing costs and/or
increase reliability. For example, by posting a yellow stick note on the front door to remind
them to pick up milk next time they are out. A function is uploaded when social and technolog-
ical change means it is now taken care of by the niche rather than the individual. For example,
most agents now store their phone numbers using smartphones rather than biomemory. So, the
whole “number storage” function (unlike the whole “remember X" function) has been assimi-
lated into the niche. The niche into which the function has been uploaded can then be passed
on to future generations for them to leverage, share, and finesse that function.

The original notion of the extended mind applied, in principle, to both these kinds of cases.
But the distinction is formally helpful and speaks to different webs of agent-world dynamics
that evolve and alter on different spatiotemporal scales; the notion of offloading speaking to
time scales spanning individual-level dynamics unfolding over real-time and (neuro)develop-
mental time scales and the notion of uploading speaking to individual- and group-level dynam-
ics unfolding over developmental and intergenerational time scales. Uploading is a stronger
species of offloading. EAI formalizes these dynamics as emergent properties of cognitive niche
construction. Novel cognitive functions produced through cognitive uploading can result from
gene-culture coevolutionary dynamics that “glue” organisms to those functions performed by
the “trusted” niche. Uploading under EAI emphasizes the trade-off, overevolutionary, and
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developmental time, of the deployment of on-board (neuro)biological functions for on-board
(socio)environmental ones, thereby allowing metabolically efficient, though niche bound adap-
tive behavior that may be favored by selection.

Crucially, cognitive uploading endows external states of the cognitive niche with the ability
to track regularities otherwise impossible to track because they are often too complex to be
learned by individual organisms. We frame affordances as uploaded proxies that track those
complex causal regularities.1 Thus, consistent with the theory of diachronic cognition
(Kirchhoff, 2015), the notion of uploading can further be viewed as the process whereby agents
produce cognitive extensions that gain independence from the specific individuals having pro-
duced them. Uploading differs from offloading in that the uploaded cognitive task comes to be
shared by other agents. This allows the production of nonindividual specific cognitive extension
affording action tracking more complex regularities.

2 | THE FUNCTIONAL AND PSYCHOLOGICAL NICHES
UNDER ACTIVE INFERENCE

Active inference explains perception and learning as processes that conform to an optimization
process known as variational inference (Beal, 2003) The motivation for modeling uncertainty
minimization in terms of variational inference relates to the sort of perceptual, or rather, infer-
ential challenges faced by living systems such as humans. We have no direct access to the cau-
ses of our sensations nor is there a one-to-one mapping between causes and sensations
(Clark, 2013; Hohwy, 2016; Wiese & Metzinger, 2017), for example, a red sensation might be
generated by a red traffic light, a red car, or a red jacket. These kinds of ill-posed inference prob-
lems can only be solved by appealing to prior beliefs or experience to resolve ambiguity or
uncertainty; hence, the appeal to schemes such as approximate Bayesian or variational
inference.

Variational inference is a ubiquitous mathematical description of (Bayesian) belief updating
that describes the formation of perceptual hypotheses that explain our sensations. Variational
inference rests on a probabilistic generative model. A generative model is a probabilistic state-
ment about a set of unobserved (hidden) variables (i.e., causes) and observed sensations
(i.e., consequences), which represent an organism's predictive or causal model of the world. A
generative model is usually expressed in terms of a likelihood and a prior term:

p s,ηð Þ|fflffl{zfflffl}
generative model

= p sjηð Þ|fflffl{zfflffl}
likelihood

p ηð Þ|{z}
prior

ð1Þ

The likelihood corresponds to the probability of sensations s (e.g., “dry” or “wet”) given
priors about the state of the world η (e.g., “inside a burrow” or “outside a burrow”). The prior
corresponds to the probability of conditions, or causes, generating the sensation (e.g., “being in
or out of a burrow”), before making a sensory observation. Using variational inference, one can

1Note that here we are concerned with a Gibsonian notion of affordances understood as action possibility directly
perceivable in the environment. For a discussion of niche construction and pragmatic and epistemic affordances relative
to mental representation of action—for example, Cisek (2007) and Friston et al. (2012)—see Linson, Clark,
Ramamoorthy and Friston (2018).
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invert the likelihood in Equation (1) to approximate the posterior probability of causes p(ηj s)
once a sensation has been sampled. This involves the minimization of a bound on the unexpect-
edness of sensations (a.k.a., surprisal)—called free energy—with respect to the approximate
posterior, known as variational density. This density is associated with (i.e., assumed to be
encoded by) internal (e.g., brain) states μ of the organism:

F|{z}
Free

energy of

s,μð Þ
zffl}|ffl{

sensations and

internal states

= D|{z}
KLDiv:

qμ ηð Þ|{z}
over ext:

states

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
variational

density

k p ηjsð Þ|fflffl{zfflffl}
true posterior

2
66666664

3
77777775
− lnp sð Þ
zfflfflfflffl}|fflfflfflffl{surprisal

ð2Þ

In Equation (2), the variational density becomes a posterior belief about the causes of sensa-
tions (e.g., “was I in a burrow or outside a burrow η, given sensations of wetness s”). This
inverse mapping—from causes to effects—corresponds to inferring the causes of sensations. In
variational inference, approximating the true posterior can be described in terms of minimizing
the free energy functional F(s,μ):

qμ ηð Þ=argmin
q

F s,μð Þ≈ P ηjsð Þ|fflffl{zfflffl}
inverse mapping

ð3Þ

In Equation (3), this minimization has two consequences: (i) The functional becomes a tight
upper bound on the unexpectedness of sensations (a.k.a., surprisal); (ii) the minimization ren-
ders the variational posterior a good approximation to the true posterior. This follows because a
Kullback–Leibler divergence D is always nonnegative. This means, F(s, μ) ≥ − lnp(s), with
equality when the divergence has been eliminated, F = − lnp(s) ) D = 0 ) qμ(η) = p(ηj s).
Formally, variational inference converts an inference problem into an optimization problem as
articulated by Equation (3) (see Figure 1 for a summary).

Assuming that the organism's brain embodies the variational density, variational updates2

ensure brain states encode a posterior belief about the true distribution of sensory causes and
contingencies in the world, and—by the same token—the organism learns Bayes optimal priors
about cause–sensation relationships. This is usually associated with experience-dependent plas-
ticity (Friston, 2010). Hence, taken together, the dynamics described in Equation (2) explain
perception and learning as an optimization process, in which expectations about hidden states
of the world and their relationships to each other (and sensations) are minimized with respect
to free energy.

This optimization unfolds over several timescales. Neurophysiological states that underwrite
inference changes quickly (on a timescale of milliseconds). Neuronal connections that learn
contingencies change over minutes to hours, via experience-dependent plasticity. Finally, the
functional architectures that entail the generative model change over a neurodevelopmental
timescale of months to years, as the phenotype becomes a sufficiently good model of its

2Variational updates are a ubiquitous form of Bayesian belief updating. In this paper, “beliefs” are used in the sense of
belief updating and belief propagation; namely, non-propositional probability densities.
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(encultured) cognitive niche (compare with the good regulator theorem [Conant &
Ashby, 1970]).

Finally, in active inference, organisms are viewed as possessing priors about expected or pre-
ferred outcomes of action. This simply means that actions are selected if they bring about
expected outcomes, while being geared toward minimizing expected surprise (i.e., uncertainty)
about the future (Friston et al., 2014). Hence, in active inference, motor (and autonomic) func-
tions work hand-in-hand with a perceptual inference to resolve uncertainty through the active
sampling of salient, uncertainty reducing sensations, while allowing for preferred, unsurprising
outcomes (green box, Figure 1).

The basic formalism corresponds to optimizing a free energy functional of sensations and
expectations encoding beliefs about hidden states of the world F(s, μ). This functional can be
expressed as energy minus entropy—by analogy to free energy in statistical physics. Various
rearrangements of the free energy functional can be used to formalize various cognitive phenom-
ena, namely, action in the green box (triangle indicator) and perception in the purple box (star
indicator). Upper panel: Sensations s and action a are the quantities that couple internal states' μ
to external, hidden states in the environment η. The argmin operator refers to variational
updates—for an introduction to variational inference in relation to other inference schemes
(e.g., expectation maximization) algorithms (Beal, 2003). External states are described in terms of
equation of motion that includes random fluctuations ω. Purple box: Perception optimizes internal
states. The mathematical formulation of free energy corresponds to Equation (3) in the text. Green
box: Action minimizes the free energy bound by increasing the accuracy of sensations, for exam-
ple, by selectively sampling expected sensations. Note that action does not consider posterior
beliefs in the Kullback–Leibler divergence. This reflects the fact that action can only change free

FIGURE 1 Action, perception, and learning under active inference
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energy by changing sensory inputs. When choosing among different actions, the free energy is
minimized with respect to “counterfactual” outcomes by taking the expectation of free energy,
under future outcomes, given the action being evaluated. In this instance, maximizing expected
accuracy is equivalent to minimizing ambiguity. Similarly, minimizing expected complexity mini-
mizes risk, defined as the divergence between predicted and preferred outcomes.

2.1 | The cognitive niche

Changes in brain states and functional architectures optimize organisms generative (i.e., causal)
model of the causal structure of their cognitive niche. Interestingly, one can use the variational
formalism to model and study changes in an environment, or external states, in the same way
one does for experience-dependent learning in the brain (Bruineberg et al., 2018; Constant
et al., 2018). We now show how this formal symmetry yields a view of cognitive niche construc-
tion as a form of environmental “learning” about the organisms hosted by the environment. On
this view, organisms effectively “teach” the environment what actions they should expect
(i.e., construct externally realized causal models of the effects of action—where action, from the
point of view of the environment now becomes a sensory datum).

The environment is the generative process that is modeled by the generative model entailed
by the phenotype. However, in virtue of the mathematical symmetry imposed by a Markov
blanket (that separates internal and external states) (see Clark, 2017; Friston, 2013; Kirchhoff,
Parr, Palacios, Friston & Kiverstein, 2018; Ramstead, Badcock & Friston, 2018), the environ-
ment can also be construed as a generative model of its denizens, who now becomes the pro-
cesses generating outcomes for the environment. In other words, the external or environmental
states play the dual role of generating outcomes for organisms, while also encoding probabilistic
“beliefs” about organismal processes. We will see that one can treat the environment as infer-
ring the cause of the “sensations” it receives from being acted upon by its denizens.

We do not claim that the formal symmetry between brain and niche dynamics entails a
symmetry in construal. Rather, we employ the notion of symmetry epistemically, as a modeling
“analogue” (cf., Figdor, 2018), to make sense of niche dynamics as learning dynamics under
active inference. The notion of symmetry is merely an assumption that allows us to write the
formal model (Figure 2) presented in this section. The added value of our model, as it pertains
to this paper, is to provide a mechanistic basis for the psychological and functional aspects of
the cognitive niche. The model on offer is readily implementable in silico simulations of active
inference, thereby yielding potential novel avenues for empirical research on cognitive niche
construction and extended cognitive science.

Formally, what counts as a sensation in the environment are the physical actions of organ-
isms. Then, causes of sensations can be modeled as the priors of the organism having given rise
to action (i.e., niche sensations) (Ramstead, Constant, Badcock & Friston, 2019). Just as for the
photon that hits the retina—thereby generating a sensory input leading to Hebbian learning in
the brain—one can model the action of the organism encoding traces of behavioral regularities
in the environment. What counts as Bayesian priors in the environment are the probability
mappings between action and the organism's prior about action (Figure 2). Effectively, this
closes a circle of causality, in which the niche and phenotypes are trying to learn about each
other to minimize their joint free energy or surprise. An inevitable consequence of this is that
the niche and its incumbents become mutually predictable—in both directions of fit—so that
the joint niche-phenotype system can be regarded as jointly self-evidencing.
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Take for instance the phenomenon of desire paths. Pedestrians often leave traces in parks as
they cut through the grass on their commute. Over time, these traces might become deeper,
thereby telling newcomers this trail is likely to lead to outcomes preferred by the people having
carved the paths; namely, people like me, who prefer or predict the same sorts of things. In so
doing, desire paths encode mappings between possible actions and outcomes (e.g., “if I follow
this path, I will find the café”). These mappings can have different degrees of reliability. At first,
they may be ambiguous, as multiple shallow traces may encode different alternative action-
outcome mappings of equal prior probability p(μja) (e.g., “this path may take me to the café”).
As a path becomes more salient, it will further attract pedestrians who desire to cut through the
park to reach the café, which will further consolidate the trail. Over time, assuming that people
indeed find the café, the path will encode traces reducing uncertainty about the way to the café.

By analogy to perception and learning in Equation (2), one can formalize cognitive niche
construction as a minimization of free energy from the point of view of the niche (see also
Figure 2):

F|{z}
Free

energy of

a,ηð Þ
zffl}|ffl{

organisms0actions
&states of the niche

= D|{z}
KLDiv:

qη μð Þ|{z}
beliefs about

organisms0

internal states

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{variational density

k p μjað Þ|fflffl{zfflffl}
true posterior of

organisms0

internal states

given action

2
666666666666666664

3
777777777777777775

− lnp að Þ
zfflfflffl}|fflfflffl{affordance

ð4Þ

Equation (4) has the same form as Equation (2) but with internal (sensory) and external
(active) states switched around. This means that the variational density qη(μ) is taken under the

FIGURE 2 Cognitive niche construction and extended active inference
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external states η, not internal states of the organism μ, and surprisal is relative to organisms'
actions. Equation (4) shows that casting changes in environmental states as self-evidencing
makes the variational density—encoded by the states of the niche—a good approximation to
the posterior probability over the internal states of its organisms, having observed their actions.
Put another way, under this extended form of self-evidencing, the material layout of the niche
will look as if it “learns” about organismal “beliefs” causing preferred action, in the same way
as organisms' learn about environmental causes generating sensations.

Clearly, we are not limiting this interpretation to desire paths; in principle, any aspect of the
niche can be subject to this interpretation—including cognitive, cultural, and any other deontic
states of the world, that is, states that tell an agent what action to select (Constant, Ramstead,
Veissière & Friston, 2019). Language itself may be considered as a kind of meta-level niche-con-
struction—a tool that allows the rapid emergence and adaptation of locally relevant niches
(Lupyan & Clark, 2015)—as when someone says “the café” is under the awning across the street.

As in Figure 1, internal states and action change to minimize free energy based on sensa-
tions and internal states. Coincidentally, antisymmetric processes unfold in the niche. The key
point in the figure is that all the quantities in the purple box that describe internal dynamics
are inverted in the beige box—describing niche (i.e., external) dynamics. From the point of view
of the niche, the action of the organism a is a “sensation,” sensations of the organism s are
“actions,” and internal states of the organism μ are “external states.” Beige box (square indica-
tor): Cognitive niche construction as environmental “teaching” makes the environment's free
energy a bound on environmental surprisal. Environmental surprisal here is the unexpected-
ness of an organism's action—or the negative log probability of encountering a particular
action. This can be read as a mathematical description of affordance. In bounding surprisal, the
variational density of the environment ends up reflecting the most probable states of the organ-
ism, given that organism's behavior. The expression in the beige box is reproduced in
Equation (4).

2.2 | The psychological niche

As mentioned in the introduction, proponents of the psychological niche view the niche as a set
of affordances (Rietveld & Kiverstein, 2014). In our model, the niche's free energy bounds the
surprisal of an organisms' action and therefore can be viewed as an evidence bound on the
probability of an observed action, averaging over an organisms' priors and preferences.3 As
expressed in Equation (4), changes in the physical states of the niche (e.g., the production of
niche construction outcomes) will optimize a bound on the surprisal of organisms' action,
which corresponds to the (negative) affordance of an action on the environment. By analogy
with the creature-centric formulation of free energy, affordance just is the (log) evidence pro-
vided by an action for the niche's generative model of the active creatures it is trying to learn
about.

Modeling niche's dynamics with the formalism in Equation (4) allows us to derive a formal
notion of affordances that are built into the variational formalism. Our formal interpretation
supports the view according to which affordances are organism-specific action probabilities

3Mathematically, model evidence is also known as a marginal likelihood. This is because the evidence involves an
averaging or marginalisation over the causes of some data; here, the datum is the action of an organism that is sensed
by the niche.
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(Bruineberg & Rietveld, 2014; Tschacher & Haken, 2007) whose gradients drive niche construc-
tion, via a joint (i.e., extended) minimization of variational free energies. Importantly, our
model clarifies the manner in which the concept of affordance may be implemented in in silico
simulation studies and empirical research under active inference, as it makes this notion readily
implementable with the freely available simulation routines employed in active inference
research (see the various DEMOs of the statistical parametric mapping 12, MATLAB toolbox at,
fil.ion.ucl.ac.uk/spm/software/spm12/). Artificial data acquired from in silico simulations of
affordance production and leveraging could then be compared with empirical data (cf., Cullen,
Davey, Friston & Moran, 2018; Mirza, Adams, Friston & Parr, 2019) to test hypotheses about
EAI as an emergent property of cognitive niche construction under active inference (e.g., in a
foraging or navigation task).

The notion of extended active inference or self-evidencing reflects the extensive aspect of
free energy; namely, the free energy of two systems (i.e., organism and niche) is just the sum of
their respective free energies, conditioned upon the (i.e., sensory and active) states they share
(Bruineberg et al., 2018). The psychological niche can thus be viewed as a state space of invita-
tions to act, with peaks and valleys that correspond to the most and least probable (and thereby
adaptive) actions, given the priors and phenotypic preferences of organisms “like me” having
constructed the niche in first place.

2.3 | The functional niche

Active inference assumes that cognitive functions are in the game of optimizing an organism's
generative model about the cause of its sensations. This amounts to minimizing free energy or
maximizing model evidence through variational updates (i.e., perception—purple box Figure 1),
and to the selective sampling of expected sensory information (i.e., action—green box Figure 1).
We now argue that cognitive niche construction (beige—box Figure 2) can be framed as a cogni-
tive process, as construed by active inference, that optimizes an organism's generative model vicar-
iously as part of an extended process of self-organization or self-evidencing. Niche and organisms
can be meaningfully studied as trying to optimize their respective models of each other.4

The take home message of Section 2 is illustrated in Figure 2; namely, one can study the niche
as the organism's generative process or a generative model of the organism—in the sense of Tooby
and DeVore (1987, p. 2010)—that implicitly learns about organismal priors and preferred behav-
ior. This explains why resources encoded by acting on the functional niche come to cue or afford
adaptive action. As argued above, resources in the cognitive niche cue actions that were selected

4It might be argued that as this process unfolds, brains really do (due to their telos) alter so as to fit the world but that it
merely appears as if the world alters so as to fit the brain. If I press my punch into the wax, it may seem odd to depict
the wax as actively modelling my punch. However, if I consider the wax in relation to my hand, my hand in relation to
the letter, the letter in relation to the mailman, the mailman in relation to the postal service, and the postal service in
relation to my friend to whom my sealed letter is destined—all of which, just like the wax, are external states to my
brain, attributing to that entire ecology the ability to engage in something like active modelling—as well as a deep
hierarchical structure—starts to become more tenable (Ramstead, Kirchhoff, Constant & Friston, 2019). The point here
is that neither of the internal or external (sub)components of the brain-wax system exist in isolation. “Oddness” arises
when considering the wax as isolated from its embedding, just like oddness would arise from considering the motility of
a single dendrite in isolation from the rest of its neural ecology. We do not have more space to elaborate on this
argument. All that matters for our current purposes is the availability of an essentially symmetric formalism within
which to model processes of mutual modelling between agents and their niche, which reflects genuine, relevant, and
perhaps more easily conceivable forms of mutual adaptation.
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by conspecifics in the past. Once learned, cues—conveyed as affordances—gear the organism
toward selecting actions that will tend to be adaptive (more often than not), relative to the task
that entailed the carving of the niche in first place. Task specific, adaptive actions thus just are
actions that bring about sensory information that are expected under the sort of priors and prefer-
ences that constitute the phenotype of organisms “like me” (Constant et al., 2018; Friston, 2010).

2.4 | Case study

In this subsection, we unpack the view of cognitive niche construction as a cognitive function
through a well-known case study in niche construction theory: The phylogeny of freshwater
kidney in common earthworms (Lumbricus terrestris). We take this case study as an illustration
of the way earthworms optimize their generative model by encoding reliable cause–effect rela-
tionships in their environment. We then provide some examples of the effect of cognitive niche
construction as a cognitive function in humans by focusing on a discussion of spicing in food
preparation.

Common earthworms are phylogenetically related to aquatic freshwater worms. Freshwater
worms have kidneys that remove excess water from their body. This trait is consistent with
aquatic environmental conditions but far from being adaptive for terrestrial life conditions, as
water is limited, and water conservation should be the norm. Thus, all things being equal—in
the world of natural selection—common earthworms should have evolved water-balance
organs that favor water conservation. However, common earthworms still have roughly the
same freshwater kidneys as their ancestors. A plausible explanation for this is that the niche
construction undertaken by earthworms might have tipped the balance in evolution. By
constructing—and inheriting—semiaquatic environments like moist soils, common earth-
worms might have softened selection pressures on water-balance organs (Satchell, 1983; Scott
Turner, 2009). Put another way, the niche became part of common earthworms' solution space
to the challenge of having water removing organs in dry environments. The niche then allowed
economies of “evolutionary money” to be spent on biological adaptations (e.g., selecting for
water conserving organs), thereby explaining, in part, the evolutionary trajectory having led to
the current phenotype.

In the parlance of active inference, the niche of common earthworms functions to inform a
predictive (or generative) model of the relation between states of the world (e.g., “in a burrow”
or “outside a burrow”) and sensory outcomes (e.g., “wetness” or “dryness”), cueing earthworms
about relevant cause–effect relationships (Christopoulos & Tobler, 2016). The networks of bur-
rows that generations of earthworms constructed (and inherited) came to afford adaptive action
in the sense that engaging them most likely led to locations affording a priori preferred level of
wetness. In other words, cognitive niche construction outsourced the computation of adaptive
action to the environment per se. Calling on recent numerical analyses and theoretical treat-
ments of active inference in decision-making, we speculate that a consequence of this is that
earthworms could simply rely on the action afforded by the niche to avoid computing action
that would fulfil their evolutionary (prior) preferences for wet soil, which would soften selection
on water balance organs.

Cognitive niche construction here operates through (i) the increase in performance enabled
by the outsourcing of the computation to the niche and (ii) the absence of an adaptation due to
niche construction. First, constructing cognitive niches so as to make them more predictable
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(i.e., navigable) enable the organism to reduce model complexity5 by constraining the variety of
sensory causes that the organism has to entertain (Sengupta, Stemmler & Friston, 2013). This
allows the enhancement of performance for exploitative, fitness-related behavior (Friston et al.,
2016). Indeed, tracking the potential causes of sensations in a constantly fluctuating world is
costly as it requires to entertain multiple counterfactual priors (e.g., “will I end up in a wet envi-
ronment if I move left, right, up and, down, etc.?”). Outsourcing the computation of these coun-
terfactuals to the niche can be expected to increase performance in terms of both
thermodynamic and inferential efficiency. Second, the enhancement of performance may be
reflected in more efficient reaction times during exploitative behavior, which would favor the
reproduction of a phenotypes that call on the predictability afforded by the niche.6

In earthworms, the circular causality over developmental and evolutionary time scales
between the optimization of generative models through environmental modifications and the
coupling to those environmental modifications over evolutionary time may explain the soften-
ing of selection on things like water-absorbing organs. This may be viewed as a form of develop-
mental constraint on selection, that is, the strategy of outsourcing the computation became
locked-in, because of the advantaged it provided, yet, to the cost of a phenotype that would
heavily rely on this strategy (e.g., a phenotype that would not possess the right kidney). The
phylogenetic trajectory of earthworms exemplifies the phenomenon of cognitive uploading dis-
cussed in the introduction of this paper. Uploading saves metabolic resources through the reli-
ance on epistemic cognitive extensions that are typically internally realized. Over multiple
generations, this comes at the cost of becoming “evolutionarily glued” to those cognitive exten-
sion. Put bluntly, cognitive niche construction smartens the world of the earthworm, so that its
physiology can remain dumb yet optimal in peace (Clark, 1998).

The example of the earthworms speaks to the fact that characteristic behavioral patterns or
components of phenotypes (extended or else) will emerge from the construction of the cognitive
niche and its impacts on evolution and development. Cognitive uploading could also allow one
to formalize the computational architecture of the human phenotype. For instance, the inheri-
tance of epistemic resources over evolutionary time and the re-enactment of the practices
invited by these resources over development underwrites the phenomenon of tradition, under-
stood as learned a new behaviors supported by sociocultural practices (Fragaszy & Perry, 2003).
In humans, traditions and associated artefacts undergo processes of cultural evolution (Boyd &
Richerson, 1988), which enables intergenerational groups to converge on adaptive repertoires of
tools, technologies, rituals, and so forth, that have been filtered by generations of conspecifics
(for a review, see Laland, 2018).

Evolved traditions enable the success of complex cognitive tasks, while leaving the structure
of the causal models to which the success of these tasks relate unbeknownst to the agent
(Fragaszy, 2011). In his book The secret of our success (Henrich, 2015), Harvard anthropologist
Joseph Henrich provides a series of such simple examples in which traditions track cause–
sensation relationships, otherwise impossible to track thereby securing adaptive low-cost
behavior. One such example is the use of spices in food processing. Spices generally have no
nutritional value and are often made of aversive active ingredients. Yet, many humans use them

5Complexity here, is used in the technical sense of statistical complexity or complexity cost. Model evidence
(i.e., negative free energy), is expressed as accuracy minus complexity. This means that self-evidencing is necessarily
optimized when accurate model predictions are maintained with minimum complexity (see Equation (1)).
6Technically, this is expressed in terms of a variational principle of least action. In other words, the imperative for self-
evidencing is to minimize the time average of free energy, where this time average is known in physics as an action (not
to be confused with the action associated with acting on the niche).
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abundantly because some of those active agents turn out to kill foodborne pathogens present,
for instance, in widely consumed food like meat; something that is generally unknown to
people having acquired and reproducing the practice, yet that is highly beneficial to them.
Traditions of spicing per se come to model hidden causes whose structure could not be discov-
ered by individuals alone over their lifespan. In the spirit of Henrich's reflection, culture makes
us smart.

From the point of view of cognitive niche construction as a cognitive function under active
inference, spicing traditions are intergenerational group-level strategies to track the complex
multidimensional causal relationship between spices, active agents, foodborne pathogens, and
meat consumption behavior, which supports the reproduction of the behavioral phenotype.
Spicing traditions thus can be viewed as encoding a generative process constructed by multiple
generations about what compound is deleterious to what pathogen and what pathogen is dele-
terious to humans and what spices should be consumed. Enculturated agents, then, become
coupled to this generative process which secures adaptive food processing.

Crucially, it is the generative process embodied by the tradition per se that tracks this com-
plex causal relationship, not individual agents. In responding to affordances (a.k.a., epistemic
cues of least improbable action engaged by conspecifics; cf., Figure 2) such as those offered by
artefacts of traditions, organisms like us manage to succeed implicitly in tasks for which causal
models are too complex and too costly to be taken on-board. Tradition endows individuals with
the ability to read into deep hidden causal regularities. In a scaffolded fashion (cf.,
Sterelny, 2010), the structure of extended cognition is explained formally in terms of inter-
generational learning dynamics in the generative process produced by generations of niche con-
structing agents (i.e., people participating and reproducing the tradition) and by the
enculturation of individuals' generative models through the learning of the epistemic cues (a.k.
a., affordances) in the generative process.

3 | EXTENDED ACTIVE INFERENCE

Over developmental time, smartening the world through cognitive niche construction operates
through processes akin to that of cognitive offloading, such as studied by the extended approach
to cognition. From the perspective of active inference, cognitive niche construction brings the
notion of offloading a step further. As we have seen with the earthworm and food preparation
examples, cognitive uploading through cognitive niche construction entails outsourcing the
inference over future outcomes to epistemic cues of the niche (a.k.a., affordances). Thus,
through niche construction, organisms manage to upload self-evidencing processes directly to
the structure of the generative process.

Uploading entails more than relying on physical action and artefacts to support, or help
carry out, cognitive functions. The evaluation of expected surprise drives action selection. Self-
evidencing refers to the process of minimizing the bound on surprisal (a.k.a., negative log
model evidence) through perception (optimizing the bound) and action (minimizing the bound)
(cf., Figure 1); hence, cognitive uploading through cognitive niche construction outsources part
of the computation of self-evidencing processes (those relating to action). Put simply, cognitive
uploading helps agents to minimize the bound on surprisal.

In the remainder of this paper, we explain the manner in which the above formalism gro-
unds EAI and generalizes two varieties of claims on extended cognition, the original approach
to the extended mind (Clark & Chalmers, 1998) and its recent reinterpretation as diachronic
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cognition (Kirchhoff & Kiverstein, 2019). We show how EAI supports the theory of the
extended mind by providing mechanistic explanation of well-known concepts such as the parity
principle, functional isomorphism, epistemic action, and diachronic cognition. We do not
engage the many debates surrounding the varieties of extended cognition. This is well beyond
the scope of this paper. Rather, the hope is to provide future researchers with a formal appara-
tus to make progress in these debates by showing how the varieties of claims on extended cogni-
tion may be formally expressed in EAI, a lingua franca of sort such as summarized in Figure 2.

3.1 | The extended mind under EAI

3.1.1 | Parity principle under EAI

The original theory of the extended mind decomposes into three features. The first is a parity
principle. The role of the parity principle in the theory of the extended mind is to first help us
to conceive of the view of the mind as being extended into external vehicles; the parity principle
is “a mean of freeing ourselves from mere biochauvinistic prejudices” (Clark, 2005, p. 2). The
parity principle states that:

If … a part of the world functions as a process which, were it done in the head, we
would have no hesitation in recognizing it as part of the cognitive process, then
that part of the world is … part of the cognitive process. (Clark &
Chalmers, 1998, p. 8)

If we agree that the function performed by an external state during a cognitive task would
qualify as a bona fide cognitive function “were it done in the head,” then that external state in
question ought to be considered as potentially an integrative part of the cognitive architecture
of the cognitive system. This principle is vindicated by the formalism of EAI presented in this
paper; as we have shown, the description of the dynamics underlying learning in the generative
process are formally equivalent to the learning in the generative model. Of course, one must
consider the part of the generative process that is coupled to the generative model through cog-
nitive niche construction.

3.1.2 | Functional isomorphism under EAI

The parity principle entails the second feature of the theory of the extended mind, which is the
notion of a potential functional isomorphism between some internal and some external states
(Sutton, 2010). Functional isomorphism stresses that internal and external states have to be
seen as equivalent with regard to the basic properties of cognition. For instance, under certain
conditions, a notebook might very well play the same coarse-grained functional role or episte-
mic function than biological memory implemented by patterns of neuronal connections in the
brain. When looking for coarse-grained parity between internal and external cognitive
resources, it has been suggested that external resources should meet the requirements of “glue
and trust” so that the resource is available when needed (like biomemory) and not subject to
constant agentive scrutiny—to ensure it is working as it should (again, like biomemory).
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From the point of view of EAI, the trust condition is guaranteed by the uploading process
whereby the agent learns to engage epistemic cues of the generative process. This entails
trading-off on-board neurocognitive functions for on-board environmental ones. The benefit is
the increased performance, though at the cost of increased dependence on the environment.
The glue condition is guaranteed by the increased performance that underlies the uploading.
For instance, the earthworm is “glued” to its inheritance of burrows and moist soil because of
the constraints burrows, and soils have operated on earthworm's phylogeny. We can imagine
how an individual would become “glued” to her environment in a similar fashion, though over
developmental time scale. For instance, we can imagine an individual that would carve out a
path on her commute and, over time, come to heavily rely on that path to arrive to the office on
time. The short cut may free up her schedule enough for her to get use to stop at the café to
grab a quick espresso during her commute. Then, the individual might stop buying coffee for
her kitchen; this would surely simplify the planning of her weekly stop at the grocery store any-
way. This, however, would come at the cost of sticking to her path and the espresso it affords.
In this hypothetical scenario, the trade-off that glues the individual to her environment is
instantiated by the acquisition of a habit whose robustness relies on (un)learned states of the
generative model and learned states of the generative process.

3.1.3 | Epistemic action under EAI

The original theory of the extended mind argues that the environment on which cognitive
agents rely enables them to perform epistemic actions (Clark & Chalmers, 1998). Epistemic
actions are defined as actions that ease or optimize cognitive tasks by reducing the memory load
required to perform a task (space complexity); by simplifying the computational processing pro-
cedure (time complexity); and by minimizing the probability of error outcomes (success proba-
bility) (Kirsh & Maglio, 1994). A notebook, for instance, can be viewed as supporting, and
easing the task of, say, making it to your multiple appointments throughout the week, as it will
encode relevant information like addresses (i.e., save on space complexity), provide a structure
like a schedule for knowing when your appointments are, and how best to coordinate them
(minimizes time complexity), and will probably increase your chances of making it on time
(increase success probability). These intuitions are formalized by the process of uploading from
the point of view of EAI but, in addition, by accounting for the relation between all these
advantages. Space complexity corresponds to reduced numbers of counterfactual scenarios that
one has to model, which naturally entails minimizing the probability of errors (i.e., the more
complex the generative model is, the more likely it is to overfit), and by the same token
increases performance in terms of time complexity of computation.

Another (complementary) way to view the picture of extended minds under EAI is to note
that neutrally supported estimations of salience (a.k.a., expected surprise) help select actions
that can purposefully roll in cognitive operations flowing through bioexternal resources. That
rolling in can be internally instigated (e.g., as when I retrieve my smartphone to ensure I do not
miss my flight). My purposeful rolling in can also be cued by the external resources themselves
(e.g., if I set an alarm for 2 hr before the flight). In that case, the drive or readiness to act to min-
imize my uncertainty (or to increase the precision of my beliefs about the time) will reduce, as
my expectation about future surprise or salience will decrease (e.g., “I will not feel the urge to
keep verifying the time at short intervals because I will know when to access my phone”). Here,
salience is managed by the cell phone, as trustworthy information is made reliably available.
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Crucially, the internal flux of precision (i.e., uncertainty in my beliefs) is resolved by the exter-
nally structured flow of epistemic (i.e., salience minimizing) action that serves to improve the
long-term fit between my actions and my goals, as well as the cost of computing these long-term
goals. Temporary coalitions of internal and external resources are thus recruited in the same
way as are temporary purely inner coalitions, which likewise emerge as varying patterns of
effective inner connectivity controlled by fluctuating precision and salience estimations (see
Clark, 2015, Chapters 8 and 9).

As we will see below, both the long-term built environment and the cultural milieu further
scaffold this process, nesting our individually extended minds inside larger co-constructed
niches that likewise extract, flag, and cue optimal (i.e., expected free energy minimal) action.

3.1.4 | Diachronic cognition under EAI

The diachronic perspective casts cognitive systems as extended, not only in terms of their spatial
realization, beyond the spatial scales at which the agent exists, but also in terms of its temporal
realization, to (legacy) scales that cognition occupies historically, and in the context of cultural
practices in the here-and-now. Cognitive assemblies are formed and maintained diachronically,
beyond the local organism-centered boundaries of individuals (Kirchhoff, 2012, 2015, 2018;
Malafouris, 2015; Stotz, 2010). Cognitive assemblies are decentralized systems, or networks of
human-and-nonhuman agencies (Latour, 1993), whose causal constitutive relationship depends
upon self-organized processes distributed across the network they constitute (cf., Figure 2 for a
simple environment–organism system).

The standard example used to explain diachronic cognition is that of the Elizabethan the-
atre companies (Tribble, 2005). Tribble explains how players of the Elizabethan theatre compa-
nies during the 16th century would manage to perform multiple different plays per week
without being able to rehearse due to time limitations. The ability of the actors to memorize
how to perform plays depended on patterned sociocultural practices mediated by material
artefacts populating the stage (e.g., stage doors, playing platform, plots, and scripts) and a cross-
generational apprenticeship system (Sutton, 2010) allowing the (re)acquisition of the skills
necessary to leverage the informational structure afforded by the augmented stage.

Under EAI, this allows the environment to learn shared preferences and narratives under
the form of epistemic cues but only to the extent they are preserved by organisms acting on that
environment. Each member of the theatre company engages the diachronic assembly as a gen-
erative process from the stance of their generative model. For each individual, other people and
artefacts come to encode affordances that indicate what action will be successful because of the
ongoing uploading of epistemic cues to the generative process through the apprenticeship prac-
tice. As in the earthworm case study discussed above, learning how to leverage these cues
allows each individual to limit the complexity of their generative model, thereby enhancing
performance (e.g., memory recall, reaction times, etc.) and allowing patterned, low-cost action
selection.

4 | CONCLUDING REMARK

The model of cognitive niche construction proposed in this paper offers a formal apparatus for
the study of non–brain-based factors in cognition. This paper argued that cognitive niche
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construction could be viewed as a bona fide cognitive function. Then, we sketched some exam-
ples of how this model could be used to give a formal grip to theories of the extended mind and
diachronic cognition.

The point stressed in this paper was that cognitive niche construction can be studied as a
shared cognitive function enabling organisms to track—often implicitly and at low cost—
cause–effect relationships otherwise difficult, if not impossible to track; notably, relationships
wherein the hidden causal structure is highly volatile or wherein the hidden causal structure is
too complex to be learned solely based on sensations available to the biological sensory appara-
tus of a single phenotype. From the point of view of extended active inference, all cognitive
functions are in the game of tracking causal regularities, and there is no principled reason to
restrict this process to the boundaries of skin, skull, or even individual agents.
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