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Title 1 

Evaluating the Potential of Full-waveform Lidar for Mapping Pan-Tropical Tree Species Richness 2 

 3 

Short title 4 

Lidar and Pan-Tropical Tree Species Richness 5 

 6 

Abstract  7 

Aim: 8 

Mapping tree species richness across the tropics is of great interest for effective conservation and 9 

biodiversity management. In this study, we evaluated the potential of full-waveform lidar data for 10 

mapping tree species richness across the tropics by relating measurements of vertical canopy structure, 11 

as a proxy for the occupation of vertical niche space, to tree species richness. 12 

Location:  13 

Tropics 14 

Time period:  15 

Present  16 

Major taxa studied: 17 

Trees  18 
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Methods: 19 

First, we evaluated the characteristics of vertical canopy structure across 15 moist forest study sites 20 

using (simulated) large-footprint full-waveform lidar data (22 m diameter) and related findings to in-situ 21 

tree species information. Then, we developed structure-richness models at the local (within 25-50 ha 22 

plots), regional (biogeographic regions), and pan-tropical scale at three spatial resolutions (1.0, 0.25 and 23 

0.0625 ha) using Poisson regression. 24 

Results:  25 

The results showed a weak structure-richness relationship at the local scale. At the regional scale (within 26 

a biogeographical region) a stronger relationship between canopy structure and tree species richness 27 

across different tropical forest types was found, for example across Central Africa and in South America 28 

(R2 ranging from 0.44-0.56, RMSD ranging between 23-61%). Using a pan-tropical relationship, across 29 

four continents, 39% of the variation in tree species richness could be explained with canopy structure 30 

alone (R2 = 0.39 and RMSE = 43%, 0.25 ha resolution). 31 

Main Conclusions: 32 

Our results may serve as a basis for the future development of a set of structure-richness models to map 33 

tropical forest tree species richness at high resolution using vertical canopy structure information from 34 

the Global Ecosystem Dynamics Investigation (GEDI). The value of this effort would be enhanced by 35 

access to a larger set of field reference data for all tropical regions. Future research could also support 36 

the use of GEDI data in frameworks using environmental and spectral information for modelling tree 37 

species richness across the tropics. 38 

Keywords 39 
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1. Introduction 41 

Tropical forests are known for their high tree species diversity. Current estimates suggest in the order of 42 

15,000 tree species in Amazonia alone, in contrast to 124 tree species in temperate forests in Europe, 43 

and more than 40,000 different tree species across the tropical region (Slik et al., 2015; Ter Steege et al., 44 

2015). High levels of tree species richness support the provision of essential ecosystem services (e.g., 45 

Liang et al., 2016). Unfortunately, 35% of pre-agricultural global forest cover has been lost over the past 46 

300 years, largely due to increasing human pressures on the environment. Eighty-two percent of the 47 

remaining forest is estimated to have experienced some degree of human impact (Watson et al., 2018). 48 

The Convention of Biological Diversity (CBD) and Group on Earth Observations Biodiversity Observation 49 

Network (GEO BON) have developed a list of important variables aiming to provide quantitative 50 

information on biodiversity to reach the Aichi biodiversity targets 2020 (Pereira et al., 2013; Skidmore et 51 

al., 2015). Among the identified needs is the mapping of taxonomic diversity at high spatial resolution 52 

over large scales (Pereira et al., 2010). Here we focus on tree species diversity. The collection of tree 53 

species diversity data is traditionally done in the field, and such information has previously been used to 54 

create predictive maps of tree species richness across the globe at low spatial resolution (Kier et al., 55 

2005; Mutke & Barthlott, 2005). More recently, passive remote sensing data, such as optical imagery 56 

from different airborne and spaceborne platforms, has been used in combination with field reference 57 

data to predict tree species diversity in different regions (Foody & Cutler, 2006; Carlson et al., 2007; 58 

Féret & Asner, 2014; Rocchini et al., 2016; Schäfer et al., 2016; Bongalov et al., 2019). Even though such 59 

methods have been progressively developing over the last decade, they are not yet operational for 60 

mapping tree species richness across the tropics due to, among others, a lack of consistent remote 61 

sensing and training data over such scales, insufficient model accuracy and/or low spatial resolution. 62 
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The scientific community has called for bolder science in conservation strategies to enable effective 63 

management of the Earth’s forests and allow for better conservation of our natural ecosystems (Watson 64 

et al., 2016). In this study we focus on the use of active remote sensing, specifically lidar, for mapping 65 

taxonomic tree species richness in the tropics. While local tropical forest species richness is largely 66 

independent of biomass in intact forests (Sullivan et al., 2017), and forest structure in terms of height 67 

diameter relationships differ varies regionally as does species richness (Feldpausch et al. 2012 68 

Biogeogsciences), it remains unclear if substantial amounts of variation in species diversity are 69 

associated with features of forest structure. Here, we explore for the first time whether small-scale 70 

vertical canopy structure variation is significantly associated with the spatial variation in tropical tree 71 

species richness. On a global scale it has previously been shown that canopy height explains a limited 72 

portion of the variation in tree species diversity, as such data provide information on the available niche 73 

space (Gatti et al., 2017). It has since been hypothesized that including information on the vertical 74 

canopy structure, must explain more of the variation in tree species diversity than canopy height alone; 75 

as such data provide information on the occupation of the vertical niche space. Marselis et al. (2019) 76 

demonstrated that information on canopy height and vertical canopy structure, expressed as the Plant 77 

Area Index (PAI) profile from full-waveform airborne lidar data, could be used to map tree species 78 

diversity in Gabon, Africa. However, it is not clear whether this relationship is of similar nature and 79 

strength across different regions, or even the entire tropics. If existent, than the use of such a structure-80 

diversity relationship(s) could become operational at a pan-tropical scale with the rapidly increasing 81 

availability of spaceborne canopy structure information derived from the Global Ecosystem Dynamics 82 

Investigation (GEDI), a full-waveform spaceborne lidar system (Dubayah et al., 2020). GEDI is expected 83 

to provide over 10 billion measurements of vertical canopy structure across the temperate and tropical 84 

forests between 2019 and 2021.  85 
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Factors influencing tree species diversity on a global scale differ from those affecting spatial patterns at 86 

regional or local scales. In general, tropical tree species diversity increases with increasing precipitation, 87 

forest stature, soil fertility, time since catastrophic disturbance and rate of canopy turnover and 88 

decreases with seasonality, latitude, and altitude (Givnish, 1999). At large-grain scales historical 89 

biogeography processes are more important, whereas at the plot-scale environmental variables strongly 90 

influence diversity (Keil & Chase, 2019).  91 

Similar to species diversity, forest structure at the global scale is influenced by interacting historic, 92 

environmental, and human related variables; precipitation in the wettest month being the most 93 

important single predictor of plant height (Moles et al., 2009). Forest structure measured in the field is 94 

mainly comprised of four variables: canopy height, biomass, basal area and tree density (Palace et al., 95 

2015). However, active remote sensing techniques have revolutionized the study of canopy structure 96 

(Newnham et al., 2015). With lidar remote sensing, for example, it is now possible to obtain information 97 

on canopy height, as well as the position and amount of plant material along the vertical axis of the 98 

canopy (Tang et al., 2012). Palace et al. (2015) stressed that high resolution lidar data possess vertical 99 

structure information which is inherently linked to ecological processes. 100 

We hypothesize that structure-diversity relationships will vary across different biogeographical and 101 

phylogenetic regions (Corlett & Primack, 2011; Slik et al., 2018) and that it may be more fruitful to 102 

develop multiple relationships rather than one pan-tropical relationship for operationalizing tree species 103 

diversity mapping with spaceborne active remote sensing data. Additionally, the strength of the 104 

relationship between a variable and tree species diversity often changes with resolution (plot size) as 105 

tree species diversity is not linearly related with area (species-area curve) (MacArthur & Wilson, 1967). 106 

This complicates the development of predictive models at specific resolutions, and also limits the 107 

extrapolation of estimates at one resolution to a larger area, which impedes the mapping of pan-tropical 108 

tree species diversity at high spatial resolution.   109 
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In sum, we know that both species diversity and canopy structure vary greatly within and across 110 

continents. Hence, our objective is to assess whether canopy structure information can explain tree 111 

species richness at the local, regional and/or pan-tropical scale with the ultimate goal to evaluate the 112 

efficacy of spaceborne full-waveform lidar for mapping tree species richness across the tropics. First, we 113 

compare characteristics of the vertical canopy structure, measured with full-waveform lidar data, of 114 

tropical forests across the world. Second, we evaluate the differences in species richness and species-115 

area curves across the different study sites using field measurements. Third, we evaluate the potential 116 

for developing local (within 25-50 ha field plots), regional (within biogeographical regions) and pan-117 

tropical structure-richness relationships, relating canopy structure metrics from lidar to tree species 118 

richness measurements from the field at three spatial resolutions (0.0625, 0.25 and 1.0 ha). Lastly, we 119 

discuss the potential of full-waveform lidar data from GEDI for mapping tree species richness across the 120 

tropics using structure-richness relationships.   121 
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2. Materials and Methods  122 

We address the relationship between canopy structure and tree species richness in terra firme lowland 123 

moist forest in the tropical region between 23.5° N and S. We compiled a comprehensive field and lidar 124 

dataset covering colonizing forest, old-growth tropical forest and forests under different degrees of 125 

degradation and savanna. We included a wide variety of forest with differing degrees of disturbance 126 

because  most of the Earth’s tropical forests have been degraded or otherwise affected by natural and 127 

human influences (Lewis et al., 2015). Hence, when developing a method that allows for estimating pan-128 

tropical tree species richness it is important to include data covering this range of possibilities.  129 

Species diversity can be expressed with a variety of indicators. Generally, three levels of diversity are 130 

recognized: α, β, and γ diversity. α diversity refers to the local diversity of a community, habitat or field 131 

plot. β diversity refers to the differences in diversity between habitats and γ diversity to the total 132 

diversity of a region (Colwell, 2009). In this study we focus on α diversity. α diversity can be expressed 133 

with many different metrics. In this study we focus on species richness (S) expressed as the total number 134 

of species in a plot of a given size. Hence, from here on forward we only refer to tree species richness, 135 

used to express the local tree species diversity.  136 

2.1 Field Datasets  137 

Field data were used to calculate the reference values of tree species richness. We used 15 datasets: 138 

one from Australia, two from South-East Asia, six from Africa, three from South America and three from 139 

Central America (Figure 1). All field datasets used in this study have been previously collected and 140 

published and have coincident airborne lidar data available. Each field dataset is labeled with a three-141 

letter code and contained information on tree location, species and diameter at breast height (DBH). All 142 

datasets were collected by different organizations and research teams resulting in different data 143 

characteristics (Table 1, SI1). Four datasets consisted of one large plot of 25 ha (rob, Australia and rab, 144 
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Gabon) or 50 ha (dan, Malaysia and bci, Panama). The other eleven datasets consisted of multiple (3-21) 145 

smaller plots with sizes ranging from 0.16 ha to 4.0 ha.  146 

 147 
Figure 1: Location of field sites across the three continents, colors of each study site are consistent 148 
throughout the paper. Gridlines indicate 10° intervals in longitudinal and latitudinal directions. The size 149 
of the place markers represents the size of the total sampled area relative to each other.  150 

  151 
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Table 1: Information on the original plot size, the amount of total area sampled in the field and the 152 
source of the data which is either a website where the data are published and/or a publication in which 153 
the data are described further.  154 

Country Project 
code 

No.  
native 
plots 

Total 
area 
(ha) 

Source / Additional Information 

Oceania 
Australia rob 1 25 (Bradford et al., 2014) 

South-East Asia 
Malaysia dan 1 50 https://forestgeo.si.edu/sites/asia/danum-valley 
Malaysia sep 9 36 https://www.forestplots.net/en/ (Jucker et al., 2018) 

Africa 
DRC mal 21 21 (Bastin et al., 2015) 
DRC  yan 9 9 (Kearsley et al., 2013) 
Gabon rab 1 25 https://forestgeo.si.edu/sites/africa/rabi (Memiaghe et 

al., 2016) 
Gabon lop 11 9.5 AfriTRON plots, https://www.forestplots.net/en/ 

(Labrière et al., 2018) 
Gabon mon 12 12 (Fatoyinbo et al., 2017) 
Gabon mab 10 10 (Bastin et al., 2015; Labrière et al., 2018) 

South America 
Peru tam 6 6 RAINFOR plots https://www.forestplots.net/en/ (Boyd et 

al., 2013) 
Brazil s11 8 1.44 http://www.paisagenslidar.cnptia.embrapa.br/webgis/  
Brazil s12 21 3.36 http://www.paisagenslidar.cnptia.embrapa.br/webgis/   

Central America 
Costa Rica lsv 18 9 https://tropicalstudies.org/carbono-project/ (Clark & 

Clark, 2000) 
Costa Rica cha 3 2 http://neoselvas.wordpress.uconn.edu/costa-rica/ 
Panama bci 1 50 https://forestgeo.si.edu/sites/neotropics/barro-colorado-

island (Lobo & Dalling, 2013) 
 155 

In this study, we assessed the structure-richness relationship at three spatial resolutions (1.0, 0.25, 156 

0.0625 ha) because of the non-linear relationship between the number of tree species (S) and sampled 157 

area. We selected squares of 1.0 ha (100 x 100 m) because they are often-used in ecology and it has 158 

been shown that the spatial mismatch of plot location and remote sensing products is minimized at this 159 

resolution (Réjou-Méchain et al., 2014). We used squares of 0.25 ha (50 x 50 m) because these yielded 160 

the best results describing the structure-diversity relationship in Gabon (Marselis et al., 2019), and 161 

squares of 0.0625 ha (25 x 25 m) because they correspond to a resolution close to the GEDI footprint 162 
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size. The datasets were used at one, two or three of the aforementioned resolutions depending on the 163 

original plot size and the availability of stem maps or subplots (Table 1, full table in SI1). For each of the 164 

field sites we calculated S for the entire dataset and for each plot at each plot size (Table 2). Only live 165 

trees with a DBH ≥ 10 cm were included, to ensure consistency among datasets, and we removed all 166 

plots of each resolution in which more than 20% of the trees were not identified to the genus level.  167 

Table 2: The total number of species identified at each study site and the average (x)̄ and standard 168 
deviation (s) of the species richness for each of the three plot sizes expressed as x ̄± s (including only live 169 
trees with DBH ≥ 10 cm). 170 

Country 
Project 
Name 

Total No. 
species 

Total sampled 
area used (ha) 

Species 
richness 
1.0 ha 

Species 
richness 
0.25 ha 

Species 
richness 

0.0625 ha 
Oceania 

Australia rob 205 25 98 ± 10 56 ± 8 27 ± 5 
South-East Asia 

Malaysia dan 260 6 117 ± 13 51 ± 7 19 ± 4 
Malaysia sep 517 32 102 ± 22 53 ± 11 - 

Africa 
DRC mal 116 21 37 ± 11 20 ± 7 - 
DRC  yan 232 9 50 ± 23 24 ± 13 10 ± 6 
Gabon rab 234 25 84 ± 8 42 ± 6 17 ± 4 
Gabon lop 118 9.5 32 ± 22 17 ± 10 8 ± 4 
Gabon mon 146 12 32 ± 15 15 ± 9  7 ± 5 
Gabon mab 196 10 55 ± 8 - - 

South America 
Peru tam 517 6 171 ± 13 70 ± 9 24 ± 5 
Brazil s11 91 1.44 - - 17 ± 3 
Brazil s12 135 3.36 - - 16 ± 4 

Central America 
Costa Rica lsv 216 9 - 48 ± 8 19 ± 5 
Costa Rica cha 81 2 58 28 ± 5 13 ± 4 
Panama bci 220 50 87 ± 8 42 ± 6 17 ± 3 

 171 

2.2 Lidar Datasets  172 

Each of the field datasets had coincident discrete return airborne laser scanning (ALS) data, or full-173 

waveform lidar data from the Land Vegetation and Ice Sensor (LVIS), collected over the field plots within 174 

5 years of field data collection. We used the GEDI simulator (Hancock et al., 2019) to create lidar 175 
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waveforms from the ALS data over the field plots. The ALS data was originally collected with a variety of 176 

airborne instruments, but the GEDI simulator ensures a reliable GEDI-like waveform with minimal 177 

influence of the original instrument-specific characteristics. In this way, all lidar information could be 178 

processed in a consistent way across all study sites ensuring a reliable inter-comparison of canopy 179 

structure metrics derived from the waveforms and allowing for easy transfer of the developed models to 180 

future on-orbit GEDI data. Lidar waveforms were simulated with a 22 m ground footprint (Gaussian 181 

distribution of laser energy, σ = 5.5 m). Lidar waveform locations were determined by filling each field 182 

plot, using the original field plot size and shape, with footprint center locations 6.25 m from the plot 183 

edge and 5 m between footprint center locations (Figure 2). In this way, a reliable measure of canopy 184 

structure could be acquired for each plot by averaging lidar metrics from all waveforms inside the plot, 185 

instead of using single waveforms in the plot center and evaluating structure-richness relationships 186 

based on such potentially unrepresentative waveforms. The following information was extracted from 187 

each simulated lidar waveform using mature and published algorithms: canopy height (expressed as the 188 

98th percentile of the relative height metric; RH98), total Plant Area Index (PAI), and Plant Area Index at 189 

a 1 m vertical resolution (Drake et al., 2002; Tang et al., 2012; Marselis et al., 2018; Hancock et al., 190 

2019). The 1 m vertical profile was used to compare the canopy structure across the study sites. It was 191 

aggregated into a 10 m vertical profile, summing all PAI values in each 10 m vertical bin, to be used in 192 

the structure-richness analyses. We chose to use the PAI profile because it is a biophysical variable 193 

describing the amount of plant material along the vertical forest axis, thus directly indicating the 194 

occupation of vertical space. Marselis et al., (2019) previously showed this information relates well to 195 

tree species richness in Africa. The average of each of the resulting metrics from all waveforms within 196 

each plot was computed to represent the canopy structure for each plot at each spatial resolution. 197 
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 198 
Figure 2: Illustration of simulated lidar waveform layout. The waveforms (red circles) have a Gaussian 199 
energy distribution with σ=5.5 m, resulting in a roughly 22 m diameter footprint. Example of simulated 200 
footprint distribution locations in a 1.0 (solid outline), 0.25 and 0.0625 ha field plot (dashed outline). 201 
Note: this footprint distribution was chosen to accurately depict canopy structure within the 0.0625, 0.25 202 
and 1.0 ha plots but it does not represent the spatial distribution of spaceborne GEDI waveforms.  203 

2.3 Canopy Structure across the tropics  204 

To evaluate the canopy characteristics across the different study sites we calculated the median plant 205 

area volume density profile (composed of the PAI values for each 1 m vertical bin), using all simulated 206 

lidar waveforms for each study site. In addition to the median (50th percentile), we calculated the 10th, 207 

30th, 70th and 90th percentiles of the PAI values in the same 1 m vertical bins, to provide a representative 208 

distribution of the canopy structure across each study site. 209 

2.4 Species-area relationships across the tropics 210 

We created species-area relationships, calculating the mean and standard deviation of S for plot sizes 211 

ranging between 0.01 and 50 ha, to assess how species richness changes by plot size across our study 212 

sites. Each of the original field plots was filled with as many non-overlapping subplots as possible at 17 213 

spatial resolutions (0.01, 0.0225, 0.04, 0.09, 0.16, 0.25, 0.36, 0.64, 1.0, 2.25, 4.00, 6.25, 9.00, 12.25, 16.0, 214 

25.0, 50.0 ha) with each tree assigned to a subplot at each resolution. The plot sizes used at each study 215 
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site depended on the original plot size and the availability of stem maps (SI1). We visualized the mean 216 

and standard deviation of S for each plot size at each study site to evaluate the differences in species-217 

area curves across the tropics.  218 

2.5 Structure-Richness Analysis  219 

To evaluate the existence of a relationship between vertical canopy structure and tree species richness 220 

across the tropics, we developed models at three scales: local, regional and pan-tropical, because many 221 

historical and environmental drivers of (tree) species diversity have stronger or weaker relations 222 

depending on the scale of observation (Gaston, 2000; Keil & Chase, 2019) as do different ecosystem 223 

functions (Chisholm et al., 2013). Definitions of the scales are presented in the following sections.  224 

2.5.1 Local Analysis 225 

The local analysis focused on the structure-richness relationship within large (25 or 50 ha) plots. We 226 

used data from adjacent field plots to evaluate the relationship between S and the canopy structure 227 

expressed as canopy height (RH98), total PAI and vertical canopy profile (PAI at 10 m vertical intervals). 228 

The local analysis was performed on data collected in bci (50 ha), rab and rob (25 ha). The other 50 ha 229 

plot (dan) was not suitable for this analysis because the species identification was incomplete at the 230 

time of analysis (Table 1). We related the canopy structure with S using a generalized linear model with 231 

a Poisson error distribution. We used 5-fold cross-validation, extracting 20% of the data at random in 232 

each fold as test data. We first performed feature selection on the training data, choosing the model 233 

with the lowest Bayesian Information Criterion (BIC) score, and then constructed the predictive model 234 

based on the same training data. We evaluated model performance using R2, Root Mean Squared 235 

Difference as a percentage of the mean (RMSD%) and bias based on the predictions for the test data 236 

(Piñeiro et al., 2008). The average and 95% confidence interval of these metrics were recorded for each 237 

study site at each resolution. 238 
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2.5.2 Regional and Pan-tropical Analysis  239 

The regional analysis was focused on the structure-richness relationship based on non-adjacent plots 240 

across study sites within the same biogeographical zone. We evaluated different combinations of study 241 

sites at three spatial resolutions (Table 3). To prevent the large plots from dominating the regional and 242 

pan-tropical analyses, we thinned their contribution to both the regional and pan-tropical datasets. 243 

From the 25 ha plots we selected 1.0 ha plots at each corner, and from the 50 ha plots we selected all 244 

corner and the middle plots along the long sides of the plot (6 1.0 ha plots total). To avoid mixing local 245 

and regional effects, we employed a Monte-Carlo simulation approach in which we drew different 246 

samples from the full regional dataset. In each Monte-Carlo run we randomly sampled one plot at the 247 

given resolution from each original plot location (especially important at the 0.25 and 0.0625 ha 248 

resolutions at which up to 16 plots exist at the location of each original 1.0 ha plot) and applied a cross-249 

validation (80/20) or leave-one-out cross validation (if n ≤ 25) approach. In the cross-validation we again 250 

performed a two-step approach: first we performed variable selection on the Poisson regression model 251 

choosing the model with lowest BIC (using the bestglm package in R), and then built the predictive 252 

model with the chosen variables. We applied the model to the test data and calculated the model 253 

performance statistics for each fold according to Piñeiro et al. (2008).   254 

The pan-tropical analysis focused on the structure-richness relationship combining the information from 255 

all 15 study sites across all tropical regions, in other words, it was a special case of the regional analysis 256 

in which data from all sites was included. Thus, the same methods were applied as in the regional 257 

analysis.  258 
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Table 3: Datasets used for regional and pan-tropical analysis of the structure-richness relationships. Note 259 
that one region may not contain the same number of plots across all resolutions due to limitations in the 260 
availability of subplot and stem map information, limiting the use of data from some study sites to only 261 
one or two resolutions. 262 

  Study sites  

Region 
Resolution 

(ha) sep dan rob lsv cha bci tam s11 s12 mal yan rab mon lop mab Total 

Africa 
1          21 9 4 10 8 10 62 
0.25          21 9 4 11 11  56 
0.0625           9 4 12 11  36 

South 
America 

1                - 
0.25                - 
0.0625       6 8 21       35 

Central 
America 

1                - 
0.25    18 3 6          27 
0.0625    18 3 6          27 

South-
East 
Asia 

1 9 2              11 
0.25 9 2              11 
0.0625                - 

Pan-
tropical 

1 9 2 4  1 6 6   21 9 4 10 8 10 90 
0.25 9 2 4 18 3 6 6   21 9 4 11 11  104 
0.0625  6 4 18 3 6 6 8 21  9 4 12 11  108 

 263 

3. Results  264 

3.1 Vertical forest structure across lowland tropical moist forests 265 

The vertical canopy structure of forests, in terms of the vertical distribution of plant material varies 266 

between tropical regions (Figure 3). Maximum canopy height in our study sites in the Neotropics and 267 

Central Africa is typically around 40 m, and slightly lower in Australia, while canopy heights in South-East 268 

Asia exceed 60 m. Many sites show a distinct understory layer and a decrease in plant material through 269 

the canopy. Relative to the understory, the canopy layer sharply declines in vegetation density (sep and 270 

dan, Malaysia) or steadily declines along the vertical axis (bci, Panama; rab, Gabon; mal, DRC; rob, 271 

Australia). This vertical distribution of declining vegetation is exacerbated in degraded forests: in s11, 272 

s12 (Brazil) and mon (Gabon), where the bulk of the vegetation exists close to the forest floor at ~5 m 273 
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height, but remnant trees in some plots may reach 40 m. Other sites, especially undisturbed ones, have 274 

distinct canopy layers. In tam (Peru) and in the old-growth forest in lsv (Costa Rica) there are multiple 275 

peaks of high-density vegetation across the vertical strata of the forest. The profiles of yan (DRC) and lop 276 

(Gabon) are characterized by a multiple-peak pattern, with one peak 20-30 m in the canopy and another 277 

within 5 m of the ground, reflecting the inherent structure of the forest-savanna mosaic. The less 278 

disturbed mab (Gabon) forest shows high variability in canopy structure between plots (e.g. the wide 279 

shaded area in Figure 3).  280 
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 281 
Figure 3: Canopy structure expressed as the Plant Area Volume Density profile (PAVD), expressing the 282 
Plant Area Index for each 1 m vertical bin, displayed as the median of all plots within each study site 283 
(solid line), the 30th-70th percentile (darker shaded area) and 10th-90th percentile (lighter shaded area). 284 

 285 

3.2 Species-area relationships 286 

The number of species increases with plot size, but the rate of increase varies across study sites (Figure 287 

4). For example, in rob (Australia) 82-117 species occur in a 1.0 ha plot compared to 16-44 species in 288 

0.0625 ha plots. By contrast, tam (Peru) contains 154-185 species/ha, but only 11-35 species in a 0.0625 289 
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ha plot, similar to rob. Thus, species’ composition of adjacent 0.0625 ha plots in tam must be more 290 

different from each other than adjacent 0.0625 ha plots in rob (Australia), in other words, the β diversity 291 

of the plots in tam is higher than in rob. The species-area curves vary in shape across study sites, with 292 

the highest total species richness in tam and lowest species richness in the African sites (Figure 4). 293 

Curves that are initially steep and decrease in slope at larger plot sizes indicate a high α diversity but a 294 

lower β diversity (e.g. when the area is increased, the same species are encountered). 295 

 296 
Figure 4: Relationships between tree species richness and area for each study site (note the change in y-297 
axis across panels from left to right). 298 

 299 

3.3 Structure-richness relationships 300 

Pulling together the information on tree species richness and canopy structure (RH98 and Total PAI), 301 

species richness generally increases with increasing canopy height and increasing total Plant Area Index 302 

across the tropics (Figure 5).  303 
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 304 
Figure 5: Relation between canopy height (left) and total PAI (right) across three spatial scales for all 305 
study sites across the tropics. Each point represents one plot at the specific resolution. Dots are colored 306 
by study site corresponding according to legend in Figure 1.  307 
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The cross-validation results of the local models reveal weak structure-richness relationships. Of the 308 

three large plots (25 and 50 ha), only the models for bci (50 ha) show evidence of a significant 309 

relationship between the predicted and observed values (R2=0.32 at 1.0 ha, SI2). Even though species 310 

richness within all three large plots can be predicted with a root mean squared error between 7-20% of 311 

the mean species richness, the low RMSD% found only indicates that the predictions at the local scale 312 

are close to the mean species richness, however in rab and rob the canopy structure is insensitive to the 313 

local variation in tree species richness (see for example Figure SI2-1).  314 

Regional structure-richness models generally show much better performance (Figure 6) than the local 315 

models in terms of the variance in species richness that can be explained with the canopy structure 316 

information (mostly significant models and higher R2 values). However, prediction error (as percentage 317 

of the mean species richness) is generally higher, partly due to the larger range in species richness in 318 

these regional datasets. Regions of Africa and South America (Table 3) show the best model 319 

performance whereas regions including the Costa Rica datasets show much poorer performance 320 

(regions indicated with centralamerica). Results from an additional analysis on the compositional 321 

similarity (Bray-Curtis; Faith et al., 1987, SI3) of the Costa Rica dataset showed that, even though species 322 

richness varies in Costa Rica (Table 2), the plots share many species, i.e. the composition is similar. In the 323 

africa and southamerica datasets the variation in species richness is accompanied by a much larger 324 

variation in species composition (SI3). The variation of the model performance for seasia is very high 325 

because of the low number of plots available for this region and at the 0.25 ha resolution it was not 326 

possible to create a significant model >95% of the monte-carlo iterations (Table 3). The model 327 

performance does not provide clear results on the effect of the different resolutions, given the 328 

overlapping error bars for models in the same region at multiple resolutions and the inability to create 329 

each regional model at each spatial resolution (Figure 6).     330 
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 331 
Figure 6: Cross-validated model performance of regional structure-richness models. Error bars indicate 332 
the 95% range of values for each performance metric. Solid dots indicate >95% of the generated models 333 
was statistically significant, open circles indicate a lower percentage was significant. 334 

Pan-tropical structure-richness models show varying performance across the spatial resolutions with 335 

mean R2 ranging between 0.25 and 0.39 and RMSD% between 66 and 43% for the plot sizes from 1.0 336 

and 0.0625 ha (Figure 7). However, the error bars of the model performance at different resolutions are 337 

overlapping, indicating that no resolution has a statistically better performance. Around 39% of the 338 

variation in tree species richness can be explained using canopy structure metrics alone at the 0.25 ha 339 

resolution at the pan-tropical scale. Sites with extremely high values of observed species richness are 340 

generally predicted poorly (SI4). 341 

  342 
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 343 

Figure 7: Cross-validated model performance at the pan-tropical scale in terms of R2 and RMSD%. Error 344 
bars indicate the range between which 95% of the performance values of the cross-validated models fall.  345 

  346 
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4. Discussion  347 

4.1 Structure-richness relationships across scales 348 

In this study we explored the relationships between vertical canopy structure and tree species richness 349 

at different resolutions across local, regional and pan-tropical scales, using a total of 15 study sites with 350 

coincident lidar and field data across lowland tropical moist forests. We found weak relationships 351 

between canopy structure and tree species richness at the local scale and the strongest relationship at 352 

the regional scales in Africa and South America. We also found significant relationships between canopy 353 

structure and tree species richness combining the data from all study sites.  354 

At the local scale, within one large plot inside one forest type, the variation in the canopy structure is 355 

determined largely by variability in growth structure within the same species (the 25 and 50 ha plots 356 

have a similar composition throughout the plot, SI1 and SI3). For example, an adult tree of species X may 357 

range in height from 20-40 m, so even though the canopy structure may differ between two plots of 358 

similar composition, the difference is not attributed to a difference in species composition. 359 

Furthermore, if a 20 m and 40 m tree of species X exist in the same plot, due to the difference in canopy 360 

structure the model may predict a species richness of 2 based on variation in structure. On the other 361 

hand, as area increases it is more likely that the difference in structure is caused by a difference in 362 

composition. Individuals of most tropical forest species are spatially aggregated (Condit, 2000) so the 363 

composition of two adjacent plots is more similar than the composition of two more distant plots. This is 364 

the case for bci, where a 50 ha area with a species richness gradient was sampled (Fricker et al., 2015) 365 

and included in the local analysis, which led to more successful prediction of species richness based on 366 

structure. Within the 25 ha plots sampled at rab and rob, the variation in composition is smaller and no 367 

significant structure-richness relationships were found (SI3).   368 
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Increasing the scale, we found that regions consisting of sites exhibiting a large variation in species 369 

composition among plots, but with a similar biogeographical history, show a much stronger structure-370 

richness relationship. However, we note that model performance differed quite drastically across 371 

regions. The forest in lsv, Costa Rica, consists of largely similar species composition, whereas species 372 

composition is much more different in regions where the structure-richness models perform better 373 

(South-America, Africa), supporting the result from local scale models that species richness can be 374 

better predicted from canopy structure in areas with greater β diversity.    375 

At the pan-tropical scale we find a significant relationship between canopy structure and tree species 376 

richness across all spatial resolutions. At the intermediate resolution (0. 25 ha) this relationship appears 377 

to be slightly stronger than at the higher and lower resolutions, but no significant difference was found. 378 

However, the observed difference may be attributed to the lower sensitivity of species richness to rare 379 

species at smaller plot sizes. For example, tam (Peru) plots have very high species richness at the 1.0 ha 380 

resolution (Table 2), whereas at the 0.0625 ha resolution the species richness ranges between 11-35 381 

species, which is still higher than most other sites but much less than at the 1.0 ha plot size. Because the 382 

1.0 ha plot size captures more rare species in each plot, the 1.0 ha pan-tropical model predictions for 383 

tam contain highly erroneous predictions that are not present in 0.0625 ha models (SI4). Rare species do 384 

not contribute much to the canopy structure, thereby complicating the relationship between structure 385 

and richness at a scale at which they contribute largely to species richness numbers.  386 

4.2 Limitations 387 

This research could be significantly improved by using more coincident lidar and field data to thoroughly 388 

evaluate the existence and strength of the structure-richness relationship across all tropical regions. 389 

However, the collection of such data is costly and time-consuming. Here, we were able to exploit 15 390 

independently collected datasets (SI1). However, there are still large data gaps, especially in the Amazon 391 
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basin, the high biomass forests of Central Africa, the mainland of South-East Asia, New Guinea and 392 

Australia, as well as the dry tropics and montane ecosystems. Apart from the spatial representation 393 

problem, the low number of plots for certain regions attributes largely to the observed variability in 394 

model performance. The pan-tropical models (with n ≥ 90) show more stable performance than models 395 

of regions with low numbers of plots (e.g. seasia). A training dataset that does not fully represent the 396 

range of structure in the full dataset can lead to highly erroneous predictions for some of the test plots. 397 

Such errors are exacerbated by the logarithmic link model in Poisson regression because errors can 398 

increase exponentially. Even so, negative predictions are possible with linear regression and the risk of 399 

underestimating tree species richness is higher for diverse areas. Hence, we chose to use Poisson 400 

regression, knowing that it may lead to extreme predictions in some cases that should be accounted for 401 

when operationalizing this method.  402 

Species diversity can be identified in many different ways (Gotelli & Colwell, 2001; Colwell, 2009) and 403 

there are risks and pitfalls using just one metric. In this study we only used ‘species richness’ (S), defined 404 

by the number of different tree species in a defined area (the plot, with different sizes), as this metric is 405 

easy to interpret and a prediction of the number of species/area can probably be used most directly by 406 

ecosystem managers. Hereby we did not control for the number of stems in the plot, nor for the 407 

abundance of the different species. Such things can be considered, for example, by using the Shannon 408 

diversity index or rarefaction curves. Moreover, depending on the type of metric, a different model will 409 

need to be selected. For example, a generalized linear regression with a Poisson error distribution, as 410 

used here, is more suitable for estimated tree species richness as this is count data, whereas a linear 411 

model with a Gaussian error distribution will be better suited for estimating Shannon diversity. Hence, 412 

we chose to focus on one metric of diversity to test the structure-richness relationships, while 413 

acknowledging other metrics may provide better, worse, or more useful predictions of tree species 414 

diversity and these should be considered in the future. 415 
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This study serves as a first attempt to study the pan-tropical structure-richness relationship and should 416 

be improved and further developed when more data become available. Additionally, the characteristics 417 

of each dataset differed widely because all data were collected by different people and institutions. We 418 

accounted for this as much as possible by using datasets only at reliable plot and subplot resolutions, 419 

including only trees ≥ 10 cm DBH and including only plots with less than 20% of unidentified trees at the 420 

genus level. Nonetheless, we acknowledge that the quality of the species identification varied and may 421 

have affected our models as species identification in the tropics can be challenging due to the vast 422 

variety of tree species and the fact that new species are still encountered. Species identification of new 423 

and existing data could be improved using more botanists or genetic tests in the lab, which has been 424 

done for some of the datasets used here, but is not yet feasible for all datasets. Additionally, including 425 

information on species for trees with DBH ≥ 10 cm omits a lot of diversity found in the understory. 426 

Fricker et al. (2015) showed that especially this diversity variation in small trees related well to the 427 

canopy structure. Future research could determine if these findings are consistent across the tropics.  428 

The availability of stem maps and subplots in each study site determined the spatial resolutions at which 429 

datasets could be used. This resulted in the inclusion of different datasets for each region (Table 3). This 430 

makes the comparison of model performance in the same region at different resolutions unreliable 431 

because the models were not always built on the same data (plots and study sites), but we weighed this 432 

decision to maximize the sizes of the datasets used to build the structure-richness models. Hence, no 433 

conclusion can be drawn about the optimal resolution for the structure-richness relationships. 434 

Accurate geolocation of field plots is key for the development of reliable species-richness models 435 

(Fricker et al., 2015). However, geolocation of field plots in the tropical forest can be challenging due to 436 

difficulties receiving a reliable GPS signal under dense canopy. This should be taken into account, 437 

especially when evaluating the performance of models build with small field plots, where the effects of 438 

such geolocation errors will be larger (Réjou-Méchain et al., 2014).  439 
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We included data from a range of forest stages, including old-growth forest, successional stages, 440 

disturbed forest and even low tree density savanna sites. The relationships we found are partially driven 441 

by this gradient (Figure 5). However, we deemed it essential to include data from across this range of 442 

forest types, because if this method is to be operationalized using canopy structure information from 443 

across the tropics, we will encounter all these different types of forest (Lewis et al., 2015). We 444 

acknowledge that many other variables could also be related to tree species richness across the tropics, 445 

such as environmental variables as mean annual temperature and precipitation (Keil & Chase, 2019) or 446 

topographical variables such as slope and elevation (Robinson et al., 2018). However, in this study we 447 

specifically focused on the relation between canopy structure and tree species diversity, in light of the 448 

recently launched GEDI mission. We recognize that including such information on topographic and 449 

environmental variables may further improve the mapping of tropical tree species richness. 450 

4.3 Future research & Applications  451 

Our results provide confidence regarding the existence of regional and pan-tropical structure-richness 452 

relationships that may be used to map pan-tropical tree species richness. The most accurate predictions 453 

seem to be achieved at the regional scale when adequate data are available and when forested areas 454 

are grouped by regions of similar biogeographical history. However, in the absence of such data it may 455 

be of more immediate interest to further develop pan-tropical models that were shown to explain up to 456 

39% of variation in lowland moist forest tree species richness. At the time of writing, GEDI is collecting 457 

canopy structure information close to the finest resolution tested here (0.0625 ha) and thus these data 458 

may be well suited for mapping tropical tree species richness. GEDI is a sampling mission in which lidar 459 

waveforms with 25 m diameter footprints are collected across 8 tracks with 600 m between-track 460 

spacing, 60 m along-track spacing (Figure 8).  461 
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 462 
Figure 8: (a) Example of GEDI data captured over the east of Mondah forest, north-west of Libreville, in 463 
Gabon, Africa. The lidar waveforms are collected along-track with 8 tracks, a between-track spacing of 464 
600 m and an along-track spacing of 60 m. (b) shows an example GEDI waveform (shot number = 465 
31151117000411055, orbit = 03115, track = 05633) at the indicated location with the Relative Height 466 
metrics and (c) shows the accompanying PAI profile at 5 m vertical intervals from the Level-2 data 467 
product.  468 

 469 

The footprint-level GEDI information on vertical canopy structure is stored in the Level-2 data products 470 

which are publicly available from the NASA Land Processes Distributed Active Archive Center (LPDAAC)1. 471 

GEDI gridded data products will have a 1 km2 resolution in which the GEDI data samples are averaged to 472 

1 km2 values (Dubayah et al., 2020). Our local scale models show that predictions of adjacent 0.0625 ha 473 

plots (or in the future, footprints) are on average correct, but they will not detect local nuances in 474 

species richness within forests of uniform composition. We suggest that the species richness predictions 475 

could potentially be used in a similar way as for gridded GEDI data products and estimate the average 476 

number of species/0.0625 ha within a 1 km2 cell, as such information may still be of interest to local land 477 

managers. Given the variable species-area relationships, it is not easy to translate species richness 478 

predictions at 0.0625 ha resolution to the expected number of tree species in 1 km2. Also, the amount of 479 

 
1 https://lpdaac.usgs.gov/ 
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variance in species richness explained is limited. Therefore, we propose two future research avenues of 480 

interest: fusion with spectral and/or radar data and using an environmental framework. Both spectral 481 

data and radar data have previously been shown to predict some of the variance in tree species richness 482 

(Foody & Cutler, 2006; Wolf et al., 2012; Schäfer et al., 2016; Bae et al., 2019; Bongalov et al., 2019; 483 

Marselis et al., 2019) and may improve our models and allow for more accurate predictions of tree 484 

species richness across the tropics and the creation of wall-to-wall data products at higher spatial 485 

resolution. Especially data from the hyperspectral HISUI (Matsunaga et al., 2013) instrument, that is 486 

soon to be launched to the International Space Station, the radar BIOMASS mission (Le Toan et al., 487 

2011), the ICESat-2 mission (Duncanson et al., 2020) or the TanDEM-X mission (Qi et al., 2019), may be 488 

highly relevant for such applications. Alternatively, we believe that the inclusion of structural data within 489 

previously developed environmental and biogeographical frameworks will help to predict tree species 490 

diversity (Keil & Chase, 2019) as such frameworks already display intrinsic differences in tree species 491 

diversity. Such frameworks could benefit from GEDI lidar data providing information on the occupation 492 

of the vertical niche space and likely improve predictions of tropical tree species richness, which could 493 

then be compared to existing predictions such as from Slik et al. (2015).  494 
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5. Conclusions  495 

In this study we evaluated the existence of local, regional and pan-tropical relationships between 496 

vertical canopy structure and tree species richness in the lowland moist forested tropics at three spatial 497 

resolutions: 1.0, 0.25, and 0.0625 ha. Full-waveform lidar data provides detailed information on the 498 

differences in vertical canopy structure between forests. Our results show that canopy structure can 499 

explain a significant percentage of variation in tree species richness across different biogeographical 500 

regions. A full set of regional structure-richness models will most likely aid accurate pan-tropical species 501 

richness mapping, but the development of such a set of models is contingent on the availability of 502 

sufficient coincident field & lidar data across the tropics. Using one single predictive model at a pan-503 

tropical scale, 39% of the variation in tree species richness could be explained using the vertical canopy 504 

structure. Given this canopy structure can be derived directly from GEDI waveforms at the footprint 505 

level, this provides an interesting avenue for mapping tree species richness at high spatial resolution. 506 

Alternatively, canopy structure information from GEDI could be included in existing modeling 507 

frameworks, combining structural with spectral, environmental and topographic information to create 508 

more accurate tree species richness predictions.   509 
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Data Availability Statement 774 

Some of the field and lidar data used in this study can be downloaded directly from the internet. We 775 

have grouped the data in three groups here: (i) LVIS lidar data, (ii) ALS lidar data and (iii) field data. All 776 

datasets not mentioned in this statement were previously collected but have not been made publicly 777 

available and were accessed through personal collaboration with the data providers.  778 

(i) LVIS lidar data 779 

The LVIS data for the rab, lop, mon and mab study sites can be downloaded from the NASA data archive 780 

at the following DOI: https://doi.org/10.3334/ORNLDAAC/1591. 781 

The LVIS data for the cha and lsv study sites is available on the following website: 782 

https://lvis.gsfc.nasa.gov/Data/Maps/CR2005Map.html. 783 

(ii) ALS lidar data  784 

The ALS data over rob is available through the auscover data portal 785 

ftp://qld.auscover.org.au/airborne_validation/lidar/robsons_creek/. 786 

The ALS data over s11 and s12 can be downloaded from the sustainable landscapes data portal 787 

http://www.paisagenslidar.cnptia.embrapa.br/webgis/. 788 

(iii) Field data  789 

Field data from rob has been published through the Terrestrial Ecosystem Research Network (TERN) 790 

data portal linked from https://supersites.tern.org.au/supersites/fnqr-robson.  791 

The dan and rab field data are all available through the Forestgeo website at  792 

https://forestgeo.si.edu/sites/asia/danum-valley, https://forestgeo.si.edu/sites/africa/rabi and 793 
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https://forestgeo.si.edu/sites/neotropics/barro-colorado-island. 794 

The sep, lop and tam field data are all available through forestplots.net and can be found under the 795 

project names ‘sepilok’, ‘lope’ and ‘tambopata’ at https://www.forestplots.net/en/. These plots are part 796 

of the T-FORCES, AfriTRON and RAINFOR continental plot networks.  797 

The mon field data is archived through the NASA data archiving center and available at DOI: 798 

https://doi.org/10.3334/ORNLDAAC/1580. 799 

The s11 and s12 were available through the data portals of the sustainable landscapes projects and can 800 

be found under the field data from the São Félix do Xingu region collected in 2011 and 2012 in the 801 

following data portal: http://www.paisagenslidar.cnptia.embrapa.br/webgis/.  802 


