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Abstract

Inspired by the online alternating direction multiplier method (OADM), we propose an efficient online
quantum state estimation (QSE) algorithm (QSE-OADM) for recovering time-varying quantum states in
this paper. Specifically, in QSE-OADM, the density matrix recovery subproblem and measurement noise
minimization subproblem are divided and solved separately without running the algorithm iteratively, which
makes the proposed method much more efficient than all previous works. In the numerical experiments, for
a 4-qubit system, the proposed algorithm can achieve more than 97.57% (fidelity) estimation accuracy after
71 samples, and the average runtime of per estimation is (4.19 ± 0.41) × 10−4 seconds, which reveals its
superior performance comparing with existing online processing algorithms.

Keywords: online quantum state estimation; minimization multi-problem; optimization algorithm; online
alternating direction multiplier method.

1. Introduction

Quantum state estimation (QSE), also known as quantum state tomography, is a fundamental problem in
quantum state preparation, quantum computation and quantum state feedback control [1, 2, 3]. The aim of
QSE is to reconstruct the quantum state ρ from a number of measurement times [4]. The state of an n-qubit
system usually can be described by a d × d (d = 2n) density matrix, which has the physical constraints of
positive semidefinite and unit-trace Hermitian. QSE can be converted to an optimization problem with the
constraints and solved by numerical methods [5, 6]. The commonly used methods of QSE to measure the
quantum state are based on strong, destructive measurements [7]. As a consequence, people have to prepare
a large number of identical copies of the original quantum state. Moreover, the measurement apparatus
need to be reconfigured at each measurement. For real-time applications, however, both measuring process
and computation need to be carried out in a very short time. Thus such strong measurement is not deemed
suitable for online QSE [8].

Continuous weak measurement (CWM) provides a new approach to estimate quantum states continu-
ously [7, 9]. In the measurement process, by using CWM it is possible to gain the measurement information
regarding the estimated state without disturbing it substantially, and the quantum state can be recovered by
computing the ensemble averaging [10]. Due to the non-complete destructive characteristic of CWM, the
online estimation of time-varying quantum states becomes feasible.
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Many optimization algorithms have been developed for offline QSE. For offline estimation of a fixed
quantum state, there are a series of optimization algorithms based on the alternating direction multiplier
method (ADMM) [11], which is an offline computing framework that effectively solves the optimization
problem with separable objective functions. Li et al. adopted ADMM to solving QSE by ignoring the con-
straints of quantum density matrix [12]. Considering partial quantum state constraints, Zheng et al. and
Zhang et al. proposed FP-ADMM based on fixed point equation [13] and IST-ADMM based on iterative
shrinkage-thresholding [14], respectively. After that, Zhang et al. proposed three improved ADMM opti-
mization algorithms for different types of interference in the quantum system [15, 16, 17]. All the above
offline QSE algorithms need to pass the same set of measurement data through multiple iterations to estimate
a fixed quantum state.

For online QSE, its estimated state is a more general state of dynamic evolution. In contrast, people
usually used picture transformation to simplify the online problem of estimating dynamic states to a static
problem of estimating the initial state [7, 10, 18]. Throughout the online QSE process in their researches,
the estimation state is always the initial state, and then the dynamic state was obtained by the evolutionary
model. Yang et al. designed an online estimation algorithm for dynamic quantum states [19]. They converted
the state estimation problem at each sampling time into a constrained least square problem and solved it
using the convex optimization toolbox (CVX) in MATLAB [20]. Since CVX is an offline optimization
tool, the algorithm proposed by Yang (called CVX-LS) was essentially a double-loop algorithm, that is,
changing the optimization problem online in the outer loop, and performing offline iterative optimization in
the inner loop, which is very time-consuming. In terms of the online algorithm which focuses on processing
data in sequence or incremental way, Youssry et al. proposed an online quantum state learning algorithm
based on matrix exponential gradient method (MEG) [21]. MEG guarantees the positive semidefiniteness
of the estimated matrix by adding the gradient update rule of logarithmic and exponential operations. More
recently, Zhang et al. proposed an online QSE algorithm combined with the online proximal gradient-
ADMM (OPG-ADMM) framework [22]. OPG-ADMM performs an online proximal gradient update by
adding a proximal term about the density matrix. Essentially, both MEG and OPG-ADMM resort first-order
stochastic gradient information to estimate the quantum state density matrix online. The main difference is
that OPG-ADMM adopts an adaptive learning rate and exploits the ADMM framework, while the learning
rate of MEG is a constant.

Considering the real-time application of QSE (such as quantum state feedback control), the currently
sampled quantum state is expected to be reconstructed instantly. It motivates us to develop a real online
QSE algorithm, which is able to efficiently complete dynamic state reconstructions at each sampling time.
In other words, the goal of the online QSE algorithm is to track the time-varying quantum state in real time.
The task of real-time reconstruction for the dynamic state is challenging. Because in each weak measure-
ment sampling, only one noisy measurement value can be obtained. Meanwhile, the online algorithm only
performs one iteration at each estimation, and the estimated density matrix has to meet the quantum state
constraints.

In this paper, we propose a novel online estimation algorithm to achieve an accurate reconstruction of
dynamic quantum state from noisy measurements. The online QSE problem is divided into two subproblems
that can be solved by online alternating direction multiplier method (OADM) [23] which is an online varia-
tion framework of ADMM. One subproblem is the minimization of a quadratic problem subject to quantum
state constraints for estimating the dynamic ρ, and the other is the minimization of an unconstrained prob-
lem for estimating the measurement noise e. Since the involved quantum state constraints make the direct
solution of the subproblem of ρ cumbersome, we simplify the solution by two steps: first solving an uncon-
strained subproblem, then updating the solution subject to the constraints through projection. The proposed
QSE-OADM algorithm processes the measurement values in a serialized manner, and exactly solves two
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sub-problems in every estimation. Our proposed algorithm is used to estimate the dynamic state density
matrix of multi-qubit systems, and compares its performance with existing algorithms for online QSE.

The rest of this paper is organized as follows. Section. 2 introduces the stochastic open quantum system
evolution model in CWM. Section. 3 describes the optimization problem of online QSE with measurement
noise. The QSE-OADM algorithm is proposed in Section. 4. Numerical experiments are carried out in
Section. 5. Finally, a conclusion is drawn in Section. 6.

2. Stochastic open quantum system model in CWM

2.1. Discrete evolution model of n-qubit system

The open quantum system can be described by the continuous stochastic master equation in Schrödinger
picture as [10]:

ρ(t + ∆t) − ρ(t) = − i
~
[H, ρ(t)]∆t

+
∑[

Lρ(t)L† − 1
2

(
L†Lρ(t) + ρ(t)L†L

)]
∆t

+
√
η
∑[

Lρ(t) + ρ(t)L†
]

dW,

(1)

where ρ(t) ∈ Cd×d denotes the quantum state density matrix; H ∈ Cd×d is the Hamiltonian representing the
total energy of the system; L is a bounded operator pertaining to the Lindblad interaction; L† denotes the
conjugate transposition of L; ∆t is the weak measurement time; ~ is set to 1; η is the measure efficiency; dW
denotes the noise produced by measurement output for zero error measurement and satisfies E(dW) = 0,
E[(dW)2] = ∆t; the last two terms of (1) represent the diffusion and backaction introduced by the measure-
ment process.

The dynamic discrete evolution model of the stochastic master equation (1) can be obtained as [24]:

ρk+1 =

2n∑
i=1

Ai(∆t)ρkAi(∆t)†, (2)

where k = 1, 2, . . . ,N represents the sampling times; Ai(∆t) ∈ Cd×d (i = 1 . . . 2n) are the system evolution
operators and can be constructed as:

A1(∆t) = a0(∆t) ⊗ . . . ⊗ a0(∆t) ⊗ a0(∆t)︸                                 ︷︷                                 ︸
n

,

A2(∆t) = a0(∆t) ⊗ . . . ⊗ a0(∆t) ⊗ a1(∆t)︸                                 ︷︷                                 ︸
n

,

...
A2n (∆t) = a1(∆t) ⊗ . . . ⊗ a1(∆t) ⊗ a1(∆t)︸                                 ︷︷                                 ︸

n

,

(3)

in which a0(∆t) := I−(L†1L1/2+iH1)∆t+
√
ηL1 ·dW and a1(∆t) := L1

√
∆t+
√
ηL1 ·dW are weak measurement

operators derived through a two-level quantum system [25]; H1 = H0 + uxHx, H0 is the free Hamiltonian,
Hx is the control Hamiltonian and ux is a external regulate constant value; ⊗ denotes Kronecker product;
L1 = ξσ, where ξ is the system interaction strength, and σ denotes the Pauli matrix which can be selected as

one of {σx, σy, σz, I}, where σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, and I is the 2 × 2 identity

matrix.
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The corresponding discrete evolution of the measurement operators of an n-qubit system (1) can be
described by:

Mk+1 =

2n∑
i=1

Bi(∆t)MkBi(∆t)†, (4)

where Bi(∆t) ∈ Cd×d (i = 1 . . . 2n) are the weak measurement operators and can be constructed as:

B1(∆t) = b0(∆t) ⊗ . . . ⊗ b0(∆t) ⊗ b0(∆t)︸                                 ︷︷                                 ︸
n

,

B2(∆t) = b0(∆t) ⊗ . . . ⊗ b0(∆t) ⊗ b1(∆t)︸                                 ︷︷                                 ︸
n

,

...
B2n (∆t) = b1(∆t) ⊗ . . . ⊗ b1(∆t) ⊗ b1(∆t)︸                                 ︷︷                                 ︸

n

,

(5)

in which b0(∆t) := I − (L1
†L1/2 + iH1)∆t and b1(∆t) := L1

√
∆t [25].

2.2. Construction of the measurement record sequence
The measurement record sequence consists of the measurement values obtained at all sampling times.

For convenience, people usually construct the measurement values of CWM in Heisenberg picture [7,
10, 18]. At the current sampling time k, the measurement record sequence is the measurement operators
{M̃i}

k
i=1 ∈ C

d×d acting on the initial quantum state density matrix ρ1 as:

yi = tr(M̃†i ρ1), i = 1, 2, . . . , k, (6)

where tr(X) denotes the sum of the diagonal elements of the matrix X.
Note that the construction method of measurement operators in (6) is M̃k+1 =

∑2n

j=1 B j(∆t)†M̃kB j(∆t),
which is different from (4) proposed in this paper. Moreover, it can be observed from (6) that the mea-
surement values {yi}

k
i=1 at each sampling time are related to the initial quantum state density matrix ρ1.

Therefore, under the construction method of (6), the online estimation state is always the unchanged ini-
tial state ρ1. While the estimated state ρ̂k at the sampling time k is obtained by the estimated initinal state
evolving k steps according to the system evolution model (2).

In Schrödinger picture, the measurement record sequence equivalent to (6) is the initial measurement
operator M1 acting on the quantum states {ρi}

k
i=1 as [26]:

yi = tr(M†1ρi), i = 1, 2, . . . , k, (7)

Here, we propose another method for constructing the measurement record sequence as:

yi = tr(M†k−i+1ρk) = vec(Mk−i+1)† vec(ρk),
i = 1, . . . , k,

(8)

where vec(X) represents the sequential combination of all the columns of the matrix X into a column vector.
The proposed construction method (8) correlates the measurement values {yi}

k
i=1 at each sampling time

with the quantum state density matrix ρk, avoiding the need to evolve through the system evolution model
after each estimation to obtain ρ̂k. This makes it possible for estimated density matrix to be the quantum
state at the current sampling time. Table 1 shows the measurement values {yi}

k
i=1 and the measurement record

sequence bk at each sampling time. As one can see from Table 1: bk is composed of
[
y1, . . . , yi, . . . yk

]
, where

y1 = tr(M†kρk), y2 = tr(M†k−1ρk), . . . , yk = tr(M†1ρk). Note that the measurement operator {Mi}
k
i=1 is arranged

in reverse order from Mk to M1 relative to the quantum state ρk.
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Table 1: The Construction Process of Measurement Record Sequence
y1 y2 y3 ... yk

b1 tr(M†1ρ1)
b2 tr(M†2ρ2) tr(M†1ρ2)
b3 tr(M†3ρ3) tr(M†2ρ3) tr(M†1ρ3)
...

...
...

...

bk tr(M†kρk) tr(M†k−1ρk) tr(M†k−2ρk) . . . tr(M†1ρk)

3. Problem statement of online QSE

In order to make full use of the measurement record sequence and alleviate the computational burden in
the online processing, a sliding window containing the most recent measurements is adopted in considera-
tion. Therefore, we rewrite the measurement record sequence as:

bk =
(
ymax(1,k−l+1), . . . , yk−1, yk

)T , (9)

where l is the size of the sliding window and max(1, k − l + 1) represents the starting index of the window.
When the number of obtained measurements is less than l, the size of the window is equal to the number

of sampling times k. Otherwise, the size of sliding window remains l (containing the l most recent mea-
surements). The update strategy of the sliding window is First-In-First-Out (FIFO), which allows the online
stream of measurements to be incorporated into the model, while gradually removing old measurements.

According to (8), we construct the sampling matrix corresponding to (9) as:

Ak =
(
vec

(
Mmin(k,l)

)
, . . . , vec (M2) , vec (M1)

)† . (10)

It is worth noting that when the number of samplings is greater than or equal to l, the sampling matrixAk

remains unchanged. At the same time, considering the measurement noise in the actual weak measurement
process, using the sampling matrixAk and the density matrix ρk, we can rewrite bk as bk = Ak vec(ρk) + ek,
where ek ∈ R

min(k,l)×1 is the measurement noise and is assumed to be Gaussian noise.
We first define the quadratic pseudo-norm as ‖x‖2P = x†Px, where x ∈ Cm×1 is a vector of decision

variables and P ∈ Cm×m is any symmetric positive definite weight matrix. Therefore, at the sampling time k,
the online QSE can be formulated as a convex optimization problem with constraints:

min
ρ̂,ê

‖ vec(ρ̂ − ρ̂k−1)‖2wI1
+ IC(ρ̂) + ‖ê‖2γI2

,

s.t. Ak vec(ρ̂) + ê = bk,
(11)

where ρ̂ denotes the quantum state density matrix to be estimated; ê denotes the measurement noise to be
filtered; ‖ vec(ρ̂ − ρ̂k−1)‖2wI1

represents the distance between the estimated state ρ̂ at current sampling time k
and the previous state estimation ρ̂k−1, which reflects that the online estimation doesn’t want to forget what
has been learned too far; ‖ê‖2γI2

means to reduce the measurement error of the current estimated state, and
it is also the common way of denoising; the weight matrices of the quadratic pseudo-norm are specifically
taken as wI1 and γI2, respectively, in which w > 0 and γ > 0 are weight parameters; I1 and I2 denote identity
matrices with dimensions d2 and min(k, l), respectively; convex set C := {ρ̂ � 0, tr(ρ̂) = 1, ρ̂† = ρ̂} represents
the quantum state constraints; when the estimated state satisfies constraints C, the indicator function IC(ρ̂)
equals 0, otherwise IC(ρ̂) is∞.

5



4. Online QSE Algorithm with measurement noise

We introduce the online alternating direction multiplier method (OADM) [23] to develop the online QSE
algorithm. For the constrained online convex optimization problem (11) with separable two-objective vari-
ables ρ̂ and ê, the basic idea of OADM is to decompose it into two sub-problems and solve them alternately.
The framework of OADM is to minimize the corresponding augmented Lagrangian functions of the two pri-
mal variables in turn, and finally update the Lagrangian multiplier by dual gradient ascent. Furthermore, only
one update is required to calculate for the primal variables and the Lagrange multiplier after each sampling
time k.

The augmented Lagrangian of (11) is Lk(ρ̂, ê, λ) := IC(ρ̂) + ‖ vec(ρ̂ − ρ̂k−1)‖2wI1
+ ‖ê‖2γI2

− 〈λ,Ak vec(ρ̂) +

ê− bk〉+ (α/2) ‖Ak vec(ρ̂) + ê − bk‖
2
2, where λ is the Lagrange multiplier and α > 0 is the penalty parameter.

Thus, in the OADM for online QSE at the sampling time k, the estimated density matrix ρ̂k, Gaussian
noise êk, and the Lagrange multiplier λk are respectively:

ρ̂k = arg min
ρ̂
{
α

2
‖Ak vec(ρ̂) + êk−1 − bk − λk−1/α‖

2
2

+ IC(ρ̂) + ‖ vec(ρ̂ − ρ̂k−1)‖2wI1
},

(12a)

êk = arg min
ê
{‖ê‖2γI2

+
α

2
‖Ak vec(ρ̂k) + ê − bk − λk−1/α‖

2
2},

(12b)

λk = λk−1 − α(Ak vec(ρ̂k) + êk − bk). (12c)

Note that index k represents the sampling times in which we apply the continuous measurement as
well as the estimation updates. Therefore, only a single iteration is performed for (12) so as to devise a
computationally minimalistic method suitable for real-time implementation.

In the following, we explicitly provide efficient methods for solving the two optimization problems by
updating primal variables ρ̂, ê in (12a), (12b). The Lagrangian multiplier λ can be directly updated by (12c).

Update ρ̂k : For the subproblem of quantum state density matrix, it contains a non-differentiable indicator
function about the quantum state and two quadratic terms, which are a least square penalty term and a
quadratic pseudo-norm term, respectively.

Since the indicator function can be solved by projection [27]. Therefore, the solution process of ρ̂ can be
divided into two steps. In brief, we first solve a relatively simple unconstrained problem without considering
the indicator function, and then obtain the estimated state ρ̂k that satisfies the constraints of the quantum
state by solving a projection problem.

Step 1: When neglecting the indicator function IC(ρ̂) and letting uuu denote the constant (bk+λk−1/α−êk−1),
the subproblem (12a) can be written as an unconstrained convex problem:

ρ̃k = arg min
ρ̂
{
α

2
‖Ak vec(ρ̂) − uuu‖22 + ‖ vec(ρ̂ − ρ̂k−1)‖2wI1

}, (13)

where ρ̃k denotes the estimated state is not bounded by the quantum state constraints.
Because all terms in (13) are differentiable, the optimal solution ρ̃k can be solved directly by first-order

optimality condition: αA†k(Ak vec(ρ̃k) − uuu) + 2w vec(ρ̃ − ρ̂k−1) = 0, and we can get the optimal solution as:

vec(ρ̃k)= (W−1+A
†

kV−1Ak)−1(W−1 vec(ρ̂k−1)+A†kV−1uuu), (14)

where (W−1 + A
†

kV−1Ak) is a non-singular matrix; W = 1
2w I1 � 0, V = 1

α
I3 � 0 (A†kAk is essentially a

positive semidefinite matrix), and I3 denotes the identity matrix with dynamic dimensions min(k, l).
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Based on the Matrix Inversion Lemma [28]:

(W−1+A
†

kV−1Ak)−1 =W−WA†k(V +AkWA†k)−1AkW,
(W−1+A

†

kV−1Ak)−1A
†

kV−1 = WA†k(V +AkWA†k)−1,
(15)

the optimal solution (14) can be rewritten as:

vec(ρ̃k) = vec(ρ̂k−1)+

A
†

k[(
2w
α

I3+AkA
†

k)−1(uuu−Ak vec(ρ̂k−1))].
(16)

Step 2: Considering the indicator function IC(ρ̂), the solution ρ̂k that satisfies the quantum state con-
straints can be solved by the following convex optimization problem:

ρ̂k = arg min
ρ̂
‖vec (ρ̂ − ρ̃k)‖2I1

,

s.t. ρ̂ � 0, tr(ρ̂) = 1, ρ̂† = ρ̂.
(17)

Using (ρ̃k + ρ̃†k)/2 with Hermitian characteristics to replace ρ̃k in (17) to satisfy the constraint ρ̂† = ρ̂.
Since it is the calculation of the density matrix elements, (17) reduces to the density matrix projection
problem [27]:

ρ̂k = arg min
ρ̂
‖ρ̂ − (ρ̃k + ρ̃†k)/2‖2F ,

s.t. ρ̂ � 0, tr(ρ̂) = 1,
(18)

where ‖ · ‖F is the Frobenius norm.
Essentially, the problem of (18) is a nonlinear semidefinite programming problem and usually solved by

interior-point method. Instead, we use a direct calculation method to solve it by the singular value decom-
position. (ρ̃k + ρ̃†k)/2 can be diagonalized into U diag{ai}U† by unitary similarity, where diag{a1, . . . , ad} is
a diagonal matrix whose singular values are arranged in nonincreasing order; U ∈ Cd×d is a unitary matrix.
The optimal solution of (18) can be written as:

ρ̂k = U diag{σi}U†, (19)

where diag {σ1, . . . , σd} is the singular value diagonal matrix of ρ̂k and {σi}
d
i=1 can be solved from

min
{σi}

1
2

d∑
i=1

(σi − ai)2,

s.t.
d∑

i=1

σi = 1, σi ≥ 0.

(20)

The Lagrange function of (20) is:

L{σi, κi, β} =
1
2

d∑
i=1

(σi − ai)2 − κiσi + β(
d∑

i=1

σi − 1), (21)

where {κi}
d
i=1 and β are Langrange multipliers.
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For the convex optimization problem (20), we can find the optimal σ∗i , κ∗i , and β∗ by solving its Karush-
Kuhn-Tucker (KKT) conditions [29] as: σ∗i ≥ 0,

∑d
i=1 σ

∗
i = 1, κ∗i ≥ 0, κ∗i σ

∗
i = 0, and σ∗i − ai − κ

∗
i + β∗ = 0

(i = 1, . . . , d). By eliminating variables κ∗i , we can get:

σ∗i ≥ 0, (22a)
σ∗i ≥ ai − β

∗, (22b)
σ∗i (σ∗i − (ai − β

∗)) = 0, (22c)
d∑

i=1

σ∗i = 1. (22d)

From (22b), we can discuss the soltion of σ∗i in two cases: 1) if σ∗i > ai − β
∗, according to (22c) we can

get that σ∗i = 0, and at the same time, ai < β
∗ is established; 2) if σ∗i = ai − β

∗, we can get σ∗i = ai − β
∗, and

at this time combined with (22a), there is ai ≥ β
∗ holds. Thus, we can directly obtain:

σ∗i = max(ai − β
∗, 0), (23)

where the optimal Langrange multiplier β∗ can be calculated from
∑d

i=1 max {ai − β
∗, 0} = 1 using the con-

dition (22d).
Specifically, we let β∗ = ai (i = 1, . . . , d) determine the interval in which the optimal β∗ belongs.

Assuming that aq − β
∗ ≥ 0 and aq+1 − β

∗ < 0 are established in
[
aq, aq+1

]
, the optimal β∗ can be calculated

by
∑q

i=1 (ai − β
∗) = 1 as:

β∗ = (
q∑

i=1

ai − 1)/q. (24)

Update êk: (12b) is an unconstrained quadratic program that admits an analytical solution directly from
first-order optimality condition of ê. Thus, êk is updated as:

êk = (α/(2γ + α)) (bk + λk−1/α −Ak vec (ρ̂k)) . (25)

The summary of the online QSE algorithm (QSE-OADM) proposed in this paper is shown in Algorithm
1.

Algorithm 1 QSE-OADM
Require: Initial estimates ρ̂0, ê0 = 0, λ0 = 0; setting parameters w, γ, α > 0; window size l ∈ Z+.

1: for k = 1, 2, . . . do
2: Obtain the measurement record sequence bk;
3: Calculate ρ̃k according to (16);
4: Calculate U diag{ai}U† of (ρ̃k + ρ̃†k)/2 by singular value decomposition;
5: Calculate the optimal β∗ according to (24);
6: Calculate singular values diag{σi} according to (23);
7: Update ρ̂k according to (19);
8: Update êk according to (25);
9: Update λk according to (12c);

10: end for

Compared with the offline QSE algorithm, whose estimation target is a fixed state, the estimation target
ρk of the online QSE algorithm based on CWM changes with time, which is a dynamic target estimation
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problem. Moreover, in some offline algorithms [12, 13, 14, 15, 16, 17], the estimated state is assumed to be
sparse and low rank, while the quantum state estimated online is a more general state. In addition, the online
algorithm obtains the estimated state ρ̂k in only one iteration. The offline algorithm passes the same set of
data through multiple iterations to finally get the state estimation.

Comparing the proposed QSE-OADM algorithm with CVX-LS [19], OPG-ADMM [22], and MEG [21]
algorithms, the main difference is in the method of solving the density matrix subproblem. CVX-LS does
not consider the measurement noise e and uses the offline convex optimization toolbox as a solver, which is
not practical for online processing. Both OPG-ADMM and MEG use the first-order information to approx-
imately solve the subproblem of density matrix by exploiting the online proximal gradient descent method
and the matrix exponential gradient method, respectively. Different from gradient-based approximation
approaches, the algorithm QSE-OADM proposed in this paper decomposes the solution steps and exactly
solves the estimated density matrix of the time-varying quantum state in every estimation, which makes the
proposed method more efficient.

For the comparison of computational complexity, we compare the proposed QSE-OADM algorithm with
OPG-ADMM and MEG in the overall online estimation. For the QSE-OADM algorithm, the update rule of
the density matrix is (16), where ( 2w

α
I3 +AkA

†

k) costs O(l2d2) computational complexity (the computational
complexity of its inversion is O(l3), which is smaller than O(l2d2) because of l<d2). Moreover, we recap that
the sampling matrixAk defined by (10) remains unchanged when the sampling times k ≥ l, so ( 2w

α
I3+AkA

†

k)
only needs to be calculated l times. Thus, the total computational complexity is l ∗ O(l2d2). The complexity
of the singular value decomposition of the density matrix in (19) is O(d3). Since the quantum state con-
straints are strictly guaranteed in every estimation, the total computational complexity is N ∗O(d3). In short,
the overall computational complexity of QSE-OADM is l ∗ O(l2d2) + N ∗ O(d3). The overall computational
complexity of OPG-ADMM is l∗O(d6) + N ∗O(d3), where l∗O(d6) is the cost for the singular value decom-
position ofA†kAk when calculating the adaptive learning rate; N ∗ O(d3) is the computational complexity of
solving the semidefinite programming problem with state constraints. The overall computational complexity
of MEG is 2N ∗ O(d3), which is the logarithmic operation and exponential operation of the density matrix
(implemented by the singular value decomposition). Compared with the fixed sliding window size l, in ac-
tual online estimation, N can be increased indefinitely, that is, l � N, so l ∗ O(l2d2)<l ∗ O(d6)<N ∗ O(d3).
Therefore, the overall computational complexity of the QSE-OADM algorithm is less than that of the OPG-
ADMM and MEG algorithms.

In fact, there are two types of interference in the quantum state, which are the noise in the measurement
process and the sparse disturbance in the quantum state. We only study the online estimation algorithm with
measurement noise in this paper. The study of both cases will be the future research work.

5. Numerical experiments and results analysis

In this section, numerical experiments are carried out to assess online properties of the proposed QSE-
OADM algorithm in the reconstruction performance of time-varying states. In the experiments, the measure-
ment record sequence is constructed by bk = Ak vec(ρk)+ek. The true quantum state ρk of the estimated sys-
tem is generated by (2). The corresponding sampling matrixAk is defined by (10). For the discrete evolution
model the n-qubit quantum system, the parameters are set as: L1 = ξσz, H1 = σz +uxσx, ux = 2, η = 0.5, ξ =

0.7, dW = 0.001. Without loss of generality, the signal-to-noise ratio (SNR) of the Gaussian measurement
noise ek is 40dB. For online QSE, the number of sampling times is set to N = 500. The initial state density
matrix of the true n-qubit system is chosen as ρn

1 = ρ1 ⊗ . . . ⊗ ρ1︸         ︷︷         ︸
n

, ρ1 = [0.5, (1 − i)/(
√

8); (1 + i)/(
√

8), 0.5],
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and the initial estimate is selected as ρ̂n
1 = ρ̂1 ⊗ . . . ⊗ ρ̂1︸         ︷︷         ︸

n

, ρ̂1 = [0, 0; 0, 1]. The initial measurement operator

is Mn
1 = σz ⊗ . . . ⊗ σz︸          ︷︷          ︸

n

(the superscript n indicates the number of qubits).

As for the estimated quantum state, the accuracy performance is assessed by two typical criteria. The
first one is the fidelity, which is defined as:

f idelity(k) = tr(
√√

ρ̂kρk
√
ρ̂k), (26)

where ρ̂k is the estimated density matrix and ρk is the true density matrix. (The range of fidelity is [0,1]. The
closer to 1, the more similar the estimated state and the true state are.)

The second one is the normailized distance D(ρ̂k, ρk), which is defined as:

D(ρ̂k, ρk) = ‖ρ̂k − ρk‖
2
F/‖ρk‖

2
F . (27)

The online processing properties of the proposed QSE-OADM are campared with online proximal
gradient-ADMM (OPG-ADMM) [22] and matrix exponential gradient (MEG) [21] in this paper. As we
have mentioned in Section. 1, since Yang’s CVX-LS algorithm [19] requires multiple iterations for each
sampling time, which is time-consuming for online processing. Thus CVX-LS will not be compared in this
paper. Similar to decomposing the objective function (11) into two subproblems about the density matrix
ρ̂ and measurement noise ê, OPG-ADMM uses the online proximal gradient descent method to approxi-
mately solve the ρ̂-subproblem, which adds a proximal term to perform a proximal gradient update, and
then satisfies the quantum state constraints by solving a semidefinite programming problem. The objective
function of MEG consists of two terms, the first term is the Umegaki’s quantum relative entropy between
the estimated ρ̂ and the previous estimate ρ̂k−1, and the second term is the square of the measurement error
of the estimated state. Without projection operations, MEG guarantees that the estimated state meets the
quantum state constraints through the exponential and trace normalization of the density matrix. However,
the exponential of density matrix involves singular value decomposition, whose computational complexity
is consistent with the projection operations in ρ̂-subproblem.

There are three parameters involved in QSE-OADM: the weight parameters w and γ; the penalty param-
eter α of OADM. In the experiments, they can be choosed as: w = 0.1 and γ =

√
d/k; the penalty parameter

α = 2. The parameters of OPG-ADMM and MEG are hand-tuned to the best. All simulations are conducted
in MATLAB R2016a, running in Inter Core i7-8750M CPU, clocked at 2.2GHz, with a memory of 16GB.

5.1. Impact of the estimated initial state on QSE-OADM, OPG-ADMM, and MEG
For the state real-time tracking algorithm, different initial states of the estimation affect the algorithm

performance. When the initial state deviates from the actual initial state greatly, it may lead to the accumu-
lation of estimation errors and failure of accurate state estimation timely. Moreover, in order to intuitively
reflect the estimation results, we choose the 1-qubit system, whose evolution trajectory can be clearly drawn
on a Bloch sphere. Thus, we compare the proposed QSE-OADM with OPG-ADMM and MEG algorithms
in two different estimated initial states [0.75,

√
3/4;

√
3/4, 0.25] and [0.5, (1 + i)/(

√
8); (1 − i)/(

√
8), 0.5]

(Relative to the true initial state ρ1, one is far and the other is close.). The size of the sliding window is
selected as l = 16, which is shown to be sufficient to reconstruct the density matrix of 1-qubit system.

Fig. 1 depicts the trajectories of evolving quantum states and state estimates, in which the true quantum
states are time-varying and evolve freely from the surface to the center of the Bloch sphere, whose evolution
trajectory is represented by the red solid line. Correspondingly, the trajectory of time-varying estimated
states by online algorithms is represented by the blue dashed line. For the number of samplings that the
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fidelity of the estimated state continuously greater than 99% in different estimated initial states, QSE-OADM
is 3 (the fidelity is 99.71%) and 3 (99.48%); OPG-ADMM is 11 (99.12%) and 13 (99.63%); and MEG is
10 (99.67%) and 14 (99.87%), respectively. Compared with OPG-ADMM and MEG, the proposed QSE-
OADM can realize real-time state estimation accurately after just 3 steps for different estimated initial states.
Thus, QSE-OADM is more robust to the estimated initial state.

5.2. Efficiency properties of QSE-OADM, OPG-ADMM, and MEG
In order to verify the efficiency of the online QSE algorithms, we compare the online estimation perfor-

mance of QSE-OADM, OPG-ADMM, and MEG algorithm with different sliding window sizes. The size of
the sliding window can be considered as a tradeoff between estimation accuracy and computational effort. At
each window size l, the comparison criterion is the minimum number of sampling times kmin required for the
normalized distance D(ρ̂k, ρk) to be less than the baseline 0.1. It is worth noting that kmin is the comprehen-
sive embodiment of the accuracy and tracking speed of the online state estimation algorithm. The number
of kmin is expected to be smaller, indicating that the dynamic state can be reconstructed efficiently. In this
experiment, for a 4-qubit system, the size of the sliding window is taken as l = 1, . . . , 100. Fig. 2 depicts the
average of kmin and standard deviation range for each window size of the three algorithms running 10 times,
respectively.

From Fig. 2, our findings are classified into two cases:
1) With the increase of the sliding window size, the number of sampling times kmin gradually decreases

and tends to be stable. As shown by the black horizontal dotted lines in Fig. 2, the stable sampling times kmin

of QSE-OADM, OPG-ADMM, and MEG are 71, 170, and 182 respectively, which shows that QSE-OADM
can realize high-precision online quantum state estimation with the lowest sampling steps.

2) We can also find that the minimum sliding window sizes of the QSE-OADM, OPG-ADMM, and MEG
to achieve stable sampling times is 68, 80, and 85, respectively, from which one can see that QSE-OADM has
the lowest number of samples, which indicates that compared with OPG-ADMM and MEG, QSE-OADM
has more effective utilization of the measurement information.

5.3. Online processing properties of QSE-OADM, OPG-ADMM, and MEG
To verify the online processing performance, under the same sliding window size l = 70, we compare the

proposed QSE-OADM with OPG-ADMM and MEG algorithms in the online QSE of a 4-qubit system. Fig. 3
depicts the normalized distance D(ρ̂k, ρk) with respect to the number of samplings in the online estimation
process.

We compare the normalized distances of QSE-OADM, OPG-ADMM, and MEG algorithms at the 100-
th online estimation, which are 0.0541, 0.1589, and 0.2118, respectively, from which one can see that the
normalized estimation error of QSE-OADM is less than 3 to 4 times that of OPG-ADMM and MEG in
the same sampling times. Furthermore, the corresponding fidelities of QSE-OADM, OPG-ADMM, and
MEG algorithms are 98.77%, 83.24%, and 76.39%, respectively. Thus, under the same sampling times, the
estimation accuracy of QSE-OADM is the highest among three algorithms.

The average running time of QSE-OADM, OPG-ADMM, and MEG is (4.19 ± 0.41) × 10−4s, (9.75 ±
0.12) × 10−4s, and (1.21 ± 0.06) × 10−3s, respectively. At the same time, from Fig. 3, QSE-OADM, OPG-
ADMM, and MEG algorithms need 71, 161 and 191 sampling times respectively to reach the normalized
distance less than 0.1 (or the fidelity is more than 97.57%). One can see that QSE-OADM achieves very high
precision online state tracking with the least average running time and the lowest sampling times. Therefore,
the merit of the proposed algorithm is that it can track the dynamic quantum state fast and efficiently, which
embodies its superiority in online QSE. Because the proposed algorithm in this paper can be online realized,
which may be applied in the practical quantum system experiments, especially in the quantum state feedback
control systems for high accurate manipulation of quantum states.
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6. Conclusion

In this paper, a novel online algorithm QSE-OADM in a noisy CWM process was developed, which
processed the measurement values in a serialized manner, and exactly solved two sub-problems in every es-
timation. Furthermore, for achieving high estimation accuracy and improving efficiency, the sliding window
of measurements was adopted. The algorithm we proposed was efficient and fast to estimate the dynamic
quantum state. Numerous experiments are supportive of the potential merits of the method as an online
solution for state estimation in multi-qubit quantum systems.
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(a) QSE-OADM

(b) OPG-ADMM

(c) MEG

Fig. 1: Trajectories of evolving quantum states and state estimates. Online state estimation trajectories of the three algorithms under
two different estimated initial states. The red circle and the blue star represent the initial values of true and estimated states, respectively.
The red solid line and the blue dashed line in the Bloch sphere are the true quantum state trajectory and the estimated state trajectory,
respectively.
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Fig. 2: Comparison of online estimation efficiency of QSE-OADM, OPG-ADMM, and MEG that run for the sliding window size
l = 1, . . . , 100. kmin indicates the minimum number of sampling times required to satisfy D(ρ̂k , ρk) < 0.1 for each window size.
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Fig. 3: Comparisons of QSE-OADM, OPG-ADMM, and MEG algorithms in online quantum state reconstruction performances that
run for the sliding window size l = 70.
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