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Abstract—Depth image super-resolution is a challenging
problem, since normally high upscaling factors are required (e.g.,
16×), and depth images are often noisy. In order to achieve
large upscaling factors and resilience to noise, we propose a
Robust Algorithm for Depth imAge super Resolution (RADAR)
that combines the power of finite rate of innovation (FRI) theory
with multimodal dictionary learning. Given a low-resolution (LR)
depth image, we first model its rows and columns as piece-
wise polynomials and propose a FRI-based depth upscaling
(FDU) algorithm to super-resolve the image. Then, the upscaled
moderate quality (MQ) depth image is further enhanced with
the guidance of a registered high-resolution (HR) intensity image.
This is achieved by learning multimodal mappings from the joint
MQ depth and HR intensity pairs to the HR depth, through
a recently proposed triple dictionary learning (TDL) algorithm.
Moreover, to speed up the super-resolution process, we introduce
a new projection-based rapid upscaling (PRU) technique that
pre-calculates the projections from the joint MQ depth and
HR intensity pairs to the HR depth. Compared with state-of-
the-art deep learning based methods, our approach has two
distinct advantages: we need a fraction of training data but can
achieve the best performance, and we are resilient to mismatches
between training and testing datasets. Extensive numerical results
show that the proposed method outperforms other state-of-the-
art methods on either noise-free or noisy datasets with large
upscaling factors up to 16× and can handle unknown blurring
kernels well.

Index Terms—Depth image super-resolution, finite rate of
innovation, multimodal image processing.

I. INTRODUCTION

High quality depth images play an important role in many
computer vision applications, such as image segmentation [1],
[2], 3D object reconstruction [3] and gesture recognition [4].
However, the fast acquisition of accurate and dense depth data
is, in practice, difficult to achieve. Recently, time-of-flight
(ToF) cameras have become popular in both academic and
industrial communities, because they can work in real-time by
capturing the depth data through measuring the phase-delay of
reflected infrared light [5]. Despite this merit, ToF camera can
only provide low resolution depth images, and this fact affects
the progress of many related research areas.
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Depth image super-resolution aims to recover a high-
resolution (HR) depth image from a low-resolution (LR) one.
This is a problem similar to the more studied one of color
image super-resolution. However, compared with the color
image case, the depth image super-resolution problem has
distinct challenges. First of all, the depth images captured
by cameras like ToF are usually at very low resolution, e.g.,
less than 1/4 that of the color image, which means a large
upscaling factor of, e.g., 8× and 16×, is required, and when
the upscaling factor increases, the mapping between the LR
and HR counterpart becomes more difficult. Secondly, the
depth images are usually more affected by noise than color
images due to the capturing process. Thirdly, unlike color
images, it is sometimes more difficult to find a large training
dataset for depth images. Without sufficient training data,
the ability of most learning based methods [6], [7] can be
significantly affected. Finally, for intensity guided depth super-
resolution, a new challenge comes in detecting the correlations
between the two modalities, i.e., depth and intensity.

Ideally, a good depth image super-resolution method should
be able to solve all the above problems. However, most
of the existing methods only address some of them. For
example, Xie et al. [8] proposed to enhance the depth image
resolution by inferring the HR edges, but it can handle
only clean inputs with small upscaling factors, i.e., less
than 4×. Riegler et al. [6] proposed ATGV-Net combining
deep convolutional network with a variational method to
learn the mappings from LR depths to HR counterparts,
which can handle noisy depth images but still struggles with
upscaling factors larger than 4×. Recently, Song et al. [7]
proposed a progressive deep convolutional neural network
(CNN) structure to reconstruct HR depth images through
gradually learning the high frequencies with the color image
as guidance. This work can cope with a larger upscaling factor,
i.e., 8×, but is not resilient to noise. Besides, both [6] and [7]
require a large dataset for network training.

In this paper, we propose a Robust Algorithm for Depth
imAge super Resolution (RADAR) that combines the power
of finite rate of innovation (FRI) theory [9], [10] and
multimodal dictionary learning [11], to achieve depth image

  super-resolution at very high upscaling factors with a small 
training dataset. Moreover, the proposed method can handle 
noisy depth images and is resilient to mismatches between 
training and testing datasets. The method is composed of two 
stages.  In the first stage,  we use  FRI  theory to upscale  the
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Fig. 1. The cascaded framework of the proposed RADAR approach. The first stage is the FRI based upscaling (FDU) algorithm which uses FRI theory to do
initial upscaling, and the second stage is projection-based rapid upscaling (PRU) algorithm based on triple dictionary learning (TDL) model, which extracts
the useful information of colour/intensity image to further enhance the depth image.

LR depth image to a moderate quality (MQ) depth image.
This stage does not require intensity image. Then, in the
second stage, we use HR intensity image as guidance to
further improve the quality of the MQ depth image. This
is achieved by proposing a projection-based rapid upscaling
(PRU) algorithm based on the triple dictionary learning (TDL)
model. The cascaded framework is shown in Fig. 1.

The main contributions of this paper are as follows:

• We propose to use FRI theory to upscale the depth
image with no external training dataset. Based on the
observation that rows and columns of depth images can
be approximately modeled as piece-wise polynomials and
FRI theory can perfectly reconstruct this kind of signals,
we propose a FRI-based depth upscaling (FDU) algorithm
to super-resolve the depth image. The proposed method
can handle both noise-free and noisy depth images.
Besides, leveraging the ability of FRI theory to handle
any blurring kernel, we can upscale depth images blurred
with arbitrary blurring functions.

• Leveraging from the triple dictionary learning (TDL)
model we proposed in [11], we develop a projection-
based rapid upscaling (PRU) algorithm, to speed up
the multimodal depth image super-resolution process. In
particular, the multimodal training samples are classified
into different subsets, and for each subset, we learn a
projection from the joint MQ depth and HR intensity pairs
to the HR depth. With the projections pre-calculated and
stored, the sparse coding process can be skipped so that
the upscaling process is accelerated.

• We test the effectiveness of our approach on various
datasets, including both synthetic and real-world datasets
with both noise-free and noisy scenerios. The robustness
of our approach is also demonstrated with different
blurring kernels. Numerical results show that our method
outperforms other state-of-the-art methods, especially at
large upscaling factors, e.g., 8×, 16×.

The combined use of a model-based algorithm (i.e., FDU)
followed by a data-driven algorithm (i.e., TDL) has several
advantages. The FDU algorithm can elevate the depth image
quality to a higher level, so that the mapping ambiguity
between LR and HR versions can be drastically reduced,
and this allows the TDL algorithm to operate properly for
large upscaling factors as well. Moreover, since parts of
high frequency details have already been recovered by FDU,
only a small training dataset is required in the TDL training
process and we do not need complex deep neural networks
to achieve state-of-the-art performance. All this, combined
with the proposed PRU algorithm, leads to a fast, robust and
competitive method for depth image super-resolution.

The remainder of this paper is organized as follows. Section
II reviews the related work about depth image super-resolution.
The proposed method is introduced in Section III. Section
IV presents the experimental results and finally Section V
concludes this paper.

II. RELATED WORK

Depth image super-resolution (DISR) approaches can
be broadly classified into three categories, single DISR
approaches [6], [8], [12]–[16] which require only LR depth
images, depth prediction approaches [17]–[21] which require
only HR intensity images, and intensity guided DISR
approaches [22]–[26], [26]–[29] which use both the LR depth
and HR intensity images. Many ideas in single DISR are based
on the success of single color image super-resolution (CISR)
algorithms which we now briefly review.

Single CISR approaches aim to recover a HR color image
from a single LR color image. The most successful algorithms
are based on some forms of learning, and consist of two stages:
training and upscaling. In the training stage, the mappings
between LR and HR counterparts are learned from the
training LR-HR pairs, and the upscaling stage uses the learned
mappings to super-resolve the LR images. Representative
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works include sparse coding [30], K-SVD [31], A+ [32], Self-
Ex [33], and random forests [34]. The representative works
when deep learning is used include SRCNN [35], CSCN [36],
VDSR [37], MSCN [38], and ESPCN [39]. The deep learning
based methods usually show better reconstruction results, but
they need huge training datasets, and are not always resilient
to mismatches between training and testing datasets.

Single DISR approaches are usually derived from the
single CISR methods with some variations. For example,
Aodha et al. [12] extended the work of [40] to the depth
image by using a Markov random field (MRF) labeling model.
The LR depth image is divided into parts, and the HR depth
image is assembled using the corresponding HR counterparts
selected from an external dataset. The work of [13] further
extended [12] by adding geometric constraints from self-
similar structures. Considering that no texture is contained in
depth images, Xie et al. [8] proposed an edge guided depth
image super-resolution approach to reconstruct an HR edge
map through a MRF optimization. The HR depth image was
obtained using a bilateral filter with the HR edge map as
guidance. In addition to the direct patch synthesis approaches,
[14] and [15] learned coupled dictionaries for DISR under
the assumption that LR and HR depth patches share the
same reconstruction coefficients. More recently, Riegler et al.
[6] combined deep convolutional networks with a variational
model to super-resolve depth images. One big problem for the
single DISR approaches is that they may struggle with large
upscaling factors, e.g., 8× and 16×, because the fine details
of HR images may not be evident in the LR versions.

Depth prediction approaches aim to infer a HR depth
image from a single HR color/intensity image. This is a highly
ill-posed problem, because the intensity image contains no
distance information which the depth image needs. Liu et
al. [17] proposed to model the depth prediction problem as
a discrete-continuous optimization problem. For a specific
intensity image, several similar images are gathered with
known depth information, which are used to predict the depth
information for the target intensity image. Eigen et al. [18]
proposed a multi-scale convolutional network which integrates
the coarse-scale depth prediction with the fine-scale prediction.
Li et al. [19] proposed to estimate the depth at the super-pixel
level with a trained CNN network, and then use conditional
random fields (CRF) to refine the depth at the pixel level.
These methods are all based on supervised learning, which
needs a large training dataset. Recently, Kuznietsov et al. [21]
proposed to use semi-supervised learning, which employed
a deep residual network in an encoder-decoder architecture.
Compared to the single DISR approaches, the depth prediction
approaches have an obvious disadvantage, since the intensity
image cannot provide specific depth cues, and this makes the
depth prediction accuracy far from satisfactory.

Intensity guided DISR approaches use a registered HR
intensity image to assist the super-resolution of a depth image.
Intensity and depth images are two modalities of the same
scene, so they should be correlated. Different approaches have
been proposed to exploit this correlation. For example, with
the assumption that pixels around a region with similar colors
tend to have similar depth values, Yang et al. [22] used

joint bilateral filtering to iteratively interpolate depth values
in HR depth image. Chan et al. [23] extended this work
by introducing a noise-aware bilateral filter that alternates
between standard upsampling and joint bilateral filtering based
on the local statistics. Later, He et al. [25] proposed a
color image guided filter to preserve the fine edges in the
reconstructed depth image, based on an assumption that joint
occurrence exists between depth discontinuities and color
image edges. Lu et al. [27] also adopted this assumption.
They first split the HR color image into parts using image
segmentation and then independently predicted the depth
values of each part using depth smoothing methods.

Different from the above model based approaches, the
learning based approaches aim to learn the correlation through
training. For example, Tosic et al. [41] proposed to learn joint
over-complete dictionaries for intensity and depth modalities
and used a joint basis pursuit algorithm to find the sparse
coefficients. Kwon et al. [28] also used dictionary learning
to upscale the depth image. They realized that an edge in
a color image sometimes does not necessarily lead to a
depth discontinuity and thus proposed a RGB-D structure
similarity measure to predict the consistency between edges
and discontinuities. More recently, Gu et al. [29] proposed
a stage-by-stage intensity guided depth upscaling algorithm,
based on a weighted analysis representation model. Dynamic
guidance is learned for each stage through a task-driven
learning strategy. Song et al. [7] proposed to use convolutional
neural network to upscale a depth image gradually, with the
statistics of intensity image as guidance.

In this paper, we also use dictionary learning to explore the
dependency between depth and intensity modalities. However,
different from [28], [41] and in line with [11], [42], we
represent each modality by two dictionaries which are learned
through a proposed multimodal dictionary learning algorithm.
In particular, one dictionary represents the information which
is common between depth and intensity, while the other
represents the information that is unique to each modality. In
this way, the unrelated information in intensity images cannot
affect the depth image upscaling, which can help improve the
depth reconstruction accuracy.

III. PROPOSED METHODS

In this section, the main elements of our approach are
introduced. In Section III-A, the FRI-based depth upscaling
(FDU) algorithm is introduced, and in Section III-B, we review
the triple dictionary learning (TDL) model. Then, based on the
learned dictionaries, a novel projection-based rapid upscaling
(PRU) algorithm is introduced in Section III-C.

A. FRI-based Depth Upscaling (FDU)

In this section, we introduce a model-based method
benefiting from the finite rate of innovation (FRI) theory to
upscale a LR depth image. This method does not require
the use of external datasets. FRI theory has shown that it is
possible to reconstruct perfectly piecewise polynomial signals
from samples obtained with an arbitrary blurring kernel that
might also be the scaling function in a wavelet decomposition
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Fig. 2. Illustrations of the rows and columns in a depth image. Each row and
column can be approximately modeled as a piece-wise polynomial function
with switch points indicated by red and blue dots.

[10]. As observed from Fig. 2, the rows and columns of
depth images are quite close to a 1-D piece-wise polynomial
function. Thus, for each row and column, given its low-pass
version, we can reconstruct the original line using FRI theory
[9], [43]. For more details of FRI reconstruction, please see
Appendix. In the case of depth image super-resolution, the key
insight is that we treat the LR image as the lowpass version
of a wavelet decomposition of the HR image, and use FRI
theory to infer the missing wavelet coefficients. As shown in
Fig. 3, the HR image can be decomposed into four sub-bands
using 2D Discrete Wavelet Transform (DWT) [44], i.e., LL
(smooth approximation), LH (horizontal details), HL (vertical
details), and HH (diagonal details). We assume the LR image
is the LL sub-band, and then the super-resolution process is
equivalent to retrieving the other three sub-bands, and this can
be achieved using FRI theory.

For retrieving the LH subband which contains the horizontal
details, we first perform linear interpolation horizontally on
the LR image, and then perform FRI reconstruction vertically
column by column, to obtain a HR image with horizontal
details which we denote as HRh. The LH sub-band, LHh,
can then be extracted from HRh using 2D DWT1. Likewise,
we reconstruct HRv by doing linear interpolation vertically
and then FRI reconstruction horizontally. The HL sub-band,
HLv , can be extracted from HRv using 2D DWT. Since
both HRh and HRv contain the diagonal details, we can
perform 2D DWT on either of them, or use the average of
them to retrieve the HH sub-band. We find that there is no
noticeable performance change among these three solutions.
In this paper, we simply use HHv , i.e., the 2D DWT on
HRv , to get the diagonal details. Fig. 4 illustrates this process
for 2 × upcaling. When the upscaling factor is larger than 2,
e.g., 4×, we perform a 2× upscaling followed by another 2×
upscaling. The same cascaded strategy applies for 8 × and 16
× upscaling.

Noise-free case. With the retrieved sub-bands (i.e., LHh,
HLv , HHv) and the clean LR depth image, we use 2D
inverse DWT (IDWT) to combine them to obtain a super-

1Here, since only parts of the sub-bands are required, partial 2D DWT is
enough if considering the computational complexity.
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Fig. 3. (a) shows the decomposition of one image using 2D DWT, and (b)
visualizes the four sub-bands of image Cones.

TABLE I
NOTATION LIST.

LL: Input noise-free/noisy LR image
HRh: Restored HR image with horizontal details with LL as input
HRv : Restored HR image with vertical details with LL as input
LLh: LL subband extracted from HRh using 2D DWT
LHh: LH subband extracted from HRh using 2D DWT
LLv : LL subband extracted from HRv using 2D DWT
HLv : HL subband extracted from HRv using 2D DWT
HRh

h: Restored HR image with horizontal details with LLh as input
HRh

v : Restored HR image with vertical details with LLh as input
LHh

h : LH subband extracted from HRh
h using 2D DWT

LLh
v : LL subband extracted from HRh

v using 2D DWT
HLh

v : HL subband extracted from HRh
v using 2D DWT

HRv
h: Restored HR image with horizontal details with LLv as input

HRv
v : Restored HR image with vertical details with LLv as input

LLv
h: LL subband extracted from HRv

h using 2D DWT
LHv

h : LH subband extracted from HRv
h using 2D DWT

HLv
v : HL subband extracted from HRv

v using 2D DWT

resolved HR image. Since the depth line is not exactly
a piece-wise polynomial signal, the estimated discontinuity
locations may contain some errors. In order to achieve a better
quality, following [45], we employ an internal self-learning
algorithm proposed in [46] to correct these errors caused by
FRI reconstruction. The insight is to establish an internal LR-
HR dictionary through a pyramid of recursively downscaled
and FDU upscaled images, and then learn a linear mapping
from LR to HR patches. For more details about internal self-
learning, we refer to [45], [46].

Noisy case. In the case of noisy LR images, the prediction
algorithm for the three high-frequency sub-bands is the same
as that in the noise-free case, and we denote it as the basic
FDU unit. However, since the LR image is noisy, combining
it with the other three sub-bands would lead to a noisy HR
output. The intuitive solution is to find a denoised version
of the noisy LR input and we have two choices: the LLh

extracted from HRh or the LLv extracted from HRv . The
problem is that LLh is only denoised along horizontal lines
but still noisy along vertical lines, and conversely, LLv is only
denoised along vertical lines but still noisy along horizontal
lines. To tackle this issue, our solution is to reconstruct the sub-
bands with LLh and LLv as the LR inputs, respectively. Then,
we average these sub-bands and perform 2D IDWT on the
averaged sub-bands to obtain the final HR image. For clarity,
the notations we use are listed in Table I and the algorithm is
shown in Fig. 5.

As it can be seen from the figure, the algorithm consists of
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two branches: the upper branch reconstructs four sub-bands
with LLh as input and the lower branch reconstructs four sub-
bands with LLv as input. We now focus on the upper branch to
explain how it works. Given a noisy LR input, we reconstruct
the HRh image using the same approach as in the noise-
free case, and extract LLh from HRh using 2D DWT. The
LLh is then fed into the basic FDU unit which leads to two
reconstructed images: HRh

h and HRh
v . Similar to the noise-

free case, we extract the LH subband LHh
h from HRh

h, the
HL subband HLh

v from HRh
v , and HH subband from either of

them. Since the LLh subband is noisy vertically, we choose to
use the LLh

v extracted from HRh
v instead, as shown in Fig. 5.

In the lower branch, we use a similar approach to obtain four
sub-bands with LLv as input, i.e., LLv

h, HLv
v , LHv

h and HHv
v .

The four sub-bands obtained by the upper and lower branches
are averaged per sub-band, and then we perform 2D IDWT
on the four averaged sub-bands to reconstruct the final HR
image. Note that in the noisy case, the internal self-learning
algorithm is not employed, because the ground-truth LR image
is not available.

B. Triple Dictionary Learning (TDL)

The aforementioned FDU algorithm allows us to upscale the
LR depth image to a moderate quality (MQ) version, without
the guidance of intensity image. Next, to further enhance the
MQ depth image, we use a recently proposed multi-modal
dictionary learning algorithm [11] to fully use the guidance of
HR intensity images.

The basic insight in our model [11] is that the MQ depth
image, HR depth image, and the corresponding HR intensity
image are from the same scene. Therefore, they share some
latent features. However, only part of depth information is
related to part of intensity information, while other elements
are unrelated. For example, the edges in intensity images
normally correspond to depth discontinuities, while the texture
in intensity images has no relationship with the depth images.
If they are not properly separated, texture elements may occur
in the reconstructed depth, leading to texture copying artifacts.
To avoid that, we model each modality with two dictionaries,
one common dictionary (CD) and one unique dictionary (UD).
Specifically, we denote by x, y and z the MQ depth patch, HR
depth patch and HR intensity patch, respectively, and assume
they share some common sparse features but also have unique
elements. Suppose that Ψl

c and Ψl
u are the CD and UD of

MQ depth modality, Ψh
c and Ψh

u are the CD and UD of HR
depth modality, and Φh

c and Φh
u are the CD and UD of HR

intensity modality, we then assume they have the following
relationship: xy

z

 =

Ψl
c Ψl

u 0
Ψh

c Ψh
u 0

Φh
c 0 Φh

u

u
v
w

 , (1)

where u, v and w are the sparse coefficients. For y and z,
their CDs share the same sparse coefficient u, while the UDs
have distinct sparse coefficients v and w. This is because only
the common information in z is useful for the reconstruction
of y. For x and y, both the CDs and UDs share the same
sparse coefficients, because all the information in x is useful
for the reconstruction of y.

The triple dictionary training problem can then be
formulated as [11]

{C,D} = argmin
C,D

∥∥∥∥∥∥
X

Y
Z

−
Ψl

c Ψl
u 0

Ψh
c Ψh

u 0
Φh

c 0 Φh
u

U
V
W

∥∥∥∥∥∥
2

F

,

s.t. ‖uk‖0 + ‖vk‖0 + ‖wk‖0 ≤ L, ∀k,
(2)

where X , Y , and Z ∈ RM×P are the training MQ
depth features, HR depth features and HR intensity features
respectively collected from the training dataset. D represents
all the six dictionaries (each having size RM×Q) and C
represents all the sparse coefficients U , V and W ∈ RQ×P .
Here, M is the size of each feature, Q is the number of
atoms in each dictionary, and P is the number of training
features. Note that in theory the common dictionaries and
unique dictionaries can have different number of atoms, but
in this paper we just set them to be the same. In (2), uk,
vk, wk are the k-th (0 < k ≤ P ) columns of matrices U ,
V and W respectively, ‖ · ‖0 is the `0 norm and L is the
sparsity constraint. Since (2) is non-convex, it is difficult to
get a solution for all the six dictionaries simultaneously. Thus,
we first relax (2) to (3) by disregarding dictionaries Ψh

c and
Ψh

u temporarily, and then we have

{C,D′} = argmin
C,D’

∥∥∥∥∥∥
[

X
Z

]
−
[
Ψl

c Ψl
u 0

Φh
c 0 Φh

u

]UV
W

∥∥∥∥∥∥
2

F

,

s.t. ‖uk‖0 + ‖vk‖0 + ‖wk‖0 ≤ L, ∀k,
(3)

where D′ represent the four dictionaries in (3). The four
dictionaries are initialized using DCT frames. We use two
steps to solve this problem. In the first step, we fix both
the common and unique dictionaries and use orthogonal
matching pursuit (OMP) algorithm [47] to calculate the sparse
coefficients, and then by fixing the coefficients and the unique
dictionaries, we use K-SVD [48] to update the common
dictionaries. This process is repeated until convergence. In the
second step, we fix the learned coefficients and the common
dictionaries, and use K-SVD to update the unique dictionaries.
This process is also repeated until convergence. Then, the
first step and second step are carried out in an alternate way
until all the dictionaries converge. Once we have obtained the
dictionaries Ψl

c, Ψl
u, Φh

c , Φh
u and the sparse coefficients U ,

V and W , the next step is to learn the remaining dictionaries
Ψh

c and Ψh
u. From (2), we can observe that the HR depth

dictionaries Ψh
c and Ψh

u share the same sparse coefficients,
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Fig. 5. FDU algorithm with noisy LR depth image.

i.e., U and V , with the MQ depth dictionaries Ψl
c and Ψl

u.
With these sparse coefficients, we can obtain Ψh

c and Ψh
u by

minimizing the total reconstruction error of all the HR depth
training features Y :

{Ψh
c ,Ψ

h
u} = argmin

Ψh
c ,Ψh

u

∥∥∥∥Y − [Ψh
c Ψh

u

] [U
V

]∥∥∥∥2
F

+λ
∥∥[Ψh

c Ψh
u

]∥∥2
F
.

(4)
By solving this least square fitting problem, we have

dictionaries Ψh
c and Ψh

u as follows,[
Ψh

c Ψh
u

]
= Y

[
UT V T

]
(

[
U
V

] [
UT V T

]
+ λI)−1, (5)

where λ is the regularization parameter and I is the identity
matrix.

C. Projection-based Rapid Upscaling (PRU)

In the upscaling process, given a MQ depth feature xt and
the corresponding HR intensity feature zt, we aim to retrieve
the HR depth feature yt. To this end, we need to calculate the
sparse coefficients first by solving the following optimization,

argmin
u,v,w

‖u‖0+‖v‖0+‖w‖0, s.t.,
[
xt

zt

]
=

[
Ψl

c Ψl
u 0

Φh
c 0 Φh

u

]u
v
w

 .
(6)

In theory, one can solve (6) by OMP algorithm [47] to obtain
the coefficients u,v,w. After that, yt can be recovered as

yt = Ψh
cu + Ψh

uv. (7)

Unfortunately, the OMP algorithm is quite time-consuming.
To overcome this drawback, we propose a projection-based
rapid upscaling (PRU) algorithm. The key insight is to
precalculate the projections from the joint MQ depth and HR
intensity feature pairs to HR depth feature before upscaling.
This algorithm is composed of two important parts: sub-
dictionary learning and sub-projection learning.

Sub-dictionary learning. Suppose that {X;Z} are the
training data pairs related to MQ depth and HR intensity
features, and {Y} are the training data with HR depth features.
Firstly, we use k-means clustering algorithm [49] to split
{X;Z} into N clusters and store the centroids {Oi}Ni=1

for each cluster. Then, for each centroid, we use k-nearest
neighbour (kNN) to search for its K nearest samples in {X;Z}
to form subsets {X(i);Z(i)}Ni=1. Note that the subsets may
have some samples in common. For each sample in the i-th
subset {X(i);Z(i)}, its sparse coefficients with respect to the
dictionaries learned before can be calculated by solving (6)
using OMP algorithm. Specifically, for the k-th (0 < k ≤ K)
sample in {X(i);Z(i)}, its sparse coefficients are denoted as
[u

(i)
k ;v

(i)
k ;w

(i)
k ]. By stacking together the sparse coefficients

of all samples in each subset separately, we obtain three
coefficient matrices per subset as follows,

M (i)
u =

[
u

(i)
1 ,u

(i)
2 , . . . ,u

(i)
K

]
;

M (i)
v =

[
v
(i)
1 ,v

(i)
2 , . . . ,v

(i)
K

]
;

M (i)
w =

[
w

(i)
1 ,w

(i)
2 , . . . ,w

(i)
K

]
.

(8)

Based on the above coefficient matrices, we aim to compute
the sub-dictionaries {Ψl(i)

c ,Ψ
l(i)
u ,Ψ

h(i)
c ,Ψ

h(i)
u ,Φ

h(i)
c ,Φ

h(i)
u }

of the i-th subset.

For simplicity, we denote Ψ(i) =

[
Ψ

l(i)
c Ψ

l(i)
u

Ψ
h(i)
c Ψ

h(i)
u

]
, and

Φ(i) =
[
Φ

h(i)
c Φ

h(i)
u

]
, and we can obtain the sub-

dictionaries by solving the following optimizations:

Ψ(i) = argmin
Ψ(i)

∥∥∥∥∥
[
X(i)

Y (i)

]
−Ψ(i)

[
M

(i)
u

M
(i)
v

]∥∥∥∥∥
2

F

+ λ
∥∥∥Ψ(i)

∥∥∥2
F
, (9)

and

Φ(i) = argmin
Φ(i)

∥∥∥∥∥Z(i) −Φ(i)

[
M

(i)
u

M
(i)
w

]∥∥∥∥∥
2

F

+ λ
∥∥∥Φ(i)

∥∥∥2
F
. (10)

The above optimization problems can be solved through least
square fitting, with the solutions as follows,

Ψ(i) =

[
X(i)

Y (i)

] [
M

(i)T
u M

(i)T
v

]
(

[
M

(i)
u

M
(i)
v

] [
M

(i)T
u M

(i)T
v

]
+λI)−1,

and

Φ(i) = Z(i)
[
M

(i)T
u M

(i)T
w

]
(

[
M

(i)
u

M
(i)
w

] [
M

(i)T
u M

(i)T
w

]
+ λI)−1,

(11)
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where λ is the regularization parameter. Finally, after we
calculate Ψ(i) and Φ(i), the sub-dictionaries for the i-th
subset {Ψl(i)

c ,Ψ
l(i)
u ,Ψ

h(i)
c ,Ψ

h(i)
u ,Φ

h(i)
c ,Φ

h(i)
u } can be easily

recovered from Ψ(i) and Φ(i).
Sub-projection learning. Given the sub-dictionaries

learned in each subset, we aim to find a projection for each
subset which can directly project the joint MQ depth and HR
intensity features to the HR depth feature. To this end, we
first replace the dictionaries in (6) with the sub-dictionaries
learned in (11). Then, suppose that β = [u,v,w]T,

D
(i)
l =

[
Ψ

l(i)
c Ψ

l(i)
u 0

Φ
h(i)
c 0 Φ

h(i)
u

]
and relax `0 norm to `2

norm, (6) can be rewritten as

argmin
β

∥∥∥∥[xt

zt

]
−D(i)

l β

∥∥∥∥2
2

+ λ‖β‖2, (12)

where λ is a regularization parameter. The reason why we
relax the `0 norm with `2 norm is to make Eq. (12) a ridge
regression problem, so that it can have a closed-form solution,
which helps to speed up the upscaling process. The solution
of (12) is as follows,

β = (D
(i)T
l D

(i)
l + λI)−1D

(i)T
l

[
xt

zt

]
, (13)

where D(i)T
l is the transpose of D(i)

l , and I is an identity
matrix. With coefficients β, the HR depth feature yt can be
reconstructed by

yt =D
(i)
h β =D

(i)
h (D

(i)T
l D

(i)
l + λI)−1D

(i)T
l

[
xt

zt

]
, (14)

where D(i)
h =

[
Ψ

h(i)
c Ψ

h(i)
u 0

]
.

For this reason, the sub-projection matrix P (i) for the i-th
subset is given by

P (i) =D
(i)
h (D

(i)T
l D

(i)
l + λI)−1D

(i)T
l . (15)

Moreover, the sub-projections {P (i)}Ni=1 can be pre-stored
to speed up the upscaling process. In upscaling, for a joint
input of MQ depth and HR intensity patches [xt; zt], we
just need to search for its nearest centroid in {Oi}Ni=1,
and multiply the joint input [xt; zt] by the sub-projection
matrix corresponding to this centroid to get the HR depth
patch yt. We also explored the possibility of using more
than one neighbour and use their weighted sub-projections
to reconstruct the HR image. However, the results are worse
than those obtained using only the nearest neighbour. The full
procedure to calculate the sub-projections is as follows: firstly,
we learn the global dictionaries through Eq. (2), and then we
learn the sub-dictionaries through Eqs. (9)-(11), and finally the
sub-projections are obtained by using Eq. (15). Table II shows
the summarized procedure for PRU algorithm.

In the upscaling process, given a LR depth image, we first
use FDU algorithm to get a MQ depth image without any
training dataset. Then, with the assistance of the corresponding
intensity image, this image is further enhanced by the learned
projections from MQ depth and HR intensity pairs to the HR
depth.

TABLE II
THE PROPOSED PROJECTION-BASED RAPID UPSCALING ALGORITHM

Training process
– Input: Training features {X;Z} and {Y}, global dictionaries

Ψl
c, Ψl

u, Ψh
c , Ψh

u, Φh
c , Φh

u.
– Output: Cluster centroids {O(i)}Ni=1, Sub-projections
{P (i)}Ni=1.

• Split the training features {X;Z} into N clusters with centroids
{O(i)}Ni=1 using K-means clustering.

• For each cluster centroid
1 Search for K nearest samples to the cluster centroid using

k-NN. These K samples form a subset.
2 Calculate the sparse coefficients for the K samples in the

subset using (6).
3 Learn the sub-dictionaries for each subset using (9), (10),

and (11).
4 Learn the sub-projections {P (i)}Ni=1 for each subset

using (15).
End

• Save centroids {O(i)}Ni=1 and sub-projections {P (i)}Ni=1.
Upscaling process

– Input: Joint input feature [xt;zt], centroids {O(i)}Ni=1 and
sub-projections {P (i)}Ni=1.

– Output: Reconstructed feature yt.
• Search for the centroid that is nearest to the joint input feature.
• Multiply the corresponding sub-projection by the input feature,

to reconstruct yt.
• Save yt.

IV. EXPERIMENTAL RESULTS

In this section, we quantitatively analyse the performance of
both our and other state-of-the-art approaches, using the root
mean square error (RMSE) and structural similarity (SSIM)
[50] metrics. In addition to the quantitative comparison, we
also analyse the visual quality of the reconstructed images
and consider both noise-free and noisy cases. All the results
can be downloaded through the link http://www.commsp.ee.
ic.ac.uk/∼xindeng/RADAR results.zip.

A. Datasets

For the training dataset, our approach needs both depth
images and their corresponding intensity images for dictionary
learning. Compared with the deep learning based methods [6],
[7], we use a very small training dataset, which is composed
of only 15 depth images with their registered colour images
selected from the New Tsukuba dataset provided by [51].
The resolution of training images is 640 × 480. The colour
images are changed from RGB to YCbCr format and only the
luminance channel is used for training.

For the testing dataset, we evaluate the performance of
our approach on five publicly available datasets, including
Middlebury stereo dataset [52], Sintel stereo dataset [53], New
Tsukuba (NT) dataset [51], NYU indoor scene dataset [54],
and ToFMark dataset [26]. The first four datasets are used
for the noise-free case while the ToFMark dataset and the
noisy Middlebury dataset are used for the noisy case. From
each dataset, we use four randomly selected image pairs of
depth image and the corresponding intensity image (ToFMark
only has three) as testing images. The testing images vary in
resolutions, and cover most of the scenarios we may encounter,
including intensity images of real and synthetic scenes and

http://www.commsp.ee.ic.ac.uk/~xindeng/RADAR_results.zip
http://www.commsp.ee.ic.ac.uk/~xindeng/RADAR_results.zip
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TABLE III
TESTING DATASETS

Dataset name Resolution Real-scene Noisy Texture Edge
intensity depth detail detail

Middlebury low: 448×368 Y N Strong Middle
NT dataset high: 640×480 Y N Middle Strong

Sintel dataset very high: 1024×432 N N Middle Strong
NYU dataset mid-high: 560×424 Y N Middle Middle

ToFMark dataset high: 810×610 Y Y Low Strong
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Fig. 6. (a) RMSE as a function of the size Q of dictionaries, (b) RMSE as a
function of the number N of subspaces, (c) RMSE as a function of the size
K of each subspace

depth images with or without noise. For example, the images
in the Middlebury dataset are at low resolution, while those
in NT dataset are at high resolution. The Sintel dataset is a
synthetic dataset in which both the intensity and depth images
are synthesized by computer. The NYU and ToFMark datasets
are both real-world datasets, but the former is collected using
Kinect and the latter using ToF camera. For the specific
difference, please refer to Table III.

B. Performance Analysis of Our Method

Parameter settings. In the TDL process, there are some
parameters which can affect the performance, like the
dictionary size Q, the sparsity constraint L and the size of
training patches. Fig. 6 (a) plots the RMSE change with
dictionary size Q, from which we can see that larger Q leads
to better reconstruction results. However, it is at the expense

TABLE IV
INDIVIDUAL CONTRIBUTIONS OF EACH ELEMENT ON THE FOUR

NOISE-FREE DATASETS.

RMSE 2× 4× 8× 16×
Bicubic 2.60 3.96 5.85 8.64

Only FDU 1.86 2.70 4.01 6.85
Only PRU 1.58 2.99 4.55 6.93
FDU+PRU 1.14 2.33 3.81 6.45

FDU+TDL(OMP) 1.21 2.39 3.87 6.48
SSIM 2× 4× 8× 16×

Bicubic 0.9878 0.9692 0.9425 0.9067
Only FDU 0.9935 0.9847 0.9649 0.9349
Only PRU 0.9954 0.9833 0.9574 0.9315
FDU+PRU 0.9974 0.9887 0.9712 0.9409

FDU+TDL(OMP) 0.9951 0.9872 0.9666 0.9381

TABLE V
RMSE COMPARISON WITH AND WITHOUT THE GUIDANCE OF INTENSITY

IMAGES AT DIFFERENT SCALING FACTORS ON THE FOUR NOISE-FREE
DATASETS.

RMSE 2× 4× 8× 16×
Without intensity 1.42 2.53 3.96 6.73

With intensity 1.14 2.33 3.81 6.45

TABLE VI
OMP VERSUS PRU FOR BOTH CLUSTERING AND NON-CLUSTERING

CASES ON MIDDLEBURY DATASET.

RMSE Cones Teddy Tsukuba Venus Average
N = 1 OMP 2.56 1.85 5.08 0.86 2.59

PRU 2.68 1.94 5.35 1.02 2.75
N = 1024 OMP 2.48 1.81 4.97 0.83 2.52

PRU 2.26 1.63 4.90 0.73 2.38

of training complexity. In this paper, we set Q = 256 to
achieve a good trade-off between the training complexity and
reconstruction performance. Moreover, the sparsity level L is
set to 3. The training patch sizes for 2×, 4×, 8×, and 16×
upscaling are 4× 4, 8× 8, 12× 12, and 24× 24, respectively.
We use the mean-removed MQ depth patch as MQ depth
feature, the mean-removed HR intensity patch as HR intensity
feature, and the HR depth feature is obtained from the HR
depth patch by subtracting the mean value of its corresponding
MQ depth patch. The regularization parameter λ, which is
used in Eqs. (4), (9), (10), (12), (15), is set to 0.1 for all
cases. In the PRU process, as shown in Fig. 6 (b) and (c),
we find that a large number of clusters N can improve the
reconstruction accuracy but increases also the computational
time. The number of samples K in each cluster has little
influence on the performance. Based on our experiments, we
set N = 1024 and K = 32. Note that the multiplication of K
and N is not required to be equal to the number of training
patches, since clusters may overlap, i.e., different clusters may
have some common samples. We just need to satisfy that the
number of clusters is equal to N and the samples inside each
cluster is equal to K.

Individual contributions. Table IV shows the individual
contributions of FDU and PRU elements to the performance
of our method, in which the results are averaged over the four
noise-free datasets. Here, the results in the “only PRU” case
are obtained with the bicubic interpolated images as inputs.
The RMSE results are averaged among the four noise-free
testing datasets. As can be seen, when FDU and PRU are
used as stand-alone methods, while they can enhance the
image quality, their performance is not comparable to the
enhancement achieved when they are used in cascade. This
is because when cascaded, the FDU process can lift the image
quality to a higher level, decreasing the mapping ambiguity
in TDL training. Moreover, compared with small upscaling
factors, 2× and 4×, FDU plays a more important role in
large factors, i.e., 8× and 16×. As can be seen, with only
the FDU, the RMSE value improves on average by nearly
1.8 for 8× and 16× upscaling, compared with 1.0 for 2× and
4× upscaling. To make the individual contribution of each part
more evident, we show in Fig. 7 the reconstruction results with
only FDU algorithm, with only PRU algorithm and with both
of them together. As can be seen, when combining these two
algorithms, the reconstructed image is sharper and clearer than
that with only one of them. Moreover, we also compare the
performance with our PRU algorithm and the OMP algorithm
(i.e., we use OMP to solve Eq. (6)). As shown in Table IV,
the PRU algorithm performs better in both RMSE and SSIM.

Use of intensity images to improve performance. In order
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(a)  GT (b)  FDU (2.74/0.9799) (c)  PRU (3.25/0.9735) (d)  FDU+PRU (2.26/0.9851)

Fig. 7. Visual comparison of Cones in Middlebury dataset with upscaling factor = 4. The values in the bracket are RMSE/SSIM values. (a) Ground truth.
(b) Result only with FDU algorithm. (c) Result only with PRU algorithm. (d) Result with both FDU and PRU algorithms.

TABLE VII
RESULTS ON MIDDLEBURY DATASET FOR 2× AND 4× UPSCALING. THE BEST RESULTS ARE IN BOLD AND THE SECOND BESTS ARE UNDERLINED.

Scaling factor=2 Scaling factor = 4
Methods Cones Teddy Tsukuba Venus Cones Teddy Tsukuba Venus

RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM
Bicubic 2.47 0.9837 1.88 0.9869 5.56 0.9723 1.28 0.9951 3.71 0.9620 2.84 0.9688 8.32 0.9321 1.92 0.9876

Kuznietsov et al. [21] 69.92 0.5568 62.10 0.6058 93.64 0.4866 58.26 0.7243 69.92 0.5568 62.10 0.6058 93.64 0.4866 58.26 0.7243
Aodha et al. [12] 4.32 0.9606 3.28 0.9690 9.11 0.9364 2.20 0.9874 3.69 0.9392 4.11 0.9520 7.69 0.9080 2.65 0.9822
Ferstl et al. [15] 2.21 0.9866 1.72 0.9884 5.33 0.9766 1.12 0.9963 3.57 0.9645 2.65 0.9716 7.54 0.9413 1.78 0.9893

Xie et al. [8] 2.73 0.9633 2.49 0.9625 6.35 0.9464 1.64 0.9852 4.41 0.9319 3.28 0.9331 9.78 0.8822 2.37 0.9730
Timofte et al. [32] 2.13 0.9871 1.72 0.9882 4.98 0.9776 1.16 0.9960 3.41 0.9709 2.43 0.9750 7.35 0.9507 1.59 0.9916
Huang et al. [33] 2.63 0.9846 2.43 0.9853 6.08 0.9544 2.17 0.9705 5.29 0.9533 4.23 0.9508 9.76 0.9312 3.06 0.9749
Park et al. [24] 2.85 0.9699 2.18 0.9767 6.89 0.9320 1.26 0.9910 6.54 0.9420 4.35 0.9553 12.12 0.8981 2.36 0.9862
Ferstl et al. [26] 3.81 0.9788 2.93 0.9795 6.89 0.9576 1.39 0.9938 4.66 0.9625 3.67 0.9707 9.91 0.9245 1.60 0.9900

Lu et al. [27] 3.28 0.9875 2.07 0.9895 7.35 0.9659 1.30 0.9952 4.02 0.9697 2.73 0.9782 10.20 0.9212 1.77 0.9888
Gu et al. [29] 1.75 0.9858 1.65 0.9841 3.41 0.9848 0.59 0.9981 3.93 0.9627 2.86 0.9694 8.36 0.9346 1.59 0.9922

Dong et al. [35] 1.62 0.9900 1.34 0.9911 3.68 0.9798 0.63 0.9971 3.55 0.9712 2.56 0.9813 7.88 0.9552 1.26 0.9883
Wang et al. [36] 1.86 0.9900 1.37 0.9918 3.89 0.9858 0.83 0.9979 3.07 0.9756 2.03 0.9811 6.29 0.9677 1.20 0.9952
Kim et al. [37] 1.45 0.9932 1.15 0.9940 3.03 0.9922 0.70 0.9984 2.49 0.9837 1.72 0.9859 5.21 0.9762 0.92 0.9971
Song et al. [7] 1.44 0.9915 1.20 0.9920 3.02 0.9898 0.56 0.9989 2.80 0.9802 1.80 0.9837 6.21 0.9641 0.88 0.9972

Riegler et al. [6] 1.00 - 0.82 - 2.38 - 0.20 - 2.93 - 1.50 - 6.63 - 0.38 -
RADAR 1.01 0.9964 0.80 0.9959 2.24 0.9959 0.23 0.9997 2.26 0.9851 1.63 0.9858 4.90 0.9777 0.73 0.9981

RADAR (fast) 1.15 0.9952 0.86 0.9954 2.04 0.9956 0.24 0.9997 2.67 0.9813 1.83 0.9836 5.51 0.9745 0.72 0.9980

to test the contribution of the intensity image to recovering the
depth image, we just remove the guidance of intensity image
in the TDL process. That is, there are only two modalities
in (2), the MQ depth and HR depth. Table V presents the
averaged RMSE results with and without intensity guidance
with scaling factors ranging from 2× to 16× averaged over the
four noise-free datasets. We can see that the intensity image
indeed helps to super-resolve the depth image.

Effects of clustering. In order to show the effectiveness of
clustering, we present in Table VI the RMSE results when the
number of clusters is N = 1 (which indicates no clustering
is used) and N = 1024 on Middlebury dataset. In addition,
we compare our algorithm with the case in which the OMP
algorithm is used after clustering. As we can see, whether
for our PRU or the OMP algorithms, the reconstruction
accuracy is improved with more clusters. When there is
no clustering, the OMP algorithm has higher reconstruction
accuracy (RMSE=2.59) than our PRU (RMSE=2.75). This
is because in this case we only have one global projection.
When the sub-projection is used with N = 1024 clusters, our
PRU algorithm (RMSE=2.38) performs better than the OMP
(RMSE=2.52).

C. Numerical Comparison Against Other Methods

Benchmarks. We compare our method with the following
benchmarks which can be classified into three categories. 1)
Single color image super-resolution methods, including Yang
et al. [30], Timofte et al. [32], Huang et al. [33], Dong et al.
[35], Wang et al. [36], and Kim et al. [37]. 2) State-of-the-art
single depth image super-resolution methods, including Aodha
et al. [12], Ferstl et al. [15], Xie et al. [8], and Riegler et
al. [6]. 3) State-of-the-art intensity guided depth image super-
resolution methods, including Park et al. [24], Ferstl et al.
[26], Lu et al. [27], Song et al. [7], and Gu et al. [29]. Note
that [6], [7], [35]–[37] are all deep learning based methods,
which use a large dataset for training. To make the comparison
more exhaustive, we also compare with the state-of-the-art
depth prediction method proposed by Kuznietsov et al. [21].
The numerical results of these methods are obtained either by
implementing the source code, or emailing the authors for the
upscaling results2. Since some methods cannot do upscaling
with large factors, e.g., 8× and 16×, we just ignore them
when doing the comparison for those specific settings. For
our approach, we present the results of two versions, a normal
RADAR and a fast RADAR version. The only difference is

2For the deep learning based methods [6], [7], [35]–[37], we directly use
their already trained models. Since we have no access to the code of [6], we
just use the results in the paper, which only provides the RMSE results.
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TABLE VIII
RESULTS ON THE NT, SINTEL AND NYU DATASETS FOR 4× UPSCALING.

THE BEST RESULTS ARE IN BOLD AND THE SECOND BESTS ARE
UNDERLINED.

NT dataset NT0200 NT0350 NT1400 NT1525
RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM

Bicubic 0.99 0.9905 1.80 0.9839 1.38 0.9898 1.66 0.9858
Kuznietsov et al. [21] 74.32 0.4821 66.39 0.5782 84.63 0.4957 76.29 0.5023

Xie et al. [8] 1.42 0.9767 2.62 0.9711 1.84 0.9686 2.33 0.9699
Timofte et al. [32] 0.84 0.9935 1.47 0.9898 1.01 0.9928 1.40 0.9897
Huang et al. [33] 0.96 0.9885 1.65 0.9866 1.44 0.9884 1.65 0.9864
Park et al. [24] 0.96 0.9885 1.78 0.9855 1.37 0.9892 1.86 0.9823
Ferstl et al. [26] 1.02 0.9875 1.88 0.9844 1.24 0.9914 1.82 0.9831

Lu et al. [27] 1.00 0.9882 1.83 0.9849 1.71 0.9721 2.06 0.9735
Gu et al. [29] 1.28 0.9889 1.79 0.9856 1.40 0.9897 1.77 0.9850

Dong et al. [35] 0.79 0.9945 1.28 0.9923 0.92 0.9946 1.22 0.9913
Wang et al. [36] 1.45 0.9929 1.21 0.9924 0.90 0.9954 1.16 0.9925
Kim et al. [37] 0.72 0.9948 1.05 0.9937 0.94 0.9939 1.20 0.9922

RADAR 0.65 0.9956 0.94 0.9950 0.66 0.9967 0.96 0.9943
RADAR (fast) 0.65 0.9956 0.92 0.9950 0.70 0.9962 1.03 0.9935
Sintel dataset Ambush Bamboo Cave Market

RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM
Bicubic 6.22 0.9704 13.76 0.8845 6.54 0.9524 8.74 0.9341

Kuznietsov et al. [21] 81.35 0.4552 68.87 0.5435 69.50 0.7337 95.68 0.3865
Xie et al. [8] 8.79 0.9438 19.02 0.8301 9.14 0.9221 12.21 0.8869

Timofte et al. [32] 5.05 0.9756 12.06 0.8910 5.34 0.9681 7.03 0.9462
Huang et al. [33] 5.32 0.9720 12.45 0.8784 5.69 0.9616 7.30 0.9412
Park et al. [24] 6.03 0.9678 12.05 0.8910 7.13 0.9379 9.45 0.9067
Ferstl et al. [26] 5.99 0.9701 11.54 0.8950 6.40 0.9563 8.01 0.9298

Lu et al. [27] 5.53 0.9712 10.61 0.9028 6.10 0.9610 8.31 0.9266
Gu et al. [29] 6.04 0.9766 13.35 0.9001 6.15 0.9613 8.10 0.9470

Dong et al. [35] 5.02 0.9761 11.89 0.8934 5.32 0.9684 6.87 0.9487
Wang et al. [36] 4.29 0.9850 9.63 0.9389 4.37 0.9769 5.94 0.9664
Kim et al. [37] 3.32 0.9896 8.69 0.9463 3.97 0.9839 6.21 0.9677

RADAR 3.43 0.9919 8.74 0.9551 3.57 0.9857 5.13 0.9782
RADAR (fast) 3.52 0.9911 9.04 0.9505 3.73 0.9831 5.32 0.9755
NYU dataset Image-1 Image-2 Image-3 Image-4

RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM
Bicubic 1.20 0.9935 1.27 0.9936 1.63 0.9873 1.34 0.9915

Kuznietsov et al. [21] 86.87 0.4352 85.39 0.4568 78.29 0.5087 66.37 0.5345
Xie et al. [8] 1.77 0.9889 1.92 0.9897 2.83 0.9768 1.99 0.9855

Timofte et al. [32] 0.91 0.9942 0.94 0.9936 1.44 0.9891 1.14 0.9932
Huang et al. [33] 1.12 0.9934 1.22 0.9926 1.88 0.9834 1.47 0.9898
Park et al. [24] 1.53 0.9903 1.37 0.9921 2.14 0.9823 1.64 0.9885
Ferstl et al. [26] 1.78 0.9889 1.26 0.9924 2.25 0.9810 1.78 0.9867

Lu et al. [27] 1.38 0.9920 1.40 0.9916 2.19 0.9802 1.46 0.9898
Gu et al. [29] 1.24 0.9914 1.22 0.9935 1.96 0.9844 1.41 0.9905

Dong et al. [35] 0.91 0.9942 0.92 0.9941 1.42 0.9901 1.13 0.9927
Wang et al. [36] 0.79 0.9953 0.74 0.9966 1.28 0.9909 0.96 0.9943
Kim et al. [37] 0.83 0.9952 0.70 0.9967 1.24 0.9918 0.94 0.9948

RADAR 0.88 0.9954 0.71 0.9970 1.17 0.9927 0.92 0.9949
RADAR (fast) 1.06 0.9943 0.82 0.9964 1.44 0.9909 1.19 0.9934

that the fast RADAR version removes the self-learning part in
the FDU algorithm, which is slightly time-consuming.

Small upscaling factors. Table VII presents the RMSE
and SSIM results of our method and the benchmarks for 2×
and 4× upscaling in the Middlebury stereo dataset. As can
be seen, our method outperforms others in both RMSE and
SSIM in most of the cases. In particular, even with a fraction
of the training dataset, our method consistently performs better
than [7], [35]–[37], which are all state-of-the-art deep learning
based methods. The reason is probably because our method
fully exploits the intrinsic property of depth images and the
correlation between depth and intensity images. The property
of depth images, i.e., the rows/columns can be approximated
as piece-wise polynomials, is exploited in the FDU process,
and the relationship between modalities is fully exploited in
the TDL process. In order to further demonstrate the strengths
of our approach, we show results on the other datasets in Table

TABLE IX
RESULTS ON THE MIDDLEBURY DATASET FOR 8× AND 16× UPSCALING.

THE BEST RESULTS ARE IN BOLD AND THE SECOND BESTS ARE
UNDERLINED.

Scaling factor=8
Methods Cones Teddy Tsukuba Venus

RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM
Bicubic 5.77 0.9322 4.19 0.9442 12.61 0.8684 2.79 0.9771

Yang et al. [30] 5.33 0.9448 3.69 0.9530 11.74 0.9002 2.21 0.9822
Timofte et al. [32] 5.09 0.9452 3.48 0.9572 11.33 0.9023 1.87 0.9892

Park et al. [24] 7.81 0.9389 5.52 0.9456 17.60 0.8498 3.35 0.9642
Ferstl et al. [26] 6.68 0.9422 5.36 0.9351 16.30 0.8575 2.42 0.9800

Lu et al. [27] 5.54 0.9442 3.76 0.9561 13.32 0.8852 2.20 0.9870
Gu et al. [29] 5.59 0.9373 4.05 0.9489 12.72 0.8761 2.61 0.9806

Dong et al. [35] 5.28 0.9449 3.55 0.9567 11.32 0.9023 1.98 0.9889
Wang et al. [36] 4.75 0.9483 3.14 0.9597 10.59 0.8864 1.94 0.9872
Kim et al. [37] 5.55 0.9322 4.04 0.9451 12.08 0.8693 2.79 0.9766
Song et al. [7] 4.59 0.9510 2.93 0.9682 11.79 0.8942 1.74 0.9897

RADAR 4.45 0.9589 2.49 0.9726 9.84 0.9275 1.18 0.9949
RADAR (fast) 4.58 0.9533 2.85 0.9680 10.05 0.9208 1.45 0.9923

Scaling factor=16
Methods Cones Teddy Tsukuba Venus

RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM
Bicubic 8.43 0.8996 6.68 0.9162 16.77 0.8232 4.31 0.9628

Yang et al. [30] 7.45 0.9033 5.42 0.9287 16.53 0.8291 2.88 0.9687
Timofte et al. [32] 6.99 0.9096 4.95 0.9312 16.20 0.8301 2.63 0.9709

Park et al. [24] 10.23 0.8903 8.36 0.9124 19.36 0.8122 5.16 0.9547
Ferstl et al. [26] 11.84 0.8768 8.13 0.8977 26.54 0.8026 4.94 0.9607

Lu et al. [27] 10.96 0.8922 8.01 0.9135 16.76 0.8232 3.26 0.9655
Gu et al. [29] 7.40 0.9189 5.81 0.9316 17.59 0.8272 3.77 0.9723

Dong et al. [35] 7.18 0.9076 5.26 0.9379 16.25 0.8311 2.65 0.9710
Wang et al. [36] 7.11 0.9145 5.45 0.9256 18.82 0.7812 3.76 0.9664
Kim et al. [37] 7.41 0.9159 5.89 0.9290 17.68 0.8229 4.00 0.9688

RADAR 6.18 0.9310 4.00 0.9500 14.98 0.8625 2.11 0.9863
RADAR (fast) 6.39 0.9278 4.37 0.9449 15.25 0.8547 2.46 0.9822

TABLE X
PERFORMANCE OF OUR AND OTHER METHODS FOR 4× UPSCALING, WITH

ARBITRARY BLURRING KERNELS.

Blurring function bior2.4 bior6.8 rbio2.8 linear spline
RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM

Dong et al. [35] 5.68 0.9250 4.89 0.9376 4.59 0.9469 5.64 0.9294
Wang et al. [36] 4.57 0.9670 3.14 0.9766 3.41 0.9725 4.37 0.9692
Kim et al. [37] 5.00 0.9572 3.16 0.9780 3.11 0.9815 4.66 0.9633

RADAR 2.40 0.9889 2.34 0.9894 2.38 0.9892 2.43 0.9879

VIII. Again, we can see that our method achieves state-of-the-
art results.

Large upscaling factors. It is more challenging to do depth
image super-resolution at large upscaling factors, e.g., 8× and
16×, because more than 90% of information is lost. This is
one of the reasons why many methods perform well with
small upscaling factors but fail with large factors. For large
upscaling factors, the guidance of intensity images becomes
important, because the information provided by the LR depth
is very limited. Table IX shows the reconstruction results for
8× and 16× upscaling, from which we can see that our
method performs consistently better than others. There are
two reasons why we can achieve such good performance
in large factor upscaling. Firstly, our FDU algorithm can
enhance the LR depth to a higher quality, which decreases
the coupling ambiguity in the TDL process. Secondly, the
structured dictionaries learned in the TDL algorithm are able
to fully use the guidance of HR intensity image.

Resilience to uncertainties on the blurring function.
The image capturing process can be regarded as a blurring
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TABLE XI
RUNNING TIME IN SECONDS OF OUR METHOD ON MIDDLEBURY DATASET.

RADAR Cones Teddy Tsukuba Venus Average
2× FDU 14.00 13.90 8.54 13.67 12.53

PRU 2.06 2.00 1.38 2.01 1.86
4× FDU 17.05 17.70 10.74 16.85 15.58

PRU 2.12 2.05 1.52 2.03 1.93
8× FDU 17.54 17.53 11.19 16.97 15.81

PRU 4.17 5.14 3.06 4.16 4.13
RADAR (fast) Cones Teddy Tsukuba Venus Average
2× FDU 2.13 2.08 1.00 2.10 1.83

PRU 2.06 2.00 1.38 2.01 1.86
4× FDU 2.46 2.43 1.31 2.35 2.14

PRU 2.12 2.05 1.52 2.03 1.93
8× FDU 2.50 2.46 1.38 2.36 2.18

PRU 4.17 5.14 3.06 4.16 4.13

TABLE XII
RUNNING TIME IN SECONDS OF OMP AND OUR PRU ALGORITHMS.

Cones Teddy Tsukuba Venus Average
2× OMP 485.56 483.74 462.13 486.21 479.42

PRU 2.06 2.00 1.38 2.01 1.86
4× OMP 628.79 621.88 603.63 636.62 622.73

PRU 2.12 2.05 1.52 2.03 1.93
8× OMP 1065.28 1054.43 1033.57 1074.82 1057.10

PRU 4.17 5.14 3.06 4.16 4.13

and downsampling operation on the true image, where the
blurring function is often unknown. Thus, for image upscaling,
it is important to develop algorithms that are resilient to
uncertainties on the blurring function (blurring kernel). Table
X shows the performance of our and the deep learning
based methods [35]–[37] using different blurring functions
for testing without changing the blurring function used in
the training. We can see that for different blurring functions,
the RMSE and SSIM values of our method only have small
variations, while those of deep learning based methods have
significant fluctuations. This is because our FDU algorithm
takes advantage of the intrinsic characteristic of depth images
to do upscaling, i.e., the depth lines can be modeled as
piece-wise polynomial signals, and the change of extrinsic
settings, such as the blurring kernels, does not affect this
intrinsic characteristic. In contrast, since the deep learning
based methods solely rely on the training dataset, a mismatch
between the training and testing datasets can have a significant
impact on the performance.

Running time. Table XI presents the running time of our
approach as well as the fast version, for different upscaling
factors. In the upscaling process, the running time is composed
of two parts: the FDU and PRU algorithms. Thus, we present
the running time breakdown between FDU and PRU. Recall
that the only difference between the complete and fast versions
is that the fast version does not include the self-learning part
in the FDU algorithm. Here, the time is tested on a Windows
PC with 3.4GHz Inter(R) Core i7 CPU and 16GB RAM. As
we can see from this table, the running time of the fast version
is relatively good for upscaling factors up to 8×, i.e., 4.69s per
image on average, which is faster than that of Ferstl et al. [26]
(135s per image) and Lu et al. [27] (286s per image). However,
it is still slower than that of the deep learning based method,

TABLE XIII
QUANTITATIVE RESULTS OF RMSE ON NOISY MIDDLEBURY DATASET.

2× Cones Teddy Tsukuba Venus Average
σ2=65 Bicubic 6.97 6.77 8.73 6.06 7.13

Ours 3.11 2.82 4.96 1.85 3.18
σ2=130 Bicubic 9.54 9.45 10.85 9.30 9.79

Ours 3.82 3.39 5.56 2.41 3.80
σ2=260 Bicubic 13.21 13.20 14.20 13.07 13.42

Ours 4.62 4.25 6.58 3.09 4.63
4× Cones Teddy Tsukuba Venus Average

σ2=65 Bicubic 7.62 7.29 10.79 6.86 8.14
Ours 5.24 3.99 9.52 2.72 5.37

σ2=130 Bicubic 10.03 9.74 12.58 9.43 10.44
Ours 5.77 4.59 9.88 3.28 5.88

σ2=260 Bicubic 13.73 13.46 15.45 13.26 13.98
Ours 6.45 5.38 10.47 4.22 6.63

for example, Wang et al. [36] (0.93s per image) and Kim et
al. [37] (2.65s per image). As we mentioned before, our PRU
algorithm can significantly speed up the upscaling process
compared to the conventional OMP algorithm. To verify this,
we compare in Table XII the running time of the OMP and
our PRU algorithms, respectively. As we can see, our PRU
algorithm is hundreds of times faster than the OMP which
takes more than 1000s per image for 8× upscaling.
D. Qualitative Results

Figures 8, 9 and 10 visualize the 4× upscaling results of
Tsukuba, Bamboo, and Image-1 from Middlebury, Sintel, and
NYU datasets, respectively. As can be seen, our method can
reconstruct depth images with the visual quality quite close
to the ground truth, while others result in either blurred [29],
[32] or diffused edges [26] [27].

In Figure 11, we compare the 8× upscaling results of Cones
from Middlebury dataset. It can be easily observed that our
method reconstructs clearer and sharper edges compared to
others, and at the same time our method avoids the depth
diffusion problem of [26] and [27].

E. Noisy Case

Real-world depth images are usually corrupted by noise. For
this reason, we evaluate the performance of our approach on
the noisy Middlebury dataset and the real-world ToFMark [26]
dataset. Here, in the Middlebury dataset, Gaussian white noise
is added to the LR versions of the images, via the MATLAB
imnoise function with zero mean, and three different variances
σ2 = 65, 130, and 260. The ToFMark dataset provides a
LR noisy depth image for each scene, thus we do not need
to add noise. Note that here we assume that the intensity
images which are used as guidance are always noiseless. In
addition, the dictionaries need to be re-trained in the noisy
case. Figs. 12 and 13 show the visual results on the noisy
Middlebury and ToFMark datasets. We can see that most of the
noise is eliminated using our method and the boundaries/edges
corrupted by noise are nicely reconstructed. Table XIII shows
quantitative results in terms of RMSE on the noisy Middlebury
dataset for 2× and 4× upscaling with three different noise
levels. From this table, we can see that our algorithm is able
to eliminate the noise with larger variances more effectively.
In practical scenarios, to determine whether to use noise-
free or noisy version of our algorithm, we have run both



12

versions of the method on noisy testing images. Fig. 14 shows
the changes of peak signal-to-noise ratio (PSNR) values with
respect to the noise variance σ2 for both the noise-free and
noisy versions of our algorithm. As shown in Fig. 14, we
can see that the noise-free version is more effective for noise
variance σ2 < θ, whereas the noisy version performs better for
σ2 > θ. Considering the diversity of the depth images in real
world, we allow an interval [θ−δ, θ+δ] in which either noise-
free or noisy version can be used. When the noise variance is
larger than θ+ δ, it is more appropriate use the noisy version,
while for the noise variance smaller than θ − δ, we prefer to
use the noise-free version. According to Fig. 14, we can set
θ = 2.5, and we empirically set δ = 1.5.

V. CONCLUSIONS

This paper proposes a novel depth image super-resolution
approach, called RADAR, which combines the FRI recon-
struction theory with multi-modal dictionary learning. The
main strength of this method is that it achieves upscaling
of depth images at very high upscaling factors, but with a
small training dataset. Moreover, it does not require to train
a complex deep neural network. Also, it is robust to noisy
depth images and unknown blurring kernels. Given a LR
depth image, we firstly approximate its rows and columns
as piece-wise polynomial signals and propose a 2-D FRI
reconstruction algorithm to upscale it. The initially upscaled
image is further enhanced through a fast, projection based
upscaling process in which the HR intensity image guides
the super-resolution. Extensive experimental results show that
our method outperforms other state-of-the-art methods on both
synthetic and real-world datasets with upscaling factor of up
to 16×.

APPENDIX

We model the pixels in a row or column of the LR depth
image as follows:

yn = 〈x(t), ϕ(t− n)〉, n ∈ {0, 1, 2, ...N}, (16)

where x(t) is a piecewise polynomial function and ϕ(t)
models the distortion due to the lenses in the camera. We
call ϕ(t) the “blurring kernel”. It is possible to show that
the scaling functions in a wavelet transform model well the
function ϕ(t) [56]. Moreover, it is possible to show that there
exist coefficients cm,n such that:∑

n∈Z
cm,nϕ(t− n) ' ejw0mt. (17)

Under some mild assumptions, the approximation in Eq.
(17) is exact, otherwise the error is small [10]. Finally, it
is possible to show that the reconstruction of the piecewise
polynomial signal x(t) from the pixels yn is equivalent to the
reconstruction of a stream of Diracs [43]. We therefore focus
on this second case.

Consider a stream of Diracs signal x(t) =
∑K−1

k=0 akδ(t −
tk), we begin by linearly combining the samples yn with the
coefficients cm,n of Eq. (17)

sm =
∑
n

cm,nyn, m ∈ {0, 1, 2, ...L}. (18)

Taking Eq. (16) in to Eq. (18), we obtain

sm
(a)
= 〈x(t),

∑
n

cm,nϕ(t− n)〉

(b)
=

∫ +∞

−∞

K−1∑
k=0

akδ(t− tk)ejw0mtdt

(c)
=

K−1∑
k=0

aku
m
k , m ∈ {0, 1, 2, ...L},

(19)

where (a) follows from linearity of the inner product, (b) from
the fact that x(t) =

∑K−1
k=0 akδ(t− tk) and Eq. (17), and (c)

by setting uk = ejw0tk .
We now have the values of sm from Eq. (18) and we

hope to figure out the values of ak and uk in Eq. (19). To
this end, following the Prony’s method [57], we first need to
construct an annihilating filter. Suppose the filter coefficients
are {hm}Km=0, the z-transform H(z) of {hm}Km=0 should
satisfy the following condition,

H(z) =
K∑

m=0

hmz
−m =

K−1∏
k=0

(1− ukz−1). (20)

In other words, the roots of H(z) are the uks which contain the
information of the location tk of the Diracs. The convolution
of hm and sm is equal to zero, as the following proof shows,

hm ∗ sm =
K∑
l=0

hlsm−l

=
K∑
l=0

hl

K−1∑
k=0

aku
m−l
k

=
K∑
l=0

hlu
−l
k︸ ︷︷ ︸

H(uk)=0

K−1∑
k=0

aku
m
k = 0

(21)

If we have sm for m =0, 1, ..., 2K-1, hm ∗ sm = 0 can be
written as a square Toeplitz matrix form by imposing h0 = 1,

sK−1 sK−2 . . . s0
sK sK−1 . . . s1

...
...

. . .
...

s2K−2 s2K−3 . . . sK−1



h1

h2

...
hK

 = −


sK
sK+1

...
s2K−1

 . (22)

Eq. (22) is a classic Yule-Walker system, and through solving
it we can get the filter coefficients {hm}Km=0 and their z-
transform H(z). By calculating the roots of H(z), we obtain
the value of uk and also the location tk since uk = ejw0tk .
Recall from Eq. (19) that sm =

∑K−1
k=0 aku

m
k , therefore the

amplitude ak can be obtained through solving the following
system of equations,

1 1 . . . 1
u0 u1 . . . uK−1

...
...

. . .
...

uK−1
0 uK−1

1 . . . uK−1
K−1




a0
a1
...

aK−1

 =


s0
s1
...

sK−1

 . (23)

Eq. (23) is a Vandermonde system which yields a unique
solution if the uks are distinct. In the case of a piecewise
polynomial signal, the algorithm would retrieve the locations
tk of the discontinuities first and then the coefficients of the
polynomials.
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(a) GT (b) Bicubic (c) Ferstl (d) Xie

(e) Lu (f) Gu (g) Song (h) Ours

Fig. 8. Visual comparison of Tsukuba in Middlebury dataset with upscaling factor = 4. (a) Ground truth. (b) Bicubic. (c) Ferstl et al. [26]. (d) Xie et al. [8].
(e) Lu et al. [27]. (f) Gu et al. [29]. (g) Song et al. [7]. (h) Our method.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(a)

(b)

(c) (e)

(d) (f)

(g)

(h)

(g)

Fig. 9. Visual comparison of Bamboo in Sintel dataset with upscaling factor = 4. (a) Ground truth. (b) Bicubic. (c) Xie et al. [8]. (d) Timofte et al. [32].
(e) Lu et al. [27]. (f) Ferstl et al. [26]. (g) Gu et al. [29]. (h) Our method.

(a) GT (b) Bicubic (c) Timofte (d) Xie

(e) Lu (f) Ferstl (g) Gu (h) Ours

Fig. 10. Visual comparison of Image1 in NYU dataset with upscaling factor = 4. (a) Ground truth. (b) Bicubic. (c) Timofte et al. [32]. (d) Xie et al. [8].
(e) Lu et al. [27]. (f) Ferstl et al. [26]. (g) Gu et al. [29]. (h) Our method.
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(a) GT (b) Bicubic (c) Timofte (d) Park

(e) Lu (f) Ferstl (g) Song (h) Ours

(g) Song (h) Ours(a) GT (b) Bicubic (c) Timofte (d) Park (e) Lu (f) Ferstl

Fig. 11. Visual comparison of Cones in Middlebury dataset with upscaling factor = 8. (a) Ground truth. (b) Bicubic. (c) Timofte et al. [32]. (d) Xie et al.
[8]. (e) Lu et al. [27]. (f) Ferstl et al. [26]. (g) Song et al. [7]. (h) Our method.

(a) Ground truth (b) Wang [36]
RMSE=6.90

(c) Ferstl [26] 
RMSE=5.72

(e) Ours (noisy version )
RMSE=3.18

(d) Ours (noise-free version) 
RMSE=6.70

Fig. 12. Results on noisy Middlebury dataset for 2× upscaling, with the variance of noise σ2 = 65. (a) Ground truth, (b) Wang et al. [36], (c) Ferstl et al.
[26], (d) Our method with noise-free version, (e) Our method with noisy version. The RMSE value is averaged among four images.

(a) Input (b) Bicubic (c) Wang [36] (d) Ferstl [26] (f) Ours 
(noisy version)

(e) Ours
(noise-free version)

Fig. 13. Qualitative results on the real-world ToFMark [26] dataset for 2× upscaling. (a) Ground truth, (b) bicubic interpolation, (c) Wang et al. [36], (d)
Ferstl et al. [26], (e) Our method with noise-free version, (f) Our method with noisy version. The variances of noise are σ2 = 4.58, 3.80 and 4.21 for input
noisy depth images from top to down, which are estimated using method proposed by Liu et al. [55].
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Fig. 14. PSNR versus noise variance σ2 when applying noise-free and noisy
versions of our algorithm on the noisy images.
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