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Abstract

We propose a dual-hormone control algorithm by exploit-
ing deep reinforcement learning (RL) for people with Type
1 Diabetes (T1D). Specifically, double dilated recurrent neu-
ral networks are used to learn the hormone delivery strategy,
trained by a variant of Q-learning, whose inputs are raw data
of glucose & meal carbohydrate and outputs are the actions
to deliver dual-hormone (basal insulin and glucagon). With-
out prior knowledge of the glucose-insulin metabolism, we
develop the data-driven model in the UVA/Padova Simulator.
We first pre-train the generalized model in an average T1D
environment with a long-term exploration, then adopt impor-
tance sampling to train personalized models for each individ-
ual. In-silico, the proposed algorithm largely reduces adverse
glycemic events, and achieves time in range, i.e., the percent-
age of normoglycemia, 93% for the adults and 83% for the
adolescents, which outperforms previous approaches signifi-
cantly. These results indicate that deep RL has great potential
to improve the treatment of chronic illnesses.

Introduction
Diabetes is a lifelong condition that affects an estimated
451 million people worldwide (Cho et al. 2018). Deliver-
ing an optimal insulin dose to T1D subjects has been one of
the long-standing challenges since the 1970s (Reddy et al.
2016).

In the past, the quality of life of subjects with Type 1 Di-
abetes (T1D) has relied heavily on the accuracy of human-
defined models & features of the delivery strategy. Recently,
however, deep learning has provided new ideas and solu-
tions to many healthcare problems (Jiang et al. 2017). This
has been empowered by the increased availability of med-
ical data and rapid progress of analytic tools, e.g. deep re-
inforcement learning (RL). However, several reasons hin-
der the building of efficient RL models to solve problems
in chronic diseases. Firstly, as RL medical data is collected
from a dynamic interaction between the human and environ-
ment, they are limited and expensive (Artman et al. 2018).
In addition, it is different to a scenario such as playing Atari
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in virtual environment (Mnih et al. 2015); RL costs heav-
ily to ’explore’ the possibilities on humans in terms of price
and safety. Finally, the variability of physiological responses
to the same treatment can be very large for different peo-
ple with T1D (Vettoretti et al. 2018). These reasons are why
there has been so little progress in using RL in chronic ill-
nesses.

To overcome these obstacles, we propose a two-step
framework to apply deep RL in chronic illnesses, and use
T1D as a case study. T1D is chosen because it is a typi-
cal disease that requires dynamic treatment consistently. A
generalized deep RL model for a hormone delivery strategy
in diabetes is pre-trained using a variant of Q-learning as
the first step. Secondly, by prioritizing the transitions in ex-
perience memory, importance sampling are implemented to
train personalized models with individual data (Schaul et al.
2015). It has been shown that dilated recurrent neural net-
work (DRNN) performs well in processing long-term de-
pendencies and future glucose prediction (Chang et al. 2017;
Chen et al. 2018). Thus, we employ DRNN to build a double
deep Q-network (DQN) for multi-dimensional medical time
series, in which each basal hormone delivery (at five min-
utes intervals) are considered as an action determined by a
stochastic policy, and glucose levels and time in range (TIR)
are considered as the reward. TIR presents the time percent-
age of glucose values within a target range considered to be
normoglycemia. It is a key derived metric in glycemia con-
trol and preferred in diabetes clinics (Vigersky and McMa-
hon 2018).

We use the UVA/Padova T1D Simulator, a credible
glucose-insulin dynamics simulator which has been ac-
cepted by the Food and Drug Administration (FDA) (Dalla
Man et al. 2014), as the environment. It can generate data
from T1D subjects with high variability of meal intake, body
conditions and other factors. During the training, the agent
interacts with the T1D environment to obtain the optimal
policy for the dual-hormone closed-loop delivery, as shown
in Figure 1. Then 10 adults and 10 adolescents are tested
within a 6 month period of time. The results show that
TIRs achieve 93% for adults and 83% for adolescents in-
silico, which significantly improve the state-of-the-art per-
formances.



Related Work and Preliminaries
The rapid growth of continuous glucose monitoring (CGM)
and insulin pump therapy have motivated use of a closed-
loop system, known as the artificial pancreas (AP) (Cobelli,
Renard, and Kovatchev 2011; Hovorka 2011). Many algo-
rithms are developed and verified as closed-loop single/dual
hormone delivery strategies (Bergenstal et al. 2016) that
are mostly based on control algorithms (Facchinetti 2016;
Haidar 2016). Researchers have investigated a RL routine to
update several parameters of glucose controller in gradient
(?; Herrero et al. 2017). Moreover, we find a RL environ-
ment was built in a simulator of the 2008 version (Xie 2018).
Based on this simulator, a recent paper has introduced deep
RL to improve average risk index (Fox and Wiens 2019); the
method uses 1d-CNN or GRU as the DQN to control sin-
gle insulin delivery. However, we use an updated simulator,
the 2013 version (S2013), with many new features such as
glucagon kinetics that allows dual-hormone actions (Dalla
Man et al. 2014).

We see the problem an infinite-state Markov decision
process (MDP) with noise. An MDP can be defined by a
tuple 〈S,A,R, T , γ〉 with state S, action A, reward func-
tion R : S × A 7→ [Rmin, Rmax], transition function T ,
and discount factor γ ∈ [0, 1]. At each time period, the
agent takes an action a ∈ A, causes the environment from
some state s ∈ S to transit to state s′ with probability
T (s′, s, a) = P (s′|s, a). A policy π specifies the strategy
of selecting an action. RL’s goal is to find the policy π
mapping states to actions that maximizes the expected long-
term reward. Thus, we define Q-function Qπ(s, a) for state-
action values and the optimal Q∗(s, a) = maxπ Q

π(s, a) =
Es′ [R(s, a) + γmaxa′ Q

∗(s′, a′)].
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Figure 1: The system architecture to apply deep RL on T1D.

Methods
In the hormone delivery problem, we use a multi-
dimensional data as the input D. The data includes blood
glucose G (mg/dL), meal data M (g) manually record
by individuals, corresponding meal bolus B (U). Dual-
hormone (basal insulin and glucagon) delivery is consid-
ered as actions A. In this case D can be denoted as D =
{G,M, I, C} = [d1, · · · , dL]T ∈ RL×4, where L is the data

length, I is the total insulin including bolus B, basal, and
C stands for the glucagon. We use the latest 1 hour data
(12 samples) as current state st = [dt−11 · · · , dt−1, dt]T.
Here B is computed from M with a standard bolus calcula-
tor B ∝ M divided by the body weight. Then the problem
can be seen as an agent interacting with an environment over
time steps sequentially, as depicted in Figure 1. Every five
minutes, an observation ot = st+et can be obtained, and an
action at is taken. The action can be chosen from three op-
tions: do nothing, deliver basal insulin, or deliver glucagon.
The amount of basal insulin and glucagon is a small constant
that determined by the subject profile in advance. To main-
tain the BG in a target range, we define a reward carefully
that the agent receives in each time step

rt =



−0.6 + (Gt+1 − 70)/100 30 ≤ Gt+1 < 70
0 70 ≤ Gt+1 < 90
1 90 ≤ Gt+1 < 140
0 140 < Gt+1 < 180
−0.4− (Gt+1 − 180)/200 180 < Gt+1 ≤ 300
−1 else

(1)
The goal of the agent is to learn a personalized basal

insulin and glucagon delivery strategy with a short period
of time (one month) and limited data for each individual.
Therefore, we propose a two-step learning approach: A gen-
eralized model is pre-trained in average T1D environment
with a long-term exploration, and then we obtain personal-
ized models for each subject by fine-tuning the generalized
model. From the intrinsic perspective of T1D in a real-life
scenario, we cannot use trial and error process with poor ini-
tial performance, so the first step needs to be done in the sim-
ulator. For the second step, it is possible to be adopted in real
clinical trails, with a generalized model as the agent’s ini-
tial policy. Meanwhile, proper safety constrains, such as in-
sulin/glucagon suspension, are still required during the train-
ing process.

Generalized DQN training
With the interactive environment in the simulator, the
DRNN is employed as the centerpiece in DQNs, be-
cause it has larger receptive field that is crucial for
glucose time series processing (Chen et al. 2018). Dou-
ble DQN weights θ1, θ2 in the simulator are trained
because it has been proved as a robust approach to solve
overestimations (Van Hasselt, Guez, and Silver 2016).
Action network and value network are trained JDQ(Q) =

(R(o, a) + γQ(o′, arg maxaQ(o′, a; θ1); θ2)−Qi(o, a; θ1))2.
The pseudo-code is sketched in Algorithm 1.

The agent explores random hormone delivery actions un-
der policy π that is ε-greedy with respect to Qθ1 in simu-
lator. Some human intervention/demonstration at the begin-
ning of the RL process can reduce the training time slightly,
but in simulator it is not necessary.

Personalized DQN training
In this step we refine the model and customize it for the per-
sonal use. Weights and features obtained from the last step



Algorithm 1 Generalized DQN training

1: Inputs: Initializing environment E , historical data
H , update frequency T, two dilated RNN of random
weights θ1, θ2, respectively.

2: repeat
3: select action from a ∼ π(Qθ1 , ε), observe (o′, r) in
E(Is)

4: store (o, a, r, o′) into replay buffer B
5: sample a mini-bath uniformly from B and calculate

loss JDQ(Q)
6: perform a gradient descent to update θ1, θ2
7: if t mod T = 0 then θ2 ← θ1 end if
8: until converge or reach the number of iterations

are updated using limited data with an importance sampling
(Schaul et al. 2015). Details are shown in Algorithm 2.

Algorithm 2 Personalized DQN training

1: Inputs: Initialized with environment E, historical data
H , generalized Q-function Q with weights θ1, replay
buffer B, target weights θ2, update frequency T

2: generate D as a merge of B and experience collected
from H

3: calculate importance probability Pr from H
4: repeat
5: select action from policy a ∼ π(Qθ1 , ε), observe

(o′, r)
6: store (o, a, r, o′) in D, overwriting the oldest sam-

ples previously merged from B
7: sample a mini-batch from D with importance Pr
8: calculate loss J(Q) = JDQ(Q)
9: perform a gradient descent update θ and the impor-

tance sampling to update Pr
10: if t mod T = 0 then θ2 ← θ1 end if
11: until converge or reach the number of iterations

Experiment Results
We compare the results with the following experimental
setup (details in supplementary materials): 1. constant basal
insulin (CB); 2. insulin suspension and carbohydrate recom-
mendation (ISCR) (Liu et al. 2019); 3. generalized DQN
(Algorithm 1); 4. personalized DQN (Algorithm 1, 2). CB
is the baseline method in simulator as conventional hor-
mone control of T1D, and ISCR is based on proportional-
derivative controller and Kalman filter.

In experiments, we used the TIR ([70, 180] mg/dL),
the percentage of hypoglycemia (< 70 mg/dL) and hy-
perglycemia (> 180 mg/dL) as the metrics to measure
the performance. In general, either higher TIR or lower
Hypo/Hyper indicates better glycemia control. Table 1
presents the overall glycemia performance on the adult sub-
jects. It is noted that the DQNpersonalized achieves the best
performance and increases the mean TIR by 11.21% (p ≤
0.005), compared to the CB setup. For the adolescent case
in Table 2, the DQNpersonalized also obtains the best TIR of

Table 1: Performance on 10 adult subjects.

Method Normo (TIR) Hypo Hyper
CB 81.91±8.66‡ 5.29±3.93‡ 12.80±8.67‡

ISCR 87.62±7.57‡ 2.36±1.44‡ 10.01±7.35‡
DQNGeneralized 89.16±5.04 1.92±1.36 8.92±5.38
DQNPersonalized 93.12±4.48 1.25±1.32 5.63±3.29

∗p ≤ 0.05 †p ≤ 0.01 ‡p ≤ 0.005

Table 2: Performance on 10 adolescent subjects.

Method Normo (TIR) Hypo Hyper
CB 61.68±10.95‡ 9.04±7.22‡ 29.28±11.16‡

ISCR 74.55±9.61† 2.38±1.82† 23.07±7.26‡
DQNGeneralized 74.89±8.58 2.36±2.19 22.75±8.63
DQNPersonalized 83.39±8.03 2.10±1.56 14.51±9.98

∗p ≤ 0.05 †p ≤ 0.01 ‡p ≤ 0.005

83.39%. In both cases, the personalized model outperforms
the baseline methods on both TIR and Hypo/Hyper results
with considerable improvements.

In Figure 2, we visualize the TIR performance through
30-day personalized training, and specific BG values of two
subjects, as average cases, over 6-month testing period. We
has explored simple fully-connected neural network (NN)
as DQNs. Although there are increasing trends of TIR for
both DRNN and NN during the training, the TIR perfor-
mance of the NN is not as stable as DRNN. The perfor-
mance on the adult is basically in accordance with statis-
tical results in Table 1, and the DQN model avoids many
hypoglycemia events during the night. For the adolescents,
it is observed that the DQN model also helps avoid adverse
glycemic events and improve TIR significantly.

Conclusion
We propose a new dual-hormone delivery algorithm and em-
ploy deep RL for glucose management. DRNNs are used
in the architecture of double DQN with the 2-step learning
framework to develop personalized models. This algorithm
has achieved a significant improvement in glycemic control
and outperforms existing work.
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(c) Testing performance on an adult
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(d) Testing performance on an adolescent

Figure 2: Left: The performance of personalized training with confidence intervals on 10 subjects over a one-month period,
using DRNN or NN. Middle and Right: The testing performance of four setup over a 6-month period: (Top-to-bottom) CB,
ISCR, generalized DQN, personalized DQN, distribution of meal carbohydrate. The average BG levels for 180 days are shown
in solid blue lines, and the hypo/hyperglycemia regions are shown in dotted green/red lines. Each gray line stands for glucose
trajectory over 1 day (totally 180 ensembles), and the blue shaded regions indicate the standard deviation.
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